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Semiclassical theory for the interaction dynamics of laser light
and sodium atoms including the hyperfine structure

S. Dangel and R. Holzner
Physik-Institut der Universita¨t Zürich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland

~Received 25 April 1997!

The conventionalJ51/2↔J51/2 model is successful for the qualitative description of the interaction of
sodium atoms and laser light tuned close to the atomicD1 transition. However, time constants for dynamic
effects due to optical pumping predicted by the model are about an order of magnitude too short compared to
experimental observations. The inclusion of hyperfine states in the quantum-mechanical description of the
atom leads to a satisfactory model that also predicts the correct absorption due to atomic diffusion and allows
for the description of effects related to population trapping. This hyperfine model is derived in detail and
compared with theJ51/2↔J51/2 approximation.@S1050-2947~97!00911-6#

PACS number~s!: 32.80.Bx, 32.10.Fn, 03.65.Sq, 42.25.Bs
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I. INTRODUCTION

In addition to a variety of other fascinating effects, t
interaction of resonant laser light with alkali-metal atoms c
create spatiotemporal intensity and polarization pattern
the propagating radiation field. For their theoretical desc
tion, a number of models have been developed that var
complexity according to their aims. They have been op
mized with regard to simplicity, treatability with analytica
tools, inclusion of magnetic field effects, inclusion of th
polarization properties of light, or the extension to other
fects such as optical pumping, radiation trapping, or popu
tion trapping.

Probably the first and simplest model to describe ato
light interactions is the oscillating dipole model. By assu
ing an electron in the Coulomb potential of a positive cha
driven by the oscillating electric field of a light wave, th
entirely classical model is capable of describing absorp
and dispersion effects that are coupled by the Kram
Kronig relation and are expressed by the imaginary and
parts of a complex refractive index. The linewidth of th
atomic transition, an intrinsic quantum-mechanical quant
is interpreted as the damping of the oscillation and the bi
ing potential determines the resonance oscillation freque
From this model one can extract Beer’s law for linear a
sorption in the weak signal approximation. It fails, howev
for stronger radiation fields since in a real atom saturat
occurs.

Saturation is taken into account by the optical Blo
equations@1#, which represent the simplest semiclassi
model where the light is a classical scalar wave and the a
is treated as a two-state quantum-mechanical system us
232 density matrix. Since this treatment is nonperturbat
~the terms of all orders in the electric field are retained!, this
model remains correct even for large-field amplitudes.
comparison@2# between the full QED treatment of the atom
radiation interaction@3# with the semiclassical approxima
tion shows that the latter is a good approximation as long
the natural decay rate and the Rabi frequency are small c
pared to the optical transition frequency.

If effects due to the polarization of the electromagne
561050-2947/97/56~5!/3937~13!/$10.00
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radiation are to be described, the model for the atom m
discriminate between the different angular momenta of
atomic states. A straightforward approach consists of r
equations@4# describing the mutual interaction of the atom
state populations and the radiation-field components. H
ever, they do not contain coherences and are therefore
capable of describing diffraction that is essential for thre
dimensional beam propagation. These effects require a s
classical description employing the three-dimensional w
equation in combination with a quantum-mechanically d
rived atomic polarization term. In the case of the sodiumD1

transition, on which we shall concentrate in the following
two-level four-state semiclassical model known as
J51/2↔J51/2 model ~or J1/2 model! is adequate for the
explanation of most effects. A general treatment of suc
model has been given by Ducloy@5# based on irreducible
tensors@6,7#. The model has been further developed for o
specific experimental conditions by McCord and Ballagh
1990@8#, however, only for the steady-state case. A one-p
system~not containing a cavity, a backreflecting mirror,
counterpropagating beams! is assumed. An arbitrary inten
sity and polarization pattern can be taken as input and
propagation through sodium vapor is then calculated num
cally. The model includes diffraction, saturation, and optic
pumping-induced polarization effects. As shown in Fig.
~top!, optical pumping@9# by circularly polarized light rear-
ranges the initially equal populations of both ground state
such a way that the medium becomes transparent to the
beam and all atoms populate the nonabsorbing ground s
Optical pumping represents a highly nonlinear mechan
even at very low light intensities. It leads to an intensit
dependent refractive index that is responsible for a variety
effects.

Some of these effects that we have experimentally
served are briefly summarized here for further reference.
simplest case of dynamic behavior, in which only a sing
circularly polarized beam ‘‘pumps’’ its way through the m
dium, is an important test case for the theory@4#. More com-
plex effects are observed if two beams of different polari
tion are involved. Beam switching@4# occurs when a
circularly polarized laser beam has optically pumped the m
3937 © 1997 The American Physical Society
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3938 56S. DANGEL AND R. HOLZNER
dium and then a second beam of opposite circular polar
tion is switched on. As a result, the total transmitted lig
through the medium drops to zero since the mutual opt
pumping of both beams redistributes the atoms in b
ground states in a such way that both beams are abso
completely. Another effect is beam bouncing@10#, which
occurs when two laser beams of opposite circular polar
tion are guided through sodium vapor with their geometri
intersection point in the middle of the cell and making
angle of about 5 mrad. The beams then deflect each o
due to changes in the optical-pumping-induced refractive
dex that cause total internal reflection at the interface a
close to the intersection point. A third effect is beam splitti
@11#, where two initially superimposed copropagating las
beams of opposite circular polarization suddenly split in
two separated beams after having propagated a conside
distance through the medium. Also the effect of externa
applied magnetic fields can be described by the model.
lated experimental observations are the large-frequency
of the absorption profile of circularly polarized light@12# and
the deflection of a circularly polarized laser beam by
inhomogeneous transverse magnetic field of a current ca
ing wire @13,14#.

Although theJ1/2 model describes most of the observ
behavior qualitatively, it often fails to reproduce the tr
experimentally measured parameter values. It clearly fa
e.g., to account for a realistic description of the dynamics
optical-pumping-related phenomena. In the model the t
scale of optical pumping is about one order of magnitude
fast compared to experimental observations@15#. Further-
more, the decay rate of the ground-state magnetization du
diffusion has to be adjusted for good agreement betw
experiment and theory with regard to the laser-beam abs
tion. Also in the case of external magnetic fields one has
vary theg factor of the lower level between12 and 2, depend-
ing on the observed effects, to match experimental res

FIG. 1. Schematic representation of the sodiumD1 atomic tran-
sition. Top: neglecting the hyperfine structure leaves only f
states (J51/2↔J51/2 model!. Optical pumping, by, e.g.,s1 cir-
cularly polarized light can occur directly between themj521/2
andmj511/2 ground states. Bottom: full model with all hyperfin
levels. Optical pumping occurs in several steps and is abou
order of magnitude slower than in theJ51/2↔J51/2 model. Re-
laxations other than the one to the pumped state are not show
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All these shortcomings can be eliminated by the inclusion
the sodium hyperfine structure in the model. The importa
of hyperfine effects has been mentioned previously, es
cially concerning population trapping@16–18# and optical-
pumping time@15#. Due to the nuclear spinI 53/2 of so-
dium, 16 states have to be considered, 8 for the 3S1/2 and 8
for the 3P1/2 energy level. Even a simple rate equation mod
including the hyperfine states provides the correct optic
pumping time and light absorption@4#. However, as in the
case of theJ51/2↔J51/2 approximation, a semiclassica
treatment is needed for the description of coherences
three-dimensional effects. The main part of the present pa
is dedicated to the derivation of such a semiclassical hyp
fine ~HF! model and to the detailed explanation of the im
provements compared to the semiclassicalJ1/2 model.

Some aspects of the HF model can be understood i
itively. Due to the increased number of states@Fig. 1 ~bot-
tom!# one can see why the optical pumping process requ
a longer time since an atom in themF522 ground state
needs more pump cycles~‘‘indirect’’ pumping! until it
reaches the only pumped state (mF52). One can also imag
ine that the unpolarized atoms that diffuse into the bea
interaction region contribute more strongly to the groun
state magnetization decay rate than in theJ1/2 model, in
which half of the in-drifting atoms are already in the pump
state compared to only 1/8 in the case of the HF model
addition to the improvements with respect to theJ1/2 model,
the HF model also allows one to address fundamentally
ferent questions. Population trapping, e.g., is shown to oc
if the energy splitting of the hyperfine levels is decreas
The HF model also allows for different relaxation an
dephasing rates for each rank~0–4! in the irreducible tensor
representation, giving a total of 14 relaxation constants co
pared to only 3 in theJ1/2 model. The possible adaptation o
the HF model to other atomic transitions and other alka
metal atoms, as well as the case of a two-dimensional ga
discussed in Sec. V B.

II. DERIVATION OF THE EQUATIONS

A. Assumptions

The atoms are considered to be at rest, which excludes
description of behavior caused by the Doppler effect or
velocity changing collisions. The motion of atoms is mim
icked by adding appropriate relaxation terms into t
density-matrix equations. The diffusion of atoms out of t
laser beam area, e.g., is approximated by an exponentia
cay of the ground-state magnetization. In our experime
the use of argon as buffer gas reduces the diffusion rat
sodium atoms drastically. This approximates motionless
oms, inhibits nonlocal effects, and increases the trans
time of atoms in the laser beam. The related low value
the ground-state magnetization decay rate is essential fo
ficient optical pumping in the relatively low-power beam.
further consequence of buffer gas is the homogeneous br
ening of the atomic transition due to collisions. In theJ1/2
model this is the main reason to neglect hyperfine effects
Doppler broadening. In our HF model we still assume hom
geneous broadening to be much larger than Doppler bro
ening, which can therefore be ignored.
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56 3939SEMICLASSICAL THEORY FOR THE INTERACTION . . .
The emitted radiation after a spontaneous decay of
excited atomic state is not taken into account and is con
ered to be lost to the system. This excludes radiation trapp
effects and is usually a good approximation for low atom
densities and low light powers. Furthermore, the mutual
teraction of atoms is neglected.

The laser linewidth is assumed to be zero, which is a g
approximation for the experimental value of 1 MHz. Final
although quadrupole and higher moments appear among
density-matrix elements, the wave equation in the dipole
proximation will be used since the spatial variation of t
field envelopeEW 0 is assumed to be zero inside a volum
element of atoms described by the density matrix.

B. Classical field equations

The laser light traveling along thez axis, defined as the
quantization axis, is represented by the classical electric fi

EW ~rW,t !5Re@EW 0~rW,t !e2 i ~vt2kz!#

5 1
2 @EW 0~rW,t !e2 i ~vt2kz!1c.c.#, ~1!

which is the product of the generally complex envelo
EW 0(rW,t) of the field and the rapidly oscillating exponenti
function. Similarly, we write

PW ~rW,t !5Re@PW 0~rW,t !e2 i ~vt2kz!#

5 1
2 @PW 0~rW,t !e2 i ~vt2kz!1c.c.# ~2!

for the electric polarizationPW due to the atom-light interac
tion. From the definition~1! follows the relation between th
light intensity I ~averaged over a period! and the envelope
EW 0 given by

I 5
1

2
«0cuEW 0u2. ~3!

Note that our definition ofEW 0 is a factor of 2 larger than tha
in @5#.

InsertingEW andPW into the classical wave equation derive
from Maxwell’s equations

¹2EW 2
1

c2

]2EW

]t2
5

1

«0c2

]2PW

]t2
, ~4!

we obtain

¹2EW 012ik
]EW 0

]z
1

2iv

c2

]EW 0

]t
2

1

c2

]2EW 0

]t2

52
k2

«0
PW 02

2iv

«0c2

]PW 0

]t
1

1

«0c2

]2PW 0

]t2
~5!

for the relation between the envelopesEW 0 andPW 0. Within the
slowly varying envelope approximation, the higher deriv
tives of EW 0 and PW 0 are neglected, which leads to the fin
equation
e
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]z
1

1

c

]

]t D2
ic

2vS ]2

]x2
1

]2

]y2D GEW 0~rW,t !5
iv

2ce0
PW 0~rW,t !.

~6!

The approximation is justified by the large value ofv. In
addition to restricting the light propagation to the positivez
direction, it also allows for larger time steps in the numeric
solution of the wave equation~reduced stiffness! @19#.

We expressEW 0 andPW 0 in the standard spherical represe
tation with the base vectorseWq ,

eW 6157A 1
2 ~eW x6 ieW y!, eW05eW z , ~7!

as

EW 052E0
2eW 12E0

1eW 2 ,

PW 052P0
2eW 12P0

1eW 2 , ~8!

with E0
6 andP0

6 denoting the right- and left-hand circularl

polarized components ofEW 0 andPW 0, respectively. Noz com-
ponents occur since the laser beam is restricted to propa
along thez axis.

C. Quantum-mechanical atomic equations

The macroscopic polarizationPW is essentially the expec
tation value of the dipole operator obtained from the dens
operatorr, which obeys the modified von Neumann equati

]r

]t
52

i

\
@H,r#1S ]r

]t D
relax

, ~9!

where the HamiltonianH is

H5H01H laser1Hmagnet. ~10!

Equation~9! is, in our case of 16 possible atomic states,
equation between 16316 matrices, yielding 256 coupled or
dinary differential equations for the matrix elements ofr.
Normally one developsr in the standard~energy! basis
ua,F,m&, where F is the total angular momentum,m its
projection on thez axis, anda the other indices necessary
specify the state. In our case,a5 l denotes the lower stat
3s1/2 anda5u the upper state 3p1/2. Due to the symmetry
of the problem, however, it is useful to develop the dens
matrix onto a basis of irreducible tensors@6# defined as

ab
FGTq

k5(
m,n

~21!G2n^F,G,m,2nuk,q&ua,F,m&^b,G,nu,

~11!

which is a linear transformation of the standard bas
^F,G,m,2nuk,q& is the Clebsch-Gordan coefficient cou
pling the angular statesF,m andG,2n to the statek,q. The
operatorsab

FGTq
k can be seen as a generalization of the Pa

spin matrices for a spin-1/2 system. The density operatorr is
then expanded on this basis introducing the time-depen
coefficientsab

FGrq
k(t) as
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3940 56S. DANGEL AND R. HOLZNER
r~ t !5 (
a,b,F,G,k,q

ab
FGrq

k~ t ! ab
FGTq

k . ~12!

In addition to irreducibility with regard to rotations, this ex
pansion ofr gives access to the results of irreducible
theory and allows for a comparison with results from oth
authors since it adheres to the standard normalization
phase conventions. Also, in contrast to the standard com
nents, the irreducible components ofr generally have a
deeper physical meaning since they represent quantities
as population, orientation, and alignment, according to th
rank k.

The expectation value of any operatorA is

^A&5Tr~rA! ~13!

and the expectation values of the irreducible tensor opera
T are

^ab
FGTq

k&5ab
FGrq

k* . ~14!

It is therefore straightforward to find the expectation value
PW 0 used in the wave equation~5! once we have expressed th
dipole operator in terms of the irreducible tensors. Other u
ful relations are the matrix element of the tensorT in the
standard basis

^a,F8,m8uab
F8FTq

kub,F,m&

5~21!F82m8A2k11S F8 k F

2m8 q mD , ~15!

the Hermiticity relation between matrix elements

ab
FGrq

k5~21!F2G2q
ba
GFr2q

k * , ~16!

and the population conservation relation Trr51, which in
our case gives

A3~ l l
11r0

01uu
11r0

0!1A5~ l l
22r0

01uu
22r0

0!51. ~17!

The first component ofH, the Hamiltonian of the unper
turbed atom, is

H05 (
a5 l ,u

(
F

Ea,FA2F11aa
FFT0

0 , ~18!

whereEa,F is the energy of levela with total angular mo-
mentumF. As indicated in Fig. 1, we define theD1 transi-
tion frequencyv0 as

\v05
Eu,11Eu,2

2
2

El ,11El ,2

2
~19!

and the hyperfine splitting energies as

DEHF,l52\v l5El ,22El ,1 ,

DEHF,u52\vu5Eu,22Eu,1 . ~20!

The laser-atom detuning is defined as

Dv5v2v0 . ~21!
t
r
nd
o-

ch
ir

rs

f

e-

Note that in the case of line broadening, in contrast to
J1/2 model, the frequency of maximum absorption is not
zero detuning for the HF model. For typical parameter valu
in the present paper, the absorption maximum is shif
about 0.5 GHz towards the low-frequency side.

D. Interaction with the laser beam

The Hamiltonian of the atom-light interaction is

H laser52EW •DW , ~22!

where DW is the dipole operator. If we express the elect
field ~1! and the dipole operator in standard spherical co
ponents~7!, we obtain

EW •DW 52 1
2 ~E0

2e2 ivt2E0
1* e1 ivt!D1

2 1
2 ~E0

1e2 ivt2E0
2* e1 ivt!D2. ~23!

The dipole operator is a tensor of rank 1 and therefore
matrix elements are~compare@20#, Eq. 5.4.1!

^F8,m8,J8,I uDquF,m,J,I &

5~21!F82m8S F8 1 F

2m8 q mD ^F8,J8,I uuDuuF,J,I &.

~24!

Since DW only operates on the first part (JW ) of the coupled
angular momentaFW 5JW1 IW ~@20#, Eq. 7.1.7!, the reduced ma-
trix element on the right-hand side is

^F8,J8,I uuDuuF,J,I &5~21!J81I 1F11A~2F11!~2F811!

3H J8 F8 I

F J 1J ^J8uuDuuJ&, ~25!

while the final reduced matrix element is an integral over
radial wave functionsRl given by

^J8uuDuuJ&5A2

3E0

`

Rl 51Rl 50r 3dr[A2

3
d. ~26!

The integral cannot be evaluated directly, but is related to
natural decay rategnat by @21#

d53Agnatp\c3«0

2v0
3

. ~27!

For the sodiumD1 transition, we haveI 5 3
2, J5J85 1

2,
and F51,2. Summarizing the above relations together w
Eq. ~15! leads to

Dq5
d

A18
@2 lu

11Tq
12ul

11Tq
11A5~ lu

21Tq
12ul

12Tq
12 lu

12Tq
11ul

21Tq
11 lu

22Tq
1

1ul
22Tq

1!#. ~28!

Only D71 are needed since in our case the laser beam pr
gates along thez axis.
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E. Magnetic field

The Hamiltonian of the magnetic-field interaction is

Hmagnet5
m0gJ

\
BW •JW1

mnucgI

\
BW • IW ~29!

as long asHmagnet is smaller than the hyperfine interactio
~low-field approximation!. The second term is three orders
magnitude smaller than the first due to the small nucl
magnetic moment. This alone is no reason to neglect it, s
even small couplings between the equations for the den
matrix elements can have large effects. However, this t
does not introduce couplings that were not already prese
the first term and will therefore be neglected. Like the dip
operatorD, the operatorJ is a tensor of rank 1, so the sam
treatment as before can be applied, except for the final
duced matrix element~see@20#, 5.4.3!

^J8uuJuuJ&5dJJ8\dabAJ~J11!~2J11!. ~30!

Again, using Eq.~15!, we obtain

gJJq5
\

2A2
(

a5 l ,u
gJ,a@2aa

11 Tq
11A5~2aa

12 Tq
11aa

21 Tq
11aa

22 Tq
1!#,

~31!

with gJ,l52 andgJ,u5 2
3. Note that the reduction of thegJ

factors by6(2I 11) used by many authors~e.g., @22#! is
already included in this treatment.

F. Evaluation of †H ,r‡

We evaluate Eq.~9! without relaxation terms inH. Those
terms are added directly into the equations later.H andr can
be multiplied directly in the irreducible tensor basis using
relation

ab
FGTq

k
a8b8
F8G8Tq8

k85 (
k9,q9

~21!G81F1k82k1k92q9

3dGF8@~2k11!~2k811!~2k911!#1/2

3S k k8 k9

q q8 2q9
D H k k8 k9

G8 F F8
J FG8

ab8
Tq9

k9 .

~32!

Comparing the coefficients of the corresponding tensors
the left- and right-hand sides of Eq.~9! leads to a system o
256 ordinary differential equations for the density-matrix
ements. After the substitution

lu
FGrq

k→e1 ivt
lu
FG r̃ q

k ,

ul
FGrq

k→e2 ivt
ul
FG r̃ q

k , ~33!

the terms oscillating at optical frequencies in the produ
rH and Hr of Eq. ~9! are assumed to average to ze
~rotating-wave approximation@23#!. For example, in

•••E0
1* e2ivt2E0

2
••• ~34!
r
ce
y-
m
in

e

e-

e

n

-

s

the e2ivt term is ignored. The rotating-wave approximatio
restricts the useful time domain tot@1/v due to averaging
over the light oscillations.

G. Relaxations

A disadvantage of a semiclassical~non-QED! treatment
of the light-matter interaction is that the various relaxati
effects have to be added phenomenologically instead of
ing included in the Hamiltonian. We will now discuss th
different relaxation expressions (ṙ)relax.

For our case with the couplingFW 5JW1 IW ~hyperfine struc-
ture small compared to the fine structure!, the additional
terms in the density-matrix equations due to natural de
are @24#

~ l l
FGṙq

k!nat relax5 (
F8,G8

FG
F8G8zk

uu
F8G8rq

k , ~35!

with

FG
F8G8zk5~21!F1F81k11gnat~2J811!

3A~2F11!~2G11!~2F811!~2G811!

3H F G k

G8 F8 1J H G8 G 1

J J8 I J H F8 F 1

J J8 I J .

~36!

The l l -matrix elements relax due to diffusion and col
sion processes. We will use

~ l l
FGṙq

k!relax5~ l l
FGṙq

k!nat relax2g l l
k

l l
FGrq

k . ~37!

For all other (uu, lu, andul) elements we add the terms

~ab
FGṙq

k!relax52gab
k

ab
FGrq

k , ~38!

where theguu
k are the sum of the natural decay rate a

collisional rates of the upper level,g l l
k the decay rates of the

lower level mainly due to diffusion processes, andg lu
k the

multipole dephasing rates. Hermiticity demands th
g lu

k 5gul
k and enforcing population conservation~17! results

in g l l
0 50 and guu

0 5gnat, which excludes nonradiative de
cays.

As initial conditions, before laser light enters the sodiu
vapor cell, all density-matrix elements are zero except

l l
11r0

0~ t50!5
A3

8
, l l

22r0
0~ t50!5

A5

8
. ~39!

These elements describe the population in theF51 and
F52 ground states, respectively. Initially all atoms occu
one of these states. When the laser is turned
(E0

15E0
250), the equation for the population of the lowe

F51 level becomes

l l
11ṙ0

05
gnat

6
~uu

11r0
01A15uu

22r0
0!. ~40!
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3942 56S. DANGEL AND R. HOLZNER
If the laser has been off for a long time, the upper-st
populationsuu

11r0
0 and uu

22r0
0 are zero. This means thatl l

11r0
0

remains stationary and does not relax to the initial equi
rium population ofA3/8 due to atomic diffusion in and ou
of the beam area. We simulate this by adding the follow
diffusion terms to the equations:

~ l l
11ṙ0

0!diff52gdiff~ l l
11r0

02A3/8!,

~ l l
22ṙ0

0!diff52gdiff~ l l
22r0

02A5/8!,
~41!

~uu
11ṙ0

0!diff52gdiff uu
11r0

0 ,

~uu
22ṙ0

0!diff52gdiff uu
22r0

0 .

The additional decay rates for the upper level are neglig
compared to the rates introduced in Eq.~38!, but they are
essential for conserving the total population.

H. Expectation value ofP¢ 0

The mean value of the macroscopic polarization is

PW 052n^D21&eW 12n^D11&eW 2 , ~42!

wheren is the volume density of atoms. Using Eq.~14! and
the expression for the dipole operator~28! and comparing the
result with Eq.~8!, we obtain the mean value of the pola
ization envelope components

P0
q5

2nd

A18
@ lu

11r̃ q
11A5~2 lu

12r̃ q
11 lu

21r̃ q
11 lu

22r̃ q
1!#* . ~43!

The size of the complex differential equation system for
density-matrix elements needed to evaluate Eq.~43! depends
on the specific symmetry defined by the polarization com
nents of the laser light and the components of the magn
field. The hermiticity relation~16! reduces the number o
equations from 256 to 136 for arbitrary light polarization a
magnetic field ~Table I!. If no transverse magnetic fiel
(Btrans) is applied, the number of equations is 72, even i
longitudinal magnetic field (Bz) is present. The longitudina
field does not change the symmetry of the setup and th
fore does not introduce new transitions between ato
states involving additional density-matrix elements. For
case of only one circular polarization (E0

250) and no trans-
verse magnetic field, the size of the system reduces e
further to 34 equations, which are given in Appendix A.

TABLE I. Number of generally complex ordinary differentia
equations needed to calculate the electric polarization~43! for vari-

ous EW and BW field configurations. In all cases the number can
further reduced by one using the population conservation rela
~17!.

Setup Number of equations

BtransÞ0, EW 0 arbitrary 136

E0
1Þ0, E0

2Þ0, Btrans50 72
E0

250, Btrans50 34
e

-

g

le

e

-
tic

e-
ic
e

en

all cases, the set of equations can be reduced by one i
population conservation relation~17! is applied. The equa-
tions for the 16 elementsaa

FFr0
k are real, while all others are

generally complex.

I. Numerics

For given electric and magnetic fields, the time evoluti
of the density matrix can be numerically evaluated by usi
e.g., a Runge-Kutta integration method. If light propagat
has to be included, the density matrix equations have to
solved locally, coupled to the partial differential equation
~6!. We plan to give a detailed description of a fast algorith
solving these equations in time and three-dimensional sp
elsewhere@19#.

Even though only the electric dipole is used in the wa
equation~due to the approximation that the electric-field gr
dient is virtually zero over a sufficiently small volume o
atoms!, none of the elements of the density matrix, not ev
for k>3, have been approximated by zero, as can be d
for steady-state calculations@25#. We found that, especially
for short-time simulations~within a few Rabi oscillations!,
such approximations would lead to large errors in the
namic evolution compared to a full solution of all equation

The numerical values used in the calculations are

gnat56.253107 s21, ~44!

d52.6310229 Cm, ~45!

DEHF,l5\32p31772 MHz, ~46!

DEHF,u5\32p3189 MHz. ~47!

The relaxation ratesg l l
k and gdiff have been estimated from

the average diffusion time of Na atoms through the la
beam. They are typically of the order of 104 s21. The rates
guu

k contain the natural and collisional decay rates and
therefore equal to or larger thangnat. The model is not very
sensitive to these rates, and for simplicity we set all of th
equal tognat. Finally, the ratesg lu

k can be determined by th
absorption width@26#. They are about 1010 s21 for an argon
buffer gas pressure of 240 Torr at 500 K.

By settinggab
k to be equal for each rankk, we disregard

possible differences between the relaxation rates for pop
tions, orientations, alignments, etc. However, if such diff
ences should become of importance in the future, they ca
added to the equations in a straightforward manner. T
would be difficult if r had been expanded in the standa
basis.

III. COMPARISON WITH THE J51/2↔J51/2 MODEL

The semiclassicalJ1/2 model that we compare with the H
model is a special case of the equations in@5#. It has been
published in more detail in@8#, however, for the steady stat
only. For completeness, the correspondingtime-dependent
density-matrix equations are given in Appendix B.

The main difference between theJ1/2 and HF model con-
cerning optical pumping is the increased number of atom
states in the latter. The ‘‘indirect’’ optical pumping in the H
model is about an order of magnitude slower than in theJ1/2

n
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56 3943SEMICLASSICAL THEORY FOR THE INTERACTION . . .
model since it involves several pump cycles between s
states. A simple rate model@4# including hyperfine levels bu
no hyperfine energy splittings~and no coherences! confirmed
this behavior. Since the absorption width due to buffer g
collisions is considerably larger than the hyperfine ene
splittings, we expected that the hyperfine splitting energ
would not be important also for the semiclassical HF mod
However, forv l5vu50 the optical pumping is incomplet
and again too fast as shown in a simulation~Fig. 2, center! of
the time evolution of the hyperfine density-matrix comp
nents under the influence of circularly polarized light. T
reason is an effect known as ‘‘population trapping’’@27,16–
18#, which cannot occur in theJ1/2 approximation or in the
hyperfine rate equation model. Population trapping appe
when two lower states, e.g., the twomF521 states, are
coupled to the same upper state~e.g., one of themF50
states; see Fig. 1!. The coherence between the two grou
states then suppresses optical pumping. In the refere
mentioned above, two coherent laser fields are involved
the trapping effect is strongest when each one is exactly
resonance with one of the two transitions, even

FIG. 2. Evolution of the lower-level populations when a circ
larly polarized light source with zero detuning (v5v0) is turned
on at t50. The lower-level relaxation constantsg l l

k andgdiff have
been set to zero. The electric field isE0

153000 V/m, corresponding
to an intensity of 11 900 W/m2. Top: fast and complete optica
pumping in theJ51/2↔J51/2 model. Center: fast and incomple
optical pumping due to population trapping when the hyperfine
ergy splittings are neglected in the HF model. Bottom: slow a
complete optical pumping with the correct hyperfine energies.
hyperfine states are indicated by 1:F52, mF512;
2: F52, mF511; 3: F52, mF50; 4: F52, mF521;
5: F52, mF522; 6: F51, mF511; 7: F51, mF50;
8: F51, mF521.
b-

s
y
s
l.

-

rs

es
d
n

r

v l ,vu.0. In our case of only one laser field, the effect
strongest if the two atomic transition frequencies are eq
and the laser is on resonance with both (v l5vu5Dv50).
As soon as the hyperfine energy splittings are nonz
(v l ,vu.0), the coherences causing population trapping
reduced and complete optical pumping is possible~Fig. 2,
bottom!. The effect is directly reflected in the density matr
equations ~Appendix A!. For example, the term
2(2iv l1g l l

1 ) l l
21r0

1 in the equation forl l
21ṙ0

1 oscillates with
v l and averages to zero with large enough hyperfine ene
splitting. This is an example of very small terms inH having
a large effect on the density-matrix evolution. In addition
the longer pumping time, another difference relative to
J1/2 model is the considerably larger influence of the~diffu-
sion dominated! relaxation ratesg l l

k . The absorption of a
circularly polarized laser beam is usually much larger in
HF model than in theJ1/2 approximation for the same relax
ation rates. The comparison of the rate equation systems
both cases@4# leads to a simple explanation: In theJ1/2
model one-half of the atoms entering the laser beam thro
diffusion are already in the pumped state, while in the H
model this ratio is only 1/8, which leads to the larger abso
tion of the beam. However, this absorption difference
more complicated for the semiclassical models, as can
seen in Fig. 3. It depends not only on the values ofg l l

k and
gdiff , but also on the intensity of the beam. For typical valu
of the relaxation constants for sodium cells containing arg
buffer gas, the absorption is larger in the HF model for
termediate and large light intensities, but smaller for inten
ties below a certain threshold, which depends on the va
of g l l

k and gdiff . This unexpected behavior is the subject
further investigation.

A full three-dimensional and time-dependent simulati
of both theJ1/2 and HF semiclassical model reveals the d
ference in absorption as well as in the optical pumping ti
~Fig. 4!. Only the HF model describes the experiment c
rectly. In the experiment, the laser has been tuned to
frequency of maximum absorption. Due to the definition
v0, this corresponds to a detuning ofv2v0522p30.5
GHz in the HF model and to zero detuning in theJ1/2 model.
The remaining differences between the HF model and

-
d
e

FIG. 3. Steady-state polarization per atom for circularly pol
ized light (E0

250) as a function of the light intensityI with
g l l

k 5gdiff51.553104 s21 andv5v0. For typical laser light inten-
sities, the polarization~and therefore the absorption in our case! is
always larger in the hyperfine model. This effect reverses foI
below about 140 W/m2.
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3944 56S. DANGEL AND R. HOLZNER
experiment are due mainly to imperfect Gaussian beam
files. Residual magnetic fields in the experiment are belo
mG and have little influence, as was confirmed by numer
simulations.

A further difference between the models is the effect of
external magnetic field. ThegJ factorsgJ,l52 andgJ,u5 2

3 of
theJ1/2 model are effectively reduced by a factor 4 forF52
and24 for F51 in the HF model, equivalent to a ‘‘distri
bution’’ of the gJ factors over the magnetic hyperfine su
levels. TheJ1/2 model contains only a single Larmor fre
quency for the ground state and its predicted value is f
times larger than the experimental value of about 700 kHz
Also, the model fails to describe nuclear Zeeman effe
e.g., the different magnetic transition frequencies for
ground state@15#. However, due to thegJ-factor distribution
mentioned above, both theJ1/2 and the HF model correctly
predict the absorption of a circularly polarized laser be
due to a transverse magnetic field, as well as the deflectio
such a beam by an inhomogeneous transverse magnetic
@14#.

IV. CONCLUSIONS

In spite of several shortcomings, theJ1/2 model still has
its advantages. It is more transparent than the complex
model, and since it contains only a few equations for
density-matrix components, it can be solved much faster o
computer. Also the wrong time scale of optical pumping
fects, which lets the system reach its steady state abou
order of magnitude faster, helps to save computing time.
J1/2 model is still useful since it describes many effects
least quantitatively correct. For improved qualitative resu
however, some adjustments are necessary.~i! The time scale
of the results has to be adjusted by a factor of about 5
order to obtain realistic optical pumping times.~ii ! The dif-
fusion constant has to be increased by a factor of about
order to obtain the correct absorption at normal laser int
sities. Increasing the density of the vapor as an alterna

FIG. 4. Comparison of an experimental transient with the t
theories. A Gaussian beam of 4 mW has been turned on att50 and
the transmitted power behind a 6.5-cm-long sodium vapor
(T5200° C! is observed. Other parameters of the simulation
g l l

k 5gdiff51.553104 s21 andg lu
k 51.031010 s21. The parameters

of the experiment have been directly inserted into the models
the numerical simulations. There are no fitting parameters, but
input and the output power have been corrected for cell wind
losses.
o-
3

al

n
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leads to the desired correction in the steady state, but fails
time-dependent calculations.~iii ! The g factors have to be
reduced by a factor of 4 to correct the Larmor precess
frequency. This is of course related to the time-scale adj
ment above. However, theg factors must not be reduced fo
the simulation of effects that involve the destruction of op
cal pumping and its resulting change of refractive inde
such as the deflection of a circularly polarized beam by
inhomogeneous magnetic field of a current carrying w
@14# or the absorption of a circularly polarized beam by
transverse magnetic field.

For exploring parameters, usually theJ1/2 model is used
in order to save computing time. A calculation with the H
model then delivers the final result for comparison with t
experiment.

V. OUTLOOK

A. Two-dimensional sodium vapor

Recent results@28–30# suggest the possibility of holding
a two-dimensional gas of sodium atoms near a surface.
binding energy seems to be low enough to disturb the opt
properties of the atoms only slightly. The wave equation~6!
can be adapted to this two-dimensional case by reducing
thickness of the sodium vapor to zero, resulting in

EW 0~ t !out5EW 0~ t ! in1
ivs

2«0c
PW 0~ t !, ~48!

where s is the surface density of the Na atoms a
EW 0(t) in ,EW 0(t)out are the incoming and outgoing field env
lopes, in front of and behind the surface, respectively. T
laser beams are assumed to propagate perpendicularly t
surface. The polarizationPW 0(t) is determined by the density
matrix equations as before. While the surface densitiess
achieved are still too low to cause observable effects in
steady state, it should be possible to measure quasi-Rab
nals behind such a surface when a fast rising light puls
turned on as, for example, in@31#. Even though no optica
pumping is involved, a simulation~Fig. 5! of such an experi-
ment leads to quite different predictions for theJ1/2 and the
HF model due to the superposition of several Rabi frequ
cies in the HF model. These Rabi oscillations and th
damping constants would reveal information about the s

ll
e

r
e

w

FIG. 5. Relative transmitted intensity behind 1023 monolayers
of sodium. The incoming beam is assumed to be a circularly po
ized plane wave with 1.23106 W/m2 intensity, turned on att50.
The hyperfine model predicts a reduced but longer oscillation.
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56 3945SEMICLASSICAL THEORY FOR THE INTERACTION . . .
face densitys and the coupling of the atoms to the surfac
For high atomic densities, the direct interaction between
oms as well as radiation trapping neglected so far wo
have to be included in the calculations. Superradiant pu
propagating along the surface and other coherent eff
should then be possible.

B. Other alkali-metal atoms

The HF model derived in Sec. II can be adapted to ot
transitions of sodium or other alkali-metal atoms. In additi
to different momentaJ and I , the main difference would be
the size of the hyperfine splitting energies. As an exam
the sodiumD2 transition would require a total of 24324
equations with this treatment. For cesium, which has nuc
spin I 57/2, this number increases to 32332 (D1) and
48348 (D2) equations for the density-matrix componen
Some of these calculations have been done for the ste
state, where many of the equations can be neglected. If
dynamic evolution of these systems depends on about
same ratio of necessary equations to total equations as i
presently discussed system, the increase in computing
for a numerical solution would be enormous. A careful stu
of the circumstances under which some of the eleme
might be neglected in the dynamic case would be useful,
also difficult because of the increased complexity of th
systems.
.
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APPENDIX A: DENSITY-MATRIX EQUATIONS
WITH HYPERFINE STRUCTURE

In the simplest case of only one circular polarizati
(E0

250! and no magnetic field, the density-matrix equatio
reduce to the following set of 34 ordinary differential equ
tions that have to be solved to calculate the polarization~43!.
One equation can be eliminated using the population con
vation relation~17!. The equations have been derived usi
the commercial computer algebra systemMATHEMATICA

@32#. The following abbreviations apply:V5dE0
1/\ and

Dv5v2v0, the detuning of the laser from theD1 transi-
tion. Also, as a simplification, we writelu

FGrq
k instead of

lu
FG r̃ q

k and ga
k instead ofgaa

k . Note that the total hyperfine
splittings areDEHF,a52\va @Eq. ~20!#. The equations for
the l l elements are then
l l
11ṙ0

052
1

3A6
Im~V lu

11r1
1!2A 5

54
Im~V lu

12r1
1!1

gnat

6
~uu

11r0
01A15uu

22r0
0!2gdiffS l l

11r0
02

A3

8 D ,

l l
11ṙ0

152
1

12
Im@V~ lu

11r1
11 lu

11r1
22A5lu

12r1
113 lu

12r1
2!#1

gnat

12
@uu

11r0
113A5uu

22r0
112A5Re~uu

21r0
1!#2g l

1
l l
11r0

1 ,

l l
11ṙ0

25
1

60A3
Im@V~5 lu

11r1
1215 lu

11r1
22A5lu

12r1
1115 lu

12r1
2212A5 lu

12r1
3!#2

gnat

12
@uu

11r0
22A21 uu

22r0
226 Re~uu

21r0
2!#2g l

2
l l
11r0

2 ,

l l
21ṙ0

15
2 i

120
V* ~5A5 lu

11r1
11A5lu

11r1
2115 lu

12r1
113A5 lu

12r1
2!* 2~2iv l1g l

1! l l
21r0

12
i

120
V~5 lu

21r1
123A5 lu

21r1
2115 lu

22r1
12A105lu

22r1
2!

1
gnat

12
~A5 uu

11r0
123 uu

21r0
11uu

21r0
1* 13 uu

22r0
1!,

l l
21ṙ0

25
2 i

120A3
V* ~15 lu

11r1
1115 lu

11r1
223 A5 lu

12r1
1125 lu

12r1
214 A5 lu

12r1
3!* 2~2iv l1g l

2! l l
21r0

2

2
i

360
V~3A15 lu

21r1
125A3 lu

21r1
224A15 lu

21r1
323A15 lu

22r1
1115A7 lu

22r1
2212A10 lu

22r1
3!

1
gnat

12
~3 uu

11r0
22uu

21r0
213 uu

21r0
2* 1A21 uu

22r0
2!,

l l
22ṙ0

05
1

3 A2
Im~V lu

21r1
11V lu

22r1
1!1

gnat

6
~A15 uu

11r0
013 uu

22r0
0!2gdiffS l l

22r0
02

A5

8 D ,
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l l
22ṙ0

15
1

60
Im~15V lu

21r1
113A5V lu

21r1
215V lu

22r1
11A105V lu

22r1
2!1

gnat

12
@3A5 uu

11r0
115 uu

22r0
116 Re~uu

21r0
1!#2g l

1
l l
22r0

1 ,

l l
22ṙ0

25
1

420
Im~7A35V lu

21r1
1135A7V lu

21r1
214A35V lu

21r1
327A35V lu

22r1
1135A3V lu

22r1
214A210V lu

22r1
3!

1
gnat

12
@A21uu

11r0
213 uu

22r0
212A21Re~uu

21r0
2!#2g l

2
l l
22r0

2 ,

l l
21ṙ0

35
2 i

30A6
V* ~3A5 lu

11r1
2* 2A5 lu

12r1
2* 110 lu

12r1
3* !1~22iv l2g l

3! l l
21r0

3

2
i

1260
V~7A30 lu

21r1
2235A6 lu

21r1
323A70 lu

22r1
21105 lu

22r1
3215A105 lu

22r1
4!

1
gnat

6
~uu

21r0
313 uu

21r0
3* 1A6 uu

22r0
3!,

l l
22ṙ0

35ImS V lu
21r1

2

3A5
1

V lu
21r1

3

6
2

V lu
22r1

2

A105
1

V lu
22r1

3

2A6
1

1

6
A 5

14
V lu

22r1
4D 2g l

3
l l
22r0

31A2

3
gnatRe~uu

21r0
3!,

l l
22ṙ0

45ImS V lu
21r1

3

2A7
2

V lu
22r1

3

2A42
1

1

6
A5

2
V lu

22r1
4D 2g l

4
l l
22r0

42
gnatuu

22r0
4

3
.

For theuu elements we obtain

uu
11ṙ0

05
1

3A6
Im~V lu

11r1
1!2

1

3
A5

6
Im~V lu

21r1
1!2~gnat1gdiff ! uu

11r0
0 ,

uu
11ṙ0

152
1

12
Im@V~ lu

11r1
12 lu

11r1
21A5 lu

21r1
113 lu

21r1
2!#2gu

1
uu
11r0

1 ,

uu
11ṙ0

252
1

60A3
Im@V~5 lu

11r1
1115 lu

11r1
21A5 lu

21r1
1115 lu

21r1
2112A5 lu

21r1
3!#2gu

2
uu
11r0

2 ,

uu
21ṙ0

15
i

120
V~5A5 lu

11r1
12A5 lu

11r1
2215 lu

21r1
113 A5 lu

21r1
2!2~2ivu1gu

1!uu
21r0

1

2
i

120
V* ~5 lu

12r1
113A5 lu

12r1
2215 lu

22r1
12A105 lu

22r1
2!* ,

uu
21ṙ0

25
2 i

120A3
V~15 lu

11r1
1215 lu

11r1
213A5 lu

21r1
1125 lu

21r1
224 A5 lu

21r1
3!2~2ivu1gu

2!uu
21r0

2

1
i

360
V* ~3A15 lu

12r1
115A3 lu

12r1
224A15 lu

12r1
313A15 lu

22r1
1115A7 lu

22r1
2112A10 lu

22r1
3!* ,

uu
22ṙ0

05
1

3A2
Im~V lu

12r1
12V lu

22r1
1!2~gnat1gdiff !uu

22r0
0 ,

uu
22ṙ0

15
1

60
Im~215V lu

12r1
113A5V lu

12r1
215Vlu

22r1
12A105V lu

22r1
2!2gu

1
uu
22r0

1 ,

uu
22ṙ0

25
1

420
Im~7A35V lu

12r1
1235A7V lu

12r1
214A35V lu

12r1
317A35V lu

22r1
1135A3V lu

22r1
224A210V lu

22r1
3!2gu

2
uu
22r0

2 ,
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uu
21ṙ0

35
2 i

30A6
V~3A5 lu

11r1
21A5 lu

21r1
2110 lu

21r1
3!1~22ivu2gu

3!uu
21r0

3

1
i

1260
V* ~7A30 lu

12r1
2135A6 lu

12r1
313A70 lu

22r1
21105 lu

22r1
3115A105 lu

22r1
4!* ,

uu
22ṙ0

35ImS V lu
12r1

2

3A5
2

V lu
12r1

3

6
1

V lu
22r1

2

A105
1

V lu
22r1

3

2A6
2

A5V lu
22r1

4

6A14
D 2gu

3
uu
22r0

3 ,

uu
22ṙ0

45ImS V lu
12r1

3

2A7
1

V lu
22r1

3

2A42
1

A5V lu
22r1

4

6A2
D 2gu

4
uu
22r0

4 ,

and finally thelu elements are

lu
11ṙ1

15@ i ~2Dv1v l2vu!2g lu
1 # lu

11r1
11

i

72
V* ~2A6 l l

11r0
013 l l

11r0
12A3 l l

11r0
222A6 uu

11r0
013 uu

11r0
11A3 uu

11r0
213A5 l l

21r0
1*

13A3 l l
21r0

2* 13A5 uu
21r0

123A3 uu
21r0

2!,

lu
21ṙ1

15@ i ~2Dv2v l2vu!2g lu
1 # lu

21r1
11

i

360
V* ~10A30 uu

11r0
0115A5 uu

11r0
11A15 uu

11r0
2215 l l

21r0
123A15 l l

21r0
2245 uu

21r0
1

23A15 uu
21r0

2230A2 l l
22r0

0245 l l
22r0

123A35 l l
22r0

2! ,

lu
12ṙ1

15@ i ~2Dv1v l1vu!2g lu
1 # lu

12r1
11

i

360
V* ~10A30 l l

11r0
0215A5 l l

11r0
11A15 l l

11r0
2145 l l

21r0
1* 23A15 l l

21r0
2* 115 uu

21r0
1*

23A15 uu
21r0

2* 230A2 uu
22r0

0145 uu
22r0

123A35 uu
22r0

2!,

lu
22ṙ1

15@ i ~2Dv2v l1vu!2g lu
1 # lu

22r1
12

i

120
V* ~15 l l

21r0
12A15 l l

21r0
2115 uu

21r0
1* 1A15 uu

21r0
2* 110A2 l l

22r0
015 l l

22r0
12A35 l l

22r0
2

210A2 uu
22r0

015 uu
22r0

11A35 uu
22r0

2!,

lu
11ṙ1

25@ i ~2Dv1v l2vu!2g lu
2 # lu

11r1
21

i

120
V* ~5 l l

11r0
115A3 l l

11r0
225 uu

11r0
115A3 uu

11r0
21A5 l l

21r0
1* 15A3 l l

21r0
2* 12A30 l l

21r0
3*

2A5 uu
21r0

115A3 uu
21r0

222A30 uu
21r0

3!,

lu
12ṙ1

25@ i ~2Dv1v l1vu!2g lu
2 # lu

12r1
21

i

360
V* ~45 l l

11r0
1215A3 l l

11r0
219A5 l l

21r0
1* 125A3 l l

21r0
2* 22A30 l l

21r0
3* 19A5 uu

21r0
1*

25A3 uu
21r0

2* 22A30 uu
21r0

3* 29A5 uu
22r0

1115A7 uu
22r0

2212A5 uu
22r0

3!,

lu
12ṙ1

35@ i ~2Dv1v l1vu!2g lu
3 # lu

12r1
31

i

1260
V* ~42A15 l l

11r0
2114A15 l l

21r0
2* 170A6 l l

21r0
3* 114A15 uu

21r0
2* 235A6 uu

21r0
3*

26A35 uu
22r0

21105uu
22r0

3245A7 uu
22r0

4!,

lu
21ṙ1

25@ i ~2Dv2v l2vu!2g lu
2 # lu

21r1
21

i

360
V* ~45 uu

11r0
1115A3 uu

11r0
215A3 l l

21r0
222A30 l l

21r0
3225A3 uu

21r0
222A30 uu

21r0
3

19A5~ l l
21r0

11uu
21r0

12 l l
22r0

1!215A7 l l
22r0

2212A5 l l
22r0

3!,

lu
21ṙ1

35@ i ~2Dv2v l2vu!2g lu
3 # lu

21r1
31

i

1260
V* ~42A15 uu

11r0
2114A15 l l

21r0
2135A6 l l

21r0
3114A15 uu

21r0
2270A6 uu

21r0
3

26A35 l l
22r0

22105 l l
22r0

3245A7 l l
22r0

4!,



st
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lu
22ṙ1

25@ i ~2Dv2v l1vu!2g lu
2 # lu

22r1
22

i

840
V* @35A7 l l

21r0
222A70 l l

21r0
3135A7 uu

21r0
2* 12A70 uu

21r0
3* 135A3 l l

22r0
2

24A105 l l
22r0

317A105~2 l l
21r0

11uu
21r0

1* 1 l l
22r0

12uu
22r0

1!135A3 uu
22r0

214A105 uu
22r0

3#,

lu
22ṙ1

35F i ~2Dv2v l1vu2g lu
3 # lu

22r1
32

i

840
V* @28A10~2 l l

21r0
21uu

21r0
2* !170~ l l

21r0
31uu

21r0
3* !14A210~ l l

22r0
22uu

22r0
2!135A6~ l l

22r0
3

1uu
22r0

3!25A42~ l l
22r0

42uu
22r0

4!#,

lu
22ṙ1

45@ i ~2Dv2v l1vu!2g lu
4 # lu

22r1
42

i

168
A5V* @2A21~2 l l

21r0
31uu

21r0
3* !1A14~ l l

22r0
32uu

22r0
3!17A2~ l l

22r0
41uu

22r0
4!#.

APPENDIX B: DENSITY-MATRIX EQUATIONS FOR THE J51/2↔J51/2 APPROXIMATION

For completeness, we include here the time-dependentJ51/2↔J51/2 density-matrix equations. Again, for the simple
case ofBW 50 andE0

250, and writing lurq
k instead of lu r̃ q

k , one obtains

l l ṙ0
05gnatS 1

A2
2 l l r0

0D 1Im~Flur1
1!,

l l ṙ0
152g l l l r0

12
gnat

3 uur0
11Im~Flur1

1!,

uuṙ0
152gu uur0

11Im~Flur1
1!,

luṙ1
152~g lu1 iDv! lur1

11
iF *

2 S 1

A2
22 l l r0

02uur0
12 l l r0

1D .

Here the electric field isF5A2d1/2E0
1 , with E0

1 as defined in Eqs.~1! and~8!. The macroscopic polarization componentP0
1

is related to the equations by

P0
15

2nd1/2

A3
lur1

1* , ~B1!

whered1/2 is the reduced matrix element of theJ51/2↔J51/2 approximation

d1/25A6gnatp\c3«0

v0
3

5
2

A3
d. ~B2!
pl

n,
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