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Eigenvalues of collision operators: Properties and methods of computation
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The linear Boltzmann equation for active atoms submerged in the much denser perturber gas contains a
collision rate and a kernel. These two quantities are combined into a single entity—the collision operator. The
collision operator possesses several interesting properties, the most important being that it is Hermitian. The
eigenvalues are negative with the exception of one eigenvalue, which is zero and corresponds to the Maxwell-
ian (steady-statevelocity distribution. A set of functions, closely related to the eigenfunctions of the quantum-
mechanical harmonic oscillator, is postulated to approximate the true eigenfunctions. This assumption was a
basis of the method of modeling various physical phenomena occurring in the gaseous mixtures, subjected to
a radiation field. The eigenvalues of the collision operator were treated as free parameters. In this paper we
establish a direct relationship between the eigenvalues and the collision integrals, or transport coefficients,
known from the kinetic theory of gases. The generating function approach is employed to derive expressions
yielding the eigenvalues. The obtained results form a bridge between kinetic theory, atomic physics, and
guantum optics[S1050-2947{®@7)00711-7

PACS numbsgs): 32.80.Lg, 42.50.Vk, 82.20.M;j

[. INTRODUCTION any other ones, it is reasonable to assume that the perturbers
reach the equlibrium state rapidly, and their velocity distri-
bution may be taken as the Maxwellian
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A. General discussion

Light-induced kinetic effect$LIKE) in gases continue to
be of interesf1—4], with light-induced drift(LID) being the
most well-known oné5]. Such effects occur due to the light-
induced modifications of the velocity distributions of atoms
or molecules interacting collisionally between themselveswith u3=2kgT/mp being the square of the most probable
and with incoming light. LID is possible when the active velocity of perturbers at temperatufie Moreover, in the
particles immersed in th@usually much densgtbuffer gas  case ofNs<Np (N, and Np being the densities of active
are excited in a velocity-selective manner. This induces opatoms and perturbers, respectiyelthe Boltzmann equation
positely directed fluxes of ground- and excited-state atomsdor the velocity distribution of active atoms can be put into
When the atoms in either of the states sustain different diflinear form[8—14]. The linear approximation to the Boltz-
fusive friction, the two fluxes do not cancel and the macro-mann equation should be distinguished from the linearized
scopic drift is observed. Some other LIKE phenomena ar@ne. The latter is obtained when one seeks small deviations
described, for example, ir6,7]. of the atomic velocity distribution from the Maxwellian one.

There were several different approaches to theoretical déFhe Boltzmann equation is then expanded in terms of the
scription of LIKE in gasegsee, for example, Ref$2-7], corrections to the Maxwellian and only the terms linear in
and references given thergi®ne of the possible methods of the sought corrections are retained. Moreover, the linearized
modeling and/or describing LIKE was introduced 8], and  Boltzmann equation possesses five collisional invariants
then further elaborated on if®] and [10]. The proposed (particle number, three components of velocity, and the mag-
method concerns the physical situation in which the activenitude of velocity, while the linear one has only one
atoms, i.e., those coupled to the incoming radiation fieldjnvariant—the particle number. This is due to the fact that
also interact collisionally with the perturbers that constitutethe much denser perturber gas serves as the reservoir of mo-
the thermal bath. The evolution of the velocity distributionsmentum and energgsee, e.g.[12]).
of the active atoms, in either the excited or ground state, is In this work we will deal with the linear form of the
then described by the Boltzmann equation. Boltzmann equation, which is obtained due to the assump-

The Boltzmann equation in either its classical ortion that much denser perturbers are in the equilibrium state
guantum-mechanical form is extremely complicated. Its sodescribed by the Maxwelliafil). Such an approach allows
lution is indeed a formidable task. Therefore, some approxione to describe the influence of collisions between active
mate methods are needed in practical calculations. A consicdtoms and perturbers on the velocity distributions of the
erable simplification is achieved when the perturber gas isormer by collision kernels and rates.
much denser than active-atom vapor. Since the collisions be- The theoretical method discussed in detail9fis based
tween perturber particles occur much more frequently thamn the presented assumptions. Its main idea can be summa-

rized as follows. The collision kernel and rate are combined

into one entity called the collision operator. The collision
*Electronic address: fizsk@univ.gda.pl operator has several interesting and useful properties, the
Electronic address: dokjg@univ.gda.pl most important being that it is Hermitian in the suitably cho-
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sen space of velocity distributions. Hence, such a collisiofThe time and position dependencies of the distribution func-
operator possesses a set of orthonormal eigenfunctions atidn f, are suppressed, since they are of little relevance in
real eigenvalues. The solution of the corresponding eigerthe present context.

problem is not simpler than the solution of the initial Boltz-  The collision kernek’(v—v’) and the corresponding rate
mann equation. However, a useful modeling method can be{v) appearing in Eq(2) are easily derived by linearization
easily devised. We adopt, as an assumption, a certain set 8f the Boltzmann equation. The collision kernel is of the
functions to be the eigenfunctions. Such a choice seems to §&rm

reasonable and. yvell justifieee[9]). Then all physically M3 do(x.0)

|mp0rtant c_]uantltles can be (_axpressed in term_s of the choser,t(w_vf): Np<_A) f dVrf v’ XUy Wp(V' —V')
eigenfunctions and by the eigenvalues. The eigenvalues are, M tdQ '
however, unspecified and enter the theory as free parameters.

They can be adjusted, for example, by fitting the experimen- 8(v,—vy) 5 . My ,

tal data to the theoretical predictions. Moreover, assuming Xv—r vr—vr—7(v—v )]s

that the adopted eigenfunctions are good approximations to 3

the true ones, we avoid the introducti¢or derivatior) of

any particular collision kernel. Such a modeling method iswhich accounts for the momentum and energy conservation.
presented if9]. Since this method does not give any pre- The collisional rate)(v) is given as

scription to determine the eigenvalues, we address this point do( )

in the present work. Thus, the aim of this paper is to find an V(V):NPI dvpf dQ (x)v,Wp(Vp) TIXUr @
explicit connection between the eigenvalues of the collision dQ

operator and the collision integrals known from the kinetic N )

theory of gases. The latter integrals are, in turn, closely rewherev (or v’) are the velocities of an active atom, and
lated to transport coefficients. Thereby, the eigenvalues ar®" Vp) Of the perturber aftefor before collision. v, =v—vp

not free parameters anymore, but are given a direct physic4P! vy =V’ —Vp) are the corresponding relative velocities.
meaning. Such a procedure allows us to close the methoda, Mp, andu denote the masses of the active atom, per-

that will thus contain only the quantities with direct experi- turber, and the reduced mass, respectively. Expresgins
mental relevance. and (4) contain also the differential cross section for the

The outline of the paper is as follows. In the next two active-atom-perturber scattering in the center-of-mass frame,

subsections we summarize the main concepts, which COHSH\-”th x being the usual scattering angle.

tute the basic theoretical framework. In the second sectior(wa 'EZith)rhoyns"n"t:r?tla Eﬁg{?g‘g o;;_f:;mct()sllés;og kGE;nZ%l zli:r_lr(itrg;e IS
we recall the definition of the collision operator and we re- Vi Inetic equatl  €.9.12).

view its most important properties. We also explicitly give all, we note that the number of particles must be conserved

and discuss the adopted eigenfunctions, which are c|osel9“””g the collisions. This requirement implies that
related to the eigenfunctions of the quantum-mechanical har-

monic oscillator. Section Il also includes some remarks on y(v)zf dv, K(vyV). (5
the eigenvalues of the collision operator and on the integral

methods of their calculation. In Sec. Ill we present a gener- . . . . L
ating function that allows us to derive the expressions con:rhe integral term in Eq(2) is the gain one and it gives the

necting the eigenvalues with collision integrals and transpor?ltjt'ﬁnbtﬁr of pl);'_:\r_tlcle.:'that chtﬁnge ﬁ_el_ocn)k/ fr ”ém' befor/e, tov
coefficients known from the kinetic theory of gases. The las@!t€r the coflision. Hence, the Coflision ker (vevi) IS a
easure of transition probability betweeh andv velocity

section contains some additional remarks and comments di Th i the | i Eq2 dit ai
the obtained results and their potential applications. Th@OUPS: The rate/v) is the loss term in Eq2) and it gives

technicalities of our approach are presented in two apperf!® number of particles escaping from velocity interval
dixes. (v,v+dv) to any other one. Let us note thglv) can be also

viewed as the collision frequency, and its inverse
B. Collision kernels and rates 7(v) = 1/y(v) can be interpreted as the average time between
. ] collisions. Hence, the names collision rate and frequency can
In our approach we assume that the density of active athe ysed interchangeably. The given probabilistic interpreta-
oms is much smaller than that of perturbers. Therefore, W§gon of the kernel and frequency is fully consistent with re-
may linearize the Boltzmann equation. This is a Sta”dar‘é]uirement(S).
procedure thoroughly discussed in the literat(ey.,[11]). Since the kernel gives the transition probability between

We, therefore, only state the final results. WHéR<Np,  various velocity groups, it satisfies the detailed balance con-
the time evolution of velocity distributioria(v) of active  dition in equilibrium[12]:

atoms can be, within a very good approximation, attributed
solely to the collisions with perturbers and the corresponding K(ve=v YWA(V') = K(V —V)Wa(V), (6)
linear Boltzmann equatiofit1-13 can be written as

whereW,(v) is the Maxwellian distribution for active atoms

1 3/2 V2
— exp — —=/, 7
wus) p( ) @

d
afA(v) :—y(v)fA(v)Jrfdv’IC(V<—v’)fA(v’).

coll

W (V)=

2
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with u3=2kgT/m, being the square of the most probable ~When a model analytical kernel is employed in practical
velocity. Integrating requiremert6) overdv’ and using Eq. computations there immediately arises the question of
(5) we obtain whether the adopted model can be found from a physically
justified cross section. That is, whether a given model can be
derived from relation(3), which relates the kernel and the
interatomic potentialvia a corresponding cross sectiomhe
answer to such a question is usually either negative or very
So, the MaxwellianN,(v) must be the stationary solution to difficult to give. Bermanet al. [17] addressed this question
the kinetic equation. It is equivalent to say tNek(v) is the by relating the suitable moments of the collision kernel to the
eigenfunction of the right-hand side of E@) with the ei-  collisional integralsQ (¥ known from kinetic theory of
genvalue zero. This result is also evident from the notion ofyases that are closely connected with transport coefficients
the equilibrium distributior{which is known to be Maxwell- (see, e.g.[11]). These authors analyzed the Keilson-Storer
ian) as the stationary solution to the kinetic equation. Withkernel, the one corresponding to hard spheres and the differ-
the aid of the particle number conservation requirement ience kernel. They have found that the Keilson-Storer kernel
can be showii12] that W,(v) is a unique steady-state solu- gives the results closest to the expectations following from
tion. Hence the discussed zero eigenvalue is nondegeneratee kinetic theory of gases. Thus, they have concluded that

Furthermore, it can be showri2?] that the collision rate the Keilson-Storer kernel may be treated as the model yield-
yv) and collision kernekC(v«V’) satisfy the relation ing the results more reliable physically than the other mod-
els. This is so, regardless of the fact that the KS model is not
derivable from interatomic potentials.

The interesting feature of the Keilson-Storer kernel is that
it possesses a set of eigenvalues and eigenfuncfibdis
fa(v) (WFA(V). (9) These eigenfunctions coincide with the ones of the kernel
Wi (V) LAMAT S found from Eq.(3) for Maxwell molecules, i.e., for the po-

tential V(r)«r 4. These eigenfunctions play an important

The above given relations summarize the most importangole in the present considerations, so they will be discussed
properties of the collision kernel and rate. Although thesdn more detail below.

properties are simple and physically understandable, they do

not facilitate the computation of the kernel and rate. The task

of finding the explicit form of these quantities from the in-

teratomic potential(via the corresponding center-of-mass It is our aim to express the eigenvalues of the collision

cross sectionsis not really simpler than the solution to the operators via the collision integrals frequently used in the

initial Boltzmann equation. Moreover, we have presented:lassical kinetic theory of gases. It might be therefore useful

here the classical approach. The fully quantum-mechanicdP recall some basic definitions.

treatment(see, for example[13,15,16) via the scattering Collision integralsQ{'® appear in the kinetic theory of

amplitudes is still more complex. gaseg11] when calculating the transport coefficients and are
Hence, in practical investigations one usually adopts amlefined as follows:

analytical model kernel, while the rate follows by E&).

The simplest model, sometimes called the strong collision lg_ YR 7 2\ 254 3 (]

one, is based on the assumption that even a single collision ( )_2\/; fo dx exp(—x*)x***QV(xug), (12

fully thermalizes the velocity distribution of active atoms. In

such a case, Eq2) reduces to

0= — Y(VWa(V) + f AV EVVIWAV).  (©)

fa(V)

< | dv

C. Collision integrals

whereuZ=2kgT/u=u?+ U3 is the square of the most prob-
d able speed of the relative motion Afand P particles. The
gifaW| == rsfaW)+ YscWA(V)f dv’ fa(v'), quantity Q") appearing in Eq(12) is defined as the integral

coll (10) )
Q"(v) =27 | “bdb{1-codix(v, b)), (3

where vy, is a constant.
Another frequently used model is the Keilson-Storer ker-
nel with b being the collision parameter. The scattering angle
depends oM and on the relative velocity, of the colliding
species. The integr®(" can be easily related to the center-
. (1D of-mass cross section. The relation equivalentlf®) can be
thus written as

, YKs (V—agsV')?
Kks(ve=v')= F{_

(o o’

whereygs is a constant, whiler?= (1— a)u3, and param-

eter axse (0,1). It is straightforward to check that both Q(')(Ur):J dQ(X)(—dU(X’U’))[1_C0§(X)]_ (14)
given models satisfy all the necessary requirements. The dQ(x)

strong-collision and Keilson-Storer models seem to be the

most frequently used ones. It is, however, possible to conThe cross sectioda/d(} is positive due to its probabilistic
struct other models. For example, a kernel for hard sphereisterpretation and the factor (1cos ) is also positive, ex-

or the difference kernel are also sometimes employed. cept perhaps for some isolated points where it is zero. Hence,




3926 STANISEAW KRYSZEWSKI AND JOANNA GONDEK 56

integralsQ' are non-negative and this implies that collision It is convenient to introduce formal notation, much resem-
integralsQ ('S defined in Eq.(12) are positive for all com- bling the formalism of standard quantum mechanics. We in-

binations of superscripts. troduce a vector spacg of velocity distributions
For the sake of further reference, it is useful to review
some additional facts apart from the above given definitions. Fe { f(v):f dv |f(v)|2<oo]. 20
The collision integralQ("® can be written equivalently as W(v)
(see[17))

For f,ge F, we define the scalar product

2s
Q("S)zéfdngR(V)v(uiR) Q(v) (15

dv
(flg)= f Wi T Ve, (29

with which may be rewritten as

1 \32 V2
WR(V)=(7T—U§) eXp(_u_ﬁ)’ (16) <f|g>=f dv({f|v)(v|g). (22)

which clearly corresponds to the distribution of the Ve'°CityComparing the above relations we obtain
of relative motion of the collision partners.

. Lheftcl)ltal scattelrin_g cross section can be expressed by any 1 f(v) 23
of the following relations: v[f)= .
g relater N
or= 277[ bdb, (178 In this manner we represent a velocity distribution by a vec-
0 tor in the Hilbert space.
do(x,v,) The analogy lof the introduced formalism' and the
= J dQ(X)(dQ—)’ (17 guantum-mechanical one allows us to prove easily some im-
(x) portant and useful properties of the collision operator. As a
=Q™(v,), (179 consequence of the detailed balance condii@nfor the
collision operator we find that for any two distribution func-
where the last equality follows from EL4). tionsf,ge F,
Presented relations can be manipulated in many ways - -
suitable for particular applications. We do not pursue this (flclgy=<glclf), (24)

subject since it is not needed in the present context. All other | . - . o
necessary information can be found, for example, in RefWhlch means that the collision operator is Hermitian in space
b L :F

11] (see alsd17]). '
11} ( 417) Moreover, the ratey(v) and kernellC(v«—V’) satisfy re-

Il. THE COLLISION OPERATOR AND ITS PROPERTIES lation (9), which yields[9] the inequality

A. General theory (flc|fy=o, (25

The concept of the collision operator was introduced
in previous paper$8,9]. Collision operators stem directly
from the linear Boltzmann equation and are defined by th(—‘é.

. . . - : ion operator.
right-hand side of Eq(2). Thus, if f(v,t) is an arbitrary Sin(F:)e we know that the collision operaibris Hermitian

velocity distribution, the collision operata® on f(v,t) is iy the spaceF, we can state that there exist left and right

defined as eigenvectors of that are equal and that the eigenvalues of
. the collision operator are real. Denoting the eigenstates by
(Cf )(v,t)= —y(v)f(v,t)+j dv' K(v—v")f(Vv',1), |e,) and the real eigenvalues y, we can write

(18) Clea)=Nal0a)

hence it combines the concepts of the kernel and rate into g,
single entity. The corresponding equation of motion,

which holds for arbitrary velocity distributiof(v). This re-
lation may be called the non-positivity property of the colli-

(@alC=(@al\y- (26)

Due to the properties of Hermitian operators, eigenfunctions
|¢,) form a complete set of orthonormal vectors

d -
Ef(v,t)=(Cf )(Vv,1), (19

together with the given initial distributiof(v,ty), is the ki-
netic equation that gives the time evolution of the velocity E lo)(eul =1
distributionf(v,t) of active atoms due to the influence of the o Pa/\Pa
velocity-changing collisions with perturber particles. It is
worth stressing that the introduced collision operator is, byand
definition, neither time nor position dependent. _
The properties of collision operators were thoroughly dis- <"D“|(PB> Oup @7
cussed inM9]. For the sake of completeness, it seems, howThe general property25) of the collision operator implies
ever, useful to review briefly the main concepts. that the eigenvalues are nonpositive
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)\a=<%|é|%>go_ (28)  Whereg,(v) might be taken in the Cartesian coordinates as
As discussed after E@8) the MaxwellianW(v) is a unique 3 1 v
stationary solution to the kinetic equation and it corresponds $a(V) = bnnpn,(VW=11 \/n,—'Hni o G4
to the nondegenerate zero eigenvalue. Hence, there must ex- =1 y2ing! 0
ist such an index:, henceforward denoted by 0, that wherev; are Cartesian components of the velocity ag
No=0 () are the Hermite polynomialall special functions in our

q work are taken according to Ref19]). Equivalently, we

an may choose spherical coordinates and then the eigenfunc-
©o(V)=W(V). (29)  tions ¢,(v) become
Since it is a unique eigenvalue, we deduce that for all other 27n! v
indices eigenvalues are strictly negative: $o(V)= bnim(V) = \/ Tn+1+372) | ug
A,<0 for all a#0. (30 .
(1+1/2 o
Expanding the solution of the kinetic equatid®) we see XLy (Jg Yim(65.939), (35)

that all initially present deviations from Maxwelliai.e.,

equilibrium distributions behave as eip(t—t)]. Hence,  with L0 "2 peing the associated Laguerre polynomials and

relation (30) ensures that the Maxwellian is the stationaryy, = the spherical harmonics of the angles determined by the

solution corresponding to thermal equilibrium, as it shouldspatial orientation of the vecter The two sets of eigenfunc-

be. tions for either of the coordinate systems are distinguished
Having reviewed the basic theoretical methods, let us notgy different subscripts and the context should make it clear

that within the presentEd formalism the kinetic equaﬁb@ which eigenfunctions are considered.

can be written as It is certainly worth noting that the eigenfunctions modi-

fied by an additional factor, that is, the functions

J
St = [ avewevitwy, 31
" a0 = W) ()= £ (36)
with the kernel expanded in terms of the eigenfunctions as “ A “ JWa(v) '
C(v<—v’)=2 A Pa(V)@a(V') (32) are the usual eigenfunctions of the standard quantum-
= W) mechanical harmonic oscillatd20] of massm, and fre-

encywg, such that the factal/myw, is replaced byu3.

. o : . . u
This relation is the basis of the modeling method mtroducecf1 The connection between the adopted eigenfunctions

and thoroughly discussed [8]. Namely, we choose a cer- ¢,(Vv) of collision operator and oscillator eigenfunctions al-

tain set of functiond ¢,(v)} to be the eigenfunctions of the lows one to see that all the requirements imposed fv)

collision operator. Then, any CO"'.S'On operator can be N re indeed satisfied. Moreover, the adopted eigenfunctions of
structed according to Eq32), provided the eigenvalues are

the collision operator are the eigenfunctions of the Keilson-

known. Thus, We can moldel a W.hOIe class of collision OP~Storer collision kernel, as demonstrated by Snid&. The
erators by a suitable choice of eigenvalues. In Ref.we . ) ] .
. artesian eigenfunctions correspond to the eigenvalues
treated the eigenvalues as free parameters, and we have alSo ny+n,+n . .
=7yks(l—eas 2 %), while the spherical ones to

shown how to reconstruct the Keilson-Storer and strongz‘ﬂlyﬂzyﬂs
collision models by the proper choice of the eigenvalues. In\, = yKS(l—aﬁg+I
this paper we intend to show that the eigenvalues are not free We should, however, stress the fact that adopting the
parameters, but can be computed via the quantities that pogiven functions, in either of the coordinate systems, as the
sess a well-defined physical meaning. As already stated isigenfunctions of the collision operator ipastulate This is
the Introduction, such an approach allows us to circumvena postulate because our choice is in fact arbitrary, although it
all the questions that immediately arise when one adopts ang well justified. We assume that the chosen eigenfunctions
specific collision kernel, either a model ofes the Keilson- are good approximations to the true eigenfunctions of any
Storer ong, or any other one derivable from real interatomic physically reasonable collision operator. The fact that the
potentials. selected eigenfunctions,(v) are the ones corresponding to
the Keilson-Storer model is one of the arguments supporting
B. Eigenfunctions and eigenvalues our choice. In our earlier papg®] we have given a detailed
Finding exact eigenfunctions and eigenvalues for the coldiscussion and justification that such an approach is reason-
lision operatorC is as difficult as finding a collision kernel 2able and that the functions,(v) can be considered as good
and rate from the interatomic potential. Therefore, we pro2PProximations to the true eigenfunctions. On the other
pose a different approach introduced [i8] and [9] and  Nand, in[9] we have assumed that the eigenvalues are un-

briefly discussed above. Namely, we adopt as the eigenfuntl,‘-”own’ and thereby treated as free parameters of the theory.

tions of the collision operator the following set of orthonor- N particular, the eigenvalues can be different from the ones
mal functions: corresponding to the Keilson-Storer kernel. In this manner,

using expansiofi32) and allowing the eigenvalues to be free
@, (V) =W, (V) d(V), (33 parameters we are able to model a whole class of collision
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operators. These assumptions allowed us to propose lsion operator according to its definitiofl8) into scalar
method for modeling various physical phenomena in gaseoysroduct(21) and using the propert{b) of the collision rate

mixtures subjected to electromagnetic irradiation. The exwe arrive at the expression
amples of applications of our modeling approach together

with full discussion and justification of the assumed model- M:J dVJ dv' Wa(V)K(ve—V")
ing method are given if9] (see alsd21]). In this sense the
eigenfunctiong33) are postulated to be, albeit approximate, X[ d* (V) (V') — d* (V') (V)] (37)

eigenfunctions of any collision operator and our current aim

is to present a method of computation of the eigenvalues. and either Cartesian eigenfunctiof@4) or spherical ones
We can use either Cartesian fofB¥) or the spherical one (35 can be used.

(35) of the eigenfunctions of the collision operator. The latter It is perhaps worth noting that eigenvalu@s rather en-

form of the eigenfunctions is sometimes more conveniengrgies of the harmonic oscillator are strongly degenerate. In

and it is usually used in the literatutsee, for example, the spherical case the energy corresponds to the principal

[17,18). However, in practical calculations the choice be-gquantum numbeN®=2n+1, while in the Cartesian case

tween the formg34) and (35) is, in fact, a matter of conve- N©=n,+n,+n;. The energy levels areg(N)=3(N

nience. In the papers devoted to modeling the physical pher1)(N+2) times degeneratéwith N being the principal

nomena eigenfunctions ,(v) as given in Eq.(34) were quantum number for either of the casélowever, in this

mainly used. One of the advantages of the eigenfunctionwork we consider the collision operator which differs con-

taken in the form(34) is that they are factorized in a way that siderably from the oscillator Hamiltonian. Therefore, it is

facilitates calculations of various integrals. Moreover, thereéasonable to expect that the degeneracy specific to the har-

case with axial symmetrythe symmetry axis being deter- monic oscillator will be, at least partially, lifted.

mined by the incident radiatignis essentially a one- ) )

dimensional one. Then, the eigenfunctiof®) are espe- C. Eigenvalues for spherical case

cially convenient since all the physically interesting It is a straightforward matter to substitute the eigenfunc-

quantities are expressed by integrals over a single componetibns (35) into relation(37). We also note that due to sym-

of velocity. metry considerations the eigenvalues should be independent
It should be noted that the choice of either of the possibleyf the magnetic quantum number. Hence, the eigenvalues

forms of the adopted eigenfunctions determines the numbeere labeled only by quantum numbersand|. Therefore,

ing of the eigenvalues. The situation is then similar to thephoth sides of the obtained relation can be summed over

case of the harmonic oscillator. When necessary, we shajuantum numbem and the addition theorem for spherical

distinguish two different cases by suitable superscripts.  harmonics can be used. The resulting integral is then trans-
The eigenvalues of the collision operator obviously fol-formed according to the method outlined in Appendix A.

low from the relation\ ,=(¢,|C|¢,). Substituting the col- According to the relatior{A4) we obtain

ntln do(x,v)
)\nI:NPmdeWR(V)|V|JdQ(X)d—Q f dzW=(2)

AN 2 12 ’ 12\ | 12

O e IR Ve e (Y P i O B B P (E ST
2 n 2|%=n 2 I ’ 2
ug ug us Vv ug

n US
where P, denote the Legendre polynomials of the cosine ofDue to the appearance of the cosine of the scattering gngle
an angle between vectovsandv’. we recognize the integra®(vg) defined in Eq.(14) and
In this manner we can relatively easily express the eigenthen collision integrals{)("s) as in Eq.(15). A few first ei-

values of the collision operator via the corresponding colli-genvalues are obtained in that manner and they read as fol-
sion integralg12) or (15). The simplest way to find explicit |ows:

expressions for the eigenvalugs least some initial ongss

2
} , (38)

to use the method outlined in the Appendix. Firstly, we take 16 ©
the corresponding Laguerre and Legendre polynomials to )\01=—§Np(m—>9(1'1), (409
construct the second line of E¢38). Then we perform the A
substitutions that follow from EqA6). Integration over aux- ,
iliary variablez poses no probl_ems. The remaining integrals __ 3—2N M QD i Mp 022
overv, anddQ(x) can be easily done when one recalls the 02 3 Pl mamp 10\ my '
basic geometry of the scattering process, which allows us to (40b)
write
' ’ o — 12a: _ 1209 32 ,LLZ
v} - (v{Ng—V;) = —2v]*sin(x/2) = —v/*(1—cosy). A o= — _NP( )Q(Ll), (400
(39 3 maMp



56 EIGENVALUES OF COLLISION OPERATORS: ... 3929

Calculation of the eigenvalues corresponding to higher numgases. We will do so by the generating function method. To
bersn,l can be done similarly, though it is more and moreachieve this end we introduce the following function:
involved. The obtained eigenvalues for the spherical case are

. — _ 2
degenerate with respect to the quantum nuntberOther G(x,a)=exp(—x“+2a-x), (43)
degeneracies, typical to the harmonic oscillator are, as ex-
pected, lifted. wherex anda are two independent vectors. This function is

a product of three one-dimensional generating functions of

. . Hermite polynomials. Hence, we have
D. Eigenvalues for Cartesian case

In this case the eigenvalues are labeled by three integers. X"

The calculation goes exactly along the same lines as in the G(x,a)= |H1 nE 1 Hn (@0, (44)
spherical case, hence we state only the results. We have ob- :
tained

wherex; anda; denote Cartesian components of the vectors
16 “ entering the definition of functios. The functionG can
)\001:)\010:)\100:——NP<—)Q(L1), (419 also be expanded into power seridSumar’'s generating
3 Ma function [22]) of Laguerre polynomials and spherical har-
monics as follows:

32 w?
)\011:)\101:)\011:—§NP MAMe [ (—1)"

2n+1 41
&, Tinrirap 2

G(x,a)=2m32> >
n=0 =0

x| Q@D+ 3(@)9@3}, (41b)
10\ m, X LY M2 (@) Y (R) Yim(A), (45)
32 % wherea andx denote the lengths, whibe anda specify the
Nooz= M o20= A200= 3Pl mamp angular orientation of the corresponding vectors.
Thus, one clearly sees that the functi@Gnis closely re-
«| Qo E E)Q(Z,Z) (410 lated with the eigenfunctions of collision operat88) given
5\myp ' either in Cartesian frame by E4) or in spherical coordi-

nates(35). Indeed, by substitutioa=v/uy, and some simple
We see that the eigenvalues that differ by the permutation ofansformations we obtain

the indices are degenerate. We shall later show that this is a

general property of the Cartesian eigenvalues obtained from c oz - 2N19N29N3
the eigenfunctions constructed with Hermite polynomials asWa(V)G(X,V/Ug) = E > 2 Xy %o Xg® \[
n=0 ny=0 nz=0 NyiNyiNng
in Eq. (34).
Comparing Eqs(40) and (41) one easily sees that the X o (v). (46)
NyNaN3

eigenvalues for spherical and Cartesian case are related,
Similarly, function G may be expanded in eigenfunctions

(©) —\(s)
Noo1= Mot » (423 expressed in spherical coordinates. In this case we have
A=A (420 - 2
WaA(V)G(x,VIug) =272, > > x>
)\002 3)\(s)+ )\02’ (42(:) n=0 =0 m=—1
. . . . (-1)" « o
where the superscripts denote either the Cartesian or spheri- X T(niliaz Yin(R) @m(v).
cal case. Certainly the Cartesian eigenvalues are degenerate nir(n )
in the sense indicated by Egell). Relations(42) follow (47)

from the presented results, but can be also derived. The
eigenfunctions of the harmonic oscillator in spherical or Car-The two last expressions may be considered as generating
tesian coordinates are connected by unitary transformatiofynctions for the eigenfunctions of the collision operator in
[20]. Since eigenfunctions of the collision operator are pro-€ither of the coordinate frames.

portional to the oscillator eigenfunctions, the mentioned

transformation can be employed yielding relatidd®) be- B. Generating function for eigenvalues

tween the eigenvalues corresponding to two coordinate sys-

tems The next step consists in finding the generating function

for the eigenvalues. Hence, we define the following matrix

element:
I1l. GENERATING FUNCTION FOR THE EIGENVALUES

A. Generating function for eigenfunctions J(x,Y) =(G(X.V/ o) Wa|C| G(y. V/Uo) W), (48)

As stated in the Introduction our aim is to find expressionswherex andy are two independent vectors playing the role
connecting the eigenvalues of the collision operator with theof parameters. Using relatiori22) and(23) this matrix ele-
collision integralsQ("® known from the kinetic theory of ment may be transformed into an integral:
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. do(x,v)
J(x,y)=f dvG™ (X,V/Uug)[CG(Y,V/Ug)Wa(V)]. (49) J(xy)= NpN(x,y)J dvWR(V)IVIJ d(x)—gq
Integral J(x,y) may be further expressed in terms of expan- xexga(x+y)-vl{exdax-(nov —v)] -1},
sions, either Eq(46) or Eq.(47). The collision operator act- (53)

ing on its eigenfunctions produces corresponding eigenval-
ues. Then, due to orthonormality of the eigenfunctions, wavhere we have dropped unnecessary subscripts for the inte-

obtain in the Cartesian case gration variable and we have denoted
* 2N19N29N3 2u
Ixy)= 2 AN a= (54)
ny,ny,n3=0 NyN2Ng nl! n2! ng! UOmA

X (X1y1)"(Xy2) "2(X3y3)"™. (500  and

The obtained expression is symmetrical with respect to inter- 2

u
_ 2_ 2, T 2
change of the cordinate axes. This clearly suggests that we N(x,y)—ex;{ Xty Ug(x"‘y) : (55)
may expect the Cartesian eigenvalmé,?nzn3 to be degener-
ate with respect to permutation of the indices. Hence, the Technical details of the calculation are presented in Ap-
conclusion drawn after Eq$41) seems, at least partially, to pendix B. Here, we only state the final result, which reads
be confirmed.

An equivalent expansion is obtained for eigenfunctions A -
expressed in spherical coordinates, namely, J(x,y)=N(x,y)mZ:0 zl Anm(a)X"y™, (56)
Iy)= i N 2" 21+ 1) (xy)?"* 1P Xy where the coefficientd,,(«) are given in Eq(B14), and«
' 2o ™M nt(2n+ 21+ 1)1 "\'xy )’ is the angle between vectoxsandy, i.e., cosa=x-y/(Xy).

(51) We again see that the obtained expression is symmetric un-
der the interchange of three Cartesian axes. Therefore, we
where we have used the addition theorem for spherical haffinally conclude that eigenvalued®. . are unchangece-
monics, in a manner similar to that leading to E8g). For generatgwhen the indices are pelrrinjted.
the spherical case it is difficult to draw conclusions about” ag discussed in Appendix B, the obtained generating
degeneracies. It rather should be expected that all eigenvaynction J(x,y) is a complicated combination of the collision
ues\ are different(of course, apart from trivial degen- integrals 09, Thus the main aim of our work may be
eracy with respect to the magnetic quantum nunrbgr considered as achieved. This is so because substituting ex-
The functionJ(x,y) may be thus regarded as the generatpression(56) as the right-hand side of relatiq60) we can
ing function for eigenvalues of collision operators. Knowing find the sought eigenvalues. Then, by standard generating
the explicit form of this integral we can then find eigenvaluesfynction techiques, taking the necessary derivatives and set-
either for the Cartesian or for the spherical case by simpling the parameters to zero we can obtain the corresponding
differentiation of both sides of Eq50) or Eq.(51). Explicit  cgrtesian eigenvalues(®)  of the collision operator. A
computation ofJ(x,y) must be done by substituting the func- . i q 62 8 lied to Ed51) and (56) t
tions G given in Eq.(43) into the integral(49), using the simiiar: procedure can be applie S)o 4S1) an .( ) (0
form of the collision operator as specified by E§8) and by obtain the spherical e|genvalueé], : The described ap-
performing all necessary integrations. proach aIIo_ws easy recovery of the eigenvalues calculated
gbove by direct integration.

Proceeding along the outlined lines and employing th ; ; . i

neccessary properties of the collision kernel we easily arrive | N€ generating function procedure in either of the consid-

at the expression for integra(x,y): ere_d cases poses no (_:onceptual dl_fflcultles. It is possible to
derive general expressions for the eigenvalues, but the results
of differentiation are lengthy and not very illuminating. This

J(x,y):exp(—xz—yz)J’ va dv’' Wa(V)K(ve—V") is due to the complicated form of the coefficiemgm(«)
where the angler enters at several places and the derivatives
2
[exp{uox-(v v')

obtained via the Leibniz formula are quite involved. There-
-1 fore, instead of discussing the general case, we will focus our
Explicit evaluation of this integral can be done by employing
the calculational methods presented in the Appendix.

attention on a more specific situation, which, however, cov-
(52 ers a wide range of realistic experimental situations.
The integrand in Eq52) is a function of two velocities as The formalism described so far concerns the simple gas
the function integrated in Appendix A. Hence performing themixture and is, therefore, closely related to the kinetic theory
substitutions indicated by E¢A4), we recast Eq(52) into a  of gases. It is interesting in itself, but we would like to con-

similar form and we easily perform the integration over thesider another physically important case, which seems to be
auxiliary variablez, obtaining more important in quantum optics. When the sample contain-

2
xexp{—(x+y)~v’
Uog

C. The case with axial symmetry
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ing a mixture is irradiated by electromagnetic radiation, thetwo first indices being zeros. Hence, the relavant distribu-
system has axial symmetry with the axis specified by thdions are essentially one dimensional. Physical quantities ex-
direction of the incoming field. Such a case is of specialpressible via expectation values, or, in general, via integrals
interest since then one may observe various light-inducedver the distributions would then depend on the correspond-
kinetic phenomena.

As is well known, the velocity distributions are modified case together with the velocity distributions and other quan-
only along the symmetry axis. The reason for this is as foldities of interest are presented [if].

ing eigenvalues\ o, . Practical examples of the considered

lows. Let us assume that the incoming radiation propagates The discussed eigenvaluagy, are most easily obtained
along thez axis and has the wave vector(0,0k,). Inter-  when we takex=(0,0,x) andy=(0,0y). In such a case the
action of radiation with active atoms is described by opticalsum in Eq.(50) reduces to a single one and upon differen-
Bloch equations, which contain Doppler shitv=k,uv,. tiation we simply get
Thereby radiation may modify the velocity distributions only

with respect to the, component. On the other hand, colli- (VY] =
sions with perturbers drive the distributions towards equilib- y
rium, i.e., towards Maxwellian. Due to the radiation influ-

ence the steady-state velocity distributions usually diffewhere the notatiofiz<]f(z) denotes the coefficient af in
from  Maxwellian and can be written as the Taylor expansion of the functidi{z) (this notation fol-
fA(V) =Wa(v,)Wa(vy) fa(v,). Therefore, expandinga(v) lows that introduced by Grahaet al. [23]).

in the eigenfunctions of the collision operator we see thatthe To use relation57) effectively we need the explicit ex-
Cartesian case is the most suitable. This is so because tpeession for the generating functidiix,y) as given by Eq.
eigenfunctiong34) are correspondingly factorized. Thus, all (56). Due to our assumption about parameter vectaaady
physically interesting quantities can be expanded into theve have an anglee=0. Therefore the coefficients,,,, de-
series of Cartesian eigenfunctioggg,, that is, those with fined in Eq.(B14) are effectively simpler and read

k

&RJ(X y)| =\ (57
x=0

n+m [n2]

(n) ek
Anm(0)=—27Np mi Q™ (v) Bh(v)tarr e

nt & 2ZKKDHZ(n—2k)!

o 1
f dvWR(v)|v|3+”+mf d(cosp)cod Mg } (58)
0 -1

Differentiating Eq.(56) we make use of the Leibniz formula; When coefficientdA,,(0) are substituted according to Egs.
we express the factdd(x,y) as the generating function of (B16), then two first eigenvalues reproduce relatigasa
Hermite polynomials. Taking the derivative at 0, we ob-  and(41¢. While the third one yields

tain

3 =1¥4] grexi—y2e?] ZO

where Hp are Hermite polynomials and«?
B=u2/(u3k). Evaluation of the eigenvalug® reduces then

D(By) 2 Akfp,myma
m=0

(59

:Iu’/mAl

to finding the coefficient accompanying the parameten

the kth power. Finding several first eigenvalues is a S|mpleThen the

matter. We get

( e,y %) g g
Mp Mmp 5

e o)

(61)

ud
—8N
003 P2

Calculation of further eigenvalues), requires only co-
efficientsA,(0), which can be easily found from E¢8).
corresponding eigenvalues are simply read from
Eq. (59). The case with axial symmetry, important from the
quantum-optical point of view, is thus simpler than the gen-

A(g):}A (0) (604 eral one, considered in the previous section. The given re-
001 o ML/ sults provide, it seems, a useful tool to describe collisional
effects and light-induced kinetic effects in gases.
K2 1 u%
AG=— 5 A(0)+| 5Az(0)+ u_gA“(o) , (60b) IV. DISCUSSION AND REMARKS

D=2 LA (0)— P TAL(0)+ Agy(0)]+2 L2 A0
003~ 7 3l )—m—A[ 13(0) + Ag(0) ]+ me 220)

J’_

2

o’

2

2

P

o

2

A

+— All(o)}-

(600)

We have presented a general method allowing one to ex-
press the eigenvalues of the collision operator by the colli-
sion integrals. Equatiort50) or (51) with left-hand sides
given by Eq.(56) can, by suitable differentiation, yield the
eigenvalues of collision operators either in Cartesian or in
spherical coordinate systems. The eigenvalues with arbitrary
indices can thus be obtained, although the procedure is
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somewhat tedious albeit quite straightforward and much simfluorescence from this third level provide then information
pler than direct integration. The general case is of intereshbout velocity redistribution in the first excited level.
within kinetic theory of gases. In such a case the ChapmarHaverkort, Woerdman, and Bermdi24] applied such a
Enskog approach gives a method to find succesive approximethod to obtain the best fit to the Keilson-Storer kernels.
mations to the various physically significant quantities.Gibble and Gallagher obtained the necessary spectra and
Within the first order(for the case wheiN,<<Np, i.e., when then, by means of an appropriate deconvolution procedure,
P gas is much denser, as assumed in this paper method found the correspondin@ne-dimensionalcollision kernels.

gives, for example, the following results. It is very interesting to relate the experimental fluorescence
(1) The diffusion coefficient for molecules of active-atom spectra directly to collision operators. An attempt in this di-
gas in the perturber gas is given as rection, however, with only one exciting laser field, was pre-
sented in[21]. The main difficulty in such an approach is
_ 3keT that ground-state and excited-state atoms interact with per-
Dap= 16Npu Q0" (62) turbers in a different way, we simply have two different in-
teraction potentials. This fact entails the necessity to intro-
(2) Viscosity of the considered gaseous mixture is duce two different collision operators and thereby two
different sets of eigenvalues. Due to this, as shown previ-
5kgT ously[7], the radiative and collisional processes are strongly
=802 (63) interwoven—radiation modifies transport properties. Hence,
it may be expected that a general and possibly rigorous treat-
(3) The heat conductivity is expressed as ment of the fluorescence spectra corresponding to the experi-
mental cases will be quite complex and probably will require
75k25T a suitable approximation scheme. Nevertheless, it might be

\@ (64)  expected that, at least for the weak probe case, it will be

possible to express the spectra via the eigenvalues of the
It is thus evident that only several eigenvalues of the col—COIIISIOn operators. Then, comparison of e>.<per|ment_al Spec-
ffa to the theoretical ones should directly yield the eigenval-

lision operator suffice to express the above given transpo X o
coefficients, which are most frequently used in kineticUeS and hence th@pproximate collision operators accord-

theory. Transport coefficienté62)—(64) can easily be ex- "9 0 Eq.(32).
press):ed by th?e eigenva:IL:es fiv)en( in) Eefl) ngverseI; The obtained relationship between the eigenvalues of the

eigenvalues can be rewritten in terms of combinations of©lliSion operators and collision integraf*) or transport
transport coefficients. This fact puts the eigenvalues on fimgoefficients clarifies the previously employed modeling
physical ground. They are no longer free parameters, but af@€thod. We have shown that only several eigenvalues of the
fully expressed by physically understandable transport coefeOllision operator usually suffice to describe physical phe-
ficients. nomena occurring in the gaseous mixtuf@21]. Hence, it

Expressing some of the first eigenvalues by the collisionvould be of interest to reexamine the results of modeling in

integrals or transport coefficients we can construct an apt_he view of the present ones. It would be interesting to use

proximate (because of finite number of eigenvalues Used explicit expressions for the eigenvalues in the equations for

collision operator by its integral kernés2). Thus, the colli-  the quantities modeled by eigenvalues—previously taken as

sion operator is then written in terms of the quantities thaf'€ Parameters. This may provide some new information on

are either directly measurable or can be expressed via sudfe light-induced kinetic effects in gases. Moreover, it will
quantities. In this way we are able to construct the collisionP® €aSier to compare the theory with potential experiments,

operator without invoking any particular analytical model of Sinc€ the physically significant quantities will be expressed
the collision kernel and rate. Therefore, we avoid all thePY Other ones, which are measurable and have well-known
difficult questions arising when adopting any specific mode

|physical meaning. This may be an interesting subject for
For example, the interatomic potential determines the differfurther investigations. o , ,
ential cross section that appears in the collision integrals and 1heS€ conclusions shed additional light on the modeling

hence in the transport coefficients. The former ones, in turfn€thod developed and used elsewlde The power of this

determine the eigenvalues, thereby the right potential is ayn€thod is obviously not affected by the present results. Just
tomatically accounted for in ouglthough approximatecol- the c_ontrary,_ the modeling procedure is now_fully Just|f|e_d
lision operator constructed according to E§2). Circum- physically, since due to the present results, it does not in-

venting the problems connected with any particular model of'ude free(unknown parameters, but the quantities express-
ible by other ones, which have a clear physical meaning.

the collision kernel, we provide a method to construct a . ! ;
whole class of collision operators Moreover, as we have discussed, Cartesian eigenvalues

Our work focuses on the theoretical approach towards debba (Which correspond to the case with axial symmptry
termination of the collision kernels. On the other hand, somélay a special role in a variety of spectroscopical or
experimental measurements were also done to determine t&iantum-optical problems. The above given comments obvi-
collision operatorgor kernel$ (see[24,25, and the refer- 0usly apply also to this—more specialized—case. It seems
ences given thereinThe basic idea of these experiments isthat the obtained results fully justify the useXif}, instead
to excite a resonance transition in a velocity selective manef spherical eigenvalues in the description of experi-
ner, and then to probe it by a secofubually weak laser ments where the radiation beam specifies an axis of symme-
field by excitation to a higher third level. The spectra oftry.

T 32m,022°
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The transport coefficients given, as examples above, arferm given by Eq.(3). Substituting the collision kernel into
found within the Chapman-Enskog method in the first-orderthe integral(Al) we obtain a four-fold three-dimensional in-
approximation. It is, however, possible to find the corre-tegral. We proceed to simplify it as follows. Firstly we con-
sponding equations in higher orders. The resulting expressider the productV,Wp of two Maxwellian distributions,
sions are quite complex, but nevertheless still include thevhich appear under the integrals. By simple manipulation
collision integralsQ (9, although not in simple linear com- this product can be transformed into
binations. The connection between the eigenvalues and the
collision integrals might be also useful in better understand- m
ing of the Boltzmann equation. Following this train of WA(V')WP(V'—X)=WR(X)WT(V'— m—X>, (A2)
thought one may, perhaps, gain some additional data for A

more dense gases, and study their properties by relativel . o
simple theoretical methods provided by the formalism of col—gnd wherex denotes arbitrary vector. The distributigi; is

lision operators and their eigenvalues. The discussed conneBVen I Eq.(16) andWr is defined as follows:

tion between higher-order Chapmann-Enskog results and 3 )
collision operators may lead to interesting physical results. It Wi (V)= i extl — v (A3)
may also facilitate the investigations of the phenomena oc- T 2 '

curring in the radiation field.

_The Chapmann-Enskog method may be equally well apyith y2= 2k, T/(ms+mp). Hence Wy describes the veloc-
plied to single species gases as to mixtures. The collisiofyy istribution of the motion of the collision partners as a
operator considered in this paper concerns the mixture W|tging|e whole.
one component much denser than the other one. Study of the Secondly, we simplify and compute some of the obtained

derived relationships might also prove useful in a suitabl§eqrals. Instead of the integration variabfewe introduce
adaptation of our method to single-component gases. This i§,_ ) / .

: ; > 7=V’ —(u/my)v, . Transforming the argument of the three-
however, the subject for future studies. Thus, the modehn?‘ (u/mg) vy 9 g

2
T T

thod di . h b itab mensional delta function we are able to perform an inte-
MEIN0d USEd In previous papers can, perhaps, be Sultabiyaiion oyer velocity. Thus we obtain
modified and then applied for single-component gases.

The collision integral€)("® or transport coefficients are
dU(Xavr)

well known from the literatur¢see[11]). They follow when F= pr dVrf dVr'f dz —— = Wi(V] )W+(2)
one knows the differential cross sections. Hence, adopting dQ
either analytic or numerical interatomic potentials, one can s ,
- - : (v —vy) M ©o
relatively easily compute the cross sections, and then the X———CF| 24+ v, 2+ —V/ | (A4)
collision integrals and eigenvalues of collision operators. Uy Ma Ma

This procedure will yield eigenvalues directly via the poten-
tials. Moreover, collision integrals are explicitly temperatureln order to perform the integration over the velocity, say
dependent. Therefore, our modelling method allows investidv,, some basic geometric considerations are helpful. Vec-
gations of the temperature dependencies involved in LIKE irtors v, and v, are relative velocities before and after the
gases. This fact may prove useful in the view of the recentollision. Due to energy conservation their lengths are equal.
communicationg1,2] on the anomalous light-induced drift The unit vector
effect.

Th'e approach via eigenfunctiqns and _eigenvalue; of the no= (Siny cos, siny sine, cosy) (A5)
collision operator seems to be quite elastic and applicable to
the description of a large collection of experimental situa- o : : Lo .
tions. Results of this paper together with previously pub_specmes the orientation of velocity =v,ny with respect to

lished modeling metho@d] seem to have considerable po- f[he vectoryy . Hence integration ovedy, is equivalent to
tential and a consistent, well justified physical basis. integration over scattering angld€l(x) and over the modu-
lus dv, . The last one is easily done due to the presence of
ACKNOWLEDGMENT the delta function in Eq(A4). Thus, we obtain a much sim-
pler expression, namely,
Partial support by Gdak University through Grant No.
BW/5400-5-0085-6 is gratefully acknowledged. do(x,v,)
F=No [ aviwieuplv] | @00 =6

APPENDIX A: AN AUXILIARY INTEGRAL

In this Appendix we present an important calculational X j dzW+(z)F| z+ mivr’no,er mivr’), (AB6)
A A

method. Let us consider the quantity of the type

. , , , which clearly indicates the variable substitutions necessary
]'—:f dvf AV WAV E(ve=V)F(Vv,V). (Al) 1o compute the integral explicitly. Moreover, it allows one to
use the cross section, which is usually easier to find than the
This quantity is clearly of the type of integral necessary tocollision kernel. Hence, we conclude that the obtained rela-
find the eigenvalues according to E&7). In order to find tion expresses the sought integfall) in a manner greatly
this integral we need the collision kernel. We take it in thesimplifying the calculations.
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APPENDIX B: EXPLICIT EVALUATION while the arbitrarily directed velocity vectaris then
OF GENERATING FUNCTION

Evaluation of the integration over the scattering angles
ande in Eq. (53) requires some geometrical considerations.
First of all, we note that vectors andy are arbitrary—they

are just parameters. Therefore we can take a vector,sasy/ . ,
determining thez axis. Then vectoy is directed so that it Whereéande are the spherical angles taken with respect to

v=yv(sind cosp,sind sing,coy), (B2)

forms an anglex with x. Hence, we can take the vectorx, which specifies the axis. The unit vectong is
defined in Eq(A5) with respect to velocity. Thus it has to
y=Yy(sina,0,cosy), (B1) be rotated to the new coordinate system. We obtain

€09 COSp Siny COS — Sing Siny Sine + Sind cosp Cosy

n,=| COSY Sing siny cos + cosp Siny sine + sind sing cosy (B3)
— sind siny cos +cosd cosy
|
We then rewrite integral53) as o o n+ 2k

(axv)

H1<v>=n§1 2w Q<“><v>—2 2 i)z
J(XyY):_NPN(Xay)f dvWg(v)|v|e?" do(x,v)
dQ

x cod'y sirt¥y. (B9)

xco§asin2kaf dQ(x)
x[e*Vor(v)—H(v)], (B4)

with oy defined in Eq(17) and Changing the order of summation in the second sum we can

rearrange the terms il (v) so that we obtain just one
U)_f 40 )dU(X, )eavX-no (B5) power series with respect to parameteobtaining the ex-
X . . : .
pansion for the generating function in the form

Using the above given vectors we write explicitly an equiva- J(X,y)=— NPN(X'y)J' dvWg(Vv)|v|e®V

lent form of integralH(v). Changing the integration vari-

ables in a typical way we obtain > QM (v)

X >, (axv cosh)"
o0 2 n=1 n!
— Xv COSY COSy —axv sind siny cos
H(v) Jo bdbeé J;) dee . _[nz/z] B, (v)tarf<s } 810
(B6) &1 22Kk (n—2k)! |’

The integral over the anglecan be expressed via the modi- Where[n/2] denotes the entier function, while coefficients
fied Bessel functiorly. Returning to standard notation we Bny are defined as

thus have

(X, )

Bl v)—J dQ(x) —=~— cod'ytart®y. (B11)

H(U):fdQ(X)% eV %% (avx sind siny). o '
Let us note that the subscripts in quanty, must satisfy

(B7)  the requirementsi=2, k=1, andk<[n/2]. It seems to be
evident that coefficient®,,, by simple trigonometric ma-
Next we expand the exponential and the Bessel function intipulations can be expressed by the combinations of the in-
power series. Separating the zeroth term of the Bessel funtegralsQ"(v), which are defined in Eqa14). For the sake
tion expansion, we find that it reproduces the term containingf completeness we give several first coefficieByg explic-
ot in Eqg. (B4), which, therefore, cancels out. Thus, we haveitly:
B21(v)=Q(v), (B12a)
30y) =~ NaNGxy) | IRV Ve Hy(v), (89
Ba1(v)=Q%(v) —QW(v), (B12b)

where functionH,(v) has the expansion Bs1(v)=Q®(v)—Q@(v), (B129



B(v)=2Q%(v) - Q™(v). (B12d)

The next step of evaluation of the integ(&810) consists in
expressing the scalar produgtv via the corresponding
angles and in performing the integration over the angle
which determines the orientation of the variable This
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via the modified Bessel functioly. We, however, expand
the resulting functions, and, after some straightforward ma-

nipulations we obtain an expansion:

o]

I(xy) = N(x,wmg0 gl Anm(@)X"y™,

[’

(B13)

angle appears in the exponential still remaining in the inte-
grand of Eq.B8). The obtained integral is again expressiblewhereA,(a) denotes a rather complicated coefficient

“ 1
Anm( )= _ZWNPa"*mcoé“af dUWR(V)|V|3+n+mf
0

d(cosd)cod'* Mg
1

QM(p) W4 B, (v)tarfke [mEIZ] (tand tanx)?P 514
I T T A& 2K KD2(n—2K)1 & 2%(pH)2(m—2p)!” (B14)
|
It is perhaps worth noting that these coefficients have the 32 m -
property A11(0)=— ?NP A Qi (B16a
Ain(a@)=0 whenn+m is odd. (B15) 64 ’
)72
=— — 1.2
This is so, because far+m being odd the integrand is an A130)=—7zNp H/{)Q : (B16b)
odd function in the variable cé#sand the integral vanishes.
Moreqver, we note .that the factor iln square brackets in Eq. A,(0)=0, (B160)
(B14) is a combination of integral®(". Hence, the integral
overdv will produce a combination of the collision integrals 64 w? -
009, The remaining integral over cégives some numeri- Ax0)=— E'“p(ﬁ)ﬂ( 2, (B16d
cal factors. Therefore, we may say that the generating func- A
tion J(x,y) is expressed as a combination of collision inte- As1(0)=A40), (B16¢

grals.

In the applications discussed in the main text a special

role is played by coefficient®,,(«=0). It is straightfor-
ward to find them, and several first ones read as follows:

w
mx

128
Asz3(0)= N (

105 °°

0134 §Q<3’3>}_ (B16f)
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