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Eigenvalues of collision operators: Properties and methods of computation

Stanisław Kryszewski* and Joanna Gondek†
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The linear Boltzmann equation for active atoms submerged in the much denser perturber gas contains a
collision rate and a kernel. These two quantities are combined into a single entity—the collision operator. The
collision operator possesses several interesting properties, the most important being that it is Hermitian. The
eigenvalues are negative with the exception of one eigenvalue, which is zero and corresponds to the Maxwell-
ian ~steady-state! velocity distribution. A set of functions, closely related to the eigenfunctions of the quantum-
mechanical harmonic oscillator, is postulated to approximate the true eigenfunctions. This assumption was a
basis of the method of modeling various physical phenomena occurring in the gaseous mixtures, subjected to
a radiation field. The eigenvalues of the collision operator were treated as free parameters. In this paper we
establish a direct relationship between the eigenvalues and the collision integrals, or transport coefficients,
known from the kinetic theory of gases. The generating function approach is employed to derive expressions
yielding the eigenvalues. The obtained results form a bridge between kinetic theory, atomic physics, and
quantum optics.@S1050-2947~97!00711-7#

PACS number~s!: 32.80.Lg, 42.50.Vk, 82.20.Mj
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I. INTRODUCTION

A. General discussion

Light-induced kinetic effects~LIKE ! in gases continue to
be of interest@1–4#, with light-induced drift~LID ! being the
most well-known one@5#. Such effects occur due to the ligh
induced modifications of the velocity distributions of atom
or molecules interacting collisionally between themselv
and with incoming light. LID is possible when the activ
particles immersed in the~usually much denser! buffer gas
are excited in a velocity-selective manner. This induces
positely directed fluxes of ground- and excited-state ato
When the atoms in either of the states sustain different
fusive friction, the two fluxes do not cancel and the mac
scopic drift is observed. Some other LIKE phenomena
described, for example, in@6,7#.

There were several different approaches to theoretical
scription of LIKE in gases~see, for example, Refs.@2–7#,
and references given therein!. One of the possible methods o
modeling and/or describing LIKE was introduced in@8#, and
then further elaborated on in@9# and @10#. The proposed
method concerns the physical situation in which the ac
atoms, i.e., those coupled to the incoming radiation fie
also interact collisionally with the perturbers that constitu
the thermal bath. The evolution of the velocity distributio
of the active atoms, in either the excited or ground state
then described by the Boltzmann equation.

The Boltzmann equation in either its classical
quantum-mechanical form is extremely complicated. Its
lution is indeed a formidable task. Therefore, some appro
mate methods are needed in practical calculations. A con
erable simplification is achieved when the perturber ga
much denser than active-atom vapor. Since the collisions
tween perturber particles occur much more frequently t
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any other ones, it is reasonable to assume that the pertu
reach the equlibrium state rapidly, and their velocity dist
bution may be taken as the Maxwellian

f P~vP ,t !5WP~vP!5S 1

puP
2 D 3/2

expS 2
vP

2

uP
2 D , ~1!

with uP
2 52kBT/mP being the square of the most probab

velocity of perturbers at temperatureT. Moreover, in the
case ofNA!NP ~NA and NP being the densities of active
atoms and perturbers, respectively!, the Boltzmann equation
for the velocity distribution of active atoms can be put in
linear form @8–14#. The linear approximation to the Boltz
mann equation should be distinguished from the lineari
one. The latter is obtained when one seeks small deviat
of the atomic velocity distribution from the Maxwellian one
The Boltzmann equation is then expanded in terms of
corrections to the Maxwellian and only the terms linear
the sought corrections are retained. Moreover, the linear
Boltzmann equation possesses five collisional invaria
~particle number, three components of velocity, and the m
nitude of velocity!, while the linear one has only on
invariant—the particle number. This is due to the fact th
the much denser perturber gas serves as the reservoir of
mentum and energy~see, e.g.,@12#!.

In this work we will deal with the linear form of the
Boltzmann equation, which is obtained due to the assum
tion that much denser perturbers are in the equilibrium s
described by the Maxwellian~1!. Such an approach allow
one to describe the influence of collisions between ac
atoms and perturbers on the velocity distributions of
former by collision kernels and rates.

The theoretical method discussed in detail in@9# is based
on the presented assumptions. Its main idea can be sum
rized as follows. The collision kernel and rate are combin
into one entity called the collision operator. The collisio
operator has several interesting and useful properties,
most important being that it is Hermitian in the suitably ch
3923 © 1997 The American Physical Society
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3924 56STANISŁAW KRYSZEWSKI AND JOANNA GONDEK
sen space of velocity distributions. Hence, such a collis
operator possesses a set of orthonormal eigenfunctions
real eigenvalues. The solution of the corresponding eig
problem is not simpler than the solution of the initial Bolt
mann equation. However, a useful modeling method can
easily devised. We adopt, as an assumption, a certain s
functions to be the eigenfunctions. Such a choice seems t
reasonable and well justified~see@9#!. Then all physically
important quantities can be expressed in terms of the cho
eigenfunctions and by the eigenvalues. The eigenvalues
however, unspecified and enter the theory as free parame
They can be adjusted, for example, by fitting the experim
tal data to the theoretical predictions. Moreover, assum
that the adopted eigenfunctions are good approximation
the true ones, we avoid the introduction~or derivation! of
any particular collision kernel. Such a modeling method
presented in@9#. Since this method does not give any pr
scription to determine the eigenvalues, we address this p
in the present work. Thus, the aim of this paper is to find
explicit connection between the eigenvalues of the collis
operator and the collision integrals known from the kine
theory of gases. The latter integrals are, in turn, closely
lated to transport coefficients. Thereby, the eigenvalues
not free parameters anymore, but are given a direct phys
meaning. Such a procedure allows us to close the me
that will thus contain only the quantities with direct expe
mental relevance.

The outline of the paper is as follows. In the next tw
subsections we summarize the main concepts, which co
tute the basic theoretical framework. In the second sec
we recall the definition of the collision operator and we
view its most important properties. We also explicitly giv
and discuss the adopted eigenfunctions, which are clo
related to the eigenfunctions of the quantum-mechanical
monic oscillator. Section II also includes some remarks
the eigenvalues of the collision operator and on the inte
methods of their calculation. In Sec. III we present a gen
ating function that allows us to derive the expressions c
necting the eigenvalues with collision integrals and transp
coefficients known from the kinetic theory of gases. The l
section contains some additional remarks and comment
the obtained results and their potential applications. T
technicalities of our approach are presented in two app
dixes.

B. Collision kernels and rates

In our approach we assume that the density of active
oms is much smaller than that of perturbers. Therefore,
may linearize the Boltzmann equation. This is a stand
procedure thoroughly discussed in the literature~e.g., @11#!.
We, therefore, only state the final results. WhenNA!NP ,
the time evolution of velocity distributionf A(v) of active
atoms can be, within a very good approximation, attribu
solely to the collisions with perturbers and the correspond
linear Boltzmann equation@11–13# can be written as

d

dt
f A~v!U

coll

52g~v! f A~v!1E dv8K~v←v8! f A~v8!.

~2!
n
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The time and position dependencies of the distribution fu
tion f A are suppressed, since they are of little relevance
the present context.

The collision kernelK(v←v8) and the corresponding rat
g~v! appearing in Eq.~2! are easily derived by linearizatio
of the Boltzmann equation. The collision kernel is of th
form

K~v←v8!5 NPS mA

m D 3E dvrE dvr8
ds~x,v r !

dV
WP~v82vr8!

3
d~v r2v r8!

v r
d3S vr2vr82

mA

m
~v2v8! D ,

~3!

which accounts for the momentum and energy conservat
The collisional rateg~v! is given as

g~v!5NPE dvPE dV~x!v rWP~vP!
ds~x,v r !

dV
, ~4!

wherev ~or v8! are the velocities of an active atom, andvP

~or vP8 ! of the perturber after~or before! collision. vr5v2vP

~or vr85v82vP8 ! are the corresponding relative velocitie
mA , mP , andm denote the masses of the active atom, p
turber, and the reduced mass, respectively. Expressions~3!
and ~4! contain also the differential cross section for t
active-atom-perturber scattering in the center-of-mass fra
with x being the usual scattering angle.

The physical meaning of the collision kernel and rate
evident from the kinetic equation~2! ~see, e.g.,@12#!. First of
all, we note that the number of particles must be conser
during the collisions. This requirement implies that

g~v!5E dv1K~v1←v!. ~5!

The integral term in Eq.~2! is the gain one and it gives th
number of particles that change velocity fromv8 before, tov
after the collision. Hence, the collision kernelK(v←v8) is a
measure of transition probability betweenv8 andv velocity
groups. The rateg~v! is the loss term in Eq.~2! and it gives
the number of particles escaping from velocity interv
(v,v1dv) to any other one. Let us note thatg~v! can be also
viewed as the collision frequency, and its inver
t(v)51/g(v) can be interpreted as the average time betw
collisions. Hence, the names collision rate and frequency
be used interchangeably. The given probabilistic interpre
tion of the kernel and frequency is fully consistent with r
quirement~5!.

Since the kernel gives the transition probability betwe
various velocity groups, it satisfies the detailed balance c
dition in equilibrium @12#:

K~v←v8!WA~v8!5K~v8←v!WA~v!, ~6!

whereWA(v) is the Maxwellian distribution for active atom

WA~v!5S 1

pu0
2D 3/2

expS 2
v2

u0
2D , ~7!
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with u0
252kBT/mA being the square of the most probab

velocity. Integrating requirement~6! over dv8 and using Eq.
~5! we obtain

052g~v!WA~v!1E dv8K~v←v8!WA~v8!. ~8!

So, the MaxwellianWA(v) must be the stationary solution t
the kinetic equation. It is equivalent to say thatWA(v) is the
eigenfunction of the right-hand side of Eq.~2! with the ei-
genvalue zero. This result is also evident from the notion
the equilibrium distribution~which is known to be Maxwell-
ian! as the stationary solution to the kinetic equation. W
the aid of the particle number conservation requiremen
can be shown@12# that WA(v) is a unique steady-state solu
tion. Hence the discussed zero eigenvalue is nondegene

Furthermore, it can be shown@12# that the collision rate
g~v! and collision kernelK(v←v8) satisfy the relation

E dvE dv8
f A~v!

WA~v!
K~v←v8! f A~v8!

<E dv
f A~v!

WA~v!
g~v! f A~v!. ~9!

The above given relations summarize the most impor
properties of the collision kernel and rate. Although the
properties are simple and physically understandable, the
not facilitate the computation of the kernel and rate. The t
of finding the explicit form of these quantities from the i
teratomic potential~via the corresponding center-of-ma
cross sections! is not really simpler than the solution to th
initial Boltzmann equation. Moreover, we have presen
here the classical approach. The fully quantum-mechan
treatment~see, for example,@13,15,16#! via the scattering
amplitudes is still more complex.

Hence, in practical investigations one usually adopts
analytical model kernel, while the rate follows by Eq.~5!.
The simplest model, sometimes called the strong collis
one, is based on the assumption that even a single colli
fully thermalizes the velocity distribution of active atoms.
such a case, Eq.~2! reduces to

d

dt
f A~v!U

coll

52gscf A~v!1gscWA~v!E dv8 f A~v8!,

~10!

wheregsc is a constant.
Another frequently used model is the Keilson-Storer k

nel

KKS~v←v8!5
gKS

~sAp!3
expF2

~v2aKSv8!2

s2 G , ~11!

wheregKS is a constant, whiles25(12aKS
2 )u0

2 , and param-
eter aKSP(0,1). It is straightforward to check that bot
given models satisfy all the necessary requirements.
strong-collision and Keilson-Storer models seem to be
most frequently used ones. It is, however, possible to c
struct other models. For example, a kernel for hard sph
or the difference kernel are also sometimes employed.
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When a model analytical kernel is employed in practic
computations there immediately arises the question
whether the adopted model can be found from a physic
justified cross section. That is, whether a given model can
derived from relation~3!, which relates the kernel and th
interatomic potential~via a corresponding cross section!. The
answer to such a question is usually either negative or v
difficult to give. Bermanet al. @17# addressed this questio
by relating the suitable moments of the collision kernel to
collisional integralsV ( l ,s) known from kinetic theory of
gases that are closely connected with transport coeffici
~see, e.g.,@11#!. These authors analyzed the Keilson-Sto
kernel, the one corresponding to hard spheres and the di
ence kernel. They have found that the Keilson-Storer ker
gives the results closest to the expectations following fr
the kinetic theory of gases. Thus, they have concluded
the Keilson-Storer kernel may be treated as the model yi
ing the results more reliable physically than the other m
els. This is so, regardless of the fact that the KS model is
derivable from interatomic potentials.

The interesting feature of the Keilson-Storer kernel is t
it possesses a set of eigenvalues and eigenfunctions@18#.
These eigenfunctions coincide with the ones of the ker
found from Eq.~3! for Maxwell molecules, i.e., for the po
tential V(r )}r 24. These eigenfunctions play an importa
role in the present considerations, so they will be discus
in more detail below.

C. Collision integrals

It is our aim to express the eigenvalues of the collisi
operators via the collision integrals frequently used in
classical kinetic theory of gases. It might be therefore use
to recall some basic definitions.

Collision integralsV ( l ,s) appear in the kinetic theory o
gases@11# when calculating the transport coefficients and a
defined as follows:

V~ l ,s!5
uR

2Ap
E

0

`

dx exp~2x2!x2s13Q~ l !~xuR!, ~12!

whereuR
252kBT/m5uP

2 1u0
2 is the square of the most prob

able speed of the relative motion ofA and P particles. The
quantityQ( l ) appearing in Eq.~12! is defined as the integra

Q~ l !~v r !52pE
0

`

bdb$12cosl@x~v r ,b!#%, ~13!

with b being the collision parameter. The scattering anglex
depends onb and on the relative velocityv r of the colliding
species. The integralQ( l ) can be easily related to the cente
of-mass cross section. The relation equivalent to~13! can be
thus written as

Q~ l !~v r !5E dV~x!S ds~x,v r !

dV~x! D @12cosl~x!#. ~14!

The cross sectionds/dV is positive due to its probabilistic
interpretation and the factor (12cosl x) is also positive, ex-
cept perhaps for some isolated points where it is zero. He
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3926 56STANISŁAW KRYSZEWSKI AND JOANNA GONDEK
integralsQl are non-negative and this implies that collisio
integralsV ( l ,s) defined in Eq.~12! are positive for all com-
binations of superscripts.

For the sake of further reference, it is useful to revie
some additional facts apart from the above given definitio
The collision integralV ( l ,s) can be written equivalently a
~see@17#!

V~ l ,s!5
1

8 E d3vWR~v!vS v
uR

D 2s

Q~ l !~v ! ~15!

with

WR~v!5S 1

puR
2 D 3/2

expS 2
v2

uR
2 D , ~16!

which clearly corresponds to the distribution of the veloc
of relative motion of the collision partners.

The total scattering cross section can be expressed by
of the following relations:

sT52pE
0

`

bdb, ~17a!

5E dV~x!S ds~x,v r !

dV~x! D , ~17b!

5Q~`!~v r !, ~17c!

where the last equality follows from Eq.~14!.
Presented relations can be manipulated in many w

suitable for particular applications. We do not pursue t
subject since it is not needed in the present context. All ot
necessary information can be found, for example, in R
@11# ~see also@17#!.

II. THE COLLISION OPERATOR AND ITS PROPERTIES

A. General theory

The concept of the collision operator was introduc
in previous papers@8,9#. Collision operators stem directl
from the linear Boltzmann equation and are defined by
right-hand side of Eq.~2!. Thus, if f (v,t) is an arbitrary
velocity distribution, the collision operatorĈ on f (v,t) is
defined as

~ Ĉf !~v,t !52g~v! f ~v,t !1E dv8K~v←v8! f ~v8,t !,

~18!

hence it combines the concepts of the kernel and rate in
single entity. The corresponding equation of motion,

]

]t
f ~v,t !5~ Ĉf !~v,t !, ~19!

together with the given initial distributionf (v,t0), is the ki-
netic equation that gives the time evolution of the veloc
distribution f (v,t) of active atoms due to the influence of th
velocity-changing collisions with perturber particles. It
worth stressing that the introduced collision operator is,
definition, neither time nor position dependent.

The properties of collision operators were thoroughly d
cussed in@9#. For the sake of completeness, it seems, ho
ever, useful to review briefly the main concepts.
s.

ny

ys
s
er
f.

e

a
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-

It is convenient to introduce formal notation, much rese
bling the formalism of standard quantum mechanics. We
troduce a vector spaceF of velocity distributions

F5H f ~v!:E dv

W~v!
u f ~v!u2,`J . ~20!

For f ,gPF, we define the scalar product

^ f ug&5E dv

W~v!
f * ~v!g~v!, ~21!

which may be rewritten as

^ f ug&5E dv^ f uv&^vug&. ~22!

Comparing the above relations we obtain

^vu f &5
f ~v!

AW~v!
. ~23!

In this manner we represent a velocity distribution by a v
tor in the Hilbert space.

The analogy of the introduced formalism and t
quantum-mechanical one allows us to prove easily some
portant and useful properties of the collision operator. A
consequence of the detailed balance condition~6! for the
collision operator we find that for any two distribution fun
tions f ,gPF,

^ f uĈug&5^guĈu f &, ~24!

which means that the collision operator is Hermitian in spa
F.

Moreover, the rateg~v! and kernelK(v←v8) satisfy re-
lation ~9!, which yields@9# the inequality

^ f uĈu f &<0, ~25!

which holds for arbitrary velocity distributionf (v). This re-
lation may be called the non-positivity property of the col
sion operator.

Since we know that the collision operatorĈ is Hermitian
in the spaceF, we can state that there exist left and rig
eigenvectors ofĈ that are equal and that the eigenvalues
the collision operator are real. Denoting the eigenstates
uwa& and the real eigenvalues byla we can write

Ĉuwa&5lauwa&

and

^wauĈ5^waula . ~26!

Due to the properties of Hermitian operators, eigenfunctio
uwa& form a complete set of orthonormal vectors

(
a

uwa&^wau51

and

^wauwb&5dab . ~27!

The general property~25! of the collision operator implies
that the eigenvalues are nonpositive
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la5^wauĈuwa&<0. ~28!

As discussed after Eq.~8! the MaxwellianW(v) is a unique
stationary solution to the kinetic equation and it correspo
to the nondegenerate zero eigenvalue. Hence, there mus
ist such an indexa, henceforward denoted by 0, that

l050

and

w0~v!5W~v!. ~29!

Since it is a unique eigenvalue, we deduce that for all ot
indices eigenvalues are strictly negative:

la,0 for all aÞ0. ~30!

Expanding the solution of the kinetic equation~19! we see
that all initially present deviations from Maxwellian~i.e.,
equilibrium! distributions behave as exp@la(t2t0)#. Hence,
relation ~30! ensures that the Maxwellian is the stationa
solution corresponding to thermal equilibrium, as it shou
be.

Having reviewed the basic theoretical methods, let us n
that within the presented formalism the kinetic equation~19!
can be written as

]

]t
f ~v,t !5E dv8C~v←v8! f ~v,t !, ~31!

with the kernel expanded in terms of the eigenfunctions

C~v←v8!5(
a

la

wa~v!wa~v8!

W~v8!
. ~32!

This relation is the basis of the modeling method introduc
and thoroughly discussed in@9#. Namely, we choose a cer
tain set of functions$wa(v)% to be the eigenfunctions of th
collision operator. Then, any collision operator can be c
structed according to Eq.~32!, provided the eigenvalues ar
known. Thus, we can model a whole class of collision o
erators by a suitable choice of eigenvalues. In Ref.@9# we
treated the eigenvalues as free parameters, and we have
shown how to reconstruct the Keilson-Storer and stro
collision models by the proper choice of the eigenvalues
this paper we intend to show that the eigenvalues are not
parameters, but can be computed via the quantities that
sess a well-defined physical meaning. As already state
the Introduction, such an approach allows us to circumv
all the questions that immediately arise when one adopts
specific collision kernel, either a model one~as the Keilson-
Storer one!, or any other one derivable from real interatom
potentials.

B. Eigenfunctions and eigenvalues

Finding exact eigenfunctions and eigenvalues for the c
lision operatorĈ is as difficult as finding a collision kerne
and rate from the interatomic potential. Therefore, we p
pose a different approach introduced in@8# and @9# and
briefly discussed above. Namely, we adopt as the eigenf
tions of the collision operator the following set of orthono
mal functions:

wa~v!5WA~v!fa~v!, ~33!
s
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-
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wherefa(v) might be taken in the Cartesian coordinates

fa~v!5fn1n2n3
~v!5)

i 51

3
1

A2nini !
HniS v i

u0
D , ~34!

wherev i are Cartesian components of the velocity andHn
(•) are the Hermite polynomials~all special functions in our
work are taken according to Ref.@19#!. Equivalently, we
may choose spherical coordinates and then the eigenf
tions fa(v) become

fa~v!5fnlm~v!5A 2p3/2n!

G~n1 l 13/2! S v
u0

D l

3Ln
~ l 11/2!S v2

u0
2DYlm~u v̂ ,w v̂!, ~35!

with Ln
( l 11/2) being the associated Laguerre polynomials a

Ylm the spherical harmonics of the angles determined by
spatial orientation of the vectorv. The two sets of eigenfunc
tions for either of the coordinate systems are distinguis
by different subscripts and the context should make it cl
which eigenfunctions are considered.

It is certainly worth noting that the eigenfunctions mod
fied by an additional factor, that is, the functions

ca~v!5AWA~v!fa~v!5
wa~v!

AWA~v!
, ~36!

are the usual eigenfunctions of the standard quant
mechanical harmonic oscillator@20# of massm0 and fre-
quencyv0 , such that the factor\/m0v0 is replaced byu0

2.
The connection between the adopted eigenfuncti

wa(v) of collision operator and oscillator eigenfunctions a
lows one to see that all the requirements imposed onwa(v)
are indeed satisfied. Moreover, the adopted eigenfunction
the collision operator are the eigenfunctions of the Keilso
Storer collision kernel, as demonstrated by Snider@18#. The
Cartesian eigenfunctions correspond to the eigenva
ln1 ,n2 ,n3

5gKS(12aKS
n11n21n3), while the spherical ones to

lnl5gKS(12aKS
2n1 l).

We should, however, stress the fact that adopting
given functions, in either of the coordinate systems, as
eigenfunctions of the collision operator is apostulate. This is
a postulate because our choice is in fact arbitrary, althoug
is well justified. We assume that the chosen eigenfuncti
are good approximations to the true eigenfunctions of a
physically reasonable collision operator. The fact that
selected eigenfunctionswa(v) are the ones corresponding
the Keilson-Storer model is one of the arguments suppor
our choice. In our earlier paper@9# we have given a detailed
discussion and justification that such an approach is rea
able and that the functionswa(v) can be considered as goo
approximations to the true eigenfunctions. On the ot
hand, in@9# we have assumed that the eigenvalues are
known, and thereby treated as free parameters of the the
In particular, the eigenvalues can be different from the o
corresponding to the Keilson-Storer kernel. In this mann
using expansion~32! and allowing the eigenvalues to be fre
parameters we are able to model a whole class of collis
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operators. These assumptions allowed us to propos
method for modeling various physical phenomena in gase
mixtures subjected to electromagnetic irradiation. The
amples of applications of our modeling approach toget
with full discussion and justification of the assumed mod
ing method are given in@9# ~see also@21#!. In this sense the
eigenfunctions~33! are postulated to be, albeit approxima
eigenfunctions of any collision operator and our current a
is to present a method of computation of the eigenvalue

We can use either Cartesian form~34! or the spherical one
~35! of the eigenfunctions of the collision operator. The lat
form of the eigenfunctions is sometimes more conveni
and it is usually used in the literature~see, for example
@17,18#!. However, in practical calculations the choice b
tween the forms~34! and~35! is, in fact, a matter of conve
nience. In the papers devoted to modeling the physical p
nomena eigenfunctionswa(v) as given in Eq.~34! were
mainly used. One of the advantages of the eigenfuncti
taken in the form~34! is that they are factorized in a way th
facilitates calculations of various integrals. Moreover, t
case with axial symmetry~the symmetry axis being dete
mined by the incident radiation! is essentially a one
dimensional one. Then, the eigenfunctions~34! are espe-
cially convenient since all the physically interestin
quantities are expressed by integrals over a single compo
of velocity.

It should be noted that the choice of either of the poss
forms of the adopted eigenfunctions determines the num
ing of the eigenvalues. The situation is then similar to
case of the harmonic oscillator. When necessary, we s
distinguish two different cases by suitable superscripts.

The eigenvalues of the collision operator obviously f
low from the relationla5^wauĈuwa&. Substituting the col-
o
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lision operator according to its definition~18! into scalar
product~21! and using the property~5! of the collision rate
we arrive at the expression

la5E dvE dv8WA~v8!K~v←v8!

3@fa* ~v!fa~v8!2fa* ~v8!fa~v8!#, ~37!

and either Cartesian eigenfunctions~34! or spherical ones
~35! can be used.

It is perhaps worth noting that eigenvalues~or rather en-
ergies! of the harmonic oscillator are strongly degenerate.
the spherical case the energy corresponds to the princ
quantum numberN(s)52n1 l , while in the Cartesian cas
N(c)5n11n21n3 . The energy levels areg(N)5 1

2 (N
11)(N12) times degenerate~with N being the principal
quantum number for either of the case!. However, in this
work we consider the collision operator which differs co
siderably from the oscillator Hamiltonian. Therefore, it
reasonable to expect that the degeneracy specific to the
monic oscillator will be, at least partially, lifted.

C. Eigenvalues for spherical case

It is a straightforward matter to substitute the eigenfun
tions ~35! into relation~37!. We also note that due to sym
metry considerations the eigenvalues should be indepen
of the magnetic quantum numberm. Hence, the eigenvalue
are labeled only by quantum numbersn and l . Therefore,
both sides of the obtained relation can be summed o
quantum numberm and the addition theorem for spheric
harmonics can be used. The resulting integral is then tra
formed according to the method outlined in Appendix
According to the relation~A4! we obtain
lnl5NP

2n1 ln!

~2n12l 11!!! E dvWR~v!uvu E dV~x!
ds~x,v !

dV E dzWT~z!

3H S vv8

u0
2 D l

Ln
~ l 11/2!S v2

u0
2DLn

~ l 11/2!S v82

u0
2 D Pl S v•v8

vv8 D2S v82

u0
2 D lFLn

~ l 11/2!S v82

u0
2 D G2J , ~38!
le

fol-
wherePl denote the Legendre polynomials of the cosine
an angle between vectorsv andv8.

In this manner we can relatively easily express the eig
values of the collision operator via the corresponding co
sion integrals~12! or ~15!. The simplest way to find explici
expressions for the eigenvalues~at least some initial ones! is
to use the method outlined in the Appendix. Firstly, we ta
the corresponding Laguerre and Legendre polynomials
construct the second line of Eq.~38!. Then we perform the
substitutions that follow from Eq.~A6!. Integration over aux-
iliary variablez poses no problems. The remaining integr
over vr8 anddV(x) can be easily done when one recalls t
basic geometry of the scattering process, which allows u
write

vr8•~v r8n02vr8!522v r8
2sin2~x/2!52v r8

2~12cosx!.
~39!
f

n-
-

e
to

s

to

Due to the appearance of the cosine of the scattering angx
we recognize the integralsQ( l )(vR) defined in Eq.~14! and
then collision integralsV ( l ,s) as in Eq.~15!. A few first ei-
genvalues are obtained in that manner and they read as
lows:

l0152
16

3
NPS m

mA
DV~1,1!, ~40a!

l0252
32

3
NPS m2

mAmP
D FV~1,1!1

3

10 S mP

mA
DV~2,2!G ,

~40b!

l1052
32

3
NPS m2

mAmP
DV~1,1!, ~40c!
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Calculation of the eigenvalues corresponding to higher nu
bersn,l can be done similarly, though it is more and mo
involved. The obtained eigenvalues for the spherical case
degenerate with respect to the quantum numberm. Other
degeneracies, typical to the harmonic oscillator are, as
pected, lifted.

D. Eigenvalues for Cartesian case

In this case the eigenvalues are labeled by three integ
The calculation goes exactly along the same lines as in
spherical case, hence we state only the results. We have
tained

l0015l0105l10052
16

3
NPS m

mA
DV~1,1!, ~41a!

l0115l1015l01152
32

3
NPS m2

mAmP
D

3FV~1,1!1
3

10S mP

mA
DV~2,2!G , ~41b!

l0025l0205l20052
32

3
NPS m2

mAmP
D

3FV~1,1!1
1

5 S mP

mA
DV~2,2!G . ~41c!

We see that the eigenvalues that differ by the permutatio
the indices are degenerate. We shall later show that this
general property of the Cartesian eigenvalues obtained f
the eigenfunctions constructed with Hermite polynomials
in Eq. ~34!.

Comparing Eqs.~40! and ~41! one easily sees that th
eigenvalues for spherical and Cartesian case are related

l001
~c! 5l01

~s! , ~42a!

l011
~c! 5l02

~s! , ~42b!

l002
~c! 5 1

3 l10
~s!1 2

3 l02
~s! , ~42c!

where the superscripts denote either the Cartesian or sp
cal case. Certainly the Cartesian eigenvalues are degen
in the sense indicated by Eqs.~41!. Relations~42! follow
from the presented results, but can be also derived.
eigenfunctions of the harmonic oscillator in spherical or C
tesian coordinates are connected by unitary transforma
@20#. Since eigenfunctions of the collision operator are p
portional to the oscillator eigenfunctions, the mention
transformation can be employed yielding relations~42! be-
tween the eigenvalues corresponding to two coordinate
tems.

III. GENERATING FUNCTION FOR THE EIGENVALUES

A. Generating function for eigenfunctions

As stated in the Introduction our aim is to find expressio
connecting the eigenvalues of the collision operator with
collision integralsV ( l ,s) known from the kinetic theory of
-

re
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rs.
e
b-
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-
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gases. We will do so by the generating function method.
achieve this end we introduce the following function:

G~x,a!5exp~2x212a•x!, ~43!

wherex anda are two independent vectors. This function
a product of three one-dimensional generating functions
Hermite polynomials. Hence, we have

G~x,a!5)
i 51

3

(
ni50

` xi
ni

ni !
Hni

~ai !, ~44!

wherexi andai denote Cartesian components of the vect
entering the definition of functionG. The functionG can
also be expanded into power series~Kumar’s generating
function @22#! of Laguerre polynomials and spherical ha
monics as follows:

G~x,a!52p3/2(
n50

`

(
l 50

`

(
m52 l

l
~21!n

G~n1 l 13/2!
x2n1 lal

3Ln
~ l 11/2!~a2!Ylm* ~ x̂!Ylm~ â!, ~45!

wherea andx denote the lengths, whilex̂ and â specify the
angular orientation of the corresponding vectors.

Thus, one clearly sees that the functionG is closely re-
lated with the eigenfunctions of collision operator~33! given
either in Cartesian frame by Eq.~34! or in spherical coordi-
nates~35!. Indeed, by substitutiona5v/u0 and some simple
transformations we obtain

WA~v!G~x,v/u0!5 (
n150

`

(
n250

`

(
n350

`

x1
n1x2

n2x3
n3A2n12n22n3

n1!n2!n3!

3wn1n2n3

~c! ~v!. ~46!

Similarly, function G may be expanded in eigenfunction
expressed in spherical coordinates. In this case we have

WA~v!G~x,v/u0!5A2p3/2(
n50

`

(
l 50

`

(
m52 l

l

x2n1 l

3
~21!n

An!G~n1 l 13/2!
Ylm* ~ x̂!wnlm

~s! ~v!.

~47!

The two last expressions may be considered as genera
functions for the eigenfunctions of the collision operator
either of the coordinate frames.

B. Generating function for eigenvalues

The next step consists in finding the generating funct
for the eigenvalues. Hence, we define the following mat
element:

J~x,y!5^G~x,v/u0!WAuĈuG~y,v/u0!WA&, ~48!

wherex andy are two independent vectors playing the ro
of parameters. Using relations~22! and ~23! this matrix ele-
ment may be transformed into an integral:
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J~x,y!5E dvG* ~x,v/u0!@ ĈG~y,v/u0!WA~v!#. ~49!

IntegralJ(x,y) may be further expressed in terms of expa
sions, either Eq.~46! or Eq. ~47!. The collision operator act
ing on its eigenfunctions produces corresponding eigen
ues. Then, due to orthonormality of the eigenfunctions,
obtain in the Cartesian case

J~x,y!5 (
n1 ,n2 ,n350

`

ln1n2n3

~c!
2n12n22n3

n1!n2!n3!

3~x1y1!n1~x2y2!n2~x3y3!n3. ~50!

The obtained expression is symmetrical with respect to in
change of the cordinate axes. This clearly suggests tha
may expect the Cartesian eigenvaluesln1n2n3

(c) to be degener-

ate with respect to permutation of the indices. Hence,
conclusion drawn after Eqs.~41! seems, at least partially, t
be confirmed.

An equivalent expansion is obtained for eigenfunctio
expressed in spherical coordinates, namely,

J~x,y!5 (
n,l 50

`

lnl
~s!

2n1 l~2l 11!

n! ~2n12l 11!!!
~xy!2n1 l Pl S x•y

xy D ,

~51!

where we have used the addition theorem for spherical
monics, in a manner similar to that leading to Eq.~38!. For
the spherical case it is difficult to draw conclusions ab
degeneracies. It rather should be expected that all eigen
ues lnl

(s) are different~of course, apart from trivial degen
eracy with respect to the magnetic quantum numberm!.

The functionJ(x,y) may be thus regarded as the gener
ing function for eigenvalues of collision operators. Knowin
the explicit form of this integral we can then find eigenvalu
either for the Cartesian or for the spherical case by sim
differentiation of both sides of Eq.~50! or Eq. ~51!. Explicit
computation ofJ(x,y) must be done by substituting the fun
tions G given in Eq. ~43! into the integral~49!, using the
form of the collision operator as specified by Eq.~18! and by
performing all necessary integrations.

Proceeding along the outlined lines and employing
neccessary properties of the collision kernel we easily ar
at the expression for integralJ(x,y):

J~x,y!5exp~2x22y2!E dvE dv8WA~v8!K~v←v8!

3expF 2

u0
~x1y!•v8G H expF 2

u0
x•~v2v8!G21J .

~52!

Explicit evaluation of this integral can be done by employi
the calculational methods presented in the Appendix.

The integrand in Eq.~52! is a function of two velocities as
the function integrated in Appendix A. Hence performing t
substitutions indicated by Eq.~A4!, we recast Eq.~52! into a
similar form and we easily perform the integration over t
auxiliary variablez, obtaining
-

l-
e

r-
e

e
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-

s
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e
e

J~x,y!5NPN~x,y!E dvWR~v!uvu E dV~x!
ds~x,v !

dV

3exp@a~x1y!•v#$exp@ax•~n0v2v!#21%,

~53!

where we have dropped unnecessary subscripts for the
gration variable and we have denoted

a5
2m

u0mA
~54!

and

N~x,y!5expF2x22y21
uT

2

u0
2 ~x1y!2G . ~55!

Technical details of the calculation are presented in A
pendix B. Here, we only state the final result, which read

J~x,y!5N~x,y! (
m50

`

(
n51

`

Anm~a!xnym, ~56!

where the coefficientsAnm(a) are given in Eq.~B14!, anda
is the angle between vectorsx andy, i.e., cosa5x•y/(xy).
We again see that the obtained expression is symmetric
der the interchange of three Cartesian axes. Therefore
finally conclude that eigenvaluesln1n2n3

(c) are unchanged~de-

generate! when the indices are permuted.
As discussed in Appendix B, the obtained generat

functionJ(x,y) is a complicated combination of the collisio
integrals V ( l ,s). Thus the main aim of our work may b
considered as achieved. This is so because substituting
pression~56! as the right-hand side of relation~50! we can
find the sought eigenvalues. Then, by standard genera
function techiques, taking the necessary derivatives and
ting the parameters to zero we can obtain the correspon
Cartesian eigenvaluesln1n2n3

(c) of the collision operator. A

similar procedure can be applied to Eqs.~51! and ~56! to
obtain the spherical eigenvalueslnl

(s) . The described ap-
proach allows easy recovery of the eigenvalues calcula
above by direct integration.

The generating function procedure in either of the cons
ered cases poses no conceptual difficulties. It is possibl
derive general expressions for the eigenvalues, but the re
of differentiation are lengthy and not very illuminating. Th
is due to the complicated form of the coefficientsAnm(a)
where the anglea enters at several places and the derivativ
obtained via the Leibniz formula are quite involved. Ther
fore, instead of discussing the general case, we will focus
attention on a more specific situation, which, however, c
ers a wide range of realistic experimental situations.

C. The case with axial symmetry

The formalism described so far concerns the simple
mixture and is, therefore, closely related to the kinetic the
of gases. It is interesting in itself, but we would like to co
sider another physically important case, which seems to
more important in quantum optics. When the sample conta
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ing a mixture is irradiated by electromagnetic radiation,
system has axial symmetry with the axis specified by
direction of the incoming field. Such a case is of spec
interest since then one may observe various light-indu
kinetic phenomena.

As is well known, the velocity distributions are modifie
only along the symmetry axis. The reason for this is as
lows. Let us assume that the incoming radiation propag
along thez axis and has the wave vectork5(0,0,kz). Inter-
action of radiation with active atoms is described by opti
Bloch equations, which contain Doppler shiftk•v5kzvz .
Thereby radiation may modify the velocity distributions on
with respect to thevz component. On the other hand, col
sions with perturbers drive the distributions towards equi
rium, i.e., towards Maxwellian. Due to the radiation infl
ence the steady-state velocity distributions usually dif
from Maxwellian and can be written a
f A(v)5WA(vx)WA(vy) f A(vz). Therefore, expandingf A(v)
in the eigenfunctions of the collision operator we see that
Cartesian case is the most suitable. This is so because
eigenfunctions~34! are correspondingly factorized. Thus, a
physically interesting quantities can be expanded into
series of Cartesian eigenfunctionsw00n , that is, those with
;
f

pl
e
e
l
d

l-
es

l

-

r

e
the

e

two first indices being zeros. Hence, the relavant distri
tions are essentially one dimensional. Physical quantities
pressible via expectation values, or, in general, via integ
over the distributions would then depend on the correspo
ing eigenvaluesl00n . Practical examples of the considere
case together with the velocity distributions and other qu
tities of interest are presented in@9#.

The discussed eigenvaluesl00n are most easily obtained
when we takex5(0,0,x) andy5(0,0,y). In such a case the
sum in Eq.~50! reduces to a single one and upon differe
tiation we simply get

@yk#
1

2k

]k

]xk J~x,y!U
x50

5l00k
~c! , ~57!

where the notation@zk# f (z) denotes the coefficient ofzk in
the Taylor expansion of the functionf (z) ~this notation fol-
lows that introduced by Grahamet al. @23#!.

To use relation~57! effectively we need the explicit ex
pression for the generating functionJ(x,y) as given by Eq.
~56!. Due to our assumption about parameter vectorsx andy
we have an anglea50. Therefore the coefficientsAnm de-
fined in Eq.~B14! are effectively simpler and read
Anm~0!522pNP

an1m

m! E
0

`

dvWR~v!uvu31n1mE
21

1

d~cosu!cosn1muFQ~n!~v !

n!
2 (

k51

[n/2]
Bnk~v !tan2ku

22k~k! !2~n22k!! G . ~58!
s.

rom
e
n-
re-

nal

ex-
lli-

e
in
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is
Differentiating Eq.~56! we make use of the Leibniz formula
we express the factorN(x,y) as the generating function o
Hermite polynomials. Taking the derivative atx50, we ob-
tain

l00n
~c! 5@yk#

k!

2k exp@2y2k2# (
p50

k21
kp

p!
Hp~by! (

m50

`

Ak2p,mym,

~59!

where Hp are Hermite polynomials andk25m/mA ,
b5uT

2/(u0
2k). Evaluation of the eigenvaluelk

(c) reduces then
to finding the coefficient accompanying the parametery in
the kth power. Finding several first eigenvalues is a sim
matter. We get

l001
~c! 5

1

2
A11~0!, ~60a!

l002
~c! 52

k2

2
A20~0!1S 1

2
A22~0!1

uT
2

u0
2 A11~0! D , ~60b!

l003
~c! 5

3

4 FA33~0!2
m

mA
@A13~0!1A31~0!#12

m

mP
A22~0!

1S 2
m2

mP
2 1

m2

mA
2 DA11~0!G . ~60c!
e

When coefficientsAnm(0) are substituted according to Eq
~B16!, then two first eigenvalues reproduce relations~41a!
and ~41c!. While the third one yields

l003
~c! 528NP

m3

mA
2mP

F S mP

mA
12

mA

mP
DV~1,1!1

4

5
V~2,2!

2
4

5 S mP

mA
DV~1,2!1

4

35 S mP

mA
D S V~1,3!1

2

3
V~3,3!D G .

~61!

Calculation of further eigenvaluesl00n
(c) requires only co-

efficientsAnm(0), which can be easily found from Eq.~58!.
Then, the corresponding eigenvalues are simply read f
Eq. ~59!. The case with axial symmetry, important from th
quantum-optical point of view, is thus simpler than the ge
eral one, considered in the previous section. The given
sults provide, it seems, a useful tool to describe collisio
effects and light-induced kinetic effects in gases.

IV. DISCUSSION AND REMARKS

We have presented a general method allowing one to
press the eigenvalues of the collision operator by the co
sion integrals. Equation~50! or ~51! with left-hand sides
given by Eq.~56! can, by suitable differentiation, yield th
eigenvalues of collision operators either in Cartesian or
spherical coordinate systems. The eigenvalues with arbit
indices can thus be obtained, although the procedure
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somewhat tedious albeit quite straightforward and much s
pler than direct integration. The general case is of inte
within kinetic theory of gases. In such a case the Chapm
Enskog approach gives a method to find succesive appr
mations to the various physically significant quantitie
Within the first order~for the case whenNA!NP , i.e., when
P gas is much denser, as assumed in this paper! this method
gives, for example, the following results.

~1! The diffusion coefficient for molecules of active-ato
gas in the perturber gas is given as

DAP5
3kBT

16NPmV~1,1! . ~62!

~2! Viscosity of the considered gaseous mixture is

h5
5kBT

8V~2,2! . ~63!

~3! The heat conductivity is expressed as

l~Q!5
75kB

2T

32mAV~2,2! . ~64!

It is thus evident that only several eigenvalues of the c
lision operator suffice to express the above given trans
coefficients, which are most frequently used in kine
theory. Transport coefficients~62!–~64! can easily be ex-
pressed by the eigenvalues given in Eqs.~41!. Conversely,
eigenvalues can be rewritten in terms of combinations
transport coefficients. This fact puts the eigenvalues on fi
physical ground. They are no longer free parameters, bu
fully expressed by physically understandable transport c
ficients.

Expressing some of the first eigenvalues by the collis
integrals or transport coefficients we can construct an
proximate ~because of finite number of eigenvalues us!
collision operator by its integral kernel~32!. Thus, the colli-
sion operator is then written in terms of the quantities t
are either directly measurable or can be expressed via
quantities. In this way we are able to construct the collis
operator without invoking any particular analytical model
the collision kernel and rate. Therefore, we avoid all t
difficult questions arising when adopting any specific mod
For example, the interatomic potential determines the dif
ential cross section that appears in the collision integrals
hence in the transport coefficients. The former ones, in tu
determine the eigenvalues, thereby the right potential is
tomatically accounted for in our~although approximate! col-
lision operator constructed according to Eq.~32!. Circum-
venting the problems connected with any particular mode
the collision kernel, we provide a method to construc
whole class of collision operators.

Our work focuses on the theoretical approach towards
termination of the collision kernels. On the other hand, so
experimental measurements were also done to determin
collision operators~or kernels! ~see@24,25#, and the refer-
ences given therein!. The basic idea of these experiments
to excite a resonance transition in a velocity selective m
ner, and then to probe it by a second~usually weak! laser
field by excitation to a higher third level. The spectra
-
st
n-
xi-
.
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fluorescence from this third level provide then informati
about velocity redistribution in the first excited leve
Haverkort, Woerdman, and Berman@24# applied such a
method to obtain the best fit to the Keilson-Storer kerne
Gibble and Gallagher obtained the necessary spectra
then, by means of an appropriate deconvolution proced
found the corresponding~one-dimensional! collision kernels.
It is very interesting to relate the experimental fluoresce
spectra directly to collision operators. An attempt in this
rection, however, with only one exciting laser field, was p
sented in@21#. The main difficulty in such an approach
that ground-state and excited-state atoms interact with
turbers in a different way, we simply have two different i
teraction potentials. This fact entails the necessity to int
duce two different collision operators and thereby tw
different sets of eigenvalues. Due to this, as shown pre
ously @7#, the radiative and collisional processes are stron
interwoven—radiation modifies transport properties. Hen
it may be expected that a general and possibly rigorous tr
ment of the fluorescence spectra corresponding to the ex
mental cases will be quite complex and probably will requ
a suitable approximation scheme. Nevertheless, it migh
expected that, at least for the weak probe case, it will
possible to express the spectra via the eigenvalues of
collision operators. Then, comparison of experimental sp
tra to the theoretical ones should directly yield the eigenv
ues and hence the~approximate! collision operators accord
ing to Eq.~32!.

The obtained relationship between the eigenvalues of
collision operators and collision integralsV ( l ,s) or transport
coefficients clarifies the previously employed modeli
method. We have shown that only several eigenvalues of
collision operator usually suffice to describe physical ph
nomena occurring in the gaseous mixtures@9,21#. Hence, it
would be of interest to reexamine the results of modeling
the view of the present ones. It would be interesting to u
explicit expressions for the eigenvalues in the equations
the quantities modeled by eigenvalues—previously taken
free parameters. This may provide some new information
the light-induced kinetic effects in gases. Moreover, it w
be easier to compare the theory with potential experime
since the physically significant quantities will be express
by other ones, which are measurable and have well-kno
physical meaning. This may be an interesting subject
further investigations.

These conclusions shed additional light on the model
method developed and used elsewhere@9#. The power of this
method is obviously not affected by the present results. J
the contrary, the modeling procedure is now fully justifie
physically, since due to the present results, it does not
clude free~unknown! parameters, but the quantities expres
ible by other ones, which have a clear physical meaning

Moreover, as we have discussed, Cartesian eigenva
l00n

(c) ~which correspond to the case with axial symmet!
play a special role in a variety of spectroscopical
quantum-optical problems. The above given comments o
ously apply also to this—more specialized—case. It see
that the obtained results fully justify the use ofl00n

(c) instead
of spherical eigenvalueslnl

(s) in the description of experi-
ments where the radiation beam specifies an axis of sym
try.
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The transport coefficients given, as examples above,
found within the Chapman-Enskog method in the first-or
approximation. It is, however, possible to find the cor
sponding equations in higher orders. The resulting exp
sions are quite complex, but nevertheless still include
collision integralsV ( l ,s), although not in simple linear com
binations. The connection between the eigenvalues and
collision integrals might be also useful in better understa
ing of the Boltzmann equation. Following this train o
thought one may, perhaps, gain some additional data
more dense gases, and study their properties by relati
simple theoretical methods provided by the formalism of c
lision operators and their eigenvalues. The discussed con
tion between higher-order Chapmann-Enskog results
collision operators may lead to interesting physical results
may also facilitate the investigations of the phenomena
curring in the radiation field.

The Chapmann-Enskog method may be equally well
plied to single species gases as to mixtures. The collis
operator considered in this paper concerns the mixture w
one component much denser than the other one. Study o
derived relationships might also prove useful in a suita
adaptation of our method to single-component gases. Thi
however, the subject for future studies. Thus, the mode
method used in previous papers can, perhaps, be sui
modified and then applied for single-component gases.

The collision integralsV ( l ,s) or transport coefficients ar
well known from the literature~see@11#!. They follow when
one knows the differential cross sections. Hence, adop
either analytic or numerical interatomic potentials, one c
relatively easily compute the cross sections, and then
collision integrals and eigenvalues of collision operato
This procedure will yield eigenvalues directly via the pote
tials. Moreover, collision integrals are explicitly temperatu
dependent. Therefore, our modelling method allows inve
gations of the temperature dependencies involved in LIKE
gases. This fact may prove useful in the view of the rec
communications@1,2# on the anomalous light-induced dri
effect.

The approach via eigenfunctions and eigenvalues of
collision operator seems to be quite elastic and applicabl
the description of a large collection of experimental situ
tions. Results of this paper together with previously pu
lished modeling method@9# seem to have considerable p
tential and a consistent, well justified physical basis.
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APPENDIX A: AN AUXILIARY INTEGRAL

In this Appendix we present an important calculation
method. Let us consider the quantity of the type

F5E dvE dv8WA~v8!K~v←v8!F~v,v8!. ~A1!

This quantity is clearly of the type of integral necessary
find the eigenvalues according to Eq.~37!. In order to find
this integral we need the collision kernel. We take it in t
re
r
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form given by Eq.~3!. Substituting the collision kernel into
the integral~A1! we obtain a four-fold three-dimensional in
tegral. We proceed to simplify it as follows. Firstly we co
sider the productWAWP of two Maxwellian distributions,
which appear under the integrals. By simple manipulat
this product can be transformed into

WA~v8!WP~v82x!5WR~x!WTS v82
m

mA
xD , ~A2!

and wherex denotes arbitrary vector. The distributionWR is
given in Eq.~16! andWT is defined as follows:

WT~v!5S 1

puT
2D 3/2

expS 2
v2

uT
2D , ~A3!

with uT
252kBT/(mA1mP). Hence,WT describes the veloc

ity distribution of the motion of the collision partners as
single whole.

Secondly, we simplify and compute some of the obtain
integrals. Instead of the integration variablev8 we introduce
z5v82(m/ma)vr8 . Transforming the argument of the thre
dimensional delta function we are able to perform an in
gration over velocityv. Thus we obtain

F5NPE dvrE dvr8E dz
ds~x,v r !

dV
WR~vr8!WT~z!

3
d~v r2v r8!

v r
FS z1

m

mA
vr ,z1

m

mA
vr8D . ~A4!

In order to perform the integration over the velocity, s
dv r , some basic geometric considerations are helpful. V
tors vr and vr8 are relative velocities before and after th
collision. Due to energy conservation their lengths are eq
The unit vector

n05~sinx cos«,sinx sin«,cosx! ~A5!

specifies the orientation of velocityvr5v rn0 with respect to
the vectorvr8 . Hence integration overdvr is equivalent to
integration over scattering anglesdV(x) and over the modu-
lus dv r . The last one is easily done due to the presence
the delta function in Eq.~A4!. Thus, we obtain a much sim
pler expression, namely,

F5NPE dvr8WR~vr8!uvr8u E dV~x!
ds~x,v r8!

dV

3E dzWT~z!FS z1
m

mA
v r8n0 ,z1

m

mA
vr8D , ~A6!

which clearly indicates the variable substitutions necess
to compute the integral explicitly. Moreover, it allows one
use the cross section, which is usually easier to find than
collision kernel. Hence, we conclude that the obtained re
tion expresses the sought integral~A1! in a manner greatly
simplifying the calculations.
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APPENDIX B: EXPLICIT EVALUATION
OF GENERATING FUNCTION

Evaluation of the integration over the scattering anglex
and« in Eq. ~53! requires some geometrical consideratio
First of all, we note that vectorsx andy are arbitrary—they
are just parameters. Therefore we can take a vector, sayx, as
determining thez axis. Then vectory is directed so that it
forms an anglea with x. Hence, we can take

y5y~sina,0,cosa!, ~B1!
a
-

i-
e

in
un
in
ve
.

while the arbitrarily directed velocity vectorv is then

v5v~sinu cosw,sinu sinw,cosu!, ~B2!

whereu andw are the spherical angles taken with respect
the vectorx, which specifies thez axis. The unit vectorn0 is
defined in Eq.~A5! with respect to velocityv. Thus it has to
be rotated to the new coordinate system. We obtain
no5S cosu cosw sinx cos«2sinw sinx sin«1sinu cosw cosx
cosu sinw sinx cos«1cosw sinx sin«1sinu sinw cosx

2sinu sinx cos«1cosu cosx
D . ~B3!
can

ts

in-
We then rewrite integral~53! as

J~x,y!52NPN~x,y!E dvWR~v!uvueay•v

3@eax•vsT~v !2H~v !#, ~B4!

with sT defined in Eq.~17! and

H~v !5E dV~x!
ds~x,v !

dV
eavx•n0. ~B5!

Using the above given vectors we write explicitly an equiv
lent form of integralH(v). Changing the integration vari
ables in a typical way we obtain

H~v !5E
0

`

bdbeaxv cosu cosxE
0

2p

d«e2axv sinu sinx cos«.

~B6!

The integral over the angle« can be expressed via the mod
fied Bessel functionI 0 . Returning to standard notation w
thus have

H~v !5E dV~x!
ds~x,v !

dV
eax•v cosxI 0~avx sinu sinx!.

~B7!

Next we expand the exponential and the Bessel function
power series. Separating the zeroth term of the Bessel f
tion expansion, we find that it reproduces the term contain
sT in Eq. ~B4!, which, therefore, cancels out. Thus, we ha

J~x,y!52NPN~x,y!E dvWR~v!uvueay•vH1~v !, ~B8!

where functionH1(v) has the expansion
-

to
c-
g

H1~v !5 (
n51

`
an

n!
~x•v!nQ~n!~v !2 (

n50

`

(
k51

`
~axv !n12k

22kn! ~k! !2

3cosnu sin2kuE dV~x!
ds~x,v !

dV

3cosnx sin2kx. ~B9!

Changing the order of summation in the second sum we
rearrange the terms inH1(v) so that we obtain just one
power series with respect to parameterx obtaining the ex-
pansion for the generating function in the form

J~x,y!52NPN~x,y!E dvWR~v!uvueay•v

3 (
n51

`

~axv cosu!nFQ~n!~v !

n!

2 (
k51

[n/2]
Bnk~v !tan2ku

22k~k! !2~n22k!! G , ~B10!

where @n/2# denotes the entier function, while coefficien
Bnk are defined as

Bnk~v !5E dV~x!
ds~x,v !

dV
cosnx tan2kx. ~B11!

Let us note that the subscripts in quantityBnk must satisfy
the requirementsn>2, k>1, andk<@n/2#. It seems to be
evident that coefficientsBnk by simple trigonometric ma-
nipulations can be expressed by the combinations of the
tegralsQ( l )(v), which are defined in Eq.~14!. For the sake
of completeness we give several first coefficientsBnk explic-
itly:

B21~v !5Q~2!~v !, ~B12a!

B31~v !5Q~3!~v !2Q~1!~v !, ~B12b!

B41~v !5Q~4!~v !2Q~2!~v !, ~B12c!
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B42~v !52Q~2!~v !2Q~4!~v !. ~B12d!

The next step of evaluation of the integral~B10! consists in
expressing the scalar producty•v via the corresponding
angles and in performing the integration over the anglew,
which determines the orientation of the variablev. This
angle appears in the exponential still remaining in the in
grand of Eq.~B8!. The obtained integral is again expressib
th

n
.
E
l
ls

n
te

ci

:

-

,

-

via the modified Bessel functionI 0 . We, however, expand
the resulting functions, and, after some straightforward m
nipulations we obtain an expansion:

J~x,y!5N~x,y! (
m50

`

(
n51

`

Anm~a!xnym, ~B13!

whereAnm(a) denotes a rather complicated coefficient
Anm~a!522pNPan1mcosmaE
0

`

dvWR~v!uvu31n1mE
21

1

d~cosu!cosn1mu

3FQ~n!~v !

n!
2 (

k51

[n/2]
Bnk~v !tan2ku

22k~k! !2~n22k!! G (
p50

[m/2]
~ tanu tana!2p

22p~p! !2~m22p!!
. ~B14!
It is perhaps worth noting that these coefficients have
property

Anm~a!50 when n1m is odd. ~B15!

This is so, because forn1m being odd the integrand is a
odd function in the variable cosu and the integral vanishes
Moreover, we note that the factor in square brackets in
~B14! is a combination of integralsQ( l ). Hence, the integra
overdv will produce a combination of the collision integra
V ( l ,s). The remaining integral over cosu gives some numeri-
cal factors. Therefore, we may say that the generating fu
tion J(x,y) is expressed as a combination of collision in
grals.

In the applications discussed in the main text a spe
role is played by coefficientsAnm(a50). It is straightfor-
ward to find them, and several first ones read as follows
e

q.

c-
-

al

A11~0!52
32

3
NPS m

mA
DV~1,1!, ~B16a!

A13~0!52
64

15
NPS m2

mA
2 DV~1,2!, ~B16b!

A20~0!50, ~B16c!

A22~0!52
64

15
NPS m2

mA
2 DV~2,2!, ~B16d!

A31~0!5A13~0!, ~B16e!

A33~0!52
128

105
NPS m3

mA
3 D FV~1,3!1

2

3
V~3,3!G . ~B16f!
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