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Mott scattering in strong laser fields
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Qualitative and quantitative results of a complete relativistic calculation oBthetrix transition ampli-
tudes and first Born cross sections for the Mott scattering of an electron in the presence of an ultraintense
single-mode laser field are compared in detail to a spinless and a nonrelativistic treatment. The role of the
fermion character of the electron leading to spin-orbit and spin-laser interactions is discussed depending on the
laser intensity and on the incoming electron kinetic energy. The differences between radiative transfer spectra
of the electron energy in the relativistic and nonrelativistic regimes are addr¢S4€%0-29477)00910-4

PACS numbdss): 34.80.Qb

I. INTRODUCTION order harmonic radiation, a problem which was investigated
via a classical approadBee, for instance, Rdf10]), and has
Even a slow electron, when submitted to an ultrastrongoeen recently reported in experiments by Norreysl. and
laser pulse, can experience significant relativistic effectsvon der Lindeet al.[11].
This statement bases on the qualitative argument that the Other types of laser-assisted processes, in which relativ-
averaged quiver enerdy,=E%/4w? acquired by a classical istic effecs are expected to be important, are the recently
electron within a linear polarized laser field with frequerey reported emission of energetic electrons and ions from
can become comparable to its rest energy at high-fieldtomic clusters submitted to ultrastrong infrared laser pulses
strengthE. Recently developed ultraintense femtosecond laf12]. In such a context, it is generally believed that, in the
ser source$l] deliver pulses of near-infrared radiation with early stages of the process, the heating of the electrons re-
intensities such thatl, can well exceed:?, and make it leased from atoms via multiphoton ionization results from
feasible to explore this regime occurring at aboutstimulated inverse bremsstrahlung. The latter process takes
108 W/en?. place when the electrons are scattered from the neighboring
Calculations related to the radiative processes experiencedns, in the presence of the laser field. This observation has
by free electrons inside a strong electromagnetic field werenotivated the present study, in which we address the ques-
worked out since the advent of laser sources in the earlyion of the importance of relativistic effects on laser-assisted
19609[2,3]. A treatment of Compton scattering in an intenseCoulomb scattering, the so-called Mott scattering, in the
electromagnetic field can even be found in the textbook byhigh-intensity regime.
BerestetzKi Lifshitz, and Pitaevski[4]. It is, however, only Regarding this class of laser-assisted electron-atom colli-
recently that relativistic aspects of laser-induced processesions, most theoretical studies have been restricted to the
have attracted a renewed interest, as a result of importamionrelativistic domairj13,14]. It was soon realized and in-
advances in laser technology which have made possible tdeed experimentally verified that, as a general consequence
attain the required ultrahigh intensities. First experiments irof the infrared divergence of QE[15], quite a large number
which relativistic effects are clearly shown have been reof photons can be exchanged between the field and the
cently reported. The transition between Thomson and Compprojectile-target system in the soft-photon limit, even at
ton scattering inside an ultraintense laser field was investimoderate field intensitigd.6]. On the other hand, relativistic
gated in Ref.[5], and the influence of matter on light simulations have been relatively scarce. Though Coulomb
propagation in self-channeling in the relativistic regime inscattering for relativistic velocities was pioneered by Mott
Ref. [6]. Experiments on nonlinear Compton scattering[17] in 1929, an extension of the first Born treatmgi] of
which were performed at SLAC were reported by Betal.  laser-assisted Coulomb scattering to the relativistic domain
[7]. Note that, in addition to the already mentioned earlyhas been formally derived by Denisov and Fedoft9].
references, stimulated Compton scattering in more generdlhere has been an intricate covariant extension of the low-
than plane-wave fields was considered by Rosenb8fg frequency Kroll-Watson results by Kanski [20] using a
The relation of ponderomotive forces and stimulated Compnonlocal transformation into a generalized Kramers-
ton scattering in the nonrelativistic limit was addressed inHenneberger frame. The relativistic scattering inside a mul-
Ref.[9]. In addition, it has been known for a long time that timode radiation field was addressed by Zhou and Rosenberg
free electrons inside a very strong laser field can emit highf21] using a variational method, while the emission of
bremsstrahlung in laser-assisted scattering in the low-
frequency regime was considered by the same auflX@is
*Electronic address: szymanow@ccr.jussieu.fr Recently, there have been analytical investigations of poten-
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tial scattering of ultrarelativistic electrons in two codirec- expressed in terms of ordinary Bessel functions, whereas it
tional lightwaves by Roshchupkir23]. contains more intricate generalized Bessel functions for other
Let us also mention that several recent studies of relativpolarization states. This significantly simplifies the analysis
istic effects were dedicated to understanding and modelingf the results and the discussion of limiting cases, while re-
atomic multiphoton ionization in the domain of ultraintense taining the essential of the physics of the process. Emphasis
laser fields. Classical Monte Carlo simulations of the ionizaJS placed on the energy distribution of the electrons after the
tion of atomic hydrogen were carried out by Keitel and _scattering event, thus demonstrating the feasibili'_[y_of obtz_ain-
Knight [24], where hot electron ejection was repor{é@s). ing particularly hot electrons as a rgsult of chI|S|ons with
In the Kramers-Henneberger frame, relativistic mass shift efl@'deé momentum transfer. The maximum attainable energy
fects on stabilization were recently investigated in R26]. hereby turns out to depend chiefly on both the relativistic

A model of short-range potential for bosons was considereéfine_mam_CS and _the transiefquivey energy of th_e part_icle
aquired in the field. On the other hand, the spin-orbit cou-

stimulated bremsstrahlung effects. Latinne, Joachain, ang2N9€ Dby up to about one order of magnitude, depending on

Dorr [28] investigated the Pauli equation in the regime OfwhetTer or not .it is included in the analysis. F.inally, the
superintense electric fields in order to include first-order spirgngular distribution of the scattered electrons is displayed for
effects. several representative sets of parameters, comparing with

The main purpose of the present paper is to show that thaimpler spinless relativistic and nonrelativistic approaches, in

modifications of the Mott scattering cross section for an elec®/d€r to gain insight into the importance of the contributing

tron in the Coulomb potential of a nucleus, in the presence Ophysical p;Oﬁesfses. hOur rr1esullts ShOV.V the importance Of. tak-
an ultraintense field, can provide interesting insights intgnd care of the fact that the electron is a fermion, especially

guestions of the importance and the signatures of the relatiy? the case O_f uItr_alntense Iase_r f|el_ds.
istic effects. We concentrate here on the underlying physics Note thgt n th's W.Ork atomic units are used th(oughout.
and the control of measurable quantities, meaning how rela-—rhe v_elocny 9f I|g_ht isc=137 a.u., while energy 1S mea-
tivity affects a typical atomic process. Our motivation for SUred in atomic units, 1a427.2116 eV. The atomic unit of
considering the spin-dependent relativistic Mott scattering idNtensity is 3.5 10'° W/cn at the electrical field strength of
that the physics of this process can provide a clear distinctiofr =+ &U. ~ For ~an  angular  frequency  of
between simple kinematics and spin-orbit coupling effects®=0:043 a.u=1.17 eV, corresponding to the lasing transi-
For this reason, we shall compare the results of a calculatiofion ©f the Nd laser at a wavelength of 1064 nm, for an
of the (S-matrix) first Born approximation cross section for Intensity of about 18 W/_sz or an electrical field strength
the Coulomb scattering of Dirac-Volkov electrons dressed by E=5.89 a.u., the ratid/w is of the order ofc. This
a circularly polarized laser field to the more simplified ap_relat|V|st_|c regime Con5|de_red her_e is far belqw the_lntensny
proach of spinless Klein-Gordon particles and to the correffom which the electron will acquire such a high quiver mo-
sponding nonrelativistic Schdinger-Volkov treatment. The Mentum, so that enough energy will be available for pair
choice of Dirac-Volkov wave functions, modeling the stateCcréation in a collision process at aboutz%LW/cmz. There-
of a free electron embedded in a strong classical electromadere: the description of the physical effects on one field-
netic field, is well justified in view of the huge intensities dressed electron is appropriate. Note that this intensity is
considered for the laser. Indeed, in such laser fields, the o@dain far below the intensity which makes the vacuum un-
cupation numbers of the modes are so large that spontaneoﬁ@ble against the creation of particle-antiparticle pairs. These
(Compton and bremsstrahlungmission processes can be €ffects are to be expected at about®\/cn? according to
safely neglected, thus giving further credit to a classical deRef. [29]. o .
scription of the field. The breakdown of the validity of the ~_The organization of this paper as follows: In Sec. II, we
model is expected to take place at intensities so high that pai¥ill present the formalism and establish the expression of the
creation (and also radiation reactiofi8]) will come into differential sc_attermg cross section associated to _the ex-
play. This is not considered here. change of a given net number of laser photons. Section Il is
We wish to mention that our relativistic Dirac-Volkoy dedicated to a presentation of the corresponding expressions
treatment is essentially the same as the one used by Denis8¢CUrTing when considering simplified treatments valid for
and Fedorov in their pioneering pape9]. However, that sp!nlgss and_ nonrelat|V|st|c pa_rtlcles. Evidence of the role pf
work concentrated on deriving analytical approximate ex-SPin interactions is _pre_sented in Sec. IV, where we also d!s-
pressions for total cross sections under certain assumptio§'SS the main qualitative features of the spectra, depending
and specialized for linear polarization of the laser radiationOn the laser intensity, electron velocity, and angle of obser-
Here we shall instead consider the differential cross sectiodation. The key points are summarized in a brief conclusion
in some detail, providing a physical interpretation of differ- in Sec. V.
ent contributions to the scattering matrix element. In order to
avoid unnecessary complications in the analysis, we havell. DIRAC-VOLKOV DIFFERENTIAL CROSS SECTION
chosen to treat the specialized case of a circularly polarized
field. Then, as already noted by Denisov and Feddd®|,
the resulting expression of the amplitude becomes signifi- The relativistic electron with four-momentupt inside a
cantly more tractable than in the general case of ellipticatlassical monochromatic electromagnetic fied® is de-
polarization and even than for linear polarization. For circu-scribed by a bispinor functiog which obeys the Dirac equa-
lar polarization of the field, the transition amplitude can betion

A. Relativistic Volkov states
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wherey* are the Dirac matrices. They anticommute accord-Note that the effective mass becomes larger for increasing

ing to {y*,y"}=2g"". The metric tensor of Minkowski vector potentialA, since the Minkowski metric carries a mi-
space isg“’=diag(1-1,—1,—1). This starting point to nys sign for the spatial components. Note also that in the

deal with the dressing of the electron interacting with a clascase of circular polarization the time average of the square of
sical field is adequate to treat the laser-assisted processes W@ vector potential in Egs.(4) and (6) becomes

have chosen to discuss here. More precisely, it is equivalerR—z: —|,&|2=A2
to assuming that multiphoton-stimulated bremsstrahl{grg In the definiﬁg equatiof8) for the Volkov states, a physi-

g]r:lrtr'g;?rgﬂﬁggﬁlﬁﬁgi irgtlcs)zlgrt?snodr ;?c;lrlit;pr}gtrogomi\;gtse € cal interpretation can be assigned to the prefactor term in the
P P y square bracket acting on the bispinar This factor is the

the effects resulting from the coupling with the empty modes L : . . )
of the field. The solutions of the Dirac equation in a electro- ¢ naning part of an exponential term contained in the solu

) - " tion to Eq.(2). All higher orders ink vanish becausk is a
magnetic plane wava*=(0,A) can be calculated analyti- |ight four-vector anck andA are transversekk=k2=0 and

cally by solving the second-order equation (kA)=0. In fact the second term containingnatrices in the
5 ) square bracket in Eq3) would be absent in the case of a
N é 2 E ot y=0 5 spinless (Klein-Gordor) particle. It contains information
P c ¢ 2c w7 ¥=0, ) about the spin-dressing field interaction. In other words, the

Volkov wave function can be considered as representing the

and are well knowr4]. HereF ,,=d,A,—d,A,, is the elec- superposition of a free-electron wayaodified by a field-
tromagnetic field tensor and“’=21[y#,y"]. It is conve- dependent phageand of a wave generated by the interaction

nient to choose the coordinate system in such a way that th%f the spin with the classical single-mode field with vector

o o L ~ potential A*. However, both parts are carry the field-
eIectrE)magnetlc field is propagating in theiirection, mean dependent phase, also containing the important contribution

ing k=ke,. For a circularly polarized field with of A« |n fact for an electron Volkov wave this decomposi-

A=a,coskx)+a, sin(kx)=|A|[éxcos(<x)+éysin(kx)] the so- tion is rather formal but, as will be shown in the following, it

called Volkov wave function$30] are enables the identification of different contributions to the
scattering amplitude.

- u
=X|q)=| 1+ 7= |— i —y : ; i
q ( |CI> 2¢(kp) \/ﬁ/ B. Generalized first-Born Mott-scattering cross section
o (pA) In the lowest-order Born approximation for potential scat-
; [P tering the interaction of the dressed electrons with the central
X - - .
ex;{ i(qx) |J c(kp)d(ﬁ} ©) field

where u represents a bispinor for the free electron which AL =L - é,0,0,0 (7)
satisfies the first-order Dirac equation without field, and [X|

which is normalized byuu=u* y°u=2c2. The wave func-
tions ¢ are normalized in the volumé. The notationy for is treated as a first-order perturbation. This is well justified if
a certain four-vectow® means the multiplication by the Sommerfeld’s fine-structure constant times the nuclear
Dirac matricesy* while summing over the index.. The chargeZ is much smaller than the relativistic paramefer
bracket notation w) is a short form for the four-scalar according to the conditio a<B=|p|/po=v/c [31]. The
productv“w,, . The fOUI’-VECtquM=(Q/C,(i) is the labelq transition matrix eleme_nt for the procesg— ¢ which

of the Volkov statdq). Its physical significance is the aver- "€€ds t0 be calculated is
aged four-momentum of the particle inside the laser field

i 0
with wave four-vectoik”, Tm:% f d4XE|7’T|,/,_ ) (8)
X
A2
gr“=p“— Wk”. (4)  This expression corresponds to the process symbolically rep-

resented by the diagram in Fig. 1. Here the straight circled
— ) lines represent the ingoing and outgoing Volkov electrons.
HereA® denotes the time-averaged square of the four-vectofhere s an interaction between the electron and the fixed
potential of the laser field. The square of this four-vector potential denoted b via the exchange of a virtual photon,
represented by a dashed crossed line. The transition ampli-
q¥q,=m;c? (5  tude associated with this diagram can be calculated using
some generalized Feynman rules, in complete analogy to the
is Lorentz invariant. The parametar, plays the role of an free-electron case: It is only necessary in a Feynman-type
effective mass of the electron inside the electromagnetiintegral to replace the free-electron wave functions by
field: Volkov wave functions. Though this concept is straightfor-
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the square ofT;._;, to the density of final statel)’) in

| q' > phase space divided by tinfe and to the incoming flux of
electrons:
IT:i|?(Vdiq") QV
Z Using Eq.(10) for T;_;, the following expression is ob-
tained:
- % --X
Ak 0 kA
2 [ Py, KA,
20 (p k) |x| 2¢c(pk)
kx (pA)
Xexg —i(q—q’)x—i d
KX A 2 d3 ’
lq> v [ 4 | 12
. " | | o o(kp) ]| 327%Q'c?qT
FIG. 1. Feynman diagram describing the elastic potential scat-

tering process of an electron in a Volkov stétp into a Volkov Using the abbreviation

state|q’) due to the exchange of a virtual photon in the lowest-

order (first) Born approximation. 1/pA p'A

== | e~ ko | (13)
kp  kp

ward, the actual computation is difficult due to the time de-wherei e {x,y}, the occurring time dependence in the expo-
pendence of Volkov wave functions and also due to the ocnent can be rewritten as

currence of a large number of averages over spin-polarized o _ o

states of the electrons—this leads to the computation of a —ia,sin(kx) +iaycogkx)=—iZ sinkx—¢y), (14)
large amount of traces over productsyfmatrices.

Since we are dealing with an intense single-mode lasef’
field, the four-vector potentigh* does not change apprecia-
bly in the collision process. Therefore a Volkov electron in
the final state/q’) will have the same invariant effective (==
massm, —defined in Eq.(6)—as in the initial statdq).
Hence we deduce from Eq5) that the averaged four-
momentag” andq’# must fulfill

where the new amplitudé is

pr B p’Ax 2 |:pAy B p!Ay:|2>1/2
(kp) (kp'J o) “kpy| | 0 1

and the associated phagg reads

(pA p’Ax> 16

kp'

bo= arcco%C 7
The three different time dependences in Efj2) can be

Remember that in ordinary Mott scattering the elastic conditransformed by well-known identities involving ordinary

tion |p|=|p’| is obtained using the energy and mass conserBessel functions,, :

vation together with the Minkowski scalar product invari-

q*d,=0q'*q,=m;c?. 9)

ance. 1
Insertion of the Volkov wave functiong3) into Eg. (8) cogkX) p X exfg —iZ sin(kx— ¢g)]= E exp(—inkx)
leads to: sin(kx)
(ingg)
_|Z 1 o~ Ak ’}’O L Jn(g)e!n®o
Twsz VM ey | SUna@el vl g el bed)
1 . _
. _ [i(n+1) o] — [i(n—1)¢o]
X[1+—20(pk) u EX;{—I(C]—C]’)X 2i{\]n+1(§)e Jn—l(g)e }
’ Bn(§!¢0)
kx A kx A
- C((pr)) o) %w} (10 =S ey d Bey(Zido) | 17)
" Bsn({, éo)

The differential cross sectiodo for the scattering pro- Using these transformations in E@.2), we obtain the fol-
cess represented by the diagram in Fig. 1 is proportional towing expression for the differential cross sectit:
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z2| < _ exg —i(q—q’ +nk)x] Ak — kA,
= — 4 7,0 4 ! 0 7.0
do 2 n;w d*x[u’y"u]B, |>Z| +f d™xi u —Zc(kp’)y ut+u'y Zc(kp)u Bc,

" Ayk 0 7,70 kAY

1Y 2etkp) YUY 2ok Y B

b TR kKRB ]exp[—i(q—q%nk)x] Ay .
PSP A u = —.
ac(kp)(kp) - TV X 3273Q'c?q|T

We wish to emphazise again that the influence of the field is completely taken care of. However, due to the fact that the
Volkov wave functions contain two components, there are four different amplitudes interfering during the scattering process.
The remaining integrals can be reduced using the well-known identity

exd—i(q—qg’ +nk)x] 87%cs(Q—Q’'+n
fd“x H—i(q 4 )x] _ 8w *((g Qa 2 19
|| la—q’ +nk?
Hence the differential cross section can be written
22| & _ _ Ak _ _ Ak _ KA
do=— > (u'you)Bn+<u’ Pu+u’y° u)Bcn+(u’+you+u’yo—yu Bs,
C” |n=-w 2c(kp’) 2c(kp) 2c(kp’) 2c(kp)
A2 - 278(Q—Q'+nw)|*  d3q’
- ————(Uky%u)B, TAQmQ ne) 1 (20
4c*(kp)(kp") lg-q’+nk2 | 27Q'[d|T

whereAX=(0,|,5\|,0,O) andAyz(0,0J,&LO). The appropriate expression for the square of dtfanction occurring in this
formula is obtained by the usual proced{igd]. This leads to the expression

A _ _ _ _ Ak _ kA
do=— 2 |[Uy°u]B,+|U’ YPu+u”y° u|Bc,+|u ——90u+u’y0—~
c? nE-w 2¢c(kp’) 2¢c(kp) 2c(kp’) 2c(kp)
A2 ?5(Q-Q +nw) _ d%q’
- [UWky%ku]B, S f’)x 4. 21)
act(kp)(kp’) la-a’+nk*  Q|q

The calculation is now reduced to the computation of the products contaynimgtrices. For unpolarized electrons the
averaging procedure can be performed using the trace technique. Details of the actual calculation can be found in the
Appendix.

C. Final expression

The differential cross section can ultimately be expressed in terms of only the averaged marnﬂdtei’: Using the
abbreviatiorv#=(v°,—v'), we note that

(ka)=k*p,— Z(kA—pz)Czk"kf(kp),
— AZ o AZ?
(kQ):k“p#—z(k—p)Czk"kﬂz(kp)—W1 (22)
and (Ag)=(Ap). It turns out to be convenient to define
AE (0, a,cospg,aysing,,0) (23

in order to write the cross section in a more compact form. The volume elatighin momentum space can be transformed

according tod3q’ = |ﬁ’|Q’/c2dQ’do. Hereo denotes the solid angle. Th&function arising from integrall9) expresses the
energy conservation in the multiphoton processes that occur. This leads to the final expression
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do do™ (24
do 4 do Q,:Qﬂw'
In addition, using conditiort9), it follows that the final quasimomentum reads
R R wQ n2w2 1/2
lg'|=|[al?*+2n 7+?> (29

for a process involving n photons. In the nonrelativistic limit, this expression in fact reaches the well-known condition
|p'|=V2E+2nw. The differential cross sectiodo(™/do for each scattering process, resulting in the net exchange of

photons, is
do™ B Zz|a'| ( . A2 w2 )
c*(ka)(kq')

c2+ Q_Q,+aa'+ A_2
c? 2¢?

234(0)?

(K§)  (K9) ) (A%)20?
+ +
(kg)  (kq')/ 2c8ka)(kq')

o ¢?q| Jg—g’+nk*

A _<k‘d'><k’d>]+ (A2? (AP { (K (i +A2w2]
23| karka) | ke ka) T 2eikaprkg 2| KA HKKDT
~A2[ (K@) (Kd) (K§(KG)— 202  2A%0? A2e?
+[Jn+1(0)?+In-1(0)?] + +1+ + +
. . 2¢2 | (ka)  (kq') (ka)(kq')  c*ka)(kq) c4(ka)(kq')

22 2 R A2
w (QQ+ LA

2 2 1 N 2\2, 2

 cAka)(kq) | c? 22\ (ko) (kq')]  2c8(ka)(kq))
2A2w2 2(1)2
S Y ! + ne 2 —— 0,05 q, n n+ n—
+C4(kq,)(kq)[qqu+quy] +In+1(0)In-1(£)cog2¢y) C4(kq,)(kq)[qq Aydy]+ In(D[In+1(0) +In-1(0)]
2 2 A N ! ot ~ A ) A ~
{_ 28202 [(A) (A9 (Aq )(kq)+<Aq)+<Aq>+<Aq)<kq>] 06
c*(ka)(kq')| ¢ c c(kq’) c c c(ka)

"=Q+nw

This formula is a relativistic generalization of the Bunkin and Fedorov treatpd&ht and it represents a specialization for
circular polarization of the general expression of Denisov and Fedd@ly
By inspection of Eq(26) we note two features. On the one hand, the laser Aedthters this expression in an intricate way,
not only through the arguments of the Bessel functions, it is also present in multiplicative factors in front of the squares of
Bessel functions. On the other hand, several additional terms arise from the averaging calculation over spin polarizations.
When no laser field is present, the additional spin sums in(#).vanish, while all Bessel functions vanish except for
n=0: It is J,(0)=4,0. In this case the result reduces, after integration over the final energy variable, to the well-known
unpolarized Mott cross section for potential scattering,

do 1 Z%* 1-pB%sin(6/2) )
%_Z|5|232 sint(6/2) 27

where 9=A(|5,|5’); see, for instance, Bjorken and Drell or ltzykson and Zl3&.

Ill. SIMPLIFIED TREATMENTS
A. Comparison to the scattering of a spinless particle

We now briefly consider an analogous calculation for obtaining the differential cross section for a spinless particle. Its wave
function will obey the Klein-Gordon equation for bosons with spin zero, which is in fact the second-order e@@atithout
the term—i/2cF,,0*". The corresponding Volkov solutions can be found analogously to the described treatment for elec-

trons, and in this case read
c \¥* . (k< (pA)
_2QV> ex;{—l(QX)—l fo c(kp)dd)}' (28)

Note that they do not contain the square bracket prefactor acting on a bispinor which is a feature of the fermion character of
electrons in Eq(3).

Ya=(xlq)=
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The transition matrix element;,_; involved in the calculation of the Coulomb scattering does not exhibit the spin effects
appearing for electrons. The expression to be calculated is

i
Tii=s [ Q%07 (Pt Al @9

There is no spin-averaging procedure here. Consequently, the trace to be evaluated in the case of a fermion, which leads in the
limit of vanishing vector potential to the Mott factor, does not occur. Finally, the energy dependence of the cross section is
again a comb of-functions and then-photon cross sections read

do'™ _Z%q/|

— - (Jn(()Z(Q’+Q)2+Jn(§)[3n+1(§)+Jn—1(§)]w(Q’+Q)[(§f005¢f+fico%i)coifﬁo)
do c¢%q| |g—q'+nk*
+(&ssing+ £;Sing;) SiN( o) 1+ 33n-1(4)In+1(£)SIN2 o) [ 1cOSPs + &icOSP; 1[ {1SiNgps + £iSin; ]

2

+%[Jn+1<§>2+Jnﬂ(z)ZJ[(acos«bf+éicos¢i>2+<gfsin¢f+zisin¢>i>2]

; (30
Q' =Q+nw

2
+%Jn+1(§)3n71(§)005(2¢o)[(§f005¢f+ §i00~°¢i)2_(§f3in¢f+§i5in¢i)2]>

where {; and ¢; with je{i,f} denote the corresponding orientation of the momentum vector. Hence for the differen-
definitions of amplitudg15) and phase&16) for initial and  tial cross section the nonrelativistic limit of E6) without
final states, respectively. In the case when no laser field ispin terms is obtained:
present, this expression reduces, after integration over the

Al - - c’

—lp=pl |

2

final energy variable, to the spinless meson cross section dom 422|ci’| ;

2 2 - n - - =
do 1 22 @y 90 g \ce lp—p'+nk* .
do 4 p|28%sirf(6/2) (34)
whereazL(B,ﬁ’); see again Ref32]. The modulus of the final momenturhp_))’| is fixed due to
B. Comparison to the nonrelativistic expression energy conservationp’|=2(E+nw). In comparison to

- S Eqg. (30) we observe two features. On the one hand, the ar-
In order to compare our findings to a nonrelativistic treat-

i ments of the B | functions here are the nonrelativisti
ment, one should note that the terms in the outer large norgu ents of the Bessel functions here are the nonrelativistic

mal brackets in expressid@6) arise from the spin-averagin limit of { defined above, since the four-vectar producp)
P y SP 99 a5 in atomic units the nonrelativistic limit. On the other
procedure. In fact the analogous calculation for a spinles

particle leading to Eq(30) has to be used for discussing the ﬁand, for nonrelatlylstlc intensities, the terms proportional to
nonrelativistic limit. the vector potentialA can be neglected and we have

The nonrelativistic transition matrix element (Q+Q')?=4c*. Then expressiofB0) for a spinless particle
reduces to the nonrelativistic result.

© . -7 .
T i=—i d —p; 32
fe ffw pr(Dl = Ipi(n) (32 IV. INFLUENCE OF SPIN-ORBIT

AND SPIN-LASER INTERACTIONS

has to be calculated, Wheté) are nonrelativistic Volkov

o . . A. Kinematics of the collision
states. In position space, for the case of circular polarized

We turn now to a qualitative and quantitative discussion
of the main features of the differential cross secti@f) in
close comparison to the spinless and nonrelativistic expres-

radiation in the Coulomb gaudeé- A=0, they read
.. 1|12 i - [. Ax]? .. ) : : o

(X|p(7))= (_) expl — — J dt p— — exp(ip-r), sions. For this purpose a coordinate system in wki@ for

v 2 c the description of the scattering geometry is introduced as

shown in Fig. 2.

normalized in the volume elemeXt An analogous transfor- In this systemq e spang; ,&,). The angles between the
mation of the integral in Eq(32) leads to ordinary Bessel averaged momentum vectors and the field propagation vector
functionsJ,,. Note that in this case the additional term in the are = 2 (q,k), 9=2(k,q"), ande=2(q, ,q",), mean-
averaged momentum of E() becomes independent of the ing thatd and¢ denote the usual angular variables in spheri-
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FIG. 2. Coordinate system used in the description of the scat-
tering processes. For a definition of the variables used, see the tex

0.2

cal coordinates foﬁ’. The cosine of the angle betweena 0.1

and(i’ can be calculated by some simple trigonometric rela-
tions.

Choosing these angles for a given direction of observatior g
depending on energy and momentum of the incoming elec:

: : L -100 -50 0 50
trons depending on the experimental conditions, the energ PHOTON ENERGY TRANSFER
distribution of the scattered electrons is obtained as a para
metric function. For the sake of illustration, the following FIG. 3. Envel f the diff ol o/ ed
angles have been choses= /2, p=m/2, and 9=m/2, _ F'G: 3. Envelope ofthe differential cross sectwa/do scale

in 10” “ a.u. as a function of energy transfgf —Q scaled in units

meaningglie, andq’lle,. We investigated a range of other of the laser photon energy for an electrical field strength of
parameters but did not find a significant change of qualitativg==0.05 a.u. or a vector potentiAl=159.3 a.u. The initial electron
behavior, although there are quantitative differences. Reenergy isw=100 a.u. The expressions for spinless particles and for
garding the incoming projectile, the parameters which havehe nonrelativistic case give visibly identical spectra. The upper
to be chosen are, on the one hand, the initial kinetic energypicture () shows the complete final-energy spectrum. In the lower
) picture (b), a magnification of the central part around the elastic
Wiin=c(y—1), (35  peak is shown.

DIFF. CROSS SECTION

0

100

wherey=1/\/1— g%=1/\/1—v?/c? is the relativistic param- For an electrical field strength OE:O'OSO?:;U' C?T:Zre_
eter, and, on the other hand, the component of the initigfPOnding to @ moderate intensity bf8.75<10™ Wienr,

> i the differential cross section given by the generalized equa-
average elect[on momentugnparallel to the field propaga- (26) is plotted in the upper patg) of Fig. 3 as a func-
tion directionk. This choice fixes all other quantities in- tion of the final electron energy scaled to the photon energy.
volved using Eqs(4) and(6). As a typical near-infrared laser The scattering angle has been chosen to be large enough,
angular frequency we have chosen the one of a neodymiuorresponding to a large momentum transfer, so that signifi-

laser:w=0.043 a.u., for all numerical evaluations. cant numbers of photons can be exchanged in the course of
the collision. In this relatively low-intensity regime, no dif-
B. Nonrelativistic regime ference can be seen between the various treatments discussed

. . _here, i.e., the cross section as computed from the full treat-
In the limit of slow electron velocities and moderate field ment, Eq.(26), the one obtained from E430) derived for a

strengths the effects of the additional spin terms and the degyinjess particle, and the one predicted by the nonrelativistic
pendence ofg” on the spatial orientation of the electron yeaiment according to Eq34). One observes that for this
momentum due tokp) are expected to be small. In this case qjision geometry, a set of up to several hundred photons
the final expressiof26) can be compared to the correspond- ¢4 he exchanged, in spite of the moderate laser intensity.
ing expression for a spinless particle, H§0), and to the e peights of the different photon-energy-transfer peaks de-
Bunkin-Fedorov nonrelativistic treatment, E(Q4). As an  peng crucially on the values of the ordinary Bessel functions.
example we chose the electron kinetic energy t0 berne spectrum exhibits an overall asymmetric envelope for
Wiin=100 a.u=2.7 keV, and the component of the mo-  eaks of negative energy transfer, higher than peaks for posi-

mentuma to beq,=0. tive energy transfer. Also, there is an asymmetry of the spec-
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trum in the sense that it is more extended on the absorption p2  E2 é.ﬁ
side (positive energy transferthan on the emission side W(t):?+ﬁ+ =Wiin+ Wosct Wirand 1).
(negative energy transferor this choice of parameters the @ 3
observed cutoffs are found to be at abott70w and 37

—500w, respectively. Note that in the case of stimulatedpepending on the phase of the field, the incoming electron
emission the final energy of the electron is still around 22actua||y has gained or lost a certain amount of energy on its
keV. Though the kinetic energies of the scattered electrongay through the field when it collides elastically with the
are remarkably redistributed over more than 1 keV, no nehucleus, thereby changing its propagation direction but leav-
overall heating or cooling effect occurs. In fact, we checkedng the actually acquired energy unchanged. Therefore, the
that the average value of the kinetic-energy transfer is almostollision process transforms transient oscillatory energy into
zero. Around the central elastic peak at zero an oscillatoryeal changes of kinetic energy of the electron. The transient
behavior is found which is magnified in the lower pébt of  energy difference scaled to the photon energy then reads
Fig. 3. There is a slight, but notable shift 30w of a o

nearly mirror-symmetry axis for the occurring oscillations. (Wyans~ Wiand/ @=E - (p—p’)/ w?

The magnitude of the shift depends on the choice of the

w

=—|p—p’[cog £ (E,p—p")].

angular parameters, as explained below. E
An investigation of other choices for the kinematical pa- ]
rameters reveals qualitatively the same behavior, though of (39)

course quantitative modifications occur. Then the origin of

the asymmetry in the distribution can be traced b_)a.Ck to th¢0r a given Scattering geometry the angie is phase depen-
dependence of the modulus of the final momentg) on  dent, and extremal energy transfer is obtained when the co-
the photon-energy-transfer numhemaccording to Eq(25).  sine equals- 1. For the present kinematics this scaled maxi-
In the denominatotﬁ—(i' +n|2|4 of Egs. (26) and (30), the mal transient energy difference is 540. The interesting point

termq’-q' makes a contribution wQ/c?, which accounts IS that this quantity is in fact the argumegit: E[p— p'|/w?

for most of the asymmetry envelope. Depending on the sig the Bessel functions entering expressi@d), which re-

of n this term makes the denominator increase in the casgUlts from the nonrelativistic quantum calculation. Hence the
n<0, and decrease in the case0, yielding an enhance- ifference of the maximal variation of the energy corre-
ment of negative over positive-energy-transfer cross sec3ponds to the range of the peak structure in the laser-assisted

tions. At the same time, the positions of the maxima at the-r0SS Section, meaning the maximal change in final mean

edges of the energy distributions are determined by the mag-"€"9Y-
nitude of the argumenf of the Bessel functions and can be o _ _
found for photon energy transfers when the order of the func- C. Relativistic regime and spin effects

tion roughly equals its argument. In this case, the Bessel The major effect of increasing the field strength is to in-
functionJ,, can be expressed in terms of the Airy function Ai crease considerably the maximum number of photons ex-
according to[33] changed, although the overall shape of the energy distribu-
13\ 513—1/3p: o1/ tion of the scattered electrons is globally similar to the one
Jn(n+zn')=2"n"1RAi (- 21%), (36) displayed in upper parta) of Fig. 3. For example, when
increasing the field strength t8=1 a.u., corresponding to

. . 6 . .
which reaches its maximum value nea 0. This implies as an intensity of about 38 10°° Wicnv, while keeping the

well that the positions of the edges of the distribution depen ?g: u;ligt;%r;u\t/ezlgc(;%/o spligiogg 'g'; t()eoa%:;ﬁ e7d k:;/.shown
on the momentum transfer and consequently on the scatte '

. . s . in Fig. 4, where the absorption edge structure is shown. Note
Ing gngle. In addition is slightly dependerit_ on, which the change of scale. The solid line denotes the result accord-
amplifies the asymmetry between the positions of the twcing to the full treatment, Eq(26), the short dashed line
edges. In addition, for increasing ordeand fixed argument, " . ; )

the value ofJ, is decreasing with~". whenns|¢]. This sketches the result according to E80) for a spinless par

X 4 ticle, while the long dashed line gives the result of the non-
explains why the cross section falls off abruptly beyond therelativistic calculation according to E¢34). While there is

i)homtsdwhere the argument of the Bessel functions equal t8nly a minor difference between the two relativistic calcula-
eCor er. th tensi f the struct h . tions, there is a notable shift of about 200 photon energies
oncerning the extension of thé structure, the maximuilieqq i the nonrelativistic treatment. We conclude from these
transfer of energy between the field and the projectile dunngiindings that relativistic mass shift effects show up in this

the scattering can be explalneq in a simple manner USInPegime of intensities attainable with currently operated laser
either the classical or quantum pictures. In fact, the argument

¢ of the Bessel functions is in some sense a measure for tHRPUrces. In particular, for a given electron momenunthe
difference of the transient change in energy between the ifionrelativistic limit kp)—« can no longer be performed
coming and outgoing dressed electrons. This is most clearlfor the determination of the average momentgmwhich is
seen in the nonrelativistic limit. of crucial importance inside the argumefitof the Bessel

In the classical picture, the time-dependent energy of théunctions. Nevertheless, almost no spin effects occur.
electron contains, in addition to the mean value, a time- Note that we have not shown the central part of the dis-
dependent contribution tribution which corresponds to moderate photon energy
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FIG. 4. Envelope of the absorption edge part of the differential  FIG. 5. Envelope of the absorption edge part of the differential
cross sectiordo/do scaled in 10° a.u. as a function of energy cross sectiordo/do scaled in 10™ a.u. as a function of energy
transfer Q' —Q scaled in units of 1000 for an electrical field transfer Q' —Q scaled in units of 1% for an electrical field
strength ofE=1 a.u. or a vector potenti@dl=3186 a.u. The initial  strength ofE=5.89 a.u. or a vector potenti#i=18769 a.u. The
electron energy i%V=100 a.u. The solid line denotes the result for initial electron energy isV=c?. The solid line denotes the result
electrons, the short dashed one the differential cross section fder electrons, and the dashed line sketches the result for spinless
spinless particles, and the long dashed one the result for the nonrgdarticles.
ativistic limit.

of the laser field. This clearly indicates that it is the contri-
transfers. Its overall envelope exhibits regular oscillations ifPution associated to the free bispinor part of the Volkov
the peak height. In this regime, the arguménif the Bessel ~Wave function which dominates the cross section: the Mott
function is much larger than the order. The principal factor due to spin-orbit coupling reduces large angle scatter-
asymptotic form of ordinary Bessel functiodg({) are well  NQ.
known: Under the condition 8 4n?—1 the asymptotic ex-
pression is D. Angular distributions: Mott effect and light pressure

2 |12 - As was shown above, for strong fields the central part of
—) cog{ {—(n+1/2) —}, (39)  the spectrum consists of peaks whose heights are determined
m{ 2 by oscillations in the values of the Bessel function. Since,
compared to the electron kinetic energy, the photon energy is
wheren is fixed, and{ becomes larg¢33]. Therefore we small, those details of the spectrum might not be of interest,
conclude that in strong fields the Bessel functions for modut instead several lines inside a detection window will be
erate energy transfer can be replaced by periodic cosingbserved. For this reasan100 peaks around the elastic one

functions. Sincel’ depends in first order linearly on the ex- \vere summed in order to draw the angular dependence of the
changed photon momentunw, the variations of the cross ;= /2 scattering.

section reveal several oscillating envelopes for the different |n Fig. 6 the accumulated differential cross section is
momentum transfers. The number of oscillations depends oghown for an electrical field strength &=1 a.u. and a ki-
the direction of observation, becausdepends on it as well. petic energy ofW,;,=100 a.u. as functions of angl in

~ As a typical example of relativistic regime, the electrical degrees. Apart from the minor differences in the magnitudes
field strength of E=5.89 a.u. corresponding to about g|| three calculations exhibit maxima fér=0° and 180° a
1.2x 10" W/en? and W,i,=c? or y=2 is considered. Note smooth oscillatory behavior, the minima in the nonrelativis-
that in such a high field the initial conditiop= /2 can no  tjc calculation atd=—90° and 90°, while they are slightly
longer be fulfiled for a relatively slow electron with ghifted in both relativistic calculations.

Wiin=100 a.u. because of the important radiation pressure in - This trend is even more pronounced for the kinetic energy
the k direction. In order to keep the same illustrative choiceW,i,=c? a.u., as can be seen in Fig. 7. While the nonrela-
of angles, the kinetic energy of the electron has to be intivistic treatment(long dashed lingagain predicts the oscil-
creased. Now, significant differences occur at the absorptiolatory behavior, both relativistic calculations lead to peaked
edge, which lies at about 523100 photon energies. In Fig. 5tructures in the direction of the laser propagatibs0°.

the solid line denotes the differential cross section accordinghe Volkov electron cross sectigsolid line) is below the

to expressior{26) for the Dirac electron, and the dashed line spinless particle resulshort dashed line It is reduced due
sketches the result for spinless particles from @B6). Since  to the Mott factor governing the dominant contribution from
in both cases the same argumémiccurs in the Bessel func- the free bispinor part of the Volkov wave function.

tion, the cutoff is found at the same position. Nevertheless, For the relativistic field strength d&=5.89 a.u. and the
the cross section for electrons is smaller by a factor of 3kinetic energy ofW,;,=4c? a.u., the accumulated differen-
Here the difference between the spinless and exact Diraital cross section is plotted in Fig. 8. Here again the thick
treatments is of the same order of magnitude as the one olsolid line denotes the result for the Volkov electron, the short
served for the Mott scattering itself, namely, in the absencealashed line the spinless particle, and the long dashed line the

()=
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FIG. 6. Summed differential cross sectiods/do scaled in

10~7 a.u. of =100 peaks around the elastic one as a function of thelO,FlLG' 8. ]‘Sf%rged dklfferentla(\jl t(r:]rosi‘, St(.eCtIOdB'/do fscaltt_ad |nf th
angle for an electrical field strength &=0.05 a.u. The electron a.u.or= peaks around he e1astic one as a function ot the

energy is W=100 a.u=2.7 keV. The relativistic parameter is angled for an electrical field strength &=15.89 a.u. The electron

iS\W= 2 iviati o
v=1.0053. The solid line denotes the result for electrons, the shor] nergy '.S‘W._4XC » and the relativistic parameter ig=>5. The
thick solid line denotes the complete result for electrons, the short

dashed one sketches the values for spinless particles, and the Ioag hed ketches th | f il il d the |
dashed one is the result for the nonrelativistic limit. shed one sketches e values for spiniess particies, and fhe long
dashed one is the result for the nonrelativistic limit. The thin line is
the contribution from the free bispinor part of the Volkov wave
nonrelativistic values. While the difference from the nonrel-function.
ativistic result is even larger, now it is found that the Volkov
electron cross section is larger than the one for the spinless

particle around the direction ¢ at 9=0°. The motivation of this study of Mott scattering in an ul-

In Fig. 8 the contribution of the free bispinor part of the trastrong laser field was to discuss the main properties of a
Volkov wave function is plotted as the thin solid line in well-characterized laser-assisted collision process, in which
comparison to the Volkov electrofsolid) and spinless par- relativistic effects are expected to play a prominent role. To
ticle (long dasheyi results. This contribution, governed by this end, we have compared, for a representative scattering
the Mott factor, is still always smaller than the cross sectior®0metry, the results obtained from the full Dirac-Volkov
for spinless particles. These considerations show clearly th&g@lculation with those derived from simpler approaches,
in this ultrahigh-field strength regime stimulated processe@@mely, for a spinles¢Klein-Gordon projectile and for a

become important, and lead to momentum transfer in thé‘onre.l‘aItIVIStIC electron. -
direction of propagation of the electromagnetic field. A first general re;ult has beep to show explicitly that, for
large-angle scattering geometries, a low-frequency infrared

laser can be remarkably effective for redistributing, via
stimulated emission and absorption of laser photons, the pro-
jectile kinetic energy over a very wide range. The distribu-

V. CONCLUSION

4 T tion in energy of the outgoing electrons at a fixed scattering
% 12 e, angle is approximately centered on the incoming energyj, i.e.,
e ] on the elastic peak, corresponding to zero net exchange of
8 r \ photons with the field. As a typical example, for a Nd laser
2] Tr . p with angular frequencyw=1.17 eV and scattering angle
8 r T n=ml2, the spread toward positive energy transfers can ex-
8 0.8 1 ) tend up to about 27 000 photons for an electrical field
&) \ ] strength E=1a.u. and a projectile kinetic energy
w 06 7 Wiin=2.7 keV, up to about 523 000 for an electrical field
"5" [ ] strength E=5.89 a.u. and a projectile kinetic energy

04 - | | | | | | | 7] W,;,=510.7 keV. This entails a considerable decrease of the

magnitude of the differential scattering cross section with
-180-135 -90 -45 0 45 90 135 180 exchange of a given net number pf photons, as compared to
ANGLE © the field-free elastic cross section, more precisely,nfer0
FIG. 7. Summed differential cross sectiods/do scaled in  the ratio between the laser-assisted and the field-free elastic
1022 a.u. of = 100 peaks around the elastic one as a function of thef0SS sections can be estimated as being of the order of
angle & for an electrical field strength dE=1 a.u. The electron |Jo({)|?<2/m{. If the energy of the incoming electron is
energy isW=c?=137 a.u., and the relativictic parameterjs=2.  high enough, the loss in the elastic peak is evenly spread
The solid line denotes the result for electrons, the short dashed ofgetween stimulated emission and absorption processes,
sketches the values for spinless particles, and the long dashed oneviich can be identified as stimulated bremsstrahlung and
the result for the nonrelativistic limit. stimulated inverse bremsstrahlung, respectively. A notice-
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able asymmetry in the energy distribution is observed, whichl/AUFE). C.H.K. was supported financially by the U.K. En-
can be ascribed to kinematical factors depending on the scagineering and Physical Sciences Research Council. This re-
tering geometry. Another source of asymmetry also comesearch was supported as well in part by the European Union
from the fact that the final energy of the projectile is boundedhrough Contract No. CRB CHRX CT 940470. The Labora-
from below to zero. This situation arises if the incoming toire de Chimie Physique—Matie et Rayonnement is Unite

projectile energy is not high enough as compared to theje Recherche Assogeau CNRS(URA 176).
maximum number of photons, which can be emitted in the

process. Although stimulated recombination could in prin-
ciple take place, the system ending in a bound hydrogenic
state, we did not discuss this process here as it plays only a |n order to average over initial and final polarizations, a
marginal role. factor 3 and a summation over final and initial polarization
The kinetic-energy spectrum of the scattered electronssates of the electron has to be included. In the calculation of
which replicates the distribution of the net number of e€x-ihe differential cross sectiodo, the squared modulus of
changed photons, always exhibits a sharp decrease beyon fducts of y matrices and dyadicsul)=cp+c? of bi-

quite well-defined cutoff. The location of the cutoff is an spinors arise from the matrix eleméRt._; . Due to the well-
important physical parameter which characterizes the maxic - o identit
mum amount of energy which can be exchanged between thlé y

projectile and the field. It can be estimated via a rather

simple classical analysis wich singles out the importance of > Uy uP=T .y (U)o (U) ],
terms related to the net momentum transfer taking place in if

the course of the collision. More precisely, the width of the (A1)
distribution is related not only to the averaged ponderomo-

tive energy gained by the electron in the field but also to itgV1€reél andf count, respectively, initial and final polariza-

transient energy. The pertinence of the analysis is confirmelon States, the averaging can be reduced to the calculation of
by comparing to a quantum approach where the relevant p;;[aces ofy-matrices. Ip expressiof21) derived above there
rameter is then the momentum dependence contained in ttf§€ 36 products of this form to be evaluated. N
argument of the Bessel functiaij(¢). J,, represent in some In the following formulas the abbreviatiott= (v°, —v')
sense the relative weights of a dressed stated with energy aiglused. This has proven to be convenient in describing the
momenta shifted in the presencerophotons from the laser action of the adjointy matrices like ¢'v)=(yv) and the
field. The maximum energy transfer then coincides with th&_,|gns arising from commutation Operations betw@@mnd
limit n= £, beyond which, for larger values of the Bessel .y« inside the different traces due fg°, y*} = 2g°~.
functions decrease exponentially. Our analysis confirms the First, there are four contributions multiplied by the pref-
concordance of the two pictures, which both provide a fairactor|Bn|2=Jn(g)2: The modulus of the contribution con-
estimate of the width of the distribution. taining the Mott spin factor reduces to

For relatively slow projectiles with a kinetic energy of 2.7
keV, we have verified that the three approaches considered  Tr[y%(cp’ +c?)y°(cp+c?)]=4c?c®+(pp’)], (A2)
here [nonrelativistic, relativistic spinlesgKlein-Gordon,
and Dirac-Volkoy lead to almost indistinguishable results at the modulus of the contribution from th%* term becomes
rather low laser intensities of about#0V/cn?. However, 0 2y 0 R o
relativistic effects induced by the laser start to show up al- 1KY K(cp+c9)kyk(cp’+c)]=32kp)(kp') *,
ready at a field strength oE=1 a.u. (corresponding to (A3)
3.5x 10" W/cn?). A clear signature is the change in the
position of the high-energy cutoff, which is shifted toward
higher energies by about 200as compared to the nonrela- Ty 0(cp+c?)kyk(cp’ +c?)]
tivistic calculation. For such conditions differences between
the Klein-Gordon and Dirac treatments are negligible, as ex-  + T kyk(cp+c?)y%(cp’+c?)]

APPENDIX

and the two interference terms between them yield

pected. @ 2.2 20 = 201 1 ARSI L
Even stronger electrical field strengths reveal significant — 10@ ¢ T 160%(pp )+8c(kp")(kp)—8c(kp")(Kp).
differences between the two relativistic treatments. While in (A4)

most cases the contribution from the free bispinor part of the o o

Volkov wave function turns out to be dominant, for higher ~Second, the 16 contributions multiplied by the prefactors

field strengths and faster projectiles the contributions of thée mutually complex conjugates according to

spin-dependent terms significantly increase the differential . .

cross section in the propagation directianof the laser. BCn(£:$0)Bal £, o)+ Benl L, do)Ba( L, do)

These contributions, which arise from the coupling between =[I () I+ 1(O)+IN()In_1(L) ]cospg (A5)

the spin and the field, become dominant at higher field

strength, thus demonstrating that a complete Dirac-Volkoare —considered similarly for Bs,. Noting that

electron treatment is necessary in this regime. ky’k=2w?/c*(y°— y?), there are two traces in arising from

the A? term which have similar structures:
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and
T AKY’(cp+c?) y3(ch’ +c?)]

=4cq — (Ap)(kp")+(Ap ) (KP)], (A7)

wherei e {x,y}, which also appear with interchanged initial
and final momentg@«— p’. It is realized that the first trace is
to be calculated as well for the contribution containing the

Mott factor.
Finally,
IBc,(¢,¢0)|? and |Bs,(¢,d0)|? respectively. The eight
cross terms between contributions froky and A, vanish,

C. SZYMANOWSKI et al.

there are 16 contributions multiplied by

T KA (cp’ +cAAK(Cp+c?)]=—8c?A%(kp' ) (KP)
(A8)

and

T KA (cP’ + KA (cp+c?) ]+ TrKA (cp’ +c?)

X KA (cp+cd)]
2

—_~ C — -
which was expected because they do not describe a physical = 16w? AN [(kp)(kp")+(kp)(kp")]+[(Aip")
situation but arise from the chosen description of the circular
polarization in Cartesian components. Now there are two dif-

ferent traces to be evaluated, where agaifx,y} is used,
and they read

X(AP)+(ADIAP)]-AALCE+(PP)]}.  (A9)
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