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Mott scattering in strong laser fields
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Qualitative and quantitative results of a complete relativistic calculation of theS-matrix transition ampli-
tudes and first Born cross sections for the Mott scattering of an electron in the presence of an ultraintense
single-mode laser field are compared in detail to a spinless and a nonrelativistic treatment. The role of the
fermion character of the electron leading to spin-orbit and spin-laser interactions is discussed depending on the
laser intensity and on the incoming electron kinetic energy. The differences between radiative transfer spectra
of the electron energy in the relativistic and nonrelativistic regimes are addressed.@S1050-2947~97!00910-4#
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I. INTRODUCTION

Even a slow electron, when submitted to an ultrastro
laser pulse, can experience significant relativistic effe
This statement bases on the qualitative argument that
averaged quiver energyUp5E2/4v2 acquired by a classica
electron within a linear polarized laser field with frequencyv
can become comparable to its rest energy at high-fi
strengthE. Recently developed ultraintense femtosecond
ser sources@1# deliver pulses of near-infrared radiation wi
intensities such thatUp can well exceedc2, and make it
feasible to explore this regime occurring at abo
1018 W/cm2.

Calculations related to the radiative processes experien
by free electrons inside a strong electromagnetic field w
worked out since the advent of laser sources in the e
1960s@2,3#. A treatment of Compton scattering in an inten
electromagnetic field can even be found in the textbook
Berestetzki�, Lifshitz, and Pitaevski� @4#. It is, however, only
recently that relativistic aspects of laser-induced proces
have attracted a renewed interest, as a result of impor
advances in laser technology which have made possibl
attain the required ultrahigh intensities. First experiments
which relativistic effects are clearly shown have been
cently reported. The transition between Thomson and Co
ton scattering inside an ultraintense laser field was inve
gated in Ref. @5#, and the influence of matter on ligh
propagation in self-channeling in the relativistic regime
Ref. @6#. Experiments on nonlinear Compton scatteri
which were performed at SLAC were reported by Bulaet al.
@7#. Note that, in addition to the already mentioned ea
references, stimulated Compton scattering in more gen
than plane-wave fields was considered by Rosenberg@8#.
The relation of ponderomotive forces and stimulated Com
ton scattering in the nonrelativistic limit was addressed
Ref. @9#. In addition, it has been known for a long time th
free electrons inside a very strong laser field can emit hi
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order harmonic radiation, a problem which was investiga
via a classical approach~see, for instance, Ref.@10#!, and has
been recently reported in experiments by Norreyset al. and
von der Lindeet al. @11#.

Other types of laser-assisted processes, in which rela
istic effecs are expected to be important, are the rece
reported emission of energetic electrons and ions fr
atomic clusters submitted to ultrastrong infrared laser pu
@12#. In such a context, it is generally believed that, in t
early stages of the process, the heating of the electrons
leased from atoms via multiphoton ionization results fro
stimulated inverse bremsstrahlung. The latter process ta
place when the electrons are scattered from the neighbo
ions, in the presence of the laser field. This observation
motivated the present study, in which we address the qu
tion of the importance of relativistic effects on laser-assis
Coulomb scattering, the so-called Mott scattering, in
high-intensity regime.

Regarding this class of laser-assisted electron-atom c
sions, most theoretical studies have been restricted to
nonrelativistic domain@13,14#. It was soon realized and in
deed experimentally verified that, as a general conseque
of the infrared divergence of QED@15#, quite a large number
of photons can be exchanged between the field and
projectile-target system in the soft-photon limit, even
moderate field intensities@16#. On the other hand, relativistic
simulations have been relatively scarce. Though Coulo
scattering for relativistic velocities was pioneered by M
@17# in 1929, an extension of the first Born treatment@13# of
laser-assisted Coulomb scattering to the relativistic dom
has been formally derived by Denisov and Fedorov@19#.
There has been an intricate covariant extension of the l
frequency Kroll-Watson results by Kamin´ski @20# using a
nonlocal transformation into a generalized Krame
Henneberger frame. The relativistic scattering inside a m
timode radiation field was addressed by Zhou and Rosen
@21# using a variational method, while the emission
bremsstrahlung in laser-assisted scattering in the l
frequency regime was considered by the same authors@22#.
Recently, there have been analytical investigations of po
3846 © 1997 The American Physical Society



c-

tiv
lin
se
za
nd

e

re

an
a
o
pi

th
ec
e
nt
ti

sic
el
or

tio
ts
tio
r
b
p
rre

te
a
s
o

eo
e

de
e
pa

v
is

ex
tio
on
tio
r-
r t
a
ize

nifi
ica
u
be

s it
ther
sis
re-
asis
the
in-

ith
rgy
tic

u-
can

on
e
for
with
, in
ng
tak-
lly

ut.
-
f
f
f
i-

an

ity
o-
air

ld-
is

un-
ese

e
the
ex-

II is
ions

for
of

dis-
ding
er-
ion

-

56 3847MOTT SCATTERING IN STRONG LASER FIELDS
tial scattering of ultrarelativistic electrons in two codire
tional lightwaves by Roshchupkin@23#.

Let us also mention that several recent studies of rela
istic effects were dedicated to understanding and mode
atomic multiphoton ionization in the domain of ultrainten
laser fields. Classical Monte Carlo simulations of the ioni
tion of atomic hydrogen were carried out by Keitel a
Knight @24#, where hot electron ejection was reported@25#.
In the Kramers-Henneberger frame, relativistic mass shift
fects on stabilization were recently investigated in Ref.@26#.
A model of short-range potential for bosons was conside
by Faisal and Radoz˙ycki @27#, in order to provide analytic
expressions for particle ejection, multiphoton absorption,
stimulated bremsstrahlung effects. Latinne, Joachain,
Dörr @28# investigated the Pauli equation in the regime
superintense electric fields in order to include first-order s
effects.

The main purpose of the present paper is to show that
modifications of the Mott scattering cross section for an el
tron in the Coulomb potential of a nucleus, in the presenc
an ultraintense field, can provide interesting insights i
questions of the importance and the signatures of the rela
istic effects. We concentrate here on the underlying phy
and the control of measurable quantities, meaning how r
tivity affects a typical atomic process. Our motivation f
considering the spin-dependent relativistic Mott scattering
that the physics of this process can provide a clear distinc
between simple kinematics and spin-orbit coupling effec
For this reason, we shall compare the results of a calcula
of the ~S-matrix! first Born approximation cross section fo
the Coulomb scattering of Dirac-Volkov electrons dressed
a circularly polarized laser field to the more simplified a
proach of spinless Klein-Gordon particles and to the co
sponding nonrelativistic Schro¨dinger-Volkov treatment. The
choice of Dirac-Volkov wave functions, modeling the sta
of a free electron embedded in a strong classical electrom
netic field, is well justified in view of the huge intensitie
considered for the laser. Indeed, in such laser fields, the
cupation numbers of the modes are so large that spontan
~Compton and bremsstrahlung! emission processes can b
safely neglected, thus giving further credit to a classical
scription of the field. The breakdown of the validity of th
model is expected to take place at intensities so high that
creation ~and also radiation reaction@18#! will come into
play. This is not considered here.

We wish to mention that our relativistic Dirac-Volko
treatment is essentially the same as the one used by Den
and Fedorov in their pioneering paper@19#. However, that
work concentrated on deriving analytical approximate
pressions for total cross sections under certain assump
and specialized for linear polarization of the laser radiati
Here we shall instead consider the differential cross sec
in some detail, providing a physical interpretation of diffe
ent contributions to the scattering matrix element. In orde
avoid unnecessary complications in the analysis, we h
chosen to treat the specialized case of a circularly polar
field. Then, as already noted by Denisov and Fedorov@19#,
the resulting expression of the amplitude becomes sig
cantly more tractable than in the general case of ellipt
polarization and even than for linear polarization. For circ
lar polarization of the field, the transition amplitude can
-
g

-

f-

d

d
nd
f
n

e
-

of
o
v-
s

a-

is
n
.
n

y
-
-

g-

c-
us

-

ir

ov

-
ns
.
n

o
ve
d

-
l

-

expressed in terms of ordinary Bessel functions, wherea
contains more intricate generalized Bessel functions for o
polarization states. This significantly simplifies the analy
of the results and the discussion of limiting cases, while
taining the essential of the physics of the process. Emph
is placed on the energy distribution of the electrons after
scattering event, thus demonstrating the feasibility of obta
ing particularly hot electrons as a result of collisions w
large momentum transfer. The maximum attainable ene
hereby turns out to depend chiefly on both the relativis
kinematics and the transient~quiver! energy of the particle
aquired in the field. On the other hand, the spin-orbit co
pling has an effect on the size of the cross section, which
change by up to about one order of magnitude, depending
whether or not it is included in the analysis. Finally, th
angular distribution of the scattered electrons is displayed
several representative sets of parameters, comparing
simpler spinless relativistic and nonrelativistic approaches
order to gain insight into the importance of the contributi
physical processes. Our results show the importance of
ing care of the fact that the electron is a fermion, especia
in the case of ultraintense laser fields.

Note that in this work atomic units are used througho
The velocity of light isc.137 a.u., while energy is mea
sured in atomic units, 1 a.u..27.2116 eV. The atomic unit o
intensity is 3.531016 W/cm2 at the electrical field strength o
E51 a.u. For an angular frequency o
v50.043 a.u.51.17 eV, corresponding to the lasing trans
tion of the Nd laser at a wavelength of 1064 nm, for
intensity of about 1018 W/cm2 or an electrical field strength
of E55.89 a.u., the ratioE/v is of the order ofc. This
relativistic regime considered here is far below the intens
from which the electron will acquire such a high quiver m
mentum, so that enough energy will be available for p
creation in a collision process at about 1021 W/cm2. There-
fore, the description of the physical effects on one fie
dressed electron is appropriate. Note that this intensity
again far below the intensity which makes the vacuum
stable against the creation of particle-antiparticle pairs. Th
effects are to be expected at about 1029 W/cm2 according to
Ref. @29#.

The organization of this paper as follows: In Sec. II, w
will present the formalism and establish the expression of
differential scattering cross section associated to the
change of a given net number of laser photons. Section I
dedicated to a presentation of the corresponding express
occurring when considering simplified treatments valid
spinless and nonrelativistic particles. Evidence of the role
spin interactions is presented in Sec. IV, where we also
cuss the main qualitative features of the spectra, depen
on the laser intensity, electron velocity, and angle of obs
vation. The key points are summarized in a brief conclus
in Sec. V.

II. DIRAC-VOLKOV DIFFERENTIAL CROSS SECTION

A. Relativistic Volkov states

The relativistic electron with four-momentumpm inside a
classical monochromatic electromagnetic fieldAm is de-
scribed by a bispinor functionc which obeys the Dirac equa
tion
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3848 56C. SZYMANOWSKI et al.
FgmS p̂m2
Am

c D2cGc50, ~1!

wheregm are the Dirac matrices. They anticommute acco
ing to $gm,gn%52gmn. The metric tensor of Minkowsk
space isgmn5diag(1,21,21,21). This starting point to
deal with the dressing of the electron interacting with a cl
sical field is adequate to treat the laser-assisted processe
have chosen to discuss here. More precisely, it is equiva
to assuming that multiphoton-stimulated bremsstrahlung~or
multiphoton-stimulated emission! and multiphoton inverse
bremsstrahlung~or multiphoton absorption! by far dominate
the effects resulting from the coupling with the empty mod
of the field. The solutions of the Dirac equation in a elect

magnetic plane waveAm5(0, AW ) can be calculated analyti
cally by solving the second-order equation

F S p̂2
A

c D 2

2c22
i

2c
FmnsmnGc50, ~2!

and are well known@4#. HereFmn5]mAn2]nAm is the elec-

tromagnetic field tensor andsmn5 1
2 @gm,gn#. It is conve-

nient to choose the coordinate system in such a way tha
electromagnetic field is propagating in thez direction, mean-

ing kW5kêz . For a circularly polarized field with

AW 5axcos(kx)1ay sin(kx)5uAW u@êxcos(kx)1êysin(kx)# the so-
called Volkov wave functions@30# are

cq5^xW uq&5F11
k”A”

2c~kp!G u

A2QV

3expF2 i ~qx!2 i E
0

kx ~pA!

c~kp!
dfG , ~3!

where u represents a bispinor for the free electron wh
satisfies the first-order Dirac equation without field, a
which is normalized byūu5u* g0u52c2. The wave func-
tionscq are normalized in the volumeV. The notationv” for
a certain four-vectorvm means the multiplication by the
Dirac matricesgm while summing over the indexm. The
bracket notation (vw) is a short form for the four-scala

productvmwm . The four-vectorqm5(Q/c,qW ) is the labelq
of the Volkov stateuq&. Its physical significance is the ave
aged four-momentum of the particle inside the laser fi
with wave four-vectorkm,

qm5pm2
A2

2~kp!c2 km. ~4!

HereA2 denotes the time-averaged square of the four-ve
potential of the laser field. The square of this four-vector

qmqm[m
*
2 c2 ~5!

is Lorentz invariant. The parameterm* plays the role of an
effective mass of the electron inside the electromagn
field:
-

-
we
nt

s
-

he

d

or

ic

m* 5S 12
A2

c4 D 1/2

. ~6!

Note that the effective mass becomes larger for increas

vector potentialAW , since the Minkowski metric carries a m
nus sign for the spatial components. Note also that in
case of circular polarization the time average of the squar
the vector potential in Eqs.~4! and ~6! becomes

A252uAW u25A2.
In the defining equation~3! for the Volkov states, a physi

cal interpretation can be assigned to the prefactor term in
square bracket acting on the bispinoru. This factor is the
remaining part of an exponential term contained in the so
tion to Eq.~2!. All higher orders ink vanish becausek is a
light four-vector andk andA are transverse:k”k”5k250 and
(kA)50. In fact the second term containingg matrices in the
square bracket in Eq.~3! would be absent in the case of
spinless ~Klein-Gordon! particle. It contains information
about the spin-dressing field interaction. In other words,
Volkov wave function can be considered as representing
superposition of a free-electron wave~modified by a field-
dependent phase!, and of a wave generated by the interacti
of the spin with the classical single-mode field with vect
potential Am. However, both parts are carry the field
dependent phase, also containing the important contribu
of Am. In fact for an electron Volkov wave this decompos
tion is rather formal but, as will be shown in the following,
enables the identification of different contributions to t
scattering amplitude.

B. Generalized first-Born Mott-scattering cross section

In the lowest-order Born approximation for potential sc
tering the interaction of the dressed electrons with the cen
field

Acoul
m 5S 2

Z

uxW u
,0,0,0D ~7!

is treated as a first-order perturbation. This is well justified
Sommerfeld’s fine-structure constanta times the nuclear
chargeZ is much smaller than the relativistic parameterb
according to the conditionZa!b5upu/p05v/c @31#. The
transition matrix element for the processc i→c f which
needs to be calculated is

Tf←i5
iZ

c E d4x c̄ f

g0

uxW u
c i . ~8!

This expression corresponds to the process symbolically
resented by the diagram in Fig. 1. Here the straight circ
lines represent the ingoing and outgoing Volkov electro
There is an interaction between the electron and the fi
potential denoted byX via the exchange of a virtual photon
represented by a dashed crossed line. The transition am
tude associated with this diagram can be calculated u
some generalized Feynman rules, in complete analogy to
free-electron case: It is only necessary in a Feynman-t
integral to replace the free-electron wave functions
Volkov wave functions. Though this concept is straightfo
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56 3849MOTT SCATTERING IN STRONG LASER FIELDS
ward, the actual computation is difficult due to the time d
pendence of Volkov wave functions and also due to the
currence of a large number of averages over spin-polar
states of the electrons—this leads to the computation o
large amount of traces over products ofg matrices.

Since we are dealing with an intense single-mode la
field, the four-vector potentialAm does not change apprecia
bly in the collision process. Therefore a Volkov electron
the final stateuq8& will have the same invariant effectiv
massm* —defined in Eq.~6!—as in the initial stateuq&.
Hence we deduce from Eq.~5! that the averaged four
momentaqm andq8m must fulfill

qmqm5q8mqm8 5m
*
2 c2. ~9!

Remember that in ordinary Mott scattering the elastic con
tion upu5up8u is obtained using the energy and mass cons
vation together with the Minkowski scalar product inva
ance.

Insertion of the Volkov wave functions~3! into Eq. ~8!
leads to:

Tf←i5
iZ

c

1

2AQQ8V
E d4x ū8F11

A” k”

2c~p8k!Gg0

uxW u

3F11
k”A”

2c~pk!Gu expF2 i ~q2q8!x

2 i E
0

kx ~pA!

c~kp!
df1 i E

0

kx ~p8A!

c~kp8!
dfG . ~10!

The differential cross sectionds for the scattering pro-
cess represented by the diagram in Fig. 1 is proportiona

FIG. 1. Feynman diagram describing the elastic potential s
tering process of an electron in a Volkov stateuq& into a Volkov
stateuq8& due to the exchange of a virtual photon in the lowe
order ~first! Born approximation.
-
-
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the square ofTf← i , to the density of final statesuq8& in
phase space divided by timeT and to the incoming flux of
electrons:

ds5
uTf← i u2

T S Vd3q8

8p3 D QV

c2uqW u
. ~11!

Using Eq. ~10! for Tf← i , the following expression is ob
tained:

ds5
Z2

c2 U E d4x ū8F11
A” k”

2c~p8k!G g0

uxW u
F11

k”A”

2c~pk!Gu
3expF2 i ~q2q8!x2 i E

0

kx ~pA!

c~kp!
df

1 i E
0

kx ~p8A!

c~kp8!
dfGU2 d3q8

32p3Q8c2uqW uT
. ~12!

Using the abbreviation

a i5
1

c S pAi

kp
2

p8Ai

kp8 D , ~13!

wherei P$x,y%, the occurring time dependence in the exp
nent can be rewritten as

2 iaxsin~kx!1 iaycos~kx![2 i z sin~kx2f0!, ~14!

where the new amplitudez is

z5
1

c S F pAx

~kp!
2

p8Ax

~kp8!G
2

1F pAy

~kp!
2

p8Ay

~kp8!G
2D 1/2

, ~15!

and the associated phasef0 reads

f05arccosF 1

cz S pAx

kp
2

p8Ax

kp8 D G . ~16!

The three different time dependences in Eq.~12! can be
transformed by well-known identities involving ordinar
Bessel functionsJn :

H 1
cos~kx!

sin~kx!
J 3exp@2 i z sin~kx2f0!#5(

n
exp~2 inkx!

35
Jn~z!e~ inf0!

1

2
$Jn11~z!e[ i ~n11!f0]1Jn21~z!e[ i ~n21!f0]%

1

2i
$Jn11~z!e[ i ~n11!f0]2Jn21~z!e[ i ~n21!f0]%

6
[(

n
e~2 inkx!3H Bn~z,f0!

Bcn~z,f0!

Bsn~z,f0!
J . ~17!

Using these transformations in Eq.~12!, we obtain the fol-
lowing expression for the differential cross sectionds:

t-

-
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ds5
Z2

c2 U (
n52`

` E d4x@ ū8g0u#Bn

exp@2 i ~q2q81nk!x#

uxW u
1E d4xH F ū8

A” xk”

2c~kp8!
g0u1ū8g0

k”A” x

2c~kp!
uGBcn

1F ū8
A” yk”

2c~kp8!
g0u1ū8g0

k”A” y

2c~kp!
uGBsn

1
2A2

4c2~kp!~kp8!
@ ū8k”g0k”u#BnJ exp@2 i ~q2q81nk!x#

uxW u
U2

d3q8

32p3Q8c2uqW uT
. ~18!

We wish to emphazise again that the influence of the field is completely taken care of. However, due to the fact
Volkov wave functions contain two components, there are four different amplitudes interfering during the scattering p
The remaining integrals can be reduced using the well-known identity

E d4x
exp@2 i ~q2q81nk!x#

uxW u
5

8p2cd~Q2Q81nv!

uqW 2qW 81nkW u2
. ~19!

Hence the differential cross section can be written

ds5
Z2

c2 U (
n52`

` F ~ ū8g0u!Bn1S ū8
A” xk”

2c~kp8!
g0u1ū8g0

k”A” x

2c~kp!
uD Bcn1S ū8

A” yk”

2c~kp8!
g0u1ū8g0

k”A” y

2c~kp!
uD Bsn

2
A2

4c2~kp!~kp8!
~ ū8k”g0k”u!BnG2pd~Q2Q81nv!

uqW 2qW 81nkW u2
U2

d3q8

2pQ8uquT
, ~20!

whereAx5(0,uAW u,0,0) andAy5(0,0,uAW u,0). The appropriate expression for the square of thed function occurring in this
formula is obtained by the usual procedure@31#. This leads to the expression

ds5
Z2

c2 (
n52`

` U@ ū8g0u#Bn1F ū8
A” xk”

2c~kp8!
g0u1ū8g0

k”A” x

2c~kp!
uGBcn1F ū8

A” yk”

2c~kp8!
g0u1ū8g0

k”A” y

2c~kp!
uGBsn

2
A2

4c2~kp!~kp8!
@ ū8k”g0k”u#BnU2

d~Q2Q81nv!

uqW 2qW 81nkW u4
3

d3q8

Q8uqW u
. ~21!

The calculation is now reduced to the computation of the products containingg matrices. For unpolarized electrons th
averaging procedure can be performed using the trace technique. Details of the actual calculation can be foun
Appendix.

C. Final expression

The differential cross section can ultimately be expressed in terms of only the averaged momentaqW and qW 8: Using the

abbreviationṽm5(v0,2vW i), we note that

~kq!5kmpm2
A2

2~kp!c2 kmkm5~kp!,

~kq̃!5kmp̃m2
A2

2~kp!c2 kmk̃m5~kp̃!2
A2v2

~kp!c4 , ~22!

and (Aq)5(Ap). It turns out to be convenient to define

Å[~0, axcosf0 ,aysinf0 ,0! ~23!

in order to write the cross section in a more compact form. The volume elementd3q8 in momentum space can be transform

according tod3q85uqW 8uQ8/c2dQ8do. Hereo denotes the solid angle. Thed function arising from integral~19! expresses the
energy conservation in the multiphoton processes that occur. This leads to the final expression
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ds

do
5(

n

ds~n!

do U
Q85Q1nv

. ~24!

In addition, using condition~9!, it follows that the final quasimomentum reads

uqW 8u5S uqW u212n
vQ

c2 1
n2v2

c2 D 1/2

~25!

for a process involving n photons. In the nonrelativistic limit, this expression in fact reaches the well-known con

upW 8u5A2E12nv. The differential cross sectionds (n)/do for each scattering process, resulting in the net exchangen
photons, is

ds~n!

do
5

Z2uqW 8u

c2uqW u

1

uqW 2qW 81nkW u4
F2Jn~z!2H Fc21

QQ8

c2
1qW qW 81

A2

2c2 S ~kq̃8!

~kq!
1

~kq̃!

~kq8!
D 1

~A2!2v2

2c6~kq!~kq8!
G S 12

A2v2

c4~kq!~kq8!
D

2
A2

2c2 F12
~kq̃8!~kq̃!

~kq!~kq8!
G1

~A2!2v2

c6~kq!~kq8!
1

~A2!2v2

2c6~kq!2~kq8!2 F ~kq8!~kq̃8!1~kq!~kq̃!1
A2v2

c4 G J
1@Jn11~z!21Jn21~z!2#H 2A2

2c2 F ~kq̃8!

~kq!
1

~kq̃!

~kq8!
111

~kq̃!~kq̃8!22v2

~kq!~kq8!
1

2A2v2

c4~kq!~kq8!
1

A2v2

c4~kq!~kq8!

3S ~kq8!~kq̃8!1~kq!~kq̃!1
A2v2

c4 D 2
2v2

c2~kq!~kq8!
S QQ8

c2
1qW qW 81

A2

2c2 S ~kq̃8!

~kq!
1

~kq̃!

~kq8!
D 1

~A2!2v2

2c6~kq!~kq8!
D G

1
2A2v2

c4~kq8!~kq!
@qx8qx1qy8qy#J 1Jn11~z!Jn21~z!cos~2f0!

2A2v2

c4~kq8!~kq!
@qx8qx2qy8qy#1Jn~z!@Jn11~z!1Jn21~z!#

3H 2
2A2v2

c4~kq!~kq8!
F ~Åq!

c
1

~Åq8!

c
G1

~Åq8!~kq̃!

c~kq8!
1

~Åq!

c
1

~Åq8!

c
1

~Åq!~kq̃8!

c~kq!
J GU

Q85Q1nv

. ~26!

This formula is a relativistic generalization of the Bunkin and Fedorov treatment@13#, and it represents a specialization f
circular polarization of the general expression of Denisov and Fedorov@19#.

By inspection of Eq.~26! we note two features. On the one hand, the laser fieldA enters this expression in an intricate wa
not only through the arguments of the Bessel functions, it is also present in multiplicative factors in front of the squ
Bessel functions. On the other hand, several additional terms arise from the averaging calculation over spin polariza

When no laser field is present, the additional spin sums in Eq.~26! vanish, while all Bessel functions vanish except f
n50: It is Jn(0)5dn0 . In this case the result reduces, after integration over the final energy variable, to the well-k
unpolarized Mott cross section for potential scattering,

ds

do
5

1

4

Z2a2

upW u2b2

12b2sin2~u/2!

sin4~u/2!
, ~27!

whereu5/(pW ,pW 8); see, for instance, Bjorken and Drell or Itzykson and Zuber@32#.

III. SIMPLIFIED TREATMENTS

A. Comparison to the scattering of a spinless particle

We now briefly consider an analogous calculation for obtaining the differential cross section for a spinless particle. I
function will obey the Klein-Gordon equation for bosons with spin zero, which is in fact the second-order equation~2! without
the term2 i /2cFmnsmn. The corresponding Volkov solutions can be found analogously to the described treatment fo
trons, and in this case read

cq5^xW uq&5S c

2QVD 1/2

expF2 i ~qx!2 i E
0

kx ~pA!

c~kp!
dfG . ~28!

Note that they do not contain the square bracket prefactor acting on a bispinor which is a feature of the fermion cha
electrons in Eq.~3!.
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The transition matrix elementTf← i involved in the calculation of the Coulomb scattering does not exhibit the spin ef
appearing for electrons. The expression to be calculated is

Tf← i5
i

c E d4xc f* ~pmAcoul
m 1Acoul

m pm!c i . ~29!

There is no spin-averaging procedure here. Consequently, the trace to be evaluated in the case of a fermion, which le
limit of vanishing vector potential to the Mott factor, does not occur. Finally, the energy dependence of the cross se
again a comb ofd-functions and then-photon cross sections read

ds~n!

do
5

Z2uqW 8u

c4uqW u

1

uqW 2qW 81nkW u4
S Jn~z!2~Q81Q!21Jn~z!@Jn11~z!1Jn21~z!#v~Q81Q!@~z fcosf f1z icosf i !cos~f0!

1~z fsinf f1z isinf i !sin~f0!#1 1
2 Jn21~z!Jn11~z!sin~2f0!@z fcosf f1z icosf i #@z fsinf f1z isinf i #

1
v2

4
@Jn11~z!21Jn21~z!2#@~z fcosf f1z icosf i !

21~z fsinf f1z isinf i !
2#

1
v2

2
Jn11~z!Jn21~z!cos~2f0!@~z fcosf f1z icosf i !

22~z fsinf f1z isinf i !
2# D U

Q85Q1nv

, ~30!
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where z j and f j with j P$ i , f % denote the correspondin
definitions of amplitude~15! and phase~16! for initial and
final states, respectively. In the case when no laser fiel
present, this expression reduces, after integration over
final energy variable, to the spinless meson cross sectio

ds

do
5

1

4

Z2a2

upW u2b2sin4~u/2!
, ~31!

whereu5/(pW ,pW 8); see again Ref.@32#.

B. Comparison to the nonrelativistic expression

In order to compare our findings to a nonrelativistic tre
ment, one should note that the terms in the outer large
mal brackets in expression~26! arise from the spin-averagin
procedure. In fact the analogous calculation for a spinl
particle leading to Eq.~30! has to be used for discussing th
nonrelativistic limit.

The nonrelativistic transition matrix element

Tf← i52 i E
2`

`

dt^pW f~t!u
2Z

r
upW i~t!& ~32!

has to be calculated, whereupW & are nonrelativistic Volkov
states. In position space, for the case of circular polari

radiation in the Coulomb gauge¹W •AW 50, they read

^xW upW ~t!&5S 1

VD 1/2

expH 2
i

2 E t

dtFpW 2
AW ~xW ,t !

c
G2J exp~ ipW •rW !,

~33!

normalized in the volume elementV. An analogous transfor
mation of the integral in Eq.~32! leads to ordinary Besse
functionsJn . Note that in this case the additional term in t
averaged momentum of Eq.~4! becomes independent of th
is
he

-
r-

s

d

orientation of the momentum vector. Hence for the differe
tial cross section the nonrelativistic limit of Eq.~26! without
spin terms is obtained:

ds~n!

do
5

4Z2uqW 8u

c4uqW u
Jn

2S uAu

cv
upW 2pW 8u D c4

upW 2pW 81nkW u4U
E85E1nv

.

~34!

The modulus of the final momentumupW 8u is fixed due to

energy conservation:upW 8u5A2(E1nv). In comparison to
Eq. ~30! we observe two features. On the one hand, the
guments of the Bessel functions here are the nonrelativ
limit of z defined above, since the four-vector product (kp)
has in atomic units the nonrelativistic limitv. On the other
hand, for nonrelativistic intensities, the terms proportiona

the vector potentialAW can be neglected and we hav
(Q1Q8)2.4c4. Then expression~30! for a spinless particle
reduces to the nonrelativistic result.

IV. INFLUENCE OF SPIN-ORBIT
AND SPIN-LASER INTERACTIONS

A. Kinematics of the collision

We turn now to a qualitative and quantitative discuss
of the main features of the differential cross section~26! in
close comparison to the spinless and nonrelativistic exp

sions. For this purpose a coordinate system in whichkW i êz for
the description of the scattering geometry is introduced
shown in Fig. 2.

In this systemqW Pspan(êz ,êx). The angles between th
averaged momentum vectors and the field propagation ve

are c5/(qW ,kW ), q5/(kW ,qW 8), andw5/(qW' ,qW 8'), mean-
ing thatq andw denote the usual angular variables in sphe
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56 3853MOTT SCATTERING IN STRONG LASER FIELDS
cal coordinates forqW 8. The cosine of the angleh betweenqW

andqW 8 can be calculated by some simple trigonometric re
tions.

Choosing these angles for a given direction of observa
depending on energy and momentum of the incoming e
trons depending on the experimental conditions, the ene
distribution of the scattered electrons is obtained as a p
metric function. For the sake of illustration, the followin
angles have been chosen:c5p/2, w5p/2, and q5p/2,

meaningqW i êx andqW 8i êy . We investigated a range of othe
parameters but did not find a significant change of qualita
behavior, although there are quantitative differences.
garding the incoming projectile, the parameters which h
to be chosen are, on the one hand, the initial kinetic ene

Wkin5c2~g21!, ~35!

whereg51/A12b251/A12v2/c2 is the relativistic param-
eter, and, on the other hand, the component of the in

average electron momentumqW parallel to the field propaga

tion direction kW . This choice fixes all other quantities in
volved using Eqs.~4! and~6!. As a typical near-infrared lase
angular frequency we have chosen the one of a neodym
laser:v50.043 a.u., for all numerical evaluations.

B. Nonrelativistic regime

In the limit of slow electron velocities and moderate fie
strengths the effects of the additional spin terms and the
pendence ofqm on the spatial orientation of the electro
momentum due to (kp) are expected to be small. In this ca
the final expression~26! can be compared to the correspon
ing expression for a spinless particle, Eq.~30!, and to the
Bunkin-Fedorov nonrelativistic treatment, Eq.~34!. As an
example we chose the electron kinetic energy to
Wkin5100 a.u..2.7 keV, and thez component of the mo-

mentumqW to beqz50.

FIG. 2. Coordinate system used in the description of the s
tering processes. For a definition of the variables used, see the
-
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For an electrical field strength ofE50.05 a.u. corre-
sponding to a moderate intensity ofI 58.7531013 W/cm2,
the differential cross section given by the generalized eq
tion ~26! is plotted in the upper part~a! of Fig. 3 as a func-
tion of the final electron energy scaled to the photon ener
The scattering angle has been chosen to be large eno
corresponding to a large momentum transfer, so that sig
cant numbers of photons can be exchanged in the cours
the collision. In this relatively low-intensity regime, no di
ference can be seen between the various treatments disc
here, i.e., the cross section as computed from the full tr
ment, Eq.~26!, the one obtained from Eq.~30! derived for a
spinless particle, and the one predicted by the nonrelativi
treatment according to Eq.~34!. One observes that for thi
collision geometry, a set of up to several hundred phot
can be exchanged, in spite of the moderate laser inten
The heights of the different photon-energy-transfer peaks
pend crucially on the values of the ordinary Bessel functio
The spectrum exhibits an overall asymmetric envelope
peaks of negative energy transfer, higher than peaks for p
tive energy transfer. Also, there is an asymmetry of the sp

t-
xt.

FIG. 3. Envelope of the differential cross sectionds/do scaled
in 1027 a.u. as a function of energy transferQ82Q scaled in units
of the laser photon energyv for an electrical field strength o
E50.05 a.u. or a vector potentialA5159.3 a.u. The initial electron
energy isW5100 a.u. The expressions for spinless particles and
the nonrelativistic case give visibly identical spectra. The up
picture ~a! shows the complete final-energy spectrum. In the low
picture ~b!, a magnification of the central part around the elas
peak is shown.
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3854 56C. SZYMANOWSKI et al.
trum in the sense that it is more extended on the absorp
side ~positive energy transfer! than on the emission sid
~negative energy transfer!. For this choice of parameters th
observed cutoffs are found to be at about1570v and
2500v, respectively. Note that in the case of stimulat
emission the final energy of the electron is still around
keV. Though the kinetic energies of the scattered electr
are remarkably redistributed over more than 1 keV, no
overall heating or cooling effect occurs. In fact, we check
that the average value of the kinetic-energy transfer is alm
zero. Around the central elastic peak at zero an oscillat
behavior is found which is magnified in the lower part~b! of
Fig. 3. There is a slight, but notable shift of230v of a
nearly mirror-symmetry axis for the occurring oscillation
The magnitude of the shift depends on the choice of
angular parameters, as explained below.

An investigation of other choices for the kinematical p
rameters reveals qualitatively the same behavior, thoug
course quantitative modifications occur. Then the origin
the asymmetry in the distribution can be traced back to

dependence of the modulus of the final momentumuqW 8u on
the photon-energy-transfer numbern according to Eq.~25!.

In the denominatoruqW 2qW 81nkW u4 of Eqs.~26! and ~30!, the

termqW 8•qW 8 makes a contribution 2nvQ/c2, which accounts
for most of the asymmetry envelope. Depending on the s
of n this term makes the denominator increase in the c
n,0, and decrease in the casen.0, yielding an enhance
ment of negative over positive-energy-transfer cross s
tions. At the same time, the positions of the maxima at
edges of the energy distributions are determined by the m
nitude of the argumentz of the Bessel functions and can b
found for photon energy transfers when the order of the fu
tion roughly equals its argument. In this case, the Bes
functionJn can be expressed in terms of the Airy function
according to@33#

Jn~n1zn1/3!.21/3n21/3Ai ~221/3z!, ~36!

which reaches its maximum value nearz50. This implies as
well that the positions of the edges of the distribution depe
on the momentum transfer and consequently on the sca
ing angle. In addition,z is slightly dependent onn, which
amplifies the asymmetry between the positions of the
edges. In addition, for increasing ordern and fixed argument
the value ofJn is decreasing withn2n, whenn@uzu. This
explains why the cross section falls off abruptly beyond
points where the argument of the Bessel functions equa
the order.

Concerning the extension of the structure, the maxim
transfer of energy between the field and the projectile dur
the scattering can be explained in a simple manner u
either the classical or quantum pictures. In fact, the argum
z of the Bessel functions is in some sense a measure fo
difference of the transient change in energy between the
coming and outgoing dressed electrons. This is most cle
seen in the nonrelativistic limit.

In the classical picture, the time-dependent energy of
electron contains, in addition to the mean value, a tim
dependent contribution
n
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W~ t !5
p2

2
1

E2

2v2 1
EW •pW

v
5Wkin1Wosc1Wtrans~ t !.

~37!

Depending on the phase of the field, the incoming elect
actually has gained or lost a certain amount of energy on
way through the field when it collides elastically with th
nucleus, thereby changing its propagation direction but le
ing the actually acquired energy unchanged. Therefore,
collision process transforms transient oscillatory energy i
real changes of kinetic energy of the electron. The trans
energy difference scaled to the photon energy then read

~Wtrans2Wtrans8 !/v5EW •~pW 2pW 8!/v2

5
E

v2 upW 2pW 8ucos@/~EW ,pW 2pW 8!#.

~38!

For a given scattering geometry the angle is phase de
dent, and extremal energy transfer is obtained when the
sine equals61. For the present kinematics this scaled ma
mal transient energy difference is 540. The interesting po

is that this quantity is in fact the argumentz5EupW 2pW 8u/v2

of the Bessel functions entering expression~34!, which re-
sults from the nonrelativistic quantum calculation. Hence
difference of the maximal variation of the energy corr
sponds to the range of the peak structure in the laser-ass
cross section, meaning the maximal change in final m
energy.

C. Relativistic regime and spin effects

The major effect of increasing the field strength is to
crease considerably the maximum number of photons
changed, although the overall shape of the energy distr
tion of the scattered electrons is globally similar to the o
displayed in upper part~a! of Fig. 3. For example, when
increasing the field strength toE51 a.u., corresponding to
an intensity of about 3.531016 W/cm2, while keeping the
same electron velocity such asWkin5100 a.u..2.7 keV.
Then up to about 27 000 photons can be absorbed, as sh
in Fig. 4, where the absorption edge structure is shown. N
the change of scale. The solid line denotes the result acc
ing to the full treatment, Eq.~26!, the short dashed line
sketches the result according to Eq.~30! for a spinless par-
ticle, while the long dashed line gives the result of the no
relativistic calculation according to Eq.~34!. While there is
only a minor difference between the two relativistic calcu
tions, there is a notable shift of about 200 photon energ
less in the nonrelativistic treatment. We conclude from th
findings that relativistic mass shift effects show up in th
regime of intensities attainable with currently operated la

sources. In particular, for a given electron momentumpW , the
nonrelativistic limit (kp)→v can no longer be performe

for the determination of the average momentumqW , which is
of crucial importance inside the argumentz of the Bessel
functions. Nevertheless, almost no spin effects occur.

Note that we have not shown the central part of the d
tribution which corresponds to moderate photon ene
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56 3855MOTT SCATTERING IN STRONG LASER FIELDS
transfers. Its overall envelope exhibits regular oscillations
the peak height. In this regime, the argumentz of the Bessel
function is much larger than the ordern. The principal
asymptotic form of ordinary Bessel functionsJn(z) are well
known: Under the condition 8z@4n221 the asymptotic ex-
pression is

Jn~z!.S 2

pz D 1/2

cosFz2~n11/2!
p

2 G , ~39!

where n is fixed, andz becomes large@33#. Therefore we
conclude that in strong fields the Bessel functions for m
erate energy transfer can be replaced by periodic co
functions. Sincez depends in first order linearly on the e
changed photon momentumnv, the variations of the cros
section reveal several oscillating envelopes for the differ
momentum transfers. The number of oscillations depend
the direction of observation, becausez depends on it as well

As a typical example of relativistic regime, the electric
field strength of E55.89 a.u. corresponding to abo
1.231018 W/cm2 andWkin5c2 or g52 is considered. Note
that in such a high field the initial conditionc5p/2 can no
longer be fulfilled for a relatively slow electron wit
Wkin5100 a.u. because of the important radiation pressur

the kW direction. In order to keep the same illustrative cho
of angles, the kinetic energy of the electron has to be
creased. Now, significant differences occur at the absorp
edge, which lies at about 523100 photon energies. In Fi
the solid line denotes the differential cross section accord
to expression~26! for the Dirac electron, and the dashed lin
sketches the result for spinless particles from Eq.~30!. Since
in both cases the same argumentz occurs in the Bessel func
tion, the cutoff is found at the same position. Neverthele
the cross section for electrons is smaller by a factor o
Here the difference between the spinless and exact D
treatments is of the same order of magnitude as the one
served for the Mott scattering itself, namely, in the abse

FIG. 4. Envelope of the absorption edge part of the differen
cross sectionds/do scaled in 1029 a.u. as a function of energ
transfer Q82Q scaled in units of 1000v for an electrical field
strength ofE51 a.u. or a vector potentialA53186 a.u. The initial
electron energy isW5100 a.u. The solid line denotes the result f
electrons, the short dashed one the differential cross section
spinless particles, and the long dashed one the result for the no
ativistic limit.
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of the laser field. This clearly indicates that it is the cont
bution associated to the free bispinor part of the Volk
wave function which dominates the cross section: the M
factor due to spin-orbit coupling reduces large angle scat
ing.

D. Angular distributions: Mott effect and light pressure

As was shown above, for strong fields the central part
the spectrum consists of peaks whose heights are determ
by oscillations in the values of the Bessel function. Sin
compared to the electron kinetic energy, the photon energ
small, those details of the spectrum might not be of inter
but instead several lines inside a detection window will
observed. For this reason6100 peaks around the elastic on
were summed in order to draw the angular dependence o
h5p/2 scattering.

In Fig. 6 the accumulated differential cross section
shown for an electrical field strength ofE51 a.u. and a ki-
netic energy ofWkin5100 a.u. as functions of angleq in
degrees. Apart from the minor differences in the magnitu
all three calculations exhibit maxima forq50° and 180° a
smooth oscillatory behavior, the minima in the nonrelativ
tic calculation atq5290° and 90°, while they are slightly
shifted in both relativistic calculations.

This trend is even more pronounced for the kinetic ene
Wkin5c2 a.u., as can be seen in Fig. 7. While the nonre
tivistic treatment~long dashed line! again predicts the oscil
latory behavior, both relativistic calculations lead to peak
structures in the direction of the laser propagationq50°.
The Volkov electron cross section~solid line! is below the
spinless particle result~short dashed line!. It is reduced due
to the Mott factor governing the dominant contribution fro
the free bispinor part of the Volkov wave function.

For the relativistic field strength ofE55.89 a.u. and the
kinetic energy ofWkin54c2 a.u., the accumulated differen
tial cross section is plotted in Fig. 8. Here again the th
solid line denotes the result for the Volkov electron, the sh
dashed line the spinless particle, and the long dashed line

l

for
el-

FIG. 5. Envelope of the absorption edge part of the differen
cross sectionds/do scaled in 10214 a.u. as a function of energy
transfer Q82Q scaled in units of 105v for an electrical field
strength ofE55.89 a.u. or a vector potentialA518 769 a.u. The
initial electron energy isW5c2. The solid line denotes the resu
for electrons, and the dashed line sketches the result for spin
particles.
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3856 56C. SZYMANOWSKI et al.
nonrelativistic values. While the difference from the nonr
ativistic result is even larger, now it is found that the Volko
electron cross section is larger than the one for the spin

particle around the direction ofkW at q50°.
In Fig. 8 the contribution of the free bispinor part of th

Volkov wave function is plotted as the thin solid line
comparison to the Volkov electron~solid! and spinless par
ticle ~long dashed! results. This contribution, governed b
the Mott factor, is still always smaller than the cross sect
for spinless particles. These considerations show clearly
in this ultrahigh-field strength regime stimulated proces
become important, and lead to momentum transfer in
direction of propagation of the electromagnetic field.

FIG. 6. Summed differential cross sectionsds/do scaled in
1027 a.u. of6100 peaks around the elastic one as a function of
angleq for an electrical field strength ofE50.05 a.u. The electron
energy is W5100 a.u..2.7 keV. The relativistic parameter i
g.1.0053. The solid line denotes the result for electrons, the s
dashed one sketches the values for spinless particles, and the
dashed one is the result for the nonrelativistic limit.

FIG. 7. Summed differential cross sectionsds/do scaled in
10212 a.u. of6100 peaks around the elastic one as a function of
angleq for an electrical field strength ofE51 a.u. The electron
energy isW5c251372 a.u., and the relativictic parameter isg52.
The solid line denotes the result for electrons, the short dashed
sketches the values for spinless particles, and the long dashed o
the result for the nonrelativistic limit.
-
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V. CONCLUSION

The motivation of this study of Mott scattering in an u
trastrong laser field was to discuss the main properties
well-characterized laser-assisted collision process, in wh
relativistic effects are expected to play a prominent role.
this end, we have compared, for a representative scatte
geometry, the results obtained from the full Dirac-Volko
calculation with those derived from simpler approach
namely, for a spinless~Klein-Gordon! projectile and for a
nonrelativistic electron.

A first general result has been to show explicitly that, f
large-angle scattering geometries, a low-frequency infra
laser can be remarkably effective for redistributing, v
stimulated emission and absorption of laser photons, the
jectile kinetic energy over a very wide range. The distrib
tion in energy of the outgoing electrons at a fixed scatter
angle is approximately centered on the incoming energy,
on the elastic peak, corresponding to zero net exchang
photons with the field. As a typical example, for a Nd las
with angular frequencyv51.17 eV and scattering angl
h5p/2, the spread toward positive energy transfers can
tend up to about 27 000 photons for an electrical fie
strength E51 a.u. and a projectile kinetic energ
Wkin52.7 keV, up to about 523 000 for an electrical fie
strength E55.89 a.u. and a projectile kinetic energ
Wkin5510.7 keV. This entails a considerable decrease of
magnitude of the differential scattering cross section w
exchange of a given net number pf photons, as compare
the field-free elastic cross section, more precisely, forn50
the ratio between the laser-assisted and the field-free el
cross sections can be estimated as being of the orde
uJ0(z)u2<2/pz. If the energy of the incoming electron i
high enough, the loss in the elastic peak is evenly spr
between stimulated emission and absorption proces
which can be identified as stimulated bremsstrahlung
stimulated inverse bremsstrahlung, respectively. A noti

e
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FIG. 8. Summed differential cross sectionsds/do scaled in
10214 a.u. of6100 peaks around the elastic one as a function of
angleq for an electrical field strength ofE55.89 a.u. The electron
energy isW543c2, and the relativistic parameter isg55. The
thick solid line denotes the complete result for electrons, the s
dashed one sketches the values for spinless particles, and the
dashed one is the result for the nonrelativistic limit. The thin line
the contribution from the free bispinor part of the Volkov wav
function.
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able asymmetry in the energy distribution is observed, wh
can be ascribed to kinematical factors depending on the s
tering geometry. Another source of asymmetry also com
from the fact that the final energy of the projectile is bound
from below to zero. This situation arises if the incomin
projectile energy is not high enough as compared to
maximum number of photons, which can be emitted in
process. Although stimulated recombination could in pr
ciple take place, the system ending in a bound hydroge
state, we did not discuss this process here as it plays on
marginal role.

The kinetic-energy spectrum of the scattered electro
which replicates the distribution of the net number of e
changed photons, always exhibits a sharp decrease beyo
quite well-defined cutoff. The location of the cutoff is a
important physical parameter which characterizes the m
mum amount of energy which can be exchanged between
projectile and the field. It can be estimated via a rat
simple classical analysis wich singles out the importance
terms related to the net momentum transfer taking plac
the course of the collision. More precisely, the width of t
distribution is related not only to the averaged ponderom
tive energy gained by the electron in the field but also to
transient energy. The pertinence of the analysis is confirm
by comparing to a quantum approach where the relevant
rameter is then the momentum dependence contained in
argument of the Bessel functionJn(z). Jn represent in some
sense the relative weights of a dressed stated with energy
momenta shifted in the presence ofn photons from the lase
field. The maximum energy transfer then coincides with
limit n.z, beyond which, for larger values ofn, the Bessel
functions decrease exponentially. Our analysis confirms
concordance of the two pictures, which both provide a f
estimate of the width of the distribution.

For relatively slow projectiles with a kinetic energy of 2
keV, we have verified that the three approaches consid
here @nonrelativistic, relativistic spinless~Klein-Gordon!,
and Dirac-Volkov# lead to almost indistinguishable results
rather low laser intensities of about 1013 W/cm2. However,
relativistic effects induced by the laser start to show up
ready at a field strength ofE51 a.u. ~corresponding to
3.531016 W/cm2!. A clear signature is the change in th
position of the high-energy cutoff, which is shifted towa
higher energies by about 200v as compared to the nonrela
tivistic calculation. For such conditions differences betwe
the Klein-Gordon and Dirac treatments are negligible, as
pected.

Even stronger electrical field strengths reveal signific
differences between the two relativistic treatments. While
most cases the contribution from the free bispinor part of
Volkov wave function turns out to be dominant, for high
field strengths and faster projectiles the contributions of
spin-dependent terms significantly increase the differen

cross section in the propagation directionkW of the laser.
These contributions, which arise from the coupling betwe
the spin and the field, become dominant at higher fi
strength, thus demonstrating that a complete Dirac-Volk
electron treatment is necessary in this regime.
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APPENDIX

In order to average over initial and final polarizations
factor 1

2 and a summation over final and initial polarizatio
states of the electron has to be included. In the calculatio
the differential cross sectionds, the squared modulus o
products ofg matrices and dyadics (uū)5cp” 1c2 of bi-
spinors arise from the matrix elementTf← i . Due to the well-
known identity

(
i , f

uū8...g...uu25Tr@ ...g...~u8ū8!...g...~uū!#,

~A1!

where i and f count, respectively, initial and final polariza
tion states, the averaging can be reduced to the calculatio
traces ofg-matrices. In expression~21! derived above there
are 36 products of this form to be evaluated.

In the following formulas the abbreviationx̃m5(v0,2vW i)
is used. This has proven to be convenient in describing
action of the adjointg matrices like (g†v)5(g ṽ) and the
signs arising from commutation operations betweeng0 and
gm inside the different traces due to$g0,gm%52g0m.

First, there are four contributions multiplied by the pre
actor uBnu25Jn(z)2: The modulus of the contribution con
taining the Mott spin factor reduces to

Tr@g0~cp” 81c2!g0~cp” 1c2!#54c2@c21~pp̃8!#, ~A2!

the modulus of the contribution from theA2 term becomes

Tr@k”g0k” ~cp” 1c2!k”g0k” ~cp” 81c2!#532~kp!~kp8!v2,
~A3!

and the two interference terms between them yield

Tr@g0~cp” 1c2!k”g0k” ~cp” 81c2!#

1Tr@k”g0k” ~cp” 1c2!g0~cp” 81c2!#

516v2c2116v2~pp̃8!18c2~kp8!~kp!28c2~kp̃8!~kp̃!.

~A4!

Second, the 16 contributions multiplied by the prefacto
are mutually complex conjugates according to

Bcn~z,f0!* Bn~z,f0!1Bcn~z,f0!Bn~z,f0!*

5@Jn~z!Jn11~z!1Jn~z!Jn21~z!#cosf0 ~A5!

are considered similarly for Bsn . Noting that
k”g0k”52v2/c2(g02g3), there are two traces in arising from
the A2 term which have similar structures:

Tr@A” ik”g0~cp” 1c2!g0~cp” 81c2!#

54c2@~Aip8!~kp̃!2~Ai p̃!~kp8!# ~A6!
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and

Tr@A” ik”g0~cp” 1c2!g3~cp” 81c2!#

54c2@2~Aip!~kp8!1~Aip8!~kp̃!#, ~A7!

wherei P$x,y%, which also appear with interchanged initi
and final momentap↔p8. It is realized that the first trace i
to be calculated as well for the contribution containing t
Mott factor.

Finally, there are 16 contributions multiplied b
uBcn(z,f0)u2 and uBsn(z,f0)u2, respectively. The eigh
cross terms between contributions fromAx and Ay vanish,
which was expected because they do not describe a phy
situation but arise from the chosen description of the circu
polarization in Cartesian components. Now there are two
ferent traces to be evaluated, where againi P$x,y% is used,
and they read
-

ev

A
s.

ge
g,
.
v

ys

M
o

ys
.
,

cal
r

f-

Tr@k”A” i~cp” 81c2!A” ik” ~c p”̃ 1c2!#528c2Ai
2~kp8!~kp̃!

~A8!

and

Tr@ k”̃ A”̃ i~c p”̃ 81c2!k”A” i~cp” 1c2!#1Tr@k”A” i~c p”̃ 81c2!

3 k”̃ A”̃ i~cp” 1c2!#

516v2H ÃiAi

c2

2v2 @~kp!~kp8!1~kp̃!~kp̃8!#1@~Aip8!

3~Aip!1~Ai p̃!~Ai p̃8!#2AiÃi@c21~pp̃8!#J . ~A9!
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