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Diffraction of matter waves in space and in time
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In analogy to the well-known diffraction of waves at spatial structures, one can also define diffraction in
time when a wave is temporarily modulated. In the present paper we investigate this phenomenon starting from
a Green's-function approach. Diffraction in time appears for Stihger waves and not for light in vacuum.
Specific cases of diffraction in time investigated here are diffraction at an “edge in time” and a Fresnel lens
in time. We then investigate in detail the simultaneous diffraction both in space and in time representing a
general solution. Then we analyze in detail diffraction at an edge, both in space and in time, of a single slit in
space and in time, a double slit in space, and a single slit in time, a single slit in space and a double slit in time,
and, finally, a double slit both in space and in time. In all cases we analyze the possibilities of various
approximations which can be made, and show the limits and validity of the Fraunhofer approximation both in
space and in time. We give explicit results for a gedanken experiment with very cold atoms.
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[. INTRODUCTION on the other hand.Then in both cases we obtain the same
(Helmholtz equation
Diffraction in space implies a deviation from the geo-
metrical path including deflection into the geometrical V2p(r)+k2¢(r)=0 3
shadow. Analogously, diffraction in time implies that the
wave can appear at the observation point at times differerfor the stationary solution. The wave numbég is
from the flight time of a classical particle. In the present\2mwg/#%? for the Schrdinger equation and,/c for the
paper we study phenomena appearing when both diffractiowave equation.
in space and in time happen together. Inspecting the symmetry between space and time coordi-
For a typical example of simultaneous diffraction in spacenates in the wave equatidthat is, the fact that the deriva-
and in time, consider a semi-infinite monochromatic wavetives of both space and time coordinates are of second)prder
with wave vectork, parallel to thex axis, which is blocked and knowing that electromagnetic waves exhibit diffraction
at x=0 by a nontransmitting screen containing a closed apin space in the nonstationary case, one might be tempted
erture and oriented perpendicular to the propagation diremawely to assume that diffraction in time occurs for electro-
tion. If att=0 the aperture is opened, at timavhat will be  magnetic waves. However, diffraction in time does not occur
the probability density to observe the particle at the generdior the wave equationf3], but, in contrast, arises for the
positionr behind the slit? Schralinger equatiori3—7]. Moreover, despite the fact that
It is well known that in the stationary cage—« in the the Schrdinger equation is of parabolic type, while the
above example both matter waves and electromagnetic Helmholtz equation is elliptic, there is a close resemblance
waves show the same diffraction pattern. This is most dibetween the matter wave diffraction patterns in time and the
rectly seen by specifying a harmonic dependence on timetationary diffraction patterns in space.
(r,t)=g(r)e '®dt as an ansatz for the Schilinger equa- The problem of nonstationary diffraction effects of matter
tion in vacuum waves appears to have first been discussed by Moshinsky
[3]. Involving certain initial conditions in space, he consid-
ered the problem of wave evolution following the instanta-
neous removal of an ideal nontransmitter from a semi-
i2m ayp(r,t) infinite monochromatic beam. He found a solution closely

2 N
VIO + - ——= =0,

1)

IEvidently, electromagnetic waves are vector waves. Yet it can be
shown that in free spadd] and in some cases even inside media
[2], one can use the scalar wave equation. In general, it takes quite
a calculation and specific assumptions to derive this result. It was
shown in Ref[1] that, for example, the intensity of natural light in
5 vacuum can be represented in terms of a single complex scalar
1 97(r,p) function if the electrical and magnetic fields do not vary ap-
szﬁ(r,t)— = =0, 2) wave function i g ry ap

c a2 preciably over the wave front.

on the one hand, and for the wave equation in vacuum,
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related to the stationary one for diffraction of a plane wave at Involving boundary conditions to solve nonstationary
an edge in space. problems, in the present paper we introduce conditions in
The dispersion relations lie at the heart of diffraction intime analogous to the boundary conditions in space used in
time phenomena. The relation between frequency and wavéationary spatial diffraction. Hence, in Sec. Ill A we use an
vector as given by the Schdimger equation isw(k)  “edge in time” boundary condition to solve Moshinsky's
=|k|?:/2m. Thus an initial wave with group velocityy and  problem. In order to extend the analogy between stationary
W|th a Sharp wave front at some ihStant W|“ instantaneousl)bpti(:s in genera' and nonstationary OptiCS of maitter waves
spread over all space. Actually, in order to obtain a shargyrther, in Sec. Ill B we introduce Fresnel zones in time, and
front, one requires infinitely large momentum components;ysirate this by introducing a Fresnel lens in time. In Sec.
which for Schralinger waves would imply infinitésigna) v/ combining the conditions in space with the conditions in
velocities and instantaneous spreading. Consequently, an o e, we compute different two-dimensional problems which
server at distanci| could detect a particle before the flight pern%it us to discuss simultaneous diffraction and interfer-

time |r|/|vo| of a classical particle. In the case of an electro-, " oo ts i space and in time. The solutions obtained
magnetic wave such a dispersion would imply detection o old when the conditions for strong diffraction effects in
the particles before the timf|/c. Conversely, since the o S lor strong

space and in time are satisfied, i.e., when the wavelength and

wave equation involves only derivatives of the safesec- . .
ond order in space and in time, there is no dispersion, an&he wave period of the de Broglie wave are of the same order

the wave front of the initial wave packet propagates with the2S the slit width and the slit opening time, respectively. We

limiting velocity c. Therefore, there is no diffraction in time IS0 identify that parameter regime where the space and time

for light. For completeness we mention here that, in generadependences of the diffraction patterns are equivalent.

for electromagnetic waves, and thus for photons, diffraction !t iS @ challenging research program to exhibit diffraction

in time can indeed occur in a medium. This is because, insid@nd interference effects for increasingly larger objects. We

a medium, we find dispersion relations which significantly_emphas'ze therefore that_the phy5|ca_l pgrameters considered

deviate from the linear free-space behavior. in Sec. IV_for the experimental realization of phenqmena
The above-mentioned symmetry of space and time coordiscussed in the present paper may be accessible with cold

dinates in the wave equation is sufficient for equivalence2toms. Itis well known in the theory of stationary diffraction

between phenomena in space and in time only in onethat the diffraction pattgzrn in the Fragnhofer limit rep.res'ents

dimensional problems, while the observation of diffraction inthe square of the Fourier transform in space of the incident

space requires at least two dimensions. A wave emitted by Wave in the aperture. In Sec. V we examine under which

point source(Green’s functioh obeying the wave equation conqmons one can generalize §uch conS|dera_1t|0|js to the non-

in vacuum will be concentrated at tinteon a sphere of statlonary diffraction patterns in space and in time. Finally

radiusct whose center is at the source point. The wave funcS€C- V1 is reserved for some concluding remarks.

tion represented by the superposition of the effects of many

point sources in an aperture can thus also differ from zero in Il. POINT SOURCES OF MATTER WAVES IN SPACE

regions inside the geometric shadow, but only after timhe AND IN TIME

(L is the distance to the nearest point in the apeyturbus

light propagating in vacuum exhibits diffraction in space but

not in time. . ) e

In contrast, the Green’s function of the nonrelativisticti'?ha Zg)f;lrce tt_erlm. U3|tr_19 SUpgrtEOS.'t'ﬁn’ both the sogrce éerm
Schralinger equation immediately becomes unequal zero eV? d‘?t. Iteren La ?qu? |gn an I etl_n omcf)genteOLljls m;ln ar)t/
erywhere as soon afs differs from zero because a point condtion can e treated as collections of mutually coneren

source & disturbance contains all velocity Components__point sources. This yields an exact solution in the form of an

Therefore at some fixed space point the wave function buildg"egral' . L -
up continuously front=0. Thus matter waves diffract both _The Sphrdmger equation in vacuurfi) modified to con-
in space and in tim@. tain the inhomogeneous source tepifr,t),
In Sec. Il the Green’s-function approach to solving linear, )

; ; ; ; ; ; i2m dy(r,t)
partial, and in general inhomogeneous differential equations V25(r t) + —
with inhomogeneous boundary conditions is applied to the ’ h at
Schralinger equation modified to contain a source term. Us-
ing superposition, both the source term and the inhomogds an example of a linear, partial, and inhomogeneous differ-
neous boundary condition are treated as collections of coheential equation. Although the source densityr,t) has no
ent point sources. immediate physical meaning, we introduce it for mathemati-
cal completeness. This will facilitate the treatment of certain
boundary conditions and initial conditions. For each type of
equation there is a definite set of initial conditions and

dinger equation can be expressed as a product of the individuzQOundary Condij[ilons WhiCh,Wi" Qi"e unique.solutionls, and
waves propagating in independeix, y, andz) directions. This a1y other conditions will give e|th_e_r nonunique or impos-
implies that after passing an aperture the deflection of a mattefiole answers. The boundary conditions may be given in dif-
wave into the geometric shadow is due to the independent dispeferent types. The specification on the boundary surface of the

sions along these directions, rather than being a consequence Wﬂ'ue_ l_ﬁ(r,_t) i? called the Dirichlet condjtiop. The Neumar‘n
correlated propagation along different directions contained in th&ondition is given when the normal derivative of the function

nonseparability of the electromagnetic Green’s function. (r,t) on the boundary is defined. When a linear combina-

In this section we first determine the solution of the time-
dependent Schrdinger equation in vacuum modified to con-

=—4mp(rt), (@

A wave originating at a point source and obeying the $chro
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(causality.® Thus

7o Sgg‘ir,ff G(r,t,rg,tg)=0 and VG(r,t,rg,ty)=0 for t<tg,.

observat.ion/?// (7)

Using the boundary condition$) and causality7), the so-
lution of the modified Schidinger equatior(4) can be rep-
resented in integral forrB]:

t+
lﬂ(r,t)ZL dtodeVoP(ro:to)G(r,t'roJo)

FIG. 1. Source pointy, observation point, boundary surface im
9V, and volumeV considered in the text. 2 py—s f dVoG(r,t,ro,0)¢(ro,0)
tion of the functiony(r,t) and its normal derivative are 1 [t+
given on the boundary, it is called a mixed boundary condi- Y- fo dtofavdSO[G(r,t,ro 10) Voih(ro,to)
tion. Depending on whether the values of the boundary data
vanish or not, we speak about homogeneous or inhomoge- —(rg,tg) VoG(r,t,rg,t0)]. (8)

neous boundary conditions, respectively. The condition on
the boundary surface for the Schioger equation may be

enf;_ehreD”lrr:gglrit oorf Tr?:rcrj]i?fre]?eﬂ;igrlée[ﬂ.ti off) has the con- facedV and points outward, away from the volurwenside
sequence thai/ the sum of the solqutlons for different |nd|the boundary. The first integral in E() represents the ef-
4 5Iects of volume sources, the second one the effects of the

;/rlgusf‘ié jr%itesréze?] tS(:/'\L/‘itt'r?rt‘h‘;f tg?nteggitrfen ::X)II'[Stighne zﬂ;né) nitial condition, while the last one includes the effects of the
p : P ; oundary condition.

thus obtain the solution for an arbitrary source distribution. Contrary to the Scfidinger equation, the initial condi-

The solution of the equation tions for the wave equation are of the Cauchy type. This
; means that uniqueness of the solution requires at every space
i2m aG(r,t,rq,tg) . ; e .
I r— point considered not only the specification of the initial wave

d function, but also of its initial derivative in time. This is a
= —4mwS3(r—rg) S(t—ty) (5)  consequence of the second derivative in time in the wave
equation(2). The boundary conditions are of the same type
for both the Schrdinger and the wave equation. Thus the
integral representation of the solution of the wave equation
appears in the form8]

The vectordS, represents an element of the boundary sur-

V2G(r,t,rg,tg) +

is called the Green'’s function for the Scdinger equation in
vacuum. Generally, the Green’s functi@fr,t,rq,ty) can be
understood to describe, within the voludeenclosed by the
surfacedV (Fig. 1), the effect on the observation pointat
time t of a point source localized at positiog at timet,. t

Morse and Feshbadi8] gave integral forms of solutions Pl(r,t) = fo dtoJVdVoP(ro,to)G(r,t,fo,to)
for several linear partial equations. Inserting the imaginary

squarea?= —i(2m/#) of the diffusion constana into the dG( r,t,ro to)
results (p. 857 in Ref.[8]) for the diffusion equation: __f (10,0
V2y(r,t)=a?[dy(r,t)/at], one may immediately obtain the to=0
corresponding expressions for the Satinger equation. In (1o ,to)
the following we briefly discuss these expressions. —G(r,t,ry,0) ot ]

to=0

To ensure the existence and uniqueness of the Green's
function, we let it obey certain boundary conditions and ini- 1 [+
t!al cong:htlons._ It_ is sufficient to consider that Green’s func- + f dtoJ dSy[G(T,t,7o,te) Vorl(Toto)
tion which satisfies the homogeneous form of the boundary N
condition with respect to the variabte either Dirichlet,

- w(ro ltO)VOG(rlter ltO)]'
G(r,t,rg,ty)=0, redV,

or Neumann, 3For the case of waves which do not have a wave front and a
limiting (signa) velocity (which is the case for Schdinger waves
VG(r,t,ro,tg)=0, redV, (6) the Schuetzer-Tiomno causality conditip®| is to be applied. It
reads as follows: the scattered wave packet at a disfahaetime
or mixed. Physical reasoning forces initial conditions on the; cannot depend on the behavior of the incoming wave pacKet at
Green’s function. The disturbance at poigtat timetg has  at later timest>t,, i.e., G(r,t,r,t;)=0 for t<t,. The condition
an influence on other space points only at later ties, used by us is a stronger condition.
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Employing the Green’s function, one can obtain a solu- IIl. DIFFRACTION IN TIME
tion of the inhomogeneous equation with the given homoge-
neous boundary condition, or else the solution of the homo- time-d dent M has b treated th iicallv b
geneous equation with an inhomogeneous boundar Ime-gependent apertureé has been treated theoretically by

condition. Because of the linearity of the equation it is also d%z:}s!ioil:atlhg:ga;ﬂ. 'ngr}ﬁsfg?gpl)etsgw(;?zeit:slt;slu?ioﬁnv?/:e\s
possible to solve the inhomogeneous equation with an inho- ade by Moshinsky3], who analyzed the wave evolution

mogeneous boundary condition by superposition of botri“ . . : .
. : ,.following the instantaneous removal of an ideal nontransmit-
types of solutions. !t might not be clear how th? Green Sting sc?een from a semi-infinite monochromatic beam
function, as a solution of thahomogeneousquation(5) #(x,0)=e'**g[ —x]. Involving this initial condition and the
satisfying thehomogeneouboundary _condiltlon, could help Gre,en’s function for a free particl®), he performed calcu-
E(S)J?] dsg;/ii]]gmgge?ne %lrjggf ?S'?:avlggrlhailgnr:ggogﬁ (;‘ :r(;?asn OII_ations of the last volume integral in E(B). Yet the initial
' ; : .condition approach is difficult to realize in the general case
able, we can apply a well—known recipe used in gl_ectrostatu?lc a screer?pcontaining a time-dependent apegrture. This is
problems. Replacing the inhomogeneous condition on th ccause the Greems functions of such two- or three-
boundary surface by a homogeneous one together with & ) e
: e dimensional problems are very difficult to calculate for an
appropriate surface distribution of sour¢elouble layer for infinite volumpe and to our knyowledge have not yet been

Dirichlet conditions and a single layer for Neumann condi- btained. not even for the simplest aperture obening func-
tions) just inside the surface, one reduces the case of thf ' P P P 9

The problem of the evolution of a matter wave incident on

homogeneous equation with inhomogeneous boundary co tIF?QS.oCs)iTi\fgehgtlgir Qgg’t'r‘:;""; rﬁft(;'fcir?eugifgg'%éaggzs to
dition to the case of the inhomogeneous equation with ho_solvg the roblempb com uting the surface in?e ol E
mogeneous boundary condition. P y putng g qg.

Pointing again to Ref{8], where the exact and detailed (8) with appropriate boundary cqnditions in the ple_lne of the
evolution is treated, here we briefly analyze the Green'Screen and with the corresponding Green’s function always

function for the Schrdinger equation in vacuum for an infi- Z?;Idey'll'r;1Qe;h?hglféifcr;ufilraqlcj)?ttlgf)Glrr]etehr?sV(fjlljl::cT:]t(iao(r:\Ocrjlzlde;n ds
nite volume(i.e., for a free particle : P

only on the specific type of boundary condition.
The second reason for using the boundary condition ap-
proach is to complete the analogy between diffraction in time
m |2 1 ' ) and stationary diffraction in space. The integration over time,
=( . ) s €Ml grt—t ] (9)  contained in the integral involving boundary conditions,
2mih (t=to) makes it possible to introduce conditions in time analogous
to the conditions over space in stationary spatial diffraction.
where g[t—to]=1 for t=t,, and O fort<t,, is the step Hence a sudden removal and replacement of the screen is
function required by causality. Since we are dealing with aepresented by an appropriate range of integration over time
point source in an infinite homogeneous and isotropic Vol{in the one-dimensional problem the integral expressing the
ume, G is rather a function ofr—rg| than ofr andry  effects of the boundary conditions reduces to one over time
separately. As soon ds-t, differs from zero, the Green's only). This is a time analog of a slit in a screen in stationary
function immediately becomes nonzero everywhere. Thigjiffraction, represented by a corresponding integration over
shows that we are dealing with nonrelativistic quantum mespatial coordinates at the boundary surface. We now turn to a
chanics. more detailed discussion of Moshinsky’s problem, intending

A particle propagating from positiory at timet, to the  to solve it using the boundary condition approach.
point r at time t moves with the velocityV=(r—rg)/(t

—1y). Using this expression in the definition of the wave
vectorK=mV/% and the frequencf)=mV?/2% of the de
Broglie wave, the corresponding phase(r—rgy)—Q(t We consider a semi-infinite plane matter wave propagat-
—to)=mlr—ro|%2(t—t;) matches exactly that of the ing parallel to thex axis from left to right, being stopped by
Green’s function9). Considering every Green’s function as & hontransmitting screen placedxat O oriented perpendicu-
a representation of a unitary evolution operatorlar to the propagation direction. All of a sudden the screen is
G(r,t,ro,to)E(r|fJ(t,to)r0) and inserting Go(|r —ro|,t removed att=0, marking the beginning of propagation of
—to)=c(t—to)e‘m|r‘fo|2’2"(t“0) f[t—t,] into the unitarity pamcles aI(_)ng the posnwn-ays. In o.rde.r to calculat_e the
dition O(t ¢ )OT(t ¢ )=f the norm|c(t—to)| will be time evolution o_f the probability of finding _the particle at
con SN0/ R0 o/ 7% pointsx>0 for timest>0, we assume the Dirichlet bound-
fixed leading, besides a phase factor, to E9). Since a

. 0 ) . ary conditiong(0t)=e~'“o'¢[t] at the planex=0. We ex-
conservative syster(freg evolution is conS|dereq, the time pect that the semi-infinite monochromatic time dependence
dependence of the unitary operator appears in the form

¢ of the boundary condition is close to the actual time depen-
—t.

. . L dence atx=0 caused by the free propagation of a semi-
The Green'’s function for the wave equation in vacu@n infinite plane wave. However, a difference will arise at the

IS a sphencal shell around the point source, expanding Wltrénd of the calculation, and will be discussed there. Addition-
the radial velocityc [8], ally we assuméthat for every finite time of observation the
solution tends to zero fax— oo,
G| —r | t—tg) = Sl|r—rol/c—(t—to)] ot—t,] The corresponding Green'’s function, satisfying the homo-
0 ot o Ir—r| o geneous Dirichlet condition at the boundary plae0, can

Go([r=rol,t—to)

A. Edge in time
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be constructed as in electrostatics with the image method sy 20 AT
There an image point source to the left of the boundary isj dé e ¥ ¢e M= 2a
assigned to each point source to the right. The contribution

b
ezaberi{a + =
S

of both sources are then superposed to satisfy the given ho- - b

mogeneous boundary condition. In the case of the homoge- +e “erfag— E )+COHSL (13
neous Dirichlet condition the real point source and its image

have opposite signs: from the integral tables[10] with —a?=iw, and

—b?=imx?/24. Transforming the error functions into
the Fresnel integrals F[z]=/2dud(™’c(, zeR,
t=1o), erfz/\[i]1= \2/iF[z\2/7], one finally obtains

(10 )
ﬁ (t— 7'cl)l

G(r,t,rg,t0)=Go(|r—ro|,t—to)

—Go(|x+xol,ly—Yol:lz— 29

P(x,t)= % e‘(”"‘)e“"ot[ e‘kox( F
where Ggy(|r—ro|,t—ty) is the free propagator9). The

Green’s function(10) is still the solution of the differential ) 2

equation(5) because the image source lies outside of the —F[—OO]) +e'k°X< F _ﬁ (t+7q)
half-space considered. Since the Green’s funciip®) is

zero at the plan&y=0, the first term in the surface integral

in Eq. (8) vanishes, leaving - F[—oo]) } (14

1 [+ whereko=+2mwy/f and T=27/w, are the wave number
P(X,t)=— yp f dtof dSyi(rg,to) VoG(r,t,rg,to). and the wave period of the de Broglie wave, respectively,
T /0 *0=0 and rg=mxko# is the time a classical particle needs to
1Y) ravel from 0 tox. The first term in Eq(14) is Moshinsky’s
solution[3] [see Eq.(15) below], freely evolving from the
initial wave e'*o*g[ —x]. It can be shown that the second
term is freely evolving from the initial wave 'o*g[ —x].
Therefore, if we restrict our considerations to the right half-
12 space, the wave evolved under the boundary condition
e~ i(ml4) e '»o'g[—t] at x=0 is equivalent to the freely evolving
initial wave (€'“o*+ e~ %o%) o[ —x].
i 1 It is expected that the contribution of the initial wave
xj dty ——=p propagating to the left is negligible in the right half-space.
o (1=t Actually, fixing the space point, the argument of the third
Fresnel integral in Eq(14) has its maximum value of
— 4474l T att= 7. This maximum tends to negative infin-
ity for A<x, i.e., T<71y (\=27/k, is the de Broglie wave-
length), leaving only Moshinsky’s solution

After integration overy andz, we obtain

P(X, 1) =X

2mh

X @ iwotogimX/2h(t=tg) (12)

Changing the integration variable f&=1/\t—t;,, we find

ygMosh(x t) = i e i (714 i (kox—wot)

X[ m\¥2 .
— —i(7l4) a—iwgt
yx.b) 2(2%) e e

2
N (t—7q) —F[—oo]) . (19

At this point we shall review some properties of
Moshinsky’s  solution. Moshinsky’s solution has a
We evaluate this integral using the solution remarkable analytical similarity to the solution
(1V2) e~ (T4l (kox—wa) (F[ \[2/\xy]— F[ —oc]) for station-
ary diffraction of a plane wave at an edge. The classically
“4In the corresponding time-dependent electromagnetic problerﬁxpeCted cutoff a_b(=ﬁk0t/|_’n s smeared out because the
one can always find a distance larger thn(t is the observation initial Wa_ve C,Ons's_'ts of dlffere.n.t momer_1tum _ComPO”e”tS
time) such that bothy(r,t) and ay(r,t)/dr are zero. Since the Propagating with different velocities. The intensity given by
waves obeying the Schiiinger equation spread with infinite veloc- MOoshinsky’s solution(Fig. 2) differs appreciably from zero
ity, our assumption is not trivial. Here we content ourselves withOnly whent is of the order of or larger than the time of flight
the plausible argument that the distancean always be chosen 7¢ Of the classical particle. At the time= 7, the intensity is
larger by any order thant (v is the classical velocity of a partiole ~ €xactly 25% of the incident intensity. The analogous point in
such that the norms of boih(r,t) anday(r,t)/ar can be arbitrarily ~ Stationary diffraction of a plane wave at an edge is the posi-
close to zero. tion of the edge projected onto the observation screen. There

" x| F
% dgei w0/§2e<imx2/2h)g2 (
10t
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12.37 | - '
Y(z,t)| ase 1
b : ®(x,1,t,) |
1 v i
! |
X . '
I Tlm? time of emission !
Time Shadow I Iluminated of secondary X
0.95 | Region waves 1, |
' : t,=0 t,=t-14/ t,=t
]

T Tat061Tra ‘ FIG. 3. Dependence of the phase of the secondary wave on the

FIG. 2. Intensity at a fixed-space point as a function of time fortime of its emissiort,[0t] at a fixed-space point at the fixed
the case of diffraction at an edge in time of an incident matter wavdime t. The secondary wave is emitted from the O plane, where
with wave periodT. At the classical timet=r, and at the first the boundary conditioe™'“o'6[ 1] is defined. The phase is station-
maximum in timet= 74+ 0.61yTry for T<ry, the intensity is  ary at the timeto=t— 7 (4= ymx/2hw, is the flight time of the
exactly 25% and 137%, respectively, of the incident intensity, theclassical particl when the classical particle moving with the clas-
latter being equivalent to the intensity wher . The transitional ~ Sical velocity 74 would be emitted.
time from “time shadow” to “time illuminated region” is of the )
order of | Tr for T<ry. Pigm(r 1) = o=V glct—x]

too the intensity is 25% of the intensity level with no edgewhich also exhibits no diﬁraqtion in time effec.ts_. _A similar
present. The transitional time from the “time shadowt’ ( Solution was found by Moshinskjg] using the initial con-
<r4) to the “time-illuminated region” (> is of the dition approach.

order of T, for T<r,. More precisely, forT<r the

intensity reaches its maximal value of 137% of the incident B. Fresnel zones in time

intensity att=7,+0.61yT7y. Analogously, in stationary Huyghens'’s principle postulating that each point on the

diffraction at an edge, the range over which the shadow isvave front acts as a point source of secondary waves supple-

not sharp is of the order ofAx. With further increasing mented by Fresnel with the statement that these secondary

time the intensity oscillates in a damped fashion around thevaves are mutually coherent and interfere, is basic for the

incident intensity, the latter being equivalent to the intensityFresnel zone method of an intuitive description of stationary

of Moshinsky’s solution whet—-cc. Similarly, going from  diffraction. Thus dividing the front of an incident plane wave

the light-shadow boundary into the illuminated region, theinto annular zones in such a way that the distances between

intensity for the stationary diffraction of a plane wave at anzone boundaries and the observation point vary in steps of

edge oscillates in a damped fashion around the incident inx/2, and letting the secondary waves arriving from different

tensity. zones interfere, we can determine the amplitude at the obser-
Therefore, forT<r7, there is a close relationship be- vation point for any number of open zones.

tween the solution for the diffraction at an edge in time and The solution involving time-dependent boundary condi-

the one for stationary diffraction at an edge in space. Theions is equivalent to one for an appropriate time-dependent

condition of a step function screen opening and the closelistribution of sources over the boundary surface, thus ex-

mathematical resemblance with the stationary solution of diftending Huygens’ and Fresnel’s principles to nonstationary

fraction at the edge are the reasons for calling the presemroblems. Then)(r,t) satisfying the inhomogeneous Dirich-

case an “edge in time.” The difference between diffractionlet condition may be interpreted as a superposition of sec-

at the edge in time and stationary edge diffraction is that th@ndary waves emitted from a double layer of a magnitude of

nonstationary solution vanishes fox0, while the solution  “dipole” moment density proportional to the valug(r,t) at

of the stationary problem differs from zero for all values of the boundary8].

the y coordinate. This difference emerges due to well- Here we are interested in the solution in the right half-

defined starting time of the inhomogeneous boundary condispace when the Dirichlet conditioe™'“o'o¢[t,] at the

tion. boundary surfac&=0 is defined. We shall now calculate a
We also want to emphasize a close resemblance betwegecondary wave)s"“2{x,t,t,) emitted att, from a double

the solution for light diffraction at the edge in time and the layer with dipole moment density of uniform magnitude pro-

solution for matter wave diffraction at the edge in time in theportional toe™'“o'. From Eq.(11), we obtain

classical limit. Expressing solutiori&4) through the classi-

cal velocity v, instead ofk, and o, and letting Planck’'s ~ #*"1x,t,to)

constanh tend to zero and/or the masstend to infinity, the 1 = " JG

. - ) . . (r,t,rg,to)

time transitional period tends to zero and the solution re- =1 j dyof dze '@oto —— "

duces to the classical one: IXo Xg=0
i _ aikg(x=vot) _ m \¥2 1
iM mar,t) =€ O[vot—x]. —x o i0otogim@I2h(t—tg) (16)
#i—0 27k (t—ty)%? :

Dealing with the same problem for electromagnetic waves Thus the phase of the secondary wave emitte & at
instead of matter waves, we obtain the solution pointx at timet (Fig. 3
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t,t to+ —mxz 1
X = — . P 1
¢( 14y 0) Wolg 2ﬁ(t_to) ( 7) +
)to\:t
)
Notice that this is just the phase of the integrand in @4). »
Now we will divide the time axig, into zones in such a
way that the phases of the secondary waves emitted at tt Q-
zone boundaries differ by when arriving at the fixed point 0, to=t -7
x at timet. Denoting the boundaries of the zones in time by
t5,t5%...tp",...neN, we can write this condition in the =
form @)tF—oo
+1 0 oo =
¢(X5t|t0 )_¢(X,t,to):W, (b)
*2 *1\ _
P(X Lty ) = d(X bty )=, (18) FIG. 4. (a) represents the arrangement of Fresnel zones in time,

wheret, is the time of emission of the secondary wave. The center
oy of the zeroth zone is defined as the emission time of the classical
particle propagating with classical velocity. Poifls M, O, N,
d)(x,t,tg”)— d)(x,t,tgnfl): T andP.., correspond tdy=—, t,=0, to=t— 7y, andty=t, and
to the boundaries of the zones, respectivély. shows the spiral
emerging from the graphic addition of the amplitudes of the sec-
ondary waves in the complex plane. This spiral is analogous to the

Realizing that the phag@?) is stationary for a classical par- famous Cornu spiral of t_he stationary_ Fregnel diffraction. If the
ticle moving with the velocityy2%wo/m and arriving at  20nes bounded by the poi6t and the poini; in (a) are open, the
pointx at timet (see Fig. 3, the center of the zeroth zone is amplitude at the observation poirtand timet is proportional to

. L0 = o | . the lengths of the vector®P; in (b). The position of pointM in
defined byt—to=r1q, Whererq=ymx/2haw, is the flight figures corresponds to the case whenr .

time of a classical particle. Consequently, the zone bound-
aries are given by We denote byQ, M, O, N, and P, the points on the
spiral corresponding tdg= —«, t;=0, to=t—17y, tg=t,

2 1/2

Nt ﬂ— I ﬂ— 2 (19 and the boundaries of the zones, respectively. The position of
0 g Tl g cl the pointM in Figs. 4a) and 4b) corresponds to the case
whent> 7. Although the segment of the spiral betwe@n
WhenT< 7, we obtain, with an error not exceeding, andN corresponds to the finite time differeneg, the point
N lies at the focal point. This is a particular feature of
PN — +(”TTc|>1/2 Fresnel zones in time. We recall that, in contrast, the focal
o T Td={"T ' points of the Cornu spiral for stationary diffraction corre-

spond to the limitsy= = for the positions of the Fresnel
In the stationary case of propagation of a plane wave, th&ones.
distance between the zeroth amtth Fresnel annular zone is,  If the zones bounded by the poi@ and the pointP; in
up to a term of the order af\, analogously given byxnx,  Fig. 4@ are open, the amplitude at the observation pgint
neZ, wherex is the distance between the observation pointand timet is proportional to the lengths of the vect@®; in
and the plane of sources of secondary waves. This shows tiég. 4b. Due to the well-defined beginning in time of the
fact that close to the zeroth zones the arrangements of tiehomogeneous boundary condition and the causality prin-
Fresnel zones in time and of the stationary Fresnel zones igiple, only the waves arriving from the open zones within the
space are equivalent. interval[0t] are to be taken into account.

As in stationary optics, we now proceed by dividing each  Thus for diffraction at the edge in time, i.e., when all
zone into a number ofm subzones such that the phasezones within[Ot] are open, the following picture emerges
change from one subzone to the next is of the order/of.  (Fig. 5. At t=0 the amplitude starts strictly at zero. Subse-
As we move away from the zeroth zone the lengths of thejuently, with increasing time, the amplitude at some fixed
Fresnel zones decreddgg. 4a)], and consequently the am- space point first increases monotonically in magnit(sle
plitude of the wave arriving from each subzone decreasespirals aroundN) becoming 50% at= r, (M arrives atO).
Additionally taking into account that the amplitude of the It continues to increase monotonically untit= 7
secondary waveyS"@{x,t,t,) is proportional to 1A  +0.61yTry (We assume again that<r.), whenM arrives
—t0)%? [see Eq(16)], graphic addition of the amplitudes in near the lower boundary of the zeroth zone, where it reaches
the complex plane leads to a spiral as shown in Fi§§),4 its maximum with 117% of the amplitude of the incident
analogous to the Cornu spiral for stationary diffraction. Wewave. Afterwards the amplitude oscillates in a damped fash-
recall that the radius of curvature of the Cornu spiral forion around the amplitude of the incident wa{@ spirals
stationary diffraction changes as/1/y| with positiony of  into Q). Whent> 17, settingt,"=0 in Eq. (19) gives the
the Fresnel fringe. The radius of curvature of the presentumbern of maxima at the poink up to the timet asn
spiral changes with the time of emissignof the secondary = (2/T)(t— 7¢)2. This corresponds to the number of loops
waves as given bj/(t—to)/[ (t—tg)?— §|]|. performed by the poini around the lower focal poin®.
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FIG. 5. Diffraction at the edge in time, i.e., all Fresnel zones %2¢ i ! 6
within [0t] are open. The length of the vectdM is proportional .{j.
to the wave amplitude at a fixed position in the course of time. For ] : 9 !
t<0, the amplitude is equal to zero. With increasing tikébegins tiéirﬁiggﬁﬂn? -
to spiral aroundN (the amplitude increases monotonicallyhen slit 6

goes througlO (att= 7 the amplitude is 50% of the amplitude of
the stationary solution With time increasing further the poimil
arrives near the lower boundary of the zeroth zone, where the am- FIG. 6. A scheme of an experiment for observation of both
plitude reaches its maximum of 117% of the amplitude of the stadliffraction in space and diffraction in time. An incident semi-
tionary solution; afterward® finally spirals intoQ, the stationary infinite monochromatic wave is falling onto an infinitely long slit.
solution point, and hence the amplitude oscillates in a damped fastFhe time-varying slit is defined by the width functioag(t) and
ion around the amplitude of the stationary solution. a,(t). Diffraction effects are observed in the half-space at the right
of the screen.

The close analogy of the Fresnel zone construction in
time with the familiar one in space in the stationary casevarying width along they axis is given by functions,(t)
suggests that one may find in the nonstationary optics o0 and a,(t)=0 (Fig. 6) for the single slit. The two-
matter waves counterparts in time of the familiar diffraction dimensional nature of the problem permits us to discuss si-
patterns and devices appearing in stationary optics. For exmultaneously spatial and time diffraction effects. Assuming
ample, if we select an arbitrary zeroth zone, construct thehat the slit is kept shut far<0 and that the screen is totally
position of other zone boundaries in accordance with Egnontransmitting, the wave function in the half-space to the
(18), and then close all odd zones, all waves arriving fromright of the screen vanishes forx0. We shall compute the
the open even zones at a fixed-space position interfere coprobability to find a particle at a point in the right half-space
structively. Proper temporal modulation of the beam of par-at timet=0 using the boundary condition approach. Let a
ticles could serve to implement the closing and opening oklit be opened for a given time and then closed again. We
the Fresnel zones in time. Thus we obtain a device which weote that it is easy to show that the resulting chopped wave
call a temporal Fresnel lens. On the other hand, to producevolving under the homogeneous Dirichlet boundary condi-
constructive interference at some given position at timee  tion in the plane of the screen can be expressed as a sum of
can find zones in time according to E39) and leave only the freely evolving packet and one reflected by the screen.
even zones open. The longer the chosen ting the more  Thus the mathematical assumption of a homogeneous Di-
zones contribute to interference, resulting in higherrichlet condition at the screen is equivalent to the physical
intensities> assumption operfect reflectivityof the screen. As expected,
the normal componeng,(r,t)=(#/2im)(* (r,t)[ dy(r,t)/
IX] — (r,t)[dy* (r,t)/9x]) of the probability current van-
ishes at the screénTherefore the total probability in either

In this section we consider in detail a semi-infinite mono-half-space remains constant when the slit is closed.
chromatic matter wave traveling in thedirection incident We return to our problem. At the slit determined Ry
on a screen located in the plake 0 which contains a time- =0 and—a,(t)sy=ay(t), we assume the inhomogeneous
dependent single or double-slit opening. We assume thBirichlet condition (0,y,z,t)=e'“o!, Our Green’s func-
length (along z) of the slit to be infinite, while the time tion is again that of Eq(10). Thus from Eq.11) we obtain

IV. DIFFRACTION IN SPACE AND IN TIME

SRecently progress was made in nonstationary optics of atoms by®As a matter of fact, if the boundary condition is a general homo-
Dalibard’'s group. Arndtet al. [11] used a time-modulated light geneous oneu(X) ¥ (x,t)+ v(X)[ d(x,t)/9x]=0, the absence of
wave as an atomic mirror to focus different velocity classes ofthe probability flow at the boundary surface still holds whefx)
atoms originating from a point source, and to demonstrate the forand v(x) are real functions. When(x) =0, the condition is of the
mation of images of a point source. This is an alternative applicahomogeneous Dirichlet type, and whgifx) =0, it is of Neumann
tion of the Fresnel lens concept in time to atom optics. type.
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numerical solution of this problem. In order to find an exact
relation between diffraction in space and diffraction in time,
we now compute the analytical solution. Inserting the slit
width functions just defined and changing the integration

1 (t+ ay(to) % Kamesberger and Zeiling¢8] reported figures based on the
w0= = [t [ ayo | az
4 0 —ay(tg) —o0

aG(r,t,rq,tg)

X l//(oayo !ZO 1t0) (9X0

Xp=0 variabler=t—t; in Eq. (20), we obtain
Inserting the Green’s function and using the chosen bound- g ix [ m\2 it [
ary condition leads to PR =— 7l € 1o fodT;m
0 imx [ m 1/2ft+dt , m 12
Yr)=—5—= 5% o do Ty « @l @oTimx /2ﬁT{F[OO]_F (Wf”y) H
Xe—iwotOeimlezm—to)J'az(to) dy, (21)
~alto) In our analysis of this equation we will consider three differ-

ent spatial regions.

Xeim(y—yO)Z/Zh(t—to)Jw dzoeim(z—zo)zlzfi(t—to)_

1. Geometric shadow

After substituting u=ym/7h(t—ty)(y—y,) and v If Vym/7hty>1, F[Vm/mh7y] can be substituted by its
=ym/wh(t—to)(z—zo) for the variables in the spatial inte- asymptotic behavio{11] F[z—»]=F[]+ (€ 2?12 2)
grals, one obtains a solution involving Fresnel integrals,  +0O[z 3] with an error of the order of\(m/## ry) 3. For

the atomic beam parameters introduced above, this criterion

H 1/2
iX t+ 1 . g iy : ;
rt)=—— | — f dt is satisfied fory>10""* m at an observation tim¢=1s.
wr. 2 Wﬁ) o C(t—tg)¥* With that approximation, we obtain
1/2
i i m 1 x o1 .
><e'“’OtOe'mXZ/Zh(tto)(F[(—> shado — - ﬂwotf = alwgraim(xC+y?) 2kt
Th(t—tg) ke (9] 27Tye Oda-Te e .

m 12 _ o _ _
X[y+ay(t )]}—F[(—) [y—an(t )]“_ The main contribution to the integral comes from times
no wh(t—to) 2o around the classical timey =myx*+y?/keh, where the

(20 phase of the integrand is stationary. Treating the functiéh

i ) _ to be constant in comparison with the rapidly varying expo-
We notice that the Fresnel integrals depend linearly on the .o integrands, we approximaterd/rY/% 32~ 71,’2/73/2
) Cly )

spatial coordinatg, as in stationary Fresnel diffraction. But ) o )
it is very important to realize that in general it is not possible T"€n, with the substitutiog= 1N7, we find
to separate space and time in soluti@). 1 x [ myxZavz) 12 .
From now on we restrict ourselves to the three simplest ¢shadov“’t): -2 ( y e—iwotJ d¢
nontrivial two-dimensional casega) a step-function edge Ty Kofi INE
opening(edge opening instantaneouslyb) a square pulse g 182 [im(C-+ y2) 202
slit opening(slit opening and closing instantaneoyslgnd xerote :
(c) two square pulse slit openings. For the latter two cases we

will consider both spatial single- and double-slit openings in LT : L
solution is a sum of two waves corresponding to initial

the screen. . . : wavese'o*g[ —x] and e~ ko*g[ —x]. However, in the limit
Being interested in experimentally observing the phenom- v th ributi f the latt tina t
ena predicted here, we shall discuss as an example in th y e contribution ot the fatter one propagating to
e left vanishes, leaving

following subsections a beam of Li-7 atoms with atom mass
m=7x1.66x10 2" kg moving with the classical velocity

gain using solution(13) from the integral tables, the final

vo=1m/s. The corresponding wavelength and wave period shadoy t)— i X ; el (ko\x* +y%=wgt)
of the de Broglie wave ara=5.70x10 8 m andT=1.14 2wy VKo /x2+y2
X107 s, respectively.
2
A. Edge in space and in time x| F ﬁ (t= TC'l) a F[_m]) - (22

In this subsection we consider diffraction at the edge in

space and in time, i.e., we let the slit width be determined by fansforming  solution(22) into polar coordinates,  tan

the step function in space and in time, =y/x and p=yx"+y?, one may easily recognize a kind
of cylindrical wave going out from the edgéFig.
[0 for t<0 7), S9Ny 1) = (1/27) (Ltam)(1/Vkop) € Kor~@at) [F((2/
(U= for t=0, JTO[t— (mplkoh) )= F[—]]. If p—o andlor a—s m/2,

we obtainy(r,t)—0, as is to be expected deep in the geo-
a,(t)=0, Vt. metric shadow.
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FIG. 7. Schematic view of diffraction at the edge both in space
and in time indicating particular space regions. The solution inside
the geometric shadow"(r t) is a product between the solu-
tions of diffraction at the edge in space and of diffraction at the
edge in time. The solutiog"™(r,t) in the geometric illuminated
region is a superposition of a scattered way&2¥¢r t) and

FIG. 8. Diffraction at the edge both in space and in time. Cold
neutrons of wavelength=20 A propagating in the positive-di-
rection are incident on a screen locatedkat0. There, along the

Mos(r 1) evolving freely from the incident wave. The solution at . directi he edoe | di | he ti
the light-shadow boundary®™(r t) is a product of a stationary negativey direction, the edge Is opened instantaneously at the time
' t=0. The figure shows the numerically calculated intensity distri-

s_olutlon O.f the diffraction at an edge in space descrlblng_ a.translbution at timeg=0, 39, and 78 ps, respectively, from top to bottom
tional region from the geometric shadow to the geometric illumi-

nated region and the solution of diffraction at the edge in time. (from Ref.[6]).

Solution (22) is a product between the solution for the SN (r 1) =x
stationary diffraction into the geometric shadow and the so-
lution of diffraction at the edge in timél5), involving here
the classical timerc,lzm\/x2+y2/k0h. An analysis similar

to the one carried out for Moshinsky's problesee Fig. 2 = YyMOsh(r t) + yShadoYr ). (23
can be given here. Thus the intensity level at two distinctive
points, at the classical time and at the first maximum in . o
time, is 25% and 137%, respectively, of the stationaryHere we again neglect the contribution of the wave propa-
intensity in the geometric shadow(the stationary dating to the left. The first term is exactly Moshinsky’s so-
solution is  lim_.. 4S9 t) = (12 m)e (™ (x/y)[1/  lution _(15), the one which WouLng)e present if there were no
(ko\&er—yz)l/g] ei(ko\/‘mfwot)). The width in time of the edge in space. In that sgnﬂé (r,t) is a correction to.
transitional interval is of the order of/Tr, . With the _geometnc optlc_s$F|g.. 7 Since the _s_olutlon in the geometrlc
cly illuminated region is a superposition of a freely evolving
atomic wave data assumed above, the transitional time gaye yMosh(r t) involving the classical timery=mxko#
Vx*+y?~1m is approximately 3410 *s. Solution(22)  and a scattered wavg"*Yr t) involving the classical time
is accurate up to the order ofifoy®)>? The intensity dis-  ; —mxZ+yZ/koh, "™ (r,t) is not a product of the sta-
St ; _ ; 1
t”bu“(.)n qf dlff_ract_ed cold neutrons of=20 A behind the tionary solution in the illuminated region and one of diffrac-
edge is given in Fig. 8. tion at the edge in time. Going away from the ediepolar
coordinatep— ) the solution reduces to Moshinsky’s. The

obtained solution(23) is correct up to errors of the order of
2. Geometric illuminated region (X/k0y2)3’2.

1/2
m . . t 1
—i(ml4) a—iwgt
277%) € € fodT 2

X eiworeimx2/2h7+ (ﬂshadov“,t)

Setting (compare the case of the geometric shadow

Jym/afity<—1 and using the asymptotic behavipt2] 3. Light-shadow boundary
Flz— —x]=F[—x]+ (e ™% 7z)+O[ 23], we approxi-
mate Fresnel's integral in Eq21) up to the order of If |\m/7hty|<1, we divide the integration region into

(Vm/7rhry) 2 and evaluate two parts:
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Jpoundy t)=—z m me—iwot T_d 1 gloar +0.61yTry (here we assume again thfit<ry) is 1.88
' 2 \ mh 0 TR (=1.37) of the intensity of the incident wave. This signifi-

cantly exceeds the first maxima in time in other spatial re-
m )1’2 “ gions even in the geometrically illuminated one.

y Keeping the time fixed and going from the geometric

XeimXZ/ZhT{ Fl=]— FH
shadow to the illuminated area, or keeping a point in space

whT

L S Y fixed and going from times< 7 to timest> 7, the inten-
+ f;dT R ero’e sity in both cases increases monotonically, and after it exhib-
s its a maximum it begins to oscillatg in a damped fashion.
| Fpe]—F ( m ) y ]) The widths of the transitional regions where the space
ahT ’ shadow(Fig. 7) and time shadow are washed out are, for

UX?+y%>\, approximately\Ax and \T7y, respectively.
where 7=my?/7#. The first integral can be further evalu- For the Li-atom parameters in our example the transitional
ated as in the case of the geometric shadibw<0) or the  spatial region is 2.4 10 % m atx=1 m and the transitional
geometric illuminated regiofif y>0). If 7<7y, which is  time interval is 3.410 * s att=1s. Expressiori24) con-
equivalent to|y|<(1#72)\x, the main contribution to the nects the solution for the light-shadow boundary with the
second integral comes from that region arougdvhere the ones for the geometric illuminated region and for the geo-
phase of the integrand is stationary. Taking again our Limetric shadow.
atom example withx~1m, y lies in the interval|y| Expressing the final solutior(&2), (23), and(25) through
=<10* m, not considered so far. Within the integration in- classical variablegthrough the classical velocity, instead
terval [7,t], where |Jm/mhiry|<1 the term F[] Of ko and wo) and taking the classical limith—0 and/or
—F[Jmimhry] has as its asymptotic limitF[~] M—) we find y*99r t)—e* v [t~ (x/vo)]6[ —y].
—F[z—0]=F[»]—z—(i7Z°/6)—O[Zz°] [12]. Due to its AS e_xpgcted, this solution neither shows diffraction in space
slowly varying behavior compared with other integrands, wenor In time.

treat this term as being the constdifte]— F[ m/mh 7qy] The effects of diffraction in space and in time discussed
in the integration interval. Thus we obtain here are rather small for our assumed atom example. How-

ever they can be increased significantly in the case of dif-
12 fraction at a slit in space with a width of the order of the
(_) “ wavelength, and a slit in time with a pulse length of the order

lpbound(r,t) - _ IE ei(kOXwot)[ F[oc]— F

AX y of the wave period, as will be considered next.
><F2(t )Fz_(_) B. Single slit i d in i
—(t— 7)) | —F| —(7— 71 . Single slit in space and in time
JTt ° VT7 . _ _ I : .
_ In this subsection we consider diffraction at a single slit
MM (r 7y for y<O both in space and in time, i.e., the slit width is given by a
+ Yohadoy "y for y>0. (24) square function both in space and in time:
In the limit when the argument of the fourth Fresnel integral a
(2NT 1) (71— 1) = (2ly) ym/ ThT[y*— (\X/2)] goes to B _ |5 for Ost<Tq,
negative infinity, and consequentlyy™'™(r,7) and () =a,(t) =
5"y '7) tend to zero, solutioi24) becomes 0 for t<O0, t>Te,
i 2\ 12 whereT, is the chop time. In an earlier soluti¢4,5] of the
¢b0und(r,t):_Eewkox—wot)[p[m]—l: (—) y” present problem involving Neumann boundary conditions,
AX the computation was performed with the method of station-

2 ary phase. This method consists of replacing the phase func-
= (t—71g) |~ F[—oc]) ) (25  tion (see Fig. 3by a parabola centered at the classical time.
VTt Such a removal of the asymmetry effects of the phase func-
tion is sufficient for the evolution of “nearly classical”
Since in our Li-atom example (®\Vm/#AT[y?~(Ax/2)]  packets which are chopped with a pulse durafiogsT.
~10"y?~(\x/2)], the above condition is satisfied for a The problem of chopping a beam with a pulse duration short
wide range of y within the interval consideredly| enough to affect the energy spectrum of the beam was dis-
=(1W2)\x. Due to the fact thagy*™"(r 1) is the product cussed by Felbest al.[7]. Again using Neumann conditions,
of solution(15) of the diffraction at the edge in time and the these authors concentrated on a triangular slit pulse opening
one of stationary edge diffraction, the wave modulation isadditionally involving a modulation of the energy spectrum
the strongest in the light-shadow boundary regisee Fig. associated with a motion of the slit edges with finite velocity.
8). Thus, on the one hand, the intensity at the classical cutoff In order to emphasize the close relation between diffrac-
aty=0 at timet= 7 is only 0.0625 &0.25) of the inten-  tion patterns in space and in time, we now choose slit open-
sity of the incident wave. On the other hand, the product oing functions which have equal space and time dependencies.
the intensities of the first stationary maximum in spacg at Furthermore we use the Dirichlet condition whose interpre-
=0.87/Ax and the first maximum in time at=r7y tation is physically clear as discussed in Sec. Il{the in-

X| F
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homogeneous Dirichlet conditiprand at the beginning of Within approximation(29) the function 1# in the argument
the Sec. IV(the homogeneous Dirichlet condition of the sine function in Eq(28) can be expanded to zeroth
Applied to our example, conditions for simultaneousorder around the centér(T./2) of the integration interval
strong diffraction in spack~a and in timeT~T.,requirea [t—Tg,,t]. This means that the influence of the finite chop
slit width a~10~ " m and simultaneously a chop tink;,  duration on the siity]/cy dependence is insignificant. In our
~10 ' s. We shall assume in the discussions of our examplatom example, expressi@R9) is of the order of 107 at the
just these experimentally realizable values for the slit widthobservation timet=1s and within the region arouns

and chop time. ~1 m where the particle is found with high probability. Ob-
With the slit opening function given above and substitut-viously it is meaningful to test the conditions for the validity
ing 7=t—ty, EQ.(20) transforms to of approximations only for those space points where, for a

given observation time, the probability density to find the

_ ix [ m\¥2 ¢ 1 particle differs sig_nif!cantly fro_m zero. These points cou]d_ be

slit(p )= — — [ — ] e iwot dr elwo” assumed to be within the region inside the first few minima
Po(r,t) >\ % 3 )

& =Ten T along thex andy axes, whose existence we shall prove later.

112 Naturally, the size of that area depends both on the chop time

XeimXZ/ZﬁT(F[( m y+E and on the slit width; a shorter chop timkg,, and/or a
mhT 2 smaller slit widtha cause stronger wave packet spreading.
m |2 a With the approximation mentioned above, the solution
-F (Wﬁ?’) y_i ] (26) _
wslit(r t): _ 1 e—iwot sin may
Let us assume that ' Ty 2h[t—(Te/2)]
12 ! 1, im(x?+y?2)/2f
m §< 1 27 X dr - g'@o7g yolenT (30
Th(t—-Tg), 2 1= Ten

o . - becomes a product of two terms. The first one we recognize
In our example th|s criterion is safisfied to W'th'n1bf0r as the Fraunhofer limit of the diffraction in space at a certain
the observation timé=1s. ForAz<z we can approximate  ,pqeryation time, and the second term, the time integral, as
Flz+Az]-F[Z]~(2/mz)sin(Aznz2)e!(™?*"  with Az  the diffraction in time observed at a certain point in space.

=Vm/mhra andz=ym/=wh7y. Then it follows that Exactly speaking, this is not quite appropriate, since these
terms do not depend separately on theoordinate and on
ix ¢ 1 time. It should be emphasized that soluti80) is not a
$M(r t)=— — e oot f dr = product of the stationary solution of diffraction at a spatial
my =T 7T slit in Fraunhofer limit (of the form o[sin(kyay/2x)/
_ _ may (koay/2x)]) and a one-dimensional solution of diffraction at
X gl worgimOC+y2)/2hrgjn ——7 (28) the slit in time(involving time and the direction of propaga-
2ht tion x).

. ) In order to transform the time integral in EQO) into the
It should be noticed that the dependence on the spatial COOfqgnel integrals, we take the limit

dinatey in one of the integrands is of the form Biy)/cy as
in the stationary Fraunhofer diffraction.

The phase of the integrand in E@8) is a very rapidly m(X?+y?)(TeH2)° 0 31
varying function of time with a stationary region around the 2h[t—(T/2)1* as 3D
classical timerdzm\/szryz/koﬁ. Yet, due to the possible
strong spreading of the wave packet after chopping, the staand proceed by expanding the functiorr i the argument
tionary phase method could not be usefully employed, sincepf the exponential function in Eq30) aroundt—(T/2),
for many space points where the probability at a given timeetaining terms up to the second order. In our example crite-
significant differs from zero, the integration interval does notrion (31) is satisfied up to order 10* Compared to the
contain the classical time. Obviously a more precise calculasther rapidly varying functions the integrand function i
tion, valid for a wider class of solutions, can be performed ifEq. (30) can be treated as a constantt#{T,/2) within a
we expand the phase of the integrand not around the classicalifficiently short integration intervalt—T,,t]. The ap-
time but around the centér- (T./2) of the integration in-  proximations mentioned and the substitution
terval[7]. This method will be applied in the present paper,
and solutions for nearly classical packets obtainable with the ( m(x2+y?) )1,2[ 3 ( Tch>

r

stationary phase method will be obtained in the limit. _

In order to separate the dependence on ytheirection mh[t—(Tey/2)]° 2 2
from the time integral in Eq(28), we approximate ﬁwo[t—(TchZ)]T
m(x%+y?)
may T2 ( Y
—0. (29

2h[t—(T/2)1? lead to an expression including Fresnel integrals:
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. H 242 . .
P(r )=~ X (A (Te/2)] 1/2ei(wot/2)e*i(3onch/4) = (/ tz)elm(x. YV It is easy to show that solutio84)
: y | mm(xZ+y?) transforms into the same expression in the linaits 0 and
) 5 Tchﬁo.
X @l GmO -y )/BA[t=Ter/2]) We note that there are two types of minima. Their posi-

) a9 tions in space at a certain time are
x @~ 1 (hog[t=(Tey2) 1% 2m(x®+y?))

2n7h[t—(Te/2)]

. may Ymin= ma ) I’]EZ\{O} (35)
SN A= (Tey2)]

( mec+y?) Y3 T, and
*\F (m) {t‘i(“ﬂ

Tch) 2 An'mh[t— (T2

12 2 _ .2
Xmin+yr’nin_v (t_ 7 mT,,

Zﬁwo[t—(TcMZ)PH
m(x*+y?) n’ e 2\{0}, (36)
2 2 1/2]
_ ((m(x—er)) [t—T _ E (t— b) respectively, wher@ andn’ are the orders of the minima.
mh[t—(Te2)]° ch 2 2 For a fixed observation time minin&5) and(36) form lines

Zﬁwo[t—(Tcrlz)PH) parallel to thex axis and circles in th&-y planes, respec-

m(x®+y?)

(32 tively, both seen in Figs.(8), 10(a), 11(a), and 1Za). On the
other hand, for a fixed plane of observation minimd35)
and(36) form linesy=ct and hyperbolas in thg-t planes,

We can again understand soluti82) as a product of two respectively, both seen in Figsi®, 10(b), 11(b), and 1Zb).

terms, representing Fraunhofer diffraction in space at a fixetf T,,<T, the positions of minima36) assume complex

observation time and Fresnel diffraction in time at a fixedvalues forn’ >0. Indeed we see in Figs. 9 and 10, represent-

observation point in space. ing examples with a chop time shorter than the wave period,
Assuming the condition that all minima after the central one vanish. The angular
separation Eq(35) between adjacent minima in space of the
( m(x2+y?) 112 first kind,
Al (Te@ ) 1ot = Vimd) A
Aa=2 oot =2 5 y (37)
one may also introduce the Fraunhofer limit of diffraction in °
time at a certain observation point in space: is exactly the same as in the stationary case within the Fraun-
hofer limit. The time independence of the angular separation
i2 x 1 (37) of minima is in agreement with the fact that the distance

l/fsm(f,t):— between minima(35) and the central maximum increases

™Y @olt= (Ter/2)] linearly with time, as seen in Figs(l9, 10b), 11(b), and

1 12(b).
X 212 — 2 It should be noted here that in the examples represented in
1=mOcyD/2hwolt=(Taf2)] the figures the conditions for the Fraunhofer limit in space
. may and in time will always be satisfied. In the figures the prob-
XSInm ability is not normalized. In contrast, in order to make it
easier to compare the different patterns, the probability den-
Nl woTen m(x2+y?) sity is scaled such that in the case of a single slit both in
X Si 5 T 2hwot—(Tef2) ]2 space and in time with slit width I6 m and chop time

10" ® s (Fig. 12 the central maximum at=1 s is defined to
X @~ 190(Terf2 gim(< +y2)/28[t—(Te2)], (34  have the value 1. Now we shall return to our discussion.
A rough estimate of the width of the diffraction pattern as
Thus, now, our solution is a product of two terms describingd!Ven by the distance between the two first minima in space
the Fraunhofer diffraction in space at a certain observatiod in time, respectively, can also be obtained from uncer-
time, and the Fraunhofer diffraction in time at a certain ob-f[alnty considerations, providing greater physical understand-

servation point in space. In our standard atom example, agnd- The wave constrained by the slit width in thelirection
proximation(33) is of the order of 10%. has an uncertainty of momentum in thelirection given by

Solution (34) just evaluated deserves some comments2Py@~=h. Analogously, the wave constrained by the chop
First, it is to be expected that solutidB4) for short chop Ume duration has an uncertainty in energy given
- it Wi isturby  AET=(m/2)(Av2+Av2)Tg~h. Therefore, we
times and small slit widths approaches the effect of a distur®y ch X y/ lch A '
bance due to a line of point dipoles extended uniformlyobtain two types of minima__ Y. 1 min
alongz, axes. This effect can be calculated as a superposi= * Ap,t/m= = (27Ait/ma) and X1 minT Y1 min
tion of contributions of individual dipole sources lying =\v§* (Avg+Av))t=\v5*+ (4nfhi/mTgt, closely related
on the 2z, axis: —(U4w)[”.dz|VG(r,trg,tp)l to position-momentum and time-energy uncertainty relations
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FIG. 10. Same geometry as Fig. 9, but now with the single slit
0 in space having a width of I6 m, i.e., a slit significantly wider
than the de Broglie wavelengtka) again shows the wave packet
Timel[s] aftert=1s, and(b) demonstrates the arrival times at the observa-
. o _I_L tion plane located at=1 m. It is evident that now the diffraction
Single Slit in Space[m]: T0-7 spreading in space is very small, while the spreading in time is

basically the same as in Fig. 9.
Single Slit in Time[s]: _,__—J_
10 respectively. Thus the nonsymmetrical arrangement of the
(b) latter minima arounck=vt is a consequence of the nonlin-
ear dependence of energy on velocity.

] _ i _ ) o _ Taking chop times which are long compared to the wave
FIG. 9. Diffraction at a single slit both in space and in time. Li-7 herjod, the mean width of the energy remains narrow after

ato.ms propagating in the positivedirection with the classical ve- chopping. This permits us to expand such localized packets

locity vo=1m/s are incident on a screen locatea(0. There, at 56,04 the classical time. If, additionally, the slit width and

EOZ'::S ;’t_tr?é t?mi%lioflfo9§ :‘”CT“Ee ign?m;)ser'gj;ng?rlﬁgu;fne the wavelength are of the same order, a strong spreading of

P . - s the wave packet along thedirection results, requiring that

order of magnitude as the de Broglie wavelength5.7< 10" ° m . . -

and the wave period=1.14x10" " s respectively(a) shows the the_cIaSS|_caI timerg=myx“+y /lfoﬁ depends b_Oth OR and

wave packet at a time=1s after the opening and closing of the Y dimensions. A wave packet with such experimental param-

single slit in time.(b) demonstrates the probability to detect the eters is represented in Fig. 11. If, on the contrary, the slit

particle in a fixed detector plane a1 m as a function of time. It ~ Width is wide compared to the wavelength, helimension

is clearly seen that significant diffraction takes place both in spac®f the wave packet remains smaller than the distance reached

and in time. It should be mentioned that none of the graphs in Figsalong thex direction and the classical time becomes

9-15 is normalized. ~mx/koh. For such a case we assume
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(b) FIG. 12. Diffraction at a single slit in space and a single slit in
time, both of which are large compared to the de Broglie wave-
FIG. 11. Again the same geometry as in Figs. 9 and 10, but novength and the wave period. Note the different scale compared to
with a single slit in space of width I3 m, i.e., comparable to the the previous figures. It is clearly seen that now the diffraction phe-
de Broglie wavelength and a single slit in time of £0s which is  nomena are less pronounced than before, and much more symmet-
much larger than the de Broglie wave period. It is clearly seen thatic, indicating the propagation of “nearly classical” packets.
now the diffraction in space is very significant, while the diffraction
in time only produces small ripples of the wave packet. The circular
spreading in(a) is due to the propagation of a wave with a well-
defined speedclose to the classical ong,=1 m/9, but an unde-
fined direction of propagation.

3M(X2+y3) T, [t— 74\ 2
( )g ) ch( 7'cl) <1
4fLTC|

Tel

MOC+y?) [t—7q)|?
and (zf”_y )< . °'> <1 (39)
3m(x*+y?) (t—rd>2<1 may t—7q _ b o
2hwg el Y 2hTy T ' and we approximate expressi¢®y) as
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i X 1 .~ koay

slit —-__ = ; \‘0\ 2
V== LY et (Tafd — o] o1 2x o)
X sin @olen (t— Ten_ Tcl) gl wolt=(Te2)1,
Tel 2

(39

The conditions above make it possible to expand the mul-
tiplication factor and the argument of the first sine function
in Eq. (34) around the classical time up to zeroth order, as
well as to keep only the linear term in the argument of the
second sine function and the phase. That way sol{86his
a product between the solution for stationary single-slit dif-
fraction and the solution for diffraction at the slit in time.
These solutions have the same analytic form of spatial
dependence and of time dependence, respectively, when con-
verting quantitiesa«<— Ty, Ko wg, X— 71y, and y«t
—74. Thus there is an analytical equivalence betweerythe
dependence of the diffraction pattern in space for a fixed Single Slit in Time[s]:
time and fixedx coordinatd Fig. 12a)] on the one hand and 1077
the diffraction pattern in time for a fixed space pojfig. (a)

12(b)] on the other hand. Actually the expansion of solution
(34) around the classical time removes the asymmetry be-
tween the space and time dependencies of the diffraction
pattern which arises due to the different roles of space and
time in the Green’s functior9) for the Schrdinger wave.
Solution (39) corresponds to the solution obtained in Refs.
[4] and[5] by the stationary phase method. It is not surpris-
ing that conditiong38) are not satisfied in our example. Yet,
with a wider slit @=10"°m) and a longer chop time
(Ten=10"%s) they become satisfied.

10° Intensity
(e}

Double Slit in Space[m]: T0-7 5707 107
755107 10=

C. Double slit in space and single slit in time

Now we assume that the screen contains two slits of equal
width a which are opened simultaneouslytatO and closed
again att=T,. Let the inside edges of the slits be placed at
y=—Db/2 andb/2. Then, by translation of expressidf6)
along they axis, we immediately obtain the solution of the
present problem:

10% Intensity

_ b a . b a oo
_ yslit _-_Z slit 4z Double Slit in Space|m]:
POy =9 Xy = 5= 5.t |+ xy+ 5+ St pacelm]: — L L
_ Single Slit in Time][s]:
where ¢*(x,y,t) is taken from Eq(26). Figure 13 shows 10~
the resulting wave packet for our Li-atom example with (b)
=2x10"" m.

Now we shall first obtain positions of the interference FIG. 13. Diffraction of Li-7 atoms V.V'th. velocityo=1mis at a .
minima in space and in time neglecting the finite dimension:%jm.mIe slit in space a_n_d a s_unglg slit in time. The atoms are again
. - . S ncident along the positive-direction onto the double slit located at
of the slits and the finite chop time. The solution is then —0 andy=0 which opens for 107 s att=0. The individual slits
superposition of the secondary waves coming from poin%lre each 107 m wide and they are separated by 20~7 m. The
sources. The phases of the secondary waves are parameters are chosen such that both diffraction in time and diffrac-
tion in space are very pronounced. The well-known Young’s fringes
. m{x2+ [y+(b/2)+ (3/2)]2} are clearly visible. The tofa) is again a picture of the wave packet
- 24t att=1s, and belowb) we see the arrival times at the observation
screenx=1m.

¢1(X!yvt)

and respectively see the Green’s functidi®)]. These values cor-

) ) respond to the phase factors of the two packets given above
m{x*+[y—(b/2)—(a/2)]%} in the Fraunhofer limit in space and in time, see B4), and
2ht ' are therefore also applicable to our Li-atom example.

da(X,y, )=
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For those points in space and in time where the phase
difference between the two waves is an odd multiplerpf

b1 minstmin) = @2(T min s tmin) = (2N + 1) 77, (40)
we find positions of interference minima in space and in time

(204 D[t~ (Te/2)]
Ymin = omatb)

e’. (41

The lines of the interference minima parallel to thexis for

a certain observation time and their linear spreading in the
course of time are seen in Figs.(@Band 13b), respectively.
The angular separation between the two first minima within
the Fraunhofer approximation in space and in time is time
independent, and equal to the one in the stationary case:

=2 yl,min(t) -9 A

A = .
@ Uot a+b

(42

D. Single slit in space and double slit in time

Let a single slit be opened &+ 0, closed at=T,, and
then again be opened dt=T,+ Tpause and closed att
=2Tcnt Tpause Assuming that the initial wave in the left
half-space is not influenced by the chopping, the boundary
condition chosen can also be applied to the second chopped
wave. Changing the integration area in the &%), one may
then obtain the solution

¢(X,y7t) — l//S”t(X,y,t) + efi“’O(Tch+Tpausé
X ‘/’S“t( XY, t=Ten— Tpausé ) (43)

whereys(x,y,t) is taken from Eq(26). This solution there-
fore is not just the sum of solutiof26) and its translation in
time (by — Tpause Ten). The resulting intensity distributions
are given in Fig. 14 for our Li-atom example with
Tpause2X107 ' s.

We now again discuss the positions of the minima. Ne-
glecting again the finite dimensions of the slit and the finite-
ness of the chop times, we consider the two successive
chopped waves as coming from point sources in space and in
time. The phases of the secondary waves @réx,y,t)
=m(x?+y?)/2ht and ¢,(x,y,t)=m(x>+y?) 2k (t— T,
—Toausd, respectively. From conditiot40) we obtain the
positions of the interference minima as

Ten
Xoint Yain= Uo( t— 70)

2m(Tept Tpause) , packet att=1s (a), one clearly sees that the double slit in time
phenomenon exhibits the same characteristic Young's interference
neZ. (44) fringes well known for a double slit in space. This is confirmed by

/
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FIG. 14. A single slit in space and a double slit in time. Again,
Li-7 atoms are incident along the positixedirection onto a single

2n+Dht=(T It =3To—T slit located ax=0 andy=0. The slit is opened successively twice,
— ( It (Ter/2) J(t =2 Ten pausé which results in the double slit in time. In the picture of the wave

the picture of the arrival time).

Circles of the interference minima in space for a certain ob-

servation time and the corresponding hyperbolas of the interehop a slow cesium atomic beam, Szriftgis¢ml. [13] per-
ference minima in thg-t plane for a certain plane of obser- formed an experiment on the diffraction at temporal single
vation are seen in Figs. (@ and 14b) respectively. and double slits, and measured the energy distribution of the

Using a time-modulated light wave as an atomic mirror tochopped atoms.
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E. Double slit in space and in time

This case is a combination of the previous two cases. Two
slits of equal widtha and of distancd between their inside
edges are opened &t 0, closed at=T.,, and then again
opened at=Tg+ Tyauseand closed at=2Tq,+ Tpayse Itis

easy to construct the present solution from the last two cases: §
[={
2
z,b(xyt)=zp5'"xy—§——t +¢//S“txy+g+9t =
1) H 2 2 l il 2 2 ’ —
. . a b
—iwo(Teht Tpause| 4/,Slit _
+e c anS[lp (x,y > 2,t
slit a b
_Tch_Tpaus +i va+§+§at
—Ten— Tpaus; , (45) Double Slit in Space[m]: I I
1077 2x1077 1077
where y*'(x,y,t) is taken from Eq(26). Figure 15 demon- Double Slit in Time][s]:
strates the wave packet for our Li-atom example viitand 1077 2x1077 1077
Tpausethe same as in the previous two cases. (a)

Neglecting again the finite dimensions of the slits and the
finiteness of the chop times, we consider the four waves on
the right-hand side of Eq45) as coming from point sources
in space and in time in order to obtain an estimate for the
minima. Omitting the amplitudes we writef(X,y,t)
acel P106Y.1) @l d2(x.y,1) 1 @l d3(xy,t) 4 gl dalX i) \with phases
given in Secs. IV B and IV C. It is important to notice that
¢1(X1y!t) - ¢2(va!t)% ¢3(le1t)_ ¢4(X!y1t) for Tch
+ Tpauss<t anda+b<y. This expression together with the
condition | (X ,Ym,tm)|2=0 leads to the condition

10? Intensity

COE{ ¢1(Xm Ym vtm) - ¢2(Xm Ym 1tm)] + COE{ ¢1(Xm Ym ’tm)

- ¢3(Xm Ym -tm)] + COS{ (bl(xm Ym vtm) - ¢2(Xm Ym -tm)]
X 0§ d1(Xm:Ymitm) = P3(Xm,Ym tm) 1= — 1.

This is obviously satisfied when ¢1(Xy,Ym.tm)
= d2(Xm Y tm) =(2n+1)7 or/and é1(Xm,Ymtm) o M
= d3(Xm Ym-tm) =(2n+1)7, whereneZ. Therefore, the Double Slit in Space|m]: . e
present pattern exhibits both the interference minima which 10”7 2x1077 107
are present in the case of a double slit in space and a single Double Slit in Timel[s]:
slit in time, as well as those of the case of a single slit in

space and a double slit in time and no other interference (b)
minima.

10772x10°710°7

FIG. 15. Diffraction at a double slit both in space and time. Li-7
atoms are incident along the positivedirection onto a double slit
V. LIMIT FOR LARGE TIMES located atx=0 andy=0. This spatial double slit is opened twice
Usually the accuracy of theoretical predictions decrease%uccesswgly such that a double slit in time also results. It is evident
with increasing time. However, for some problems it is still rom the picture(a) of the wave packet at=1s that a number of
. . ’ ’ . different interference maxima and minima result, indicative of
possible to find not only exact solutions but also some gen

. - ~_.Young'’s fringes both in space and in time. This is confirmed by the
eral statements about the evolution of the system in the limit g g P y

. . . g . me of arrival of the atoms in the observation plane located at
of large times. In this section we find the connection through_ ; ., (b).

Fourier transformation between an incident wave and the re-

sulting time-modulated one in the limit of large times. In the [14]. We now raise the question of whether the nonstationary
theory of stationary diffraction it is well known that the pat- diffraction patterns of matter waves in space and in time

terns in the Fraunhofer limit represent the square of the Fowepresent the square of a Fourier transform in space and in
rier transform in space of the incident wave in the aperturégime of the incident wave in the time-dependent aperture.
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This indeed turns out to be the case but only in a regiorLet us define the spatial frequenciesandk, and the tem-

around the classical time. poral frequencyw as

We shall discuss the long-time dynamics of an arbitrary
wave incident onto a nontransmitting screen with a time- my mz m(x2+y2+ 22
dependent aperture. The screen is again locatee-&t We kyzﬁ, kzzﬁ and o=

—
assume that both the width of the aperture and the duration 2ht

of the chopping are bounded in space and in time, respec- ) ) o o
tively. Keeping the dimensions of the aperture finite, our'espectively. For each obseryatlon point in space and in time,
problem becomes three dimensional. The boundary condﬁh?re are corresponding spatlal and temporal frequencies. So-
tions can be summarized into a single complex function  lution (49) can now be written as

a _[¥(0y.z,1), yI<Y, [Z]<Z, Ost=~ < L,
YAy, z,t)= 0 otherwise. W(r t)= 5 gl (37/4) gim(x*+y?+2 )/thq)(ky'kz,w),
which we call the aperture function analogous to the quantity (50

in stationary diffractior{14]. The function(0,y,z,t) is ar- . .
bitrary. Because the aperture function is nonzero only withirwhere ®(ky ,k,w) is the Fourier transform of the aperture
the boundsX, Y, andr of spatial and temporal extensions of function both in space, foy andz coordinates, and in time.

the aperture, respectively, the limits in integtall) can be The asymptotic expansiofb0) is in agreement with our
extended tat o, expectation, since the larger the observation tims, the
) 1 smaller the contrib_uting spatial anq temporal fre_quencies of
(1) = — xm/f m f+mdt 1 the aperture function are. Expressits0) is also in agree-
’ 2mh \ 2mih L. O (t—tg) ment with the Fraunhofer limit in space and in tirg84) of
the chopped semi-infinite monochromatic wai&ec. V).
y fwd f“”d 2(yo .20 to) Thus the Fourier transfornd(k,,w) of the product of a
L % (Yo,20:to rectangular function in space with a modulated rectangular
function in time (6[(a/2)—y]—6[(—a/2)—y])(O[t]— o[t
><eim(x2+y2+z2)/2h(t—to)e—imyyo/ﬁ(t—to) _Tch])e—iwot is
« eimyglzmt—to)eing/zﬁ(t—to)_ (46)

_sin(kya/2) sin (o —wo)Tey2]
P(ky,0)= k,/2 (0—wg)2

It should be noted that all requirements considered in Sec. IV
for the Fraunhofer limit in space and in time become satis-
fied when a sufficiently large time elapses. Therefore, theyhich, using Eq(50) and taking into account the dimension-
assumptions for the limit of large times considered here willgjity of the problem, gives Ed(34).

only be generalizations of the ones used in the special case Since the space coordinates are not only involved in the

considered in Sec. IV. Thus, with the assumptions spatial frequencies but also in the temporal frequency, the
2 2 statement valid in stationary optics that the space depen-
mY: mZ X -
— 0 and ——— 0, (47) dence of patterns in the Fraunhofer limit represents the
2h(t—17) 2h(t—17) square of the Fourier transform in space of the incident wave

the fourth and fifth exponential integrands tend to 1. With thein the apgrture is no longer valid here in the'nonstationary.
further approximations case. While the space dependence of the stationary pattern is

completely determined by the Fourier transform in space of
m(x2+y?+2z%) 72 myYr mzZr the incident wave, the space dependence of the nonstationary
T optd Y Tat2 —0, Y —0, (49 pattern is also influenced by its Fourier transform in time.
This is most easily seen from Figs. 9-15, where yhde-
the function 1/{—ty) in the arguments of the first, second, pendencies of the diffraction patterns are not only influenced
and third exponential integrands in E¢6) can be expanded by lines of minima(35), corresponding to the minima in
aroundt,=0 up to the zeroth-order term for the first expo- stationary diffraction which are related to the Fourier trans-
nential integrand and up to the linear terms for the other twdorm in space of the incident wave, but also by the circles of
exponential integrands. We treat the functiont#/{;)>?>to  minima (36) related to its Fourier transform in time.
be a constant compared with other rapidly varying inte- Now we shall examine the conditions for the validity of

grands. Thus we obtain the statement above in nonstationary optics. Assuming that
w2 1 the particle speed after choppikghi/m is well defined(for
; (w22 72 ; ; ;
(r,t)= —g e 37eimxy“+z5/2nt a chop duration much longer than the de Broglie wave period
v > (2mh) of the incident wavewe expand the solutiof50) around the
o o o classical timerg=mx?+y?+7%/koh. If, additionally, the
xf dtof dyof dzy(Yo,20,t0) spatial boundsX and Y are large compared to the wave-
- - - length, the mean width of the packet both along yheirec-
¢ im0+ y2+ 22)12012) tog—i(mylht)yog—i(MZit)zo. tion and along the direction remains smaller than the dis-

tance reached along thedirection, and the classical time
(49 becomesr~mxKky#. Thus with the approximations
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m(x2+y2+7%) [t—74\? myY t— 7y solution for stationary diffraction at an edge in space. Thus,
2h g o —Y% o P —U, in an_a_logy to stgtlonary d|ffra(_:t|on at an edge in space, the
transitional region from “time shadow” to “time-
s 2o ) illuminated region” for the diffraction at the edge in time is
mzZt-— ™ o and 3M(X“+y“+2z%) [t— Tcl) .0 of the order of\T7y, whereT is the de Broglie wave period
2h Ty Tq 2h 74 Tel ' and rg=mxkyh is the time a classical particle needs to

(51) travel from 0 tox. The classical limit of the solution for
matter wave diffraction at the edge in time is equivalent to

the phase in Eq(50) can be expanded retaining the first- the solution for diffraction at the edge in time for electro-
order term as well as the arguments of the Fourier transforril@gnetic waves. _ _
my/fit and mzZ#t up to zeroth order andm(x2+y? We also calculated the time-dependent wave function re-
+22)/25t2 up to first order. That way the spatial frequenciessulting from the passage of a semi-infinite. monochromatic

no longer depend on time, and the temporal frequency n§€am through a slit with time varying width. Such-two di-
longer depends on space: mensional problems imply simultaneous diffraction in space

and in time. We computed and analyzed in detail the analyti-
cal solutions for various slit opening functions: edges in
space and in time, single slits in space and in time, a double
slit in space and a single slit in time, a single slit in space and
where now ky=Kkoy/x, k,=koz/x, w=[2wq(t—7g)/7¢] a double slit in time, as well as double slits in space and in
+ wq. Equation(52) tells us that for a fixec coordinate in  time. Due to the different roles of space and time for Sehro
the region around the classical time, the space dependencelinger Green’s function, diffraction patterns in space and in
y and z dependencesand the time dependence of the dif- time do not have fully equivalent space and time dependen-
fraction pattern represent the dependence on the spatial freies.
quencies(k, andk,) and on the temporal frequenc¢y) of A wave diffracted at the edge in space and in time is a
the square of the Fourier transform in space and in timesuperposition of the freely propagating incident wave
respectively, of the incident wave in the time-dependent aptpresent only in the illuminated regipand the one scattered
erture. Obviously, this result is significant for the evolution from the edggpresent both in the illuminated region and in
of “nearly classical” wave packets. the geometric shadow The solution in the light-shadow
boundary exhibits transitional regions both in space of the
order YAx (A is the de Broglie wavelengthand in time of
the orderyTry. Only within the geometric shadow and
The Green’s function of the Schiimger equation to- around the light-shadow boundary is the solution for the dif-
gether with initial and boundary conditions contains allfraction at the edge in space and in time the product of the
guantum mechanically allowed information about the systensolution for stationary diffraction at an edge in space and the
considered. Seen as an effect of a point source in space asdlution for diffraction at the edge in time.
in time, the Green'’s function enriches our understanding and In the Fraunhofer limit the solution for diffraction at the
helps us to solve nonstationary diffraction problems. slit both in space and in time is a product of two terms
Huyghens's principle, postulating that each point on theclosely associated with both the position-momentum and
wave front acts as a point source of secondary wavegjme-energy uncertainty relations. Our results are still valid
supplemented by Fresnel with the statement that these se¢hen the conditions for simultaneous strong diffraction in
ondary waves are mutually coherent, is basic for the Fresnelpace and in time are satisfied, that is, when the slit wadth
method of an intuitive description of stationary diffraction. becomes comparable with the de Broglie wavelengtand
The solution, involving some time-dependent boundary conthe chop timeT, becomes comparable with the de Broglie
ditions, is equivalent to that of an appropriate time-wave periodl. The different space and time dependencies of
dependent distribution of sources over the boundary surfacéhe diffraction pattern become equivalent only for times in
thus extending Huygens' and Fresnel principles to nonstathe region around the classical propagation timge Such
tionary problems. This leads to the introduction of Fresnelexpansion of the solution around the classical time only
zones in time by appropriately dividing the time axis of makes sense for the evolution of “nearly classical” wave
emission of the secondary waves. The center of the zerotpackets when the chop times are much longer than the de
zone is determined by the time emission of the classical paBroglie wave period and the slit widths are much larger than
ticle. The graphic addition of the amplitudes of secondarythe de Broglie wavelength. Then the solution becomes a
waves leads to a spiral, analogous to the well-known Cornproduct between the solution for stationary diffraction at the
spiral of stationary diffraction. With the help of the concept slit in space and the solution for temporal diffraction at the
of Fresnel zones in time, we introduced a device which weslit in time.
call the temporal Fresnel lens. Combining a double slit in space with a single slit in time
In the present calculations we used a boundary conditioas well as a single slit in space with a double slit in time, we
approach. We assumed Dirichlet conditions and foundbtain solutions exhibiting Young’s interference fringes in
equivalent counterparts in initial conditions. space and time, respectively. For diffraction at a double slit
In the physics of electromagnetic waves in vacuum, theboth in space and in time we find a highly structured packet
solution for an “edge in time” has a sharp shadow in time, with simultaneous Young's fringes in space and in time.
while for matter waves it has a close resemblance to the Through Fourier transformation we found a connection

p(r,)ocxe ko el (k, k,,0), (52

VI. CONCLUDING COMMENTS
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between an incident wave and a resulting time-modulategeriments for atoms, molecules, and possibly heavier ob-
wave in the limit of large times. It is shown that in the region jects.
around the classical time, diffraction patterns in space and in
time can be represented as the square of the Fourier trans-
form both in space and in time of the incident wave in the
time-dependent aperture. This is a generalization of the well- This work was supported by the Austrian Fonds zur
known analogous situation in stationary diffraction. Forderung der wissenschaftlichen Forschung Project No.

We regard our calculations as a further step toward sucs56504 and by the National Science Foundation under Grant
cessfully preparing precision de Broglie wave diffraction ex-No. PHY97-22614.
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