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Diffraction of matter waves in space and in time

Časlav Brukner and Anton Zeilinger
Institut für Experimentalphysik, Universita¨t Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

~Received 26 December 1996!

In analogy to the well-known diffraction of waves at spatial structures, one can also define diffraction in
time when a wave is temporarily modulated. In the present paper we investigate this phenomenon starting from
a Green’s-function approach. Diffraction in time appears for Schro¨dinger waves and not for light in vacuum.
Specific cases of diffraction in time investigated here are diffraction at an ‘‘edge in time’’ and a Fresnel lens
in time. We then investigate in detail the simultaneous diffraction both in space and in time representing a
general solution. Then we analyze in detail diffraction at an edge, both in space and in time, of a single slit in
space and in time, a double slit in space, and a single slit in time, a single slit in space and a double slit in time,
and, finally, a double slit both in space and in time. In all cases we analyze the possibilities of various
approximations which can be made, and show the limits and validity of the Fraunhofer approximation both in
space and in time. We give explicit results for a gedanken experiment with very cold atoms.
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PACS number~s!: 03.75.Be, 42.25.Fx, 42.50.Vk
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I. INTRODUCTION

Diffraction in space implies a deviation from the ge
metrical path including deflection into the geometric
shadow. Analogously, diffraction in time implies that th
wave can appear at the observation point at times diffe
from the flight time of a classical particle. In the prese
paper we study phenomena appearing when both diffrac
in space and in time happen together.

For a typical example of simultaneous diffraction in spa
and in time, consider a semi-infinite monochromatic wa
with wave vectork0 parallel to thex axis, which is blocked
at x50 by a nontransmitting screen containing a closed
erture and oriented perpendicular to the propagation di
tion. If at t50 the aperture is opened, at timet what will be
the probability density to observe the particle at the gen
position r behind the slit?

It is well known that in the stationary case~t→` in the
above example! both matter waves and electromagne
waves show the same diffraction pattern. This is most
rectly seen by specifying a harmonic dependence on t
c(r ,t)5f(r )e2 iv0t as an ansatz for the Schro¨dinger equa-
tion in vacuum

“

2c~r ,t !1
i2m

\

]c~r ,t !

]t
50, ~1!

on the one hand, and for the wave equation in vacuum,

“

2c~r ,t !2
1

c2

]2c~r ,t !

]t2 50, ~2!
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on the other hand.1 Then in both cases we obtain the sam
~Helmholtz! equation

“

2f~r !1ko
2f~r !50 ~3!

for the stationary solution. The wave numberk0 is
A2mv0 /\2 for the Schro¨dinger equation andv0 /c for the
wave equation.

Inspecting the symmetry between space and time coo
nates in the wave equation~that is, the fact that the deriva
tives of both space and time coordinates are of second ord!,
and knowing that electromagnetic waves exhibit diffracti
in space in the nonstationary case, one might be temp
naı̈vely to assume that diffraction in time occurs for electr
magnetic waves. However, diffraction in time does not oc
for the wave equation@3#, but, in contrast, arises for th
Schrödinger equation@3–7#. Moreover, despite the fact tha
the Schro¨dinger equation is of parabolic type, while th
Helmholtz equation is elliptic, there is a close resemblan
between the matter wave diffraction patterns in time and
stationary diffraction patterns in space.

The problem of nonstationary diffraction effects of matt
waves appears to have first been discussed by Moshin
@3#. Involving certain initial conditions in space, he consi
ered the problem of wave evolution following the instan
neous removal of an ideal nontransmitter from a se
infinite monochromatic beam. He found a solution close

1Evidently, electromagnetic waves are vector waves. Yet it can
shown that in free space@1# and in some cases even inside med
@2#, one can use the scalar wave equation. In general, it takes q
a calculation and specific assumptions to derive this result. It
shown in Ref.@1# that, for example, the intensity of natural light i
vacuum can be represented in terms of a single complex sc
wave function if the electrical and magnetic fields do not vary a
preciably over the wave front.
3804 © 1997 The American Physical Society
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56 3805DIFFRACTION OF MATTER WAVES IN SPACE AND IN TIME
related to the stationary one for diffraction of a plane wave
an edge in space.

The dispersion relations lie at the heart of diffraction
time phenomena. The relation between frequency and w
vector as given by the Schro¨dinger equation isv(k)
5uku2\/2m. Thus an initial wave with group velocityv0 and
with a sharp wave front at some instant will instantaneou
spread over all space. Actually, in order to obtain a sh
front, one requires infinitely large momentum componen
which for Schro¨dinger waves would imply infinite~signal!
velocities and instantaneous spreading. Consequently, an
server at distanceur u could detect a particle before the fligh
time ur u/uv0u of a classical particle. In the case of an elect
magnetic wave such a dispersion would imply detection
the particles before the timeur u/c. Conversely, since the
wave equation involves only derivatives of the same~sec-
ond! order in space and in time, there is no dispersion,
the wave front of the initial wave packet propagates with
limiting velocity c. Therefore, there is no diffraction in tim
for light. For completeness we mention here that, in gene
for electromagnetic waves, and thus for photons, diffract
in time can indeed occur in a medium. This is because, in
a medium, we find dispersion relations which significan
deviate from the linear free-space behavior.

The above-mentioned symmetry of space and time co
dinates in the wave equation is sufficient for equivalen
between phenomena in space and in time only in o
dimensional problems, while the observation of diffraction
space requires at least two dimensions. A wave emitted
point source~Green’s function! obeying the wave equatio
in vacuum will be concentrated at timet on a sphere of
radiusct whose center is at the source point. The wave fu
tion represented by the superposition of the effects of m
point sources in an aperture can thus also differ from zer
regions inside the geometric shadow, but only after timeL/c
~L is the distance to the nearest point in the aperture!. Thus
light propagating in vacuum exhibits diffraction in space b
not in time.

In contrast, the Green’s function of the nonrelativis
Schrödinger equation immediately becomes unequal zero
erywhere as soon ast differs from zero because a poin
source d disturbance contains all velocity componen
Therefore at some fixed space point the wave function bu
up continuously fromt50. Thus matter waves diffract bot
in space and in time.2

In Sec. II the Green’s-function approach to solving line
partial, and in general inhomogeneous differential equati
with inhomogeneous boundary conditions is applied to
Schrödinger equation modified to contain a source term. U
ing superposition, both the source term and the inhomo
neous boundary condition are treated as collections of co
ent point sources.

2A wave originating at a point source and obeying the Sch¨-
dinger equation can be expressed as a product of the indivi
waves propagating in independent~x, y, and z! directions. This
implies that after passing an aperture the deflection of a ma
wave into the geometric shadow is due to the independent dis
sions along these directions, rather than being a consequen
correlated propagation along different directions contained in
nonseparability of the electromagnetic Green’s function.
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Involving boundary conditions to solve nonstationa
problems, in the present paper we introduce conditions
time analogous to the boundary conditions in space use
stationary spatial diffraction. Hence, in Sec. III A we use
‘‘edge in time’’ boundary condition to solve Moshinsky’
problem. In order to extend the analogy between station
optics in general and nonstationary optics of matter wa
further, in Sec. III B we introduce Fresnel zones in time, a
illustrate this by introducing a Fresnel lens in time. In Se
IV, combining the conditions in space with the conditions
time, we compute different two-dimensional problems whi
permit us to discuss simultaneous diffraction and interf
ence effects in space and in time. The solutions obtai
hold when the conditions for strong diffraction effects
space and in time are satisfied, i.e., when the wavelength
the wave period of the de Broglie wave are of the same or
as the slit width and the slit opening time, respectively. W
also identify that parameter regime where the space and
dependences of the diffraction patterns are equivalent.

It is a challenging research program to exhibit diffracti
and interference effects for increasingly larger objects.
emphasize therefore that the physical parameters consid
in Sec. IV for the experimental realization of phenome
discussed in the present paper may be accessible with
atoms. It is well known in the theory of stationary diffractio
that the diffraction pattern in the Fraunhofer limit represe
the square of the Fourier transform in space of the incid
wave in the aperture. In Sec. V we examine under wh
conditions one can generalize such considerations to the
stationary diffraction patterns in space and in time. Fina
Sec. VI is reserved for some concluding remarks.

II. POINT SOURCES OF MATTER WAVES IN SPACE
AND IN TIME

In this section we first determine the solution of the tim
dependent Schro¨dinger equation in vacuum modified to con
tain a source term. Using superposition, both the source t
of the differential equation and the inhomogeneous bound
condition can be treated as collections of mutually coher
point sources. This yields an exact solution in the form of
integral.

The Schro¨dinger equation in vacuum~1! modified to con-
tain the inhomogeneous source termr(r ,t),

“

2c~r ,t !1
i2m

\

]c~r ,t !

]t
524pr~r ,t !, ~4!

is an example of a linear, partial, and inhomogeneous dif
ential equation. Although the source densityr(r ,t) has no
immediate physical meaning, we introduce it for mathema
cal completeness. This will facilitate the treatment of cert
boundary conditions and initial conditions. For each type
equation there is a definite set of initial conditions a
boundary conditions which will give unique solutions, an
any other conditions will give either nonunique or impo
sible answers. The boundary conditions may be given in
ferent types. The specification on the boundary surface of
valuec(r ,t) is called the Dirichlet condition. The Neuman
condition is given when the normal derivative of the functi
c(r ,t) on the boundary is defined. When a linear combin
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3806 56ČASLAV BRUKNER AND ANTON ZEILINGER
tion of the functionc(r ,t) and its normal derivative are
given on the boundary, it is called a mixed boundary con
tion. Depending on whether the values of the boundary d
vanish or not, we speak about homogeneous or inhomo
neous boundary conditions, respectively. The condition
the boundary surface for the Schro¨dinger equation may be
either Dirichlet or Neumann or mixed@8#.

The linearity of the differential equation~4! has the con-
sequence that the sum of the solutions for different in
vidual sources is a solution of the equation with the sum
the sources present. With the point source solution, one
thus obtain the solution for an arbitrary source distributio
The solution of the equation

“

2G~r ,t,r0 ,t0!1
i2m

\

]G~r ,t,r0 ,t0!

]t

524pd3~r2r0!d~ t2t0! ~5!

is called the Green’s function for the Schro¨dinger equation in
vacuum. Generally, the Green’s functionG(r ,t,r0 ,t0) can be
understood to describe, within the volumeV enclosed by the
surface]V ~Fig. 1!, the effect on the observation pointr at
time t of a point source localized at positionr0 at time t0 .

Morse and Feshbach@8# gave integral forms of solution
for several linear partial equations. Inserting the imagin
squarea252 i (2m/\) of the diffusion constanta into the
results ~p. 857 in Ref. @8#! for the diffusion equation:
“

2c(r ,t)5a2@]c(r ,t)/]t#, one may immediately obtain th
corresponding expressions for the Schro¨dinger equation. In
the following we briefly discuss these expressions.

To ensure the existence and uniqueness of the Gre
function, we let it obey certain boundary conditions and i
tial conditions. It is sufficient to consider that Green’s fun
tion which satisfies the homogeneous form of the bound
condition with respect to the variabler , either Dirichlet,

G~r ,t,r0 ,t0!50, rP]V,

or Neumann,

“G~r ,t,r0 ,t0!50, rP]V, ~6!

or mixed. Physical reasoning forces initial conditions on
Green’s function. The disturbance at pointr0 at time t0 has
an influence on other space points only at later timest.t0

FIG. 1. Source pointr0 , observation pointr , boundary surface
]V, and volumeV considered in the text.
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~causality!.3 Thus

G~r ,t,r0 ,t0!50 and “G~r ,t,r0 ,t0!50 for t,t0 .
~7!

Using the boundary conditions~6! and causality~7!, the so-
lution of the modified Schro¨dinger equation~4! can be rep-
resented in integral form@8#:

c~r ,t !5E
0

t1

dt0E
V
dV0r~r0 ,t0!G~r ,t,r0 ,t0!

1
im

2p\ E
V
dV0G~r ,t,r0,0!c~r0,0!

1
1

4p E
0

t1

dt0E
]V

dS0@G~r ,t,r0 ,t0!“0c~r0 ,t0!

2c~r0 ,t0!“0G~r ,t,r0 ,t0!#. ~8!

The vectordS0 represents an element of the boundary s
face]V and points outward, away from the volumeV inside
the boundary. The first integral in Eq.~8! represents the ef
fects of volume sources, the second one the effects of
initial condition, while the last one includes the effects of t
boundary condition.

Contrary to the Schro¨dinger equation, the initial condi
tions for the wave equation are of the Cauchy type. T
means that uniqueness of the solution requires at every s
point considered not only the specification of the initial wa
function, but also of its initial derivative in time. This is
consequence of the second derivative in time in the w
equation~2!. The boundary conditions are of the same ty
for both the Schro¨dinger and the wave equation. Thus th
integral representation of the solution of the wave equat
appears in the form@8#

c light~r ,t !5E
0

t1

dt0E
V
dV0r~r0 ,t0!G~r ,t,r0 ,t0!

2
1

c2 E
V
dV0F ]G~r ,t,r0 ,t0!

]t0
U

t050

c~r0,0!

2G~r ,t,r0,0!
]c~r0 ,t0!

]t0
U

t050
G

1
1

4p E
0

t1

dt0E
]V

dS0@G~r ,t,r0 ,t0!“0c~r0 ,t0!

2c~r0 ,t0!“0G~r ,t,r0 ,t0!#.

3For the case of waves which do not have a wave front an
limiting ~signal! velocity ~which is the case for Schro¨dinger waves!
the Schuetzer-Tiomno causality condition@9# is to be applied. It
reads as follows: the scattered wave packet at a distanceur u at time
t cannot depend on the behavior of the incoming wave packet aur u
at later timest.t0 , i.e., G(r ,t,r ,t0)50 for t,t0 . The condition
used by us is a stronger condition.
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56 3807DIFFRACTION OF MATTER WAVES IN SPACE AND IN TIME
Employing the Green’s function, one can obtain a so
tion of the inhomogeneous equation with the given homo
neous boundary condition, or else the solution of the hom
geneous equation with an inhomogeneous bound
condition. Because of the linearity of the equation it is a
possible to solve the inhomogeneous equation with an in
mogeneous boundary condition by superposition of b
types of solutions. It might not be clear how the Gree
function, as a solution of theinhomogeneousequation~5!
satisfying thehomogeneousboundary condition, could help
us to solve ahomogeneousequation with aninhomogeneous
boundary condition. In order to make this more understa
able, we can apply a well-known recipe used in electrost
problems. Replacing the inhomogeneous condition on
boundary surface by a homogeneous one together with
appropriate surface distribution of sources~a double layer for
Dirichlet conditions and a single layer for Neumann con
tions! just inside the surface, one reduces the case of
homogeneous equation with inhomogeneous boundary
dition to the case of the inhomogeneous equation with
mogeneous boundary condition.

Pointing again to Ref.@8#, where the exact and detaile
evolution is treated, here we briefly analyze the Gree
function for the Schro¨dinger equation in vacuum for an infi
nite volume~i.e., for a free particle!

G0~ ur2r0u,t2t0!

5S m

2p i\ D 1/2 1

~ t2t0!3/2 eimur2r0u2/2\~ t2t0!u@ t2t0#, ~9!

where u@ t2t0#[1 for t>t0 , and 0 for t,t0 , is the step
function required by causality. Since we are dealing with
point source in an infinite homogeneous and isotropic v
ume, G0 is rather a function ofur2r0u than of r and r0
separately. As soon ast2t0 differs from zero, the Green’s
function immediately becomes nonzero everywhere. T
shows that we are dealing with nonrelativistic quantum m
chanics.

A particle propagating from positionr0 at time t0 to the
point r at time t moves with the velocityV5(r2r0)/(t
2t0). Using this expression in the definition of the wa
vector K[mV/\ and the frequencyV[mV2/2\ of the de
Broglie wave, the corresponding phaseK (r2r0)2V(t
2t0)5mur2r0u2/2\(t2t0) matches exactly that of th
Green’s function~9!. Considering every Green’s function a
a representation of a unitary evolution opera
G(r ,t,r0 ,t0)[^r uÛ(t,t0)r0& and inserting G0(ur2r0u,t
2t0)5c(t2t0)eimur2r0u2/2\(t2t0)u@ t2t0# into the unitarity
condition Û(t,t0)Û†(t,t0)5 Î , the norm uc(t2t0)u will be
fixed leading, besides a phase factor, to Eq.~9!. Since a
conservative system~free evolution! is considered, the time
dependence of the unitary operator appears in the fort
2t0 .

The Green’s function for the wave equation in vacuum~2!
is a spherical shell around the point source, expanding w
the radial velocityc @8#,

G0
light~ ur2r0u,t2t0!5

d@ ur2r0u/c2~ t2t0!#

ur2r0u
u@ t2t0#.
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III. DIFFRACTION IN TIME

The problem of the evolution of a matter wave incident
a time-dependent aperture has been treated theoreticall
several authors@3–7#. In the simplest case it is a one
dimensional problem. The first step toward its solution w
made by Moshinsky@3#, who analyzed the wave evolutio
following the instantaneous removal of an ideal nontransm
ting screen from a semi-infinite monochromatic bea
c(x,0)5eik0xu@2x#. Involving this initial condition and the
Green’s function for a free particle~9!, he performed calcu-
lations of the last volume integral in Eq.~8!. Yet the initial
condition approach is difficult to realize in the general ca
of a screen containing a time-dependent aperture. Thi
because the Green’s functions of such two- or thr
dimensional problems are very difficult to calculate for
infinite volume, and to our knowledge have not yet be
obtained, not even for the simplest aperture opening fu
tions. On the other hand, if we restrict our considerations
the positive half-space~at the right of the screen!, we can
solve the problem by computing the surface integral in E
~8! with appropriate boundary conditions in the plane of t
screen and with the corresponding Green’s function alw
satisfying the differential equation~5! in the volume consid-
ered. Then the exact form of the Green’s function depe
only on the specific type of boundary condition.

The second reason for using the boundary condition
proach is to complete the analogy between diffraction in ti
and stationary diffraction in space. The integration over tim
contained in the integral involving boundary condition
makes it possible to introduce conditions in time analogo
to the conditions over space in stationary spatial diffracti
Hence a sudden removal and replacement of the scree
represented by an appropriate range of integration over t
~in the one-dimensional problem the integral expressing
effects of the boundary conditions reduces to one over t
only!. This is a time analog of a slit in a screen in stationa
diffraction, represented by a corresponding integration o
spatial coordinates at the boundary surface. We now turn
more detailed discussion of Moshinsky’s problem, intend
to solve it using the boundary condition approach.

A. Edge in time

We consider a semi-infinite plane matter wave propag
ing parallel to thex axis from left to right, being stopped b
a nontransmitting screen placed atx50 oriented perpendicu
lar to the propagation direction. All of a sudden the screen
removed att50, marking the beginning of propagation o
particles along the positive-x axis. In order to calculate the
time evolution of the probability of finding the particle a
pointsx.0 for timest.0, we assume the Dirichlet bound
ary conditionc(0,t)5e2 iv0tu@ t# at the planex50. We ex-
pect that the semi-infinite monochromatic time depende
of the boundary condition is close to the actual time dep
dence atx50 caused by the free propagation of a sem
infinite plane wave. However, a difference will arise at t
end of the calculation, and will be discussed there. Additio
ally we assume4 that for every finite timet of observation the
solution tends to zero forx→`.

The corresponding Green’s function, satisfying the hom
geneous Dirichlet condition at the boundary planex50, can
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3808 56ČASLAV BRUKNER AND ANTON ZEILINGER
be constructed as in electrostatics with the image meth
There an image point source to the left of the boundary
assigned to each point source to the right. The contributi
of both sources are then superposed to satisfy the given
mogeneous boundary condition. In the case of the homo
neous Dirichlet condition the real point source and its ima
have opposite signs:

G~r ,t,r0 ,t0!5G0~ ur2r0u,t2t0!

2G0~ ux1x0u,uy2y0u,uz2z0u,t2t0!,

~10!

where G0(ur2r0u,t2t0) is the free propagator~9!. The
Green’s function~10! is still the solution of the differentia
equation~5! because the image source lies outside of
half-space considered. Since the Green’s function~10! is
zero at the planex050, the first term in the surface integra
in Eq. ~8! vanishes, leaving

c~x,t !52
1

4p E
0

t1

dt0E
x050

dS0c~r0 ,t0!“0G~r ,t,r0 ,t0!.

~11!

After integration overy andz, we obtain

c~x,t !5xS m

2p\ D 1/2

e2 i ~p/4!

3E
0

t

dt0
1

~ t2t0!3/2

3e2 iv0t0eimx2/2\~ t2t0!. ~12!

Changing the integration variable toj51/At2t0, we find

c~x,t !5
x

2 S m

2p\ D 1/2

e2 i ~p/4!e2 iv0t

3E
1/At

`

djeiv0 /j2
e~ imx2/2\!j2

.

We evaluate this integral using the solution

4In the corresponding time-dependent electromagnetic prob
one can always find a distance larger thanct ~t is the observation
time! such that bothc(r ,t) and ]c(r ,t)/]r are zero. Since the
waves obeying the Schro¨dinger equation spread with infinite veloc
ity, our assumption is not trivial. Here we content ourselves w
the plausible argument that the distancer can always be chose
larger by any order thanvt ~v is the classical velocity of a particle!,
such that the norms of bothc(r ,t) and]c(r ,t)/]r can be arbitrarily
close to zero.
d.
is
s
o-
e-
e

e

E dj e2a2j2
e2b2/j2

5
Ap

4a S e2aberfFaj1
b

j G
1e22aberfFaj2

b

j G D1const, ~13!

from the integral tables @10# with 2a25 iv0 and
2b25 imx2/2\. Transforming the error functions into
the Fresnel integrals F@z#[*0

zduei (p/2)u2
PC, zPR,

erf@z/Ai #5A2/iF @zA2/p#, one finally obtains

c~x,t !5
1

&
e2 i ~p/4!e2 iv0tH eik0xS FF 2

ATt
~ t2tcl!G

2F@2`# D 1e2 ik0xS FF2
2

ATt
~ t1tcl!G

2F@2`# D J , ~14!

wherek0[A2mv0 /\ andT[2p/v0 are the wave numbe
and the wave period of the de Broglie wave, respective
and tcl[mx/k0\ is the time a classical particle needs
travel from 0 tox. The first term in Eq.~14! is Moshinsky’s
solution @3# @see Eq.~15! below#, freely evolving from the
initial wave eik0xu@2x#. It can be shown that the secon
term is freely evolving from the initial wavee2 ik0xu@2x#.
Therefore, if we restrict our considerations to the right ha
space, the wave evolved under the boundary condi
e2 iv0tu@2t# at x50 is equivalent to the freely evolving
initial wave (eik0x1e2 ik0x)u@2x#.

It is expected that the contribution of the initial wav
propagating to the left is negligible in the right half-spac
Actually, fixing the space pointx, the argument of the third
Fresnel integral in Eq.~14! has its maximum value o
24Atcl /T at t5tcl . This maximum tends to negative infin
ity for l!x, i.e., T!tcl ~l[2p/k0 is the de Broglie wave-
length!, leaving only Moshinsky’s solution

cMosh.~x,t !5
1

&
e2 i ~p/4!ei ~k0x2v0t !

3S FF 2

ATt
~ t2tcl!G2F@2`# D . ~15!

At this point we shall review some properties
Moshinsky’s solution. Moshinsky’s solution has
remarkable analytical similarity to the solutio
(1/&)e2 i (p/4)ei (k0x2v0t)(F@A2/lxy#2F@2`#) for station-
ary diffraction of a plane wave at an edge. The classica
expected cutoff atx5\k0t/m is smeared out because th
initial wave consists of different momentum componen
propagating with different velocities. The intensity given b
Moshinsky’s solution~Fig. 2! differs appreciably from zero
only whent is of the order of or larger than the time of fligh
tcl of the classical particle. At the timet5tcl the intensity is
exactly 25% of the incident intensity. The analogous point
stationary diffraction of a plane wave at an edge is the po
tion of the edge projected onto the observation screen. Th

m
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56 3809DIFFRACTION OF MATTER WAVES IN SPACE AND IN TIME
too the intensity is 25% of the intensity level with no ed
present. The transitional time from the ‘‘time shadow’’t
,tcl) to the ‘‘time-illuminated region’’ (t.tcl) is of the
order of ATtcl for T!tcl . More precisely, forT!tcl the
intensity reaches its maximal value of 137% of the incid
intensity at t5tcl10.61ATtcl. Analogously, in stationary
diffraction at an edge, the range over which the shadow
not sharp is of the order ofAlx. With further increasing
time the intensity oscillates in a damped fashion around
incident intensity, the latter being equivalent to the intens
of Moshinsky’s solution whent→`. Similarly, going from
the light-shadow boundary into the illuminated region, t
intensity for the stationary diffraction of a plane wave at
edge oscillates in a damped fashion around the inciden
tensity.

Therefore, forT!tcl , there is a close relationship be
tween the solution for the diffraction at an edge in time a
the one for stationary diffraction at an edge in space. T
condition of a step function screen opening and the cl
mathematical resemblance with the stationary solution of
fraction at the edge are the reasons for calling the pre
case an ‘‘edge in time.’’ The difference between diffracti
at the edge in time and stationary edge diffraction is that
nonstationary solution vanishes fort,0, while the solution
of the stationary problem differs from zero for all values
the y coordinate. This difference emerges due to we
defined starting time of the inhomogeneous boundary co
tion.

We also want to emphasize a close resemblance betw
the solution for light diffraction at the edge in time and t
solution for matter wave diffraction at the edge in time in t
classical limit. Expressing solutions~14! through the classi-
cal velocity v0 instead ofk0 and v0 , and letting Planck’s
constanth tend to zero and/or the massm tend to infinity, the
time transitional period tends to zero and the solution
duces to the classical one:

lim
\→0

cmat~r ,t !5eik0~x2v0t !u@v0t2x#.

Dealing with the same problem for electromagnetic wa
instead of matter waves, we obtain the solution

FIG. 2. Intensity at a fixed-space point as a function of time
the case of diffraction at an edge in time of an incident matter w
with wave periodT. At the classical timet5tcl and at the first
maximum in time t5tcl10.61ATtcl for T!tcl , the intensity is
exactly 25% and 137%, respectively, of the incident intensity,
latter being equivalent to the intensity whent→`. The transitional
time from ‘‘time shadow’’ to ‘‘time illuminated region’’ is of the
order ofATtcl for T!tcl .
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c light~r ,t !5eik0~x2ct!u@ct2x#

which also exhibits no diffraction in time effects. A simila
solution was found by Moshinsky@3# using the initial con-
dition approach.

B. Fresnel zones in time

Huyghens’s principle postulating that each point on t
wave front acts as a point source of secondary waves sup
mented by Fresnel with the statement that these secon
waves are mutually coherent and interfere, is basic for
Fresnel zone method of an intuitive description of station
diffraction. Thus dividing the front of an incident plane wav
into annular zones in such a way that the distances betw
zone boundaries and the observation point vary in step
l/2, and letting the secondary waves arriving from differe
zones interfere, we can determine the amplitude at the ob
vation point for any number of open zones.

The solution involving time-dependent boundary con
tions is equivalent to one for an appropriate time-depend
distribution of sources over the boundary surface, thus
tending Huygens’ and Fresnel’s principles to nonstation
problems. Thenc(r ,t) satisfying the inhomogeneous Dirich
let condition may be interpreted as a superposition of s
ondary waves emitted from a double layer of a magnitude
‘‘dipole’’ moment density proportional to the valuec(r ,t) at
the boundary@8#.

Here we are interested in the solution in the right ha
space when the Dirichlet conditione2 iv0t0u@ t0# at the
boundary surfacex50 is defined. We shall now calculate
secondary wavecs.wave(x,t,t0) emitted att0 from a double
layer with dipole moment density of uniform magnitude pr
portional toe2 iv0t0. From Eq.~11!, we obtain

cs.wave~x,t,t0!

5
1

4p E
2`

`

dy0E
2`

`

dz0e2 iv0t0
]G~r ,t,r0 ,t0!

]x0
U

x050

5xS m

2p i\ D 1/2 1

~ t2t0!3/2 e2 iv0t0eimx2/2\~ t2t0!. ~16!

Thus the phase of the secondary wave emitted att0 is at
point x at time t ~Fig. 3!

r
e

e

FIG. 3. Dependence of the phase of the secondary wave on
time of its emissiont0P@0,t# at a fixed-space pointx at the fixed
time t. The secondary wave is emitted from thex50 plane, where
the boundary conditione2 iv0tu@ t# is defined. The phase is station
ary at the timet05t2tcl ~tcl[Amx2/2\v0 is the flight time of the
classical particle!, when the classical particle moving with the cla
sical velocitytd would be emitted.
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3810 56ČASLAV BRUKNER AND ANTON ZEILINGER
f~x,t,t0!52v0t01
mx2

2\~ t2t0!
. ~17!

Notice that this is just the phase of the integrand in Eq.~12!.
Now we will divide the time axist0 into zones in such a

way that the phases of the secondary waves emitted a
zone boundaries differ byp when arriving at the fixed poin
x at timet. Denoting the boundaries of the zones in time
t0
0,t0

61,. . .,t0
6n ,. . .nPN, we can write this condition in the

form

f~x,t,t0
61!2f~x,t,t0

0!5p,

f~x,t,t0
62!2f~x,t,t0

61!5p, ~18!

. . .,

f~x,t,t0
6n!2f~x,t,t0

6n21!5p

. . .,

Realizing that the phase~17! is stationary for a classical par
ticle moving with the velocityA2\v0/m and arriving at
point x at timet ~see Fig. 3!, the center of the zeroth zone
defined byt2t0

05tcl , wheretcl[Amx2/2\v0 is the flight
time of a classical particle. Consequently, the zone bou
aries are given by

t0
6n5t2tcl2

nT

4
6F S tcl1

nT

4 D 2

2tcl
2 G1/2

. ~19!

WhenT!tcl , we obtain, with an error not exceedingnT,

to
6n5t2tcl6S nTtcl

2 D 1/2

.

In the stationary case of propagation of a plane wave,
distance between the zeroth andnth Fresnel annular zone is
up to a term of the order ofnl, analogously given byAxnl,
nPZ, wherex is the distance between the observation po
and the plane of sources of secondary waves. This show
fact that close to the zeroth zones the arrangements o
Fresnel zones in time and of the stationary Fresnel zone
space are equivalent.

As in stationary optics, we now proceed by dividing ea
zone into a number ofm subzones such that the pha
change from one subzone to the next is of the order ofp/m.
As we move away from the zeroth zone the lengths of
Fresnel zones decrease@Fig. 4~a!#, and consequently the am
plitude of the wave arriving from each subzone decrea
Additionally taking into account that the amplitude of th
secondary wavecs.wave(x,t,t0) is proportional to 1/(t
2t0)3/2 @see Eq.~16!#, graphic addition of the amplitudes i
the complex plane leads to a spiral as shown in Fig. 4~b!,
analogous to the Cornu spiral for stationary diffraction. W
recall that the radius of curvature of the Cornu spiral
stationary diffraction changes as}u1/yu with position y of
the Fresnel fringe. The radius of curvature of the pres
spiral changes with the time of emissiont0 of the secondary
waves as given byuA(t2t0)/@(t2t0)22tcl

2 #u.
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We denote byQ, M , O, N, and P6n the points on the
spiral corresponding tot052`, t050, t05t2tcl , t05t,
and the boundaries of the zones, respectively. The position
the pointM in Figs. 4~a! and 4~b! corresponds to the case
when t.tcl . Although the segment of the spiral betweenO
andN corresponds to the finite time differencetcl , the point
N lies at the focal point. This is a particular feature o
Fresnel zones in time. We recall that, in contrast, the foc
points of the Cornu spiral for stationary diffraction corre-
spond to the limitsy56` for the positions of the Fresnel
zones.

If the zones bounded by the pointO and the pointPi in
Fig. 4~a! are open, the amplitude at the observation pointx
and timet is proportional to the lengths of the vectorsOPi in
Fig. 4b. Due to the well-defined beginning in time of the
inhomogeneous boundary condition and the causality pri
ciple, only the waves arriving from the open zones within th
interval @0,t# are to be taken into account.

Thus for diffraction at the edge in time, i.e., when all
zones within@0,t# are open, the following picture emerges
~Fig. 5!. At t50 the amplitude starts strictly at zero. Subse
quently, with increasing time, the amplitude at some fixe
space point first increases monotonically in magnitude~M
spirals aroundN! becoming 50% att5tcl ~M arrives atO!.
It continues to increase monotonically untilt5tcl

10.61ATtcl ~we assume again thatT!tcl!, whenM arrives
near the lower boundary of the zeroth zone, where it reach
its maximum with 117% of the amplitude of the incident
wave. Afterwards the amplitude oscillates in a damped fas
ion around the amplitude of the incident wave~M spirals
into Q!. When t.tcl , settingto

2n50 in Eq. ~19! gives the
numbern of maxima at the pointx up to the timet as n
5(2/tT)(t2tcl)

2. This corresponds to the number of loops
performed by the pointM around the lower focal pointQ.

FIG. 4. ~a! represents the arrangement of Fresnel zones in tim
wheret0 is the time of emission of the secondary wave. The cente
of the zeroth zone is defined as the emission time of the classic
particle propagating with classical velocity. PointsQ, M , O, N,
and P6n correspond tot052`, t050, t05t2tcl , and t05t, and
to the boundaries of the zones, respectively.~b! shows the spiral
emerging from the graphic addition of the amplitudes of the sec
ondary waves in the complex plane. This spiral is analogous to th
famous Cornu spiral of the stationary Fresnel diffraction. If the
zones bounded by the pointO and the pointPi in ~a! are open, the
amplitude at the observation pointx and timet is proportional to
the lengths of the vectorsOPi in ~b!. The position of pointM in
both figures corresponds to the case whent.tcl .
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56 3811DIFFRACTION OF MATTER WAVES IN SPACE AND IN TIME
The close analogy of the Fresnel zone construction
time with the familiar one in space in the stationary ca
suggests that one may find in the nonstationary optics
matter waves counterparts in time of the familiar diffracti
patterns and devices appearing in stationary optics. For
ample, if we select an arbitrary zeroth zone, construct
position of other zone boundaries in accordance with
~18!, and then close all odd zones, all waves arriving fro
the open even zones at a fixed-space position interfere
structively. Proper temporal modulation of the beam of p
ticles could serve to implement the closing and opening
the Fresnel zones in time. Thus we obtain a device which
call a temporal Fresnel lens. On the other hand, to prod
constructive interference at some given position at timet, we
can find zones in time according to Eq.~19! and leave only
even zones open. The longer the chosen timet is, the more
zones contribute to interference, resulting in high
intensities.5

IV. DIFFRACTION IN SPACE AND IN TIME

In this section we consider in detail a semi-infinite mon
chromatic matter wave traveling in thex direction incident
on a screen located in the planex50 which contains a time-
dependent single or double-slit opening. We assume
length ~along z! of the slit to be infinite, while the time

5Recently progress was made in nonstationary optics of atom
Dalibard’s group. Arndtet al. @11# used a time-modulated ligh
wave as an atomic mirror to focus different velocity classes
atoms originating from a point source, and to demonstrate the
mation of images of a point source. This is an alternative appl
tion of the Fresnel lens concept in time to atom optics.

FIG. 5. Diffraction at the edge in time, i.e., all Fresnel zon
within @0,t# are open. The length of the vectorNM is proportional
to the wave amplitude at a fixed position in the course of time.
t,0, the amplitude is equal to zero. With increasing timeM begins
to spiral aroundN ~the amplitude increases monotonically!, then
goes throughO ~at t5tcl the amplitude is 50% of the amplitude o
the stationary solution!. With time increasing further the pointM
arrives near the lower boundary of the zeroth zone, where the
plitude reaches its maximum of 117% of the amplitude of the s
tionary solution; afterwardsM finally spirals intoQ, the stationary
solution point, and hence the amplitude oscillates in a damped f
ion around the amplitude of the stationary solution.
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varying width along they axis is given by functionsa1(t)
>0 and a2(t)>0 ~Fig. 6! for the single slit. The two-
dimensional nature of the problem permits us to discuss
multaneously spatial and time diffraction effects. Assumi
that the slit is kept shut fort,0 and that the screen is totall
nontransmitting, the wave function in the half-space to
right of the screen vanishes fort,0. We shall compute the
probability to find a particle at a point in the right half-spa
at time t>0 using the boundary condition approach. Let
slit be opened for a given time and then closed again.
note that it is easy to show that the resulting chopped w
evolving under the homogeneous Dirichlet boundary con
tion in the plane of the screen can be expressed as a su
the freely evolving packet and one reflected by the scre
Thus the mathematical assumption of a homogeneous
richlet condition at the screen is equivalent to the physi
assumption ofperfect reflectivityof the screen. As expected
the normal componentj x(r ,t)[(\/2im)„c* (r ,t)@]c(r ,t)/
]x] 2c(r ,t)@]c* (r ,t)/]x#… of the probability current van-
ishes at the screen.6 Therefore the total probability in eithe
half-space remains constant when the slit is closed.

We return to our problem. At the slit determined byx
50 and2a2(t)<y<a1(t), we assume the inhomogeneo
Dirichlet condition c(0,y,z,t)5e2 iv0t. Our Green’s func-
tion is again that of Eq.~10!. Thus from Eq.~11! we obtain

by

f
r-
-

6As a matter of fact, if the boundary condition is a general hom
geneous one,m(x)c(x,t)1n(x)@]c(x,t)/]x#50, the absence of
the probability flow at the boundary surface still holds whenm(x)
andn(x) are real functions. Whenn(x)50, the condition is of the
homogeneous Dirichlet type, and whenm(x)50, it is of Neumann
type.

r

-
-

h-

FIG. 6. A scheme of an experiment for observation of bo
diffraction in space and diffraction in time. An incident sem
infinite monochromatic wave is falling onto an infinitely long sli
The time-varying slit is defined by the width functionsa1(t) and
a2(t). Diffraction effects are observed in the half-space at the ri
of the screen.
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c~r ,t !5
1

4p E
0

t1

dt0E
2a2~ t0!

a1~ t0!

dy0E
2`

`

dz0

3c~0,y0 ,z0 ,t0!
]G~r ,t,r0 ,t0!

]x0
U

x050

.

Inserting the Green’s function and using the chosen bou
ary condition leads to

c~r ,t !52
imx

2p\ S m

2p i\ D 1/2E
0

t1

dt0
1

~ t2t0!5/2

3e2 iv0t0eimx2/2\~ t2t0!E
2a1~ t0!

a2~ t0!

dy0

3eim~y2y0!2/2\~ t2t0!E
2`

`

dz0eim~z2z0!2/2\~ t2t0!.

After substituting u5Am/p\(t2t0)(y2y0) and v
5Am/p\(t2t0)(z2z0) for the variables in the spatial inte
grals, one obtains a solution involving Fresnel integrals,

c~r ,t !52
ix

2 S m

p\ D 1/2E
0

t1

dt0
1

~ t2t0!3/2

3e2 iv0t0eimx2/2\~ t2t0!H FF S m

p\~ t2t0! D
1/2

3@y1a1~ t0!#G2FF S m

p\~ t2t0! D
1/2

@y2a2~ t0!#G J .

~20!

We notice that the Fresnel integrals depend linearly on
spatial coordinatey, as in stationary Fresnel diffraction. Bu
it is very important to realize that in general it is not possib
to separate space and time in solution~20!.

From now on we restrict ourselves to the three simp
nontrivial two-dimensional cases:~a! a step-function edge
opening~edge opening instantaneously!, ~b! a square pulse
slit opening~slit opening and closing instantaneously!, and
~c! two square pulse slit openings. For the latter two cases
will consider both spatial single- and double-slit openings
the screen.

Being interested in experimentally observing the pheno
ena predicted here, we shall discuss as an example in
following subsections a beam of Li-7 atoms with atom ma
m5731.66310227 kg moving with the classical velocity
v051 m/s. The corresponding wavelength and wave per
of the de Broglie wave arel55.7031028 m andT51.14
31027 s, respectively.

A. Edge in space and in time

In this subsection we consider diffraction at the edge
space and in time, i.e., we let the slit width be determined
the step function in space and in time,

a2~ t !5 H 0
`

for t,0
for t>0,

a1~ t !50, ;t.
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Kamesberger and Zeilinger@6# reported figures based on th
numerical solution of this problem. In order to find an exa
relation between diffraction in space and diffraction in tim
we now compute the analytical solution. Inserting the s
width functions just defined and changing the integrat
variablet5t2t0 in Eq. ~20!, we obtain

cedge~r ,t !52
ix

2 S m

p\ D 1/2

e2 iv0tE
0

t

dt
1

t3/2

3eiv0teimx2/2\tH F@`#2FF S m

p\t
yD 1/2G J .

~21!

In our analysis of this equation we will consider three diffe
ent spatial regions.

1. Geometric shadow

If Am/p\ty@1, F@Am/p\ty# can be substituted by its
asymptotic behavior@11# F@z→`#5F@`#1(eipz2/2/ ipz)
1O@z23# with an error of the order of (Am/p\ty)23. For
the atomic beam parameters introduced above, this crite
is satisfied fory@1024 m at an observation timet51 s.
With that approximation, we obtain

cshadow~r ,t !5
1

2p

x

y
e2 iv0tE

0

t

dt
1

t
eiv0teim~x21y2!/2\t.

The main contribution to the integral comes from tim
around the classical timetcl1

[mAx21y2/k0\, where the

phase of the integrand is stationary. Treating the functiont1/2

to be constant in comparison with the rapidly varying exp
nential integrands, we approximate 1/t[t1/2/t3/2'tcl1

1/2/t3/2.

Then, with the substitutionj51/At, we find

cshadow~r ,t !5
1

p

x

y S mAx21y2

k0\ D 1/2

e2 iv0tE
1/At

`

dj

3eiv0 /j2
e@ im~x21y2!/2\#j2

.

Again using solution~13! from the integral tables, the fina
solution is a sum of two waves corresponding to init
waveseik0xu@2x# ande2 ik0xu@2x#. However, in the limit
Ax21y2@l the contribution of the latter one propagating
the left vanishes, leaving

cshadow~r ,t !5
1

2p

x

y

1

Ak0Ax21y2
ei ~k0

Ax21y22v0t !

3S FF 2

ATt
~ t2tcl1

!G2F@2`# D . ~22!

Transforming solution~22! into polar coordinates, tana
[y/x and r[Ax21y2, one may easily recognize a kin
of cylindrical wave going out from the edge~Fig.
7!, cshadow(r ,t)5(1/2p)(1/tana)(1/Ak0r)ei (k0r2v0t)

†F„(2/
ATt)@ t2(mr/k0\)#…2F@2`#‡. If r→` and/or a→p/2,
we obtainc(r ,t)→0, as is to be expected deep in the ge
metric shadow.
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56 3813DIFFRACTION OF MATTER WAVES IN SPACE AND IN TIME
Solution ~22! is a product between the solution for th
stationary diffraction into the geometric shadow and the
lution of diffraction at the edge in time~15!, involving here
the classical timetcl1

5mAx21y2/k0\. An analysis similar
to the one carried out for Moshinsky’s problem~see Fig. 2!
can be given here. Thus the intensity level at two distinct
points, at the classical time and at the first maximum
time, is 25% and 137%, respectively, of the stationa
intensity in the geometric shadow„the stationary
solution is limt→`cshadow(r ,t)5(1/&p)ei (p/4)(x/y)@1/

(k0Ax21y2)1/2]ei (k0Ax21y22v0t)
…. The width in time of the

transitional interval is of the order ofATtcl1
. With the

atomic wave data assumed above, the transitional tim
Ax21y2'1m is approximately 3.431024 s. Solution~22!
is accurate up to the order of (x/k0y2)3/2. The intensity dis-
tribution of diffracted cold neutrons ofl520 Å behind the
edge is given in Fig. 8.

2. Geometric illuminated region

Setting ~compare the case of the geometric shado!
Am/p\ty!21 and using the asymptotic behavior@12#

F@z→2`#5F@2`#1(eipz2/2/ ipz)1O@z23#, we approxi-
mate Fresnel’s integral in Eq.~21! up to the order of
(Am/p\ty)23 and evaluate

FIG. 7. Schematic view of diffraction at the edge both in spa
and in time indicating particular space regions. The solution ins
the geometric shadowcshadow(r ,t) is a product between the solu
tions of diffraction at the edge in space and of diffraction at
edge in time. The solutionc illum.(r ,t) in the geometric illuminated
region is a superposition of a scattered wavecshadow(r ,t) and
cMosh.(r ,t) evolving freely from the incident wave. The solution
the light-shadow boundarycbound.(r ,t) is a product of a stationary
solution of the diffraction at an edge in space describing a tra
tional region from the geometric shadow to the geometric illum
nated region and the solution of diffraction at the edge in time.
-

e
n
y

at

c illum.~r ,t !5xS m

2p\ D 1/2

e2 i ~p/4!e2 iv0tE
0

t

dt
1

t3/2

3eiv0teimx2/2\t1cshadow~r ,t !

5cMosh.~r ,t !1cshadow~r ,t !. ~23!

Here we again neglect the contribution of the wave pro
gating to the left. The first term is exactly Moshinsky’s s
lution ~15!, the one which would be present if there were
edge in space. In that sensecshadow(r ,t) is a correction to
geometric optics~Fig. 7!. Since the solution in the geometri
illuminated region is a superposition of a freely evolvin
wave cMosh.(r ,t) involving the classical timetcl5mx/k0\
and a scattered wavecshadow(r ,t) involving the classical time
tcl1

5mAx21y2/k0\, c illum.(r ,t) is not a product of the sta
tionary solution in the illuminated region and one of diffra
tion at the edge in time. Going away from the edge~in polar
coordinatesr→`! the solution reduces to Moshinsky’s. Th
obtained solution~23! is correct up to errors of the order o
(x/k0y2)3/2.

3. Light-shadow boundary

If uAm/p\tyu&1, we divide the integration region into
two parts:

e
e

i-
-

FIG. 8. Diffraction at the edge both in space and in time. Co
neutrons of wavelengthl520 Å propagating in the positive-x di-
rection are incident on a screen located atx50. There, along the
negative-y direction, the edge is opened instantaneously at the t
t50. The figure shows the numerically calculated intensity dis
bution at timest50, 39, and 78 ps, respectively, from top to botto
~from Ref. @6#!.
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cbound.~r ,t !52
ix

2 S m

p\ D 1/2

e2 iv0tXE
0

t̄
dt

1

t3/2 eiv0t

3eimx2/2\tH F@`#2FF S m

p\t D 1/2

yG J
1E

t̄

t

dt
1

t3/2 eiv0teimx2/2\t

3H F@`#2FF S m

p\t D 1/2

yG J C,
where t̄[my2/p\. The first integral can be further evalu
ated as in the case of the geometric shadow~if y,0! or the
geometric illuminated region~if y.0!. If t̄&tcl , which is
equivalent touyu&(1/&)Alx, the main contribution to the
second integral comes from that region aroundtcl where the
phase of the integrand is stationary. Taking again our
atom example withx'1m, y lies in the interval uyu
&1024 m, not considered so far. Within the integration i
terval @ t̄,t#, where uAm/p\tyu,1 the term F@`#
2F@Am/p\ty# has as its asymptotic limit F@`#
2F@z→0#5F@`#2z2( ipz3/6)2O@z5# @12#. Due to its
slowly varying behavior compared with other integrands,
treat this term as being the constantF@`#2F@Am/p\tcly#
in the integration interval. Thus we obtain

cbound.~r ,t !52
i

2
ei ~k0x2v0t !H F@`#2FF S 2

lxD 1/2

yG J
3S FF 2

ATt
~ t2tcl!G2FF 2

ATt̄
~ t̄2tcl!G D

1 Hc illum.~r ,t̄ !

cshadow~r ,t̄ !

for y,0
for y.0. ~24!

In the limit when the argument of the fourth Fresnel integ
(2/ATt̄)( t̄2tcl)5(2/y)Am/p\T@y22(lx/2)# goes to
negative infinity, and consequentlyc illum.(r ,t̄) and
cshadow(r ,t̄) tend to zero, solution~24! becomes

cbound.~r ,t !52
i

2
ei ~k0x2v0t !H F@`#2FF S 2

lxD 1/2

yG J
3S FF 2

ATt
~ t2tcl!G2F@2`# D . ~25!

Since in our Li-atom example (2/y)Am/p\T@y22(lx/2)#
'1010@y22(lx/2)#, the above condition is satisfied for
wide range of y within the interval considereduyu
&(1/&)Alx. Due to the fact thatcbound.(r ,t) is the product
of solution~15! of the diffraction at the edge in time and th
one of stationary edge diffraction, the wave modulation
the strongest in the light-shadow boundary region~see Fig.
8!. Thus, on the one hand, the intensity at the classical cu
at y50 at timet5tcl is only 0.0625 (50.252) of the inten-
sity of the incident wave. On the other hand, the produc
the intensities of the first stationary maximum in space ay
50.87Alx and the first maximum in time att5tcl
i-

e

l

s

ff

f

10.61ATtcl ~here we assume again thatT!tcl! is 1.88
(51.372) of the intensity of the incident wave. This signifi
cantly exceeds the first maxima in time in other spatial
gions even in the geometrically illuminated one.

Keeping the time fixed and going from the geomet
shadow to the illuminated area, or keeping a point in sp
fixed and going from timest,tcl to timest.tcl , the inten-
sity in both cases increases monotonically, and after it exh
its a maximum it begins to oscillate in a damped fashio
The widths of the transitional regions where the spa
shadow~Fig. 7! and time shadow are washed out are,
Ax21y2@l, approximatelyAlx and ATtcl, respectively.
For the Li-atom parameters in our example the transitio
spatial region is 2.431024 m at x51 m and the transitiona
time interval is 3.431024 s at t51 s. Expression~24! con-
nects the solution for the light-shadow boundary with t
ones for the geometric illuminated region and for the ge
metric shadow.

Expressing the final solutions~22!, ~23!, and~25! through
classical variables~through the classical velocityv0 instead
of k0 and v0! and taking the classical limit~\→0 and/or
m→`! we find cedge(r ,t)→ei (x2v0t)u@ t2(x/v0)#u@2y#.
As expected, this solution neither shows diffraction in spa
nor in time.

The effects of diffraction in space and in time discuss
here are rather small for our assumed atom example. H
ever they can be increased significantly in the case of
fraction at a slit in space with a width of the order of th
wavelength, and a slit in time with a pulse length of the ord
of the wave period, as will be considered next.

B. Single slit in space and in time

In this subsection we consider diffraction at a single s
both in space and in time, i.e., the slit width is given by
square function both in space and in time:

a1~ t !5a2~ t !5H a

2
for 0<t<Tch

0 for t,0, t.Tch,

whereTch is the chop time. In an earlier solution@4,5# of the
present problem involving Neumann boundary conditio
the computation was performed with the method of stati
ary phase. This method consists of replacing the phase f
tion ~see Fig. 3! by a parabola centered at the classical tim
Such a removal of the asymmetry effects of the phase fu
tion is sufficient for the evolution of ‘‘nearly classical’
packets which are chopped with a pulse durationTch@T.
The problem of chopping a beam with a pulse duration sh
enough to affect the energy spectrum of the beam was
cussed by Felberet al. @7#. Again using Neumann conditions
these authors concentrated on a triangular slit pulse ope
additionally involving a modulation of the energy spectru
associated with a motion of the slit edges with finite veloci

In order to emphasize the close relation between diffr
tion patterns in space and in time, we now choose slit op
ing functions which have equal space and time dependen
Furthermore we use the Dirichlet condition whose interp
tation is physically clear as discussed in Sec. III A~the in-
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56 3815DIFFRACTION OF MATTER WAVES IN SPACE AND IN TIME
homogeneous Dirichlet condition! and at the beginning o
the Sec. IV~the homogeneous Dirichlet condition!.

Applied to our example, conditions for simultaneo
strong diffraction in spacel'a and in timeT'Tch require a
slit width a'1027 m and simultaneously a chop timeTch
'1027 s. We shall assume in the discussions of our exam
just these experimentally realizable values for the slit wi
and chop time.

With the slit opening function given above and substit
ing t5t2t0 , Eq. ~20! transforms to

cslit~r ,t !52
ix

2 S m

p\ D 1/2

e2 iv0tE
t2Tch

t

dt
1

t3/2 eiv0t

3eimx2/2\tH FF S m

p\t D 1/2S y1
a

2D G
2FF S m

p\t D 1/2S y2
a

2D G J . ~26!

Let us assume that

S m

p\~ t2Tch!
D 1/2 a

2
!1. ~27!

In our example this criterion is satisfied to within 1024 for
the observation timet51 s. ForDz!z we can approximate
F@z1Dz#2F@z#'(2/pz)sin(Dzpz/2)ei (p/2)z2

with Dz
5Am/p\ta andz5Am/p\ty. Then it follows that

cslit~r ,t !52
ix

py
e2 iv0tE

t2Tch

t

dt
1

t

3eiv0teim~x21y2!/2\tsin
may

2\t
. ~28!

It should be noticed that the dependence on the spatial c
dinatey in one of the integrands is of the form sin@cy#/cy as
in the stationary Fraunhofer diffraction.

The phase of the integrand in Eq.~28! is a very rapidly
varying function of time with a stationary region around t
classical timetcl[mAx21y2/k0\. Yet, due to the possible
strong spreading of the wave packet after chopping, the
tionary phase method could not be usefully employed, sin
for many space points where the probability at a given ti
significant differs from zero, the integration interval does n
contain the classical time. Obviously a more precise calc
tion, valid for a wider class of solutions, can be performed
we expand the phase of the integrand not around the clas
time but around the centert2(Tch/2) of the integration in-
terval @7#. This method will be applied in the present pap
and solutions for nearly classical packets obtainable with
stationary phase method will be obtained in the limit.

In order to separate the dependence on they direction
from the time integral in Eq.~28!, we approximate

mayTch/2

2\@ t2~Tch/2!#2→0. ~29!
le
h

-

or-

a-
e,
e
t
a-
f
cal

,
e

Within approximation~29! the function 1/t in the argument
of the sine function in Eq.~28! can be expanded to zerot
order around the centert2(Tch/2) of the integration interval
@t2Tch,t#. This means that the influence of the finite ch
duration on the sin@cy#/cy dependence is insignificant. In ou
atom example, expression~29! is of the order of 1027 at the
observation timet51 s and within the region aroundx
'1 m where the particle is found with high probability. Ob
viously it is meaningful to test the conditions for the validi
of approximations only for those space points where, fo
given observation time, the probability density to find t
particle differs significantly from zero. These points could
assumed to be within the region inside the first few minim
along thex andy axes, whose existence we shall prove lat
Naturally, the size of that area depends both on the chop t
and on the slit width; a shorter chop timeTch and/or a
smaller slit widtha cause stronger wave packet spreading

With the approximation mentioned above, the solution

cslit~r ,t !52
ix

py
e2 iv0t sin

may

2\@ t2~Tch/2!#

3E
t2Tch

t

dt
1

t
eiv0teim~x21y2!/2\t ~30!

becomes a product of two terms. The first one we recogn
as the Fraunhofer limit of the diffraction in space at a cert
observation time, and the second term, the time integral
the diffraction in time observed at a certain point in spa
Exactly speaking, this is not quite appropriate, since th
terms do not depend separately on they coordinate and on
time. It should be emphasized that solution~30! is not a
product of the stationary solution of diffraction at a spat
slit in Fraunhofer limit „of the form }@sin(k0ay/2x)/
(k0ay/2x)] … and a one-dimensional solution of diffraction
the slit in time~involving time and the direction of propaga
tion x!.

In order to transform the time integral in Eq.~30! into the
Fresnel integrals, we take the limit

m~x21y2!~Tch/2!3

2\@ t2~Tch/2!#4 →0, ~31!

and proceed by expanding the function 1/t in the argument
of the exponential function in Eq.~30! around t2(Tch/2),
retaining terms up to the second order. In our example cr
rion ~31! is satisfied up to order 10214. Compared to the
other rapidly varying functions the integrand function 1/t in
Eq. ~30! can be treated as a constant 1/(t2Tch/2) within a
sufficiently short integration interval@ t2Tch,t#. The ap-
proximations mentioned and the substitution

w5S m~x21y2!

p\@ t2~Tch/2!#3D 1/2Ft2
3

2 S t2
Tch

2 D
1

\v0@ t2~Tch/2!#3

m~x21y2! G
lead to an expression including Fresnel integrals:
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cslit~r ,t !52
ix

y S \@ t2~Tch/2!#

pm~x21y2! D 1/2

ei ~v0t/2!e2 i ~3v0Tch/4!

3ei „3m~x21y2!/8\@ t2Tch/2#…

3e2 i „\v0
2
@ t2~Tch/2!#3/2m~x21y2!…

3sin
may

2\@ t2~Tch/2!#

3XFH S m~x21y2!

p\@ t2~Tch/2!#3D 1/2F t2
3

2 S t2
Tch

2 D
1

2\v0@ t2~Tch/2!#3

m~x21y2! G J
2FH S m~x21y2!

p\@ t2~Tch/2!#3D 1/2F t2Tch2
3

2 S t2
Tch

2 D
1

2\v0@ t2~Tch/2!#3

m~x21y2! G J C. ~32!

We can again understand solution~32! as a product of two
terms, representing Fraunhofer diffraction in space at a fi
observation time and Fresnel diffraction in time at a fix
observation point in space.

Assuming the condition

S m~x21y2!

p\@ t2~Tch/2!#3D 1/2

Tch!1, ~33!

one may also introduce the Fraunhofer limit of diffraction
time at a certain observation point in space:

cslit~r ,t !52
i2

p

x

y

1

v0@ t2~Tch/2!#

3
1

12m~x21y2!/2\v0@ t2~Tch/2!#2

3sin
may

2\@ t2~Tch/2!#

3sinFv0Tch

2 S 12
m~x21y2!

2\v0@ t2~Tch/2!#2D G
3e2 iv0~Tch/2!eim~x21y2!/2\@ t2~Tch/2!#. ~34!

Thus, now, our solution is a product of two terms describ
the Fraunhofer diffraction in space at a certain observa
time, and the Fraunhofer diffraction in time at a certain o
servation point in space. In our standard atom example,
proximation~33! is of the order of 1024.

Solution ~34! just evaluated deserves some commen
First, it is to be expected that solution~34! for short chop
times and small slit widths approaches the effect of a dis
bance due to a line of point dipoles extended uniform
alongz0 axes. This effect can be calculated as a superp
tion of contributions of individual dipole sources lyin
on the z0 axis: 2(1/4p)*2`

` dz0u“0G(r ,t,r0 ,t0)u
d

g
n
-
p-

s.

r-

i-

}(x/t2)eim(x21y2)/2\t. It is easy to show that solution~34!
transforms into the same expression in the limitsa→0 and
Tch→0.

We note that there are two types of minima. Their po
tions in space at a certain time are

ymin5
2np\@ t2~Tch/2!#

ma
, nPZ\$0% ~35!

and

xmin82 1ymin82 5v0
2S t2

Tch

2 D 2

2
4n8p\@ t2~Tch/2!#2

mTch
,

n8PZ\$0%, ~36!

respectively, wheren and n8 are the orders of the minima
For a fixed observation time minima~35! and~36! form lines
parallel to thex axis and circles in thex-y planes, respec-
tively, both seen in Figs. 9~a!, 10~a!, 11~a!, and 12~a!. On the
other hand, for a fixed planex of observation minima~35!
and ~36! form linesy5ct and hyperbolas in they-t planes,
respectively, both seen in Figs. 9~b!, 10~b!, 11~b!, and 12~b!.
If Tch,T, the positions of minima~36! assume complex
values forn8.0. Indeed we see in Figs. 9 and 10, represe
ing examples with a chop time shorter than the wave per
that all minima after the central one vanish. The angu
separation Eq.~35! between adjacent minima in space of t
first kind,

Da[2
y1 min~ t !

v0t
52

l

a
, ~37!

is exactly the same as in the stationary case within the Fra
hofer limit. The time independence of the angular separa
~37! of minima is in agreement with the fact that the distan
between minima~35! and the central maximum increase
linearly with time, as seen in Figs. 9~b!, 10~b!, 11~b!, and
12~b!.

It should be noted here that in the examples represente
the figures the conditions for the Fraunhofer limit in spa
and in time will always be satisfied. In the figures the pro
ability is not normalized. In contrast, in order to make
easier to compare the different patterns, the probability d
sity is scaled such that in the case of a single slit both
space and in time with slit width 1026 m and chop time
1026 s ~Fig. 12! the central maximum att51 s is defined to
have the value 1. Now we shall return to our discussion.

A rough estimate of the width of the diffraction pattern
given by the distance between the two first minima in sp
and in time, respectively, can also be obtained from unc
tainty considerations, providing greater physical understa
ing. The wave constrained by the slit width in they direction
has an uncertainty of momentum in they direction given by
Dpya'h. Analogously, the wave constrained by the ch
time duration has an uncertainty in energy giv
by DETch5(m/2)(Dvx

21Dvy
2)Tch'h. Therefore, we

obtain two types of minima y61 min

56Dpyt/m56(2p\t/ma) and Ax61 min82 1y61 min82

5Av0
26(Dvx

21Dvy
2)t5Av0

26(4p\/mTch)t, closely related
to position-momentum and time-energy uncertainty relatio
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56 3817DIFFRACTION OF MATTER WAVES IN SPACE AND IN TIME
FIG. 9. Diffraction at a single slit both in space and in time. Li
atoms propagating in the positive-x direction with the classical ve
locity v051 m/s are incident on a screen located atx50. There, at
position y50, a single slit of width 1027 m is instantaneously
opened at the timet50 for 1027 s. These numbers are of the sam
order of magnitude as the de Broglie wavelengthl55.731028 m
and the wave periodT51.1431027 s respectively.~a! shows the
wave packet at a timet51 s after the opening and closing of th
single slit in time.~b! demonstrates the probability to detect t
particle in a fixed detector plane atx51 m as a function of time. It
is clearly seen that significant diffraction takes place both in sp
and in time. It should be mentioned that none of the graphs in F
9–15 is normalized.
respectively. Thus the nonsymmetrical arrangement of
latter minima aroundx5v0t is a consequence of the nonlin
ear dependence of energy on velocity.

Taking chop times which are long compared to the wa
period, the mean width of the energy remains narrow a
chopping. This permits us to expand such localized pack
around the classical time. If, additionally, the slit width an
the wavelength are of the same order, a strong spreadin
the wave packet along they direction results, requiring tha
the classical timetcl5mAx21y2/k0\ depends both onx and
y dimensions. A wave packet with such experimental para
eters is represented in Fig. 11. If, on the contrary, the
width is wide compared to the wavelength, they dimension
of the wave packet remains smaller than the distance rea
along thex direction and the classical time becomestcl
'mx/k0\. For such a case we assume

e
s.

FIG. 10. Same geometry as Fig. 9, but now with the single
in space having a width of 1026 m, i.e., a slit significantly wider
than the de Broglie wavelength.~a! again shows the wave packe
after t51 s, and~b! demonstrates the arrival times at the obser
tion plane located atx51 m. It is evident that now the diffraction
spreading in space is very small, while the spreading in time
basically the same as in Fig. 9.
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3m~x21y2!

2\v0
S t2tcl

tcl
D 2

!1,
may

2\tcl

t2tcl

tcl
!1,

FIG. 11. Again the same geometry as in Figs. 9 and 10, but n
with a single slit in space of width 1027 m, i.e., comparable to the
de Broglie wavelength and a single slit in time of 1026 s which is
much larger than the de Broglie wave period. It is clearly seen
now the diffraction in space is very significant, while the diffractio
in time only produces small ripples of the wave packet. The circu
spreading in~a! is due to the propagation of a wave with a we
defined speed~close to the classical onev051 m/s!, but an unde-
fined direction of propagation.
3m~x21y2!Tch

4\tcl
2 S t2tcl

tcl
D 2

!1

and
m~x21y2!

2\tcl
S t2tcl

tcl
D 2

!1 ~38!

and we approximate expression~34! as

w

at

r

FIG. 12. Diffraction at a single slit in space and a single slit
time, both of which are large compared to the de Broglie wa
length and the wave period. Note the different scale compare
the previous figures. It is clearly seen that now the diffraction p
nomena are less pronounced than before, and much more sym
ric, indicating the propagation of ‘‘nearly classical’’ packets.
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56 3819DIFFRACTION OF MATTER WAVES IN SPACE AND IN TIME
cslit~r ,t !52
i

p

x

y

1

v0@ t2~Tch/2!2tcl#
sin

k0ay

2x

3sinFv0Tch

tcl
S t2

Tch

2
2tclD Gei $kx2v0@ t2~Tch/2!#%.

~39!

The conditions above make it possible to expand the m
tiplication factor and the argument of the first sine functi
in Eq. ~34! around the classical time up to zeroth order,
well as to keep only the linear term in the argument of
second sine function and the phase. That way solution~39! is
a product between the solution for stationary single-slit d
fraction and the solution for diffraction at the slit in time
These solutions have the same analytic form of spatiay
dependence and of time dependence, respectively, when
verting quantities a↔Tch, k0↔v0 , x↔tcl , and y↔t
2tcl . Thus there is an analytical equivalence between thy
dependence of the diffraction pattern in space for a fix
time and fixedx coordinate@Fig. 12~a!# on the one hand and
the diffraction pattern in time for a fixed space point@Fig.
12~b!# on the other hand. Actually the expansion of soluti
~34! around the classical time removes the asymmetry
tween the space and time dependencies of the diffrac
pattern which arises due to the different roles of space
time in the Green’s function~9! for the Schro¨dinger wave.
Solution ~39! corresponds to the solution obtained in Re
@4# and@5# by the stationary phase method. It is not surpr
ing that conditions~38! are not satisfied in our example. Ye
with a wider slit (a51026 m) and a longer chop time
(Tch51026 s) they become satisfied.

C. Double slit in space and single slit in time

Now we assume that the screen contains two slits of eq
width a which are opened simultaneously att50 and closed
again att5Tch. Let the inside edges of the slits be placed
y52b/2 and b/2. Then, by translation of expression~26!
along they axis, we immediately obtain the solution of th
present problem:

c~x,y,t !5cslitS x,y2
b

2
2

a

2
,t D1cslitS x,y1

b

2
1

a

2
,t D ,

wherecslit(x,y,t) is taken from Eq.~26!. Figure 13 shows
the resulting wave packet for our Li-atom example withb
5231027 m.

Now we shall first obtain positions of the interferen
minima in space and in time neglecting the finite dimensio
of the slits and the finite chop time. The solution is then
superposition of the secondary waves coming from po
sources. The phases of the secondary waves are

f1~x,y,t !5
m$x21@y1~b/2!1~a/2!#2%

2\t

and

f2~x,y,t !5
m$x21@y2~b/2!2~a/2!#2%

2\t
,

l-

s
e

-

on-

d

e-
n
d

.
-

al

t

s
a
t

respectively@see the Green’s function~9!#. These values cor-
respond to the phase factors of the two packets given ab
in the Fraunhofer limit in space and in time, see Eq.~34!, and
are therefore also applicable to our Li-atom example.

FIG. 13. Diffraction of Li-7 atoms with velocityv051 m/s at a
double slit in space and a single slit in time. The atoms are ag
incident along the positive-x direction onto the double slit located a
x50 andy50 which opens for 1027 s att50. The individual slits
are each 1027 m wide and they are separated by 231027 m. The
parameters are chosen such that both diffraction in time and diff
tion in space are very pronounced. The well-known Young’s fring
are clearly visible. The top~a! is again a picture of the wave packe
at t51 s, and below~b! we see the arrival times at the observati
screenx51 m.
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3820 56ČASLAV BRUKNER AND ANTON ZEILINGER
For those points in space and in time where the ph
difference between the two waves is an odd multiple ofp,

f1~rmin ,tmin!2f2~rmin ,tmin!5~2n11!p, ~40!

we find positions of interference minima in space and in ti

ymin5
~2n11!h@ t2~Tch/2!#

2m~a1b!
, nPZ. ~41!

The lines of the interference minima parallel to thex axis for
a certain observation time and their linear spreading in
course of time are seen in Figs. 13~a! and 13~b!, respectively.
The angular separation between the two first minima wit
the Fraunhofer approximation in space and in time is ti
independent, and equal to the one in the stationary case

Da[2
y1,min~ t !

v0t
52

l

a1b
. ~42!

D. Single slit in space and double slit in time

Let a single slit be opened att50, closed att5Tch, and
then again be opened att5Tch1Tpause and closed att
52Tch1Tpause. Assuming that the initial wave in the lef
half-space is not influenced by the chopping, the bound
condition chosen can also be applied to the second chop
wave. Changing the integration area in the Eq.~26!, one may
then obtain the solution

c~x,y,t !5cslit~x,y,t !1e2 iv0~Tch1Tpause!

3cslit~x,y,t2Tch2Tpause!, ~43!

wherecslit(x,y,t) is taken from Eq.~26!. This solution there-
fore is not just the sum of solution~26! and its translation in
time ~by 2Tpause2Tch!. The resulting intensity distribution
are given in Fig. 14 for our Li-atom example wit
Tpause5231027 s.

We now again discuss the positions of the minima. N
glecting again the finite dimensions of the slit and the fini
ness of the chop times, we consider the two succes
chopped waves as coming from point sources in space an
time. The phases of the secondary waves aref3(x,y,t)
5m(x21y2)/2\t and f4(x,y,t)5m(x21y2)/2\(t2Tch
2Tpause), respectively. From condition~40! we obtain the
positions of the interference minima as

xmin
2 1ymin

2 5v0S t2
Tch

2 D
2

~2n11!h@ t2~Tch/2!#~ t2 3
2 Tch2Tpause!

2m~Tch1Tpause!
,

nPZ. ~44!

Circles of the interference minima in space for a certain
servation time and the corresponding hyperbolas of the in
ference minima in they-t plane for a certain plane of obse
vation are seen in Figs. 14~a! and 14~b! respectively.

Using a time-modulated light wave as an atomic mirror
e

e

e

n
e

ry
ed

-
-
ve
in

-
r-chop a slow cesium atomic beam, Szriftgiseret al. @13# per-
formed an experiment on the diffraction at temporal sin
and double slits, and measured the energy distribution of
chopped atoms.

FIG. 14. A single slit in space and a double slit in time. Aga
Li-7 atoms are incident along the positivex direction onto a single
slit located atx50 andy50. The slit is opened successively twic
which results in the double slit in time. In the picture of the wa
packet att51 s ~a!, one clearly sees that the double slit in tim
phenomenon exhibits the same characteristic Young’s interfere
fringes well known for a double slit in space. This is confirmed
the picture of the arrival times~b!.
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E. Double slit in space and in time

This case is a combination of the previous two cases. T
slits of equal widtha and of distanceb between their inside
edges are opened att50, closed att5Tch, and then again
opened att5Tch1Tpauseand closed att52Tch1Tpause. It is
easy to construct the present solution from the last two ca

c~x,y,t !5cslitS x,y2
a

2
2

b

2
,t D1cslitS x,y1

a

2
1

b

2
,t D

1e2 iv0~Tch1Tpause!FcslitS x,y2
a

2
2

b

2
,t

2Tch2TpauseD1cslitS x,y1
a

2
1

b

2
,t

2Tch2TpauseD G , ~45!

wherecslit(x,y,t) is taken from Eq.~26!. Figure 15 demon-
strates the wave packet for our Li-atom example withb and
Tpausethe same as in the previous two cases.

Neglecting again the finite dimensions of the slits and
finiteness of the chop times, we consider the four waves
the right-hand side of Eq.~45! as coming from point source
in space and in time in order to obtain an estimate for
minima. Omitting the amplitudes we writec(x,y,t)
}eif1(x,y,t)1eif2(x,y,t)1eif3(x,y,t)1eif4(x,y,t) with phases
given in Secs. IV B and IV C. It is important to notice th
f1(x,y,t)2f2(x,y,t)'f3(x,y,t)2f4(x,y,t) for Tch
1Tpause!t and a1b!y. This expression together with th
condition uc(xm ,ym ,tm)u250 leads to the condition

cos@f1~xm ,ym ,tm!2f2~xm ,ym ,tm!#1cos@f1~xm ,ym ,tm!

2f3~xm ,ym ,tm!] 1cos@f1~xm ,ym ,tm!2f2~xm ,ym ,tm!#

3cos@f1~xm ,ym ,tm!2f3~xm ,ym ,tm!#521.

This is obviously satisfied when f1(xm ,ym ,tm)
2f2(xm ,ym ,tm)5(2n11)p or/and f1(xm ,ym ,tm)
2f3(xm ,ym ,tm)5(2n11)p, where nPZ. Therefore, the
present pattern exhibits both the interference minima wh
are present in the case of a double slit in space and a s
slit in time, as well as those of the case of a single slit
space and a double slit in time and no other interfere
minima.

V. LIMIT FOR LARGE TIMES

Usually the accuracy of theoretical predictions decrea
with increasing time. However, for some problems it is s
possible to find not only exact solutions but also some g
eral statements about the evolution of the system in the l
of large times. In this section we find the connection throu
Fourier transformation between an incident wave and the
sulting time-modulated one in the limit of large times. In t
theory of stationary diffraction it is well known that the pa
terns in the Fraunhofer limit represent the square of the F
rier transform in space of the incident wave in the apert
o

s:

e
n

e

h
gle

e

s
l
-
it
h
e-

u-
e

@14#. We now raise the question of whether the nonstation
diffraction patterns of matter waves in space and in ti
represent the square of a Fourier transform in space an
time of the incident wave in the time-dependent apertu

FIG. 15. Diffraction at a double slit both in space and time. Li
atoms are incident along the positive-x direction onto a double slit
located atx50 andy50. This spatial double slit is opened twic
successively such that a double slit in time also results. It is evid
from the picture~a! of the wave packet att51 s that a number of
different interference maxima and minima result, indicative
Young’s fringes both in space and in time. This is confirmed by
time of arrival of the atoms in the observation plane located ax
51 m ~b!.
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This indeed turns out to be the case but only in a reg
around the classical time.

We shall discuss the long-time dynamics of an arbitr
wave incident onto a nontransmitting screen with a tim
dependent aperture. The screen is again located atx50. We
assume that both the width of the aperture and the dura
of the chopping are bounded in space and in time, resp
tively. Keeping the dimensions of the aperture finite, o
problem becomes three dimensional. The boundary co
tions can be summarized into a single complex function

ca~y,z,t !5 Hc~0,y,z,t !, uyu,Y, uzu,Z, 0<t<t
0 otherwise,

which we call the aperture function analogous to the quan
in stationary diffraction@14#. The functionc(0,y,z,t) is ar-
bitrary. Because the aperture function is nonzero only wit
the boundsX, Y, andt of spatial and temporal extensions
the aperture, respectively, the limits in integral~11! can be
extended to6`,

c~r ,t !52
ixm

2p\ S m

2p i\ D 1/2E
2`

1`

dt0
1

~ t2t0!5/2

3 E
2`

1`

dy0E
2`

1`

dz0ca~y0 ,z0 ,t0!

3eim~x21y21z2!/2\~ t2t0!e2 imyy0 /\~ t2t0!

3eimy0
2/2\~ t2t0!eimz0

2/2\~ t2t0!. ~46!

It should be noted that all requirements considered in Sec
for the Fraunhofer limit in space and in time become sa
fied when a sufficiently large time elapses. Therefore,
assumptions for the limit of large times considered here w
only be generalizations of the ones used in the special
considered in Sec. IV. Thus, with the assumptions

mY2

2\~ t2t!
→0 and

mZ2

2\~ t2t!
→0, ~47!

the fourth and fifth exponential integrands tend to 1. With
further approximations

m~x21y21z2!t2

2\t3 →0,
myYt

\t2 →0,
mzZt

\t2 →0, ~48!

the function 1/(t2t0) in the arguments of the first, secon
and third exponential integrands in Eq.~46! can be expanded
aroundt050 up to the zeroth-order term for the first exp
nential integrand and up to the linear terms for the other
exponential integrands. We treat the function 1/(t2t0)5/2 to
be a constant compared with other rapidly varying in
grands. Thus we obtain

c~r ,t !5
xm3/2

t5/2 ei ~3p/4!eim~x21y21z2!/2\t
1

~2p\!3/2

3E
2`

1`

dt0E
2`

1`

dy0E
2`

1`

dz0ca~y0 ,z0 ,t0!

3ei „m~x21y21z2!/2\t2… t0e2 i ~my/\t !y0e2 i ~mz/\t !z0.

~49!
n

y
-

n
c-
r
i-

ty

n

V
-
e
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e
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-

Let us define the spatial frequenciesky andkz and the tem-
poral frequencyv as

ky5
my

\t
, kz5

mz

\t
and v5

m~x21y21z2!

2\t2 ,

respectively. For each observation point in space and in ti
there are corresponding spatial and temporal frequencies
lution ~49! can now be written as

c~r ,t !5
xm3/2

t5/2 ei ~3p/4!eim~x21y21z2!/2\tF~ky ,kz ,v!,

~50!

whereF(ky ,kz ,v) is the Fourier transform of the apertur
function both in space, fory andz coordinates, and in time

The asymptotic expansion~50! is in agreement with our
expectation, since the larger the observation timet is, the
smaller the contributing spatial and temporal frequencies
the aperture function are. Expression~50! is also in agree-
ment with the Fraunhofer limit in space and in time~34! of
the chopped semi-infinite monochromatic wave~Sec. IV!.
Thus the Fourier transformF(ky ,v) of the product of a
rectangular function in space with a modulated rectangu
function in time „u@(a/2)2y#2u@(2a/2)2y#…(u@ t#2u@ t
2Tch#)e

2 iv0t is

F~ky ,v!5
sin~kya/2!

ky/2

sin@~v2v0!Tch/2#

~v2v0!/2
,

which, using Eq.~50! and taking into account the dimension
ality of the problem, gives Eq.~34!.

Since the space coordinates are not only involved in
spatial frequencies but also in the temporal frequency,
statement valid in stationary optics that the space dep
dence of patterns in the Fraunhofer limit represents
square of the Fourier transform in space of the incident w
in the aperture is no longer valid here in the nonstation
case. While the space dependence of the stationary patte
completely determined by the Fourier transform in space
the incident wave, the space dependence of the nonstatio
pattern is also influenced by its Fourier transform in tim
This is most easily seen from Figs. 9–15, where they de-
pendencies of the diffraction patterns are not only influen
by lines of minima~35!, corresponding to the minima in
stationary diffraction which are related to the Fourier tran
form in space of the incident wave, but also by the circles
minima ~36! related to its Fourier transform in time.

Now we shall examine the conditions for the validity
the statement above in nonstationary optics. Assuming
the particle speed after choppingk0\/m is well defined~for
a chop duration much longer than the de Broglie wave per
of the incident wave! we expand the solution~50! around the
classical timetcl[mAx21y21z2/k0\. If, additionally, the
spatial boundsX and Y are large compared to the wave
length, the mean width of the packet both along they direc-
tion and along thez direction remains smaller than the di
tance reached along thex direction, and the classical tim
becomestcl'mx/k0\. Thus with the approximations
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m~x21y21z2!

2\tcl
S t2tcl

tcl
D 2

→0,
myY

2\tcl

t2tcl

tcl
→0,

mzZ

2\tcl

t2tcl

tcl
→0 and

3m~x21y21z2!

2\tcl
2 S t2tcl

tcl
D 2

→0,

~51!

the phase in Eq.~50! can be expanded retaining the firs
order term as well as the arguments of the Fourier transf
my/\t and mz/\t up to zeroth order andm(x21y2

1z2)/2\t2 up to first order. That way the spatial frequenci
no longer depend on time, and the temporal frequency
longer depends on space:

c~r ,t !}xei ~k0x2v0t !F~ky ,kz ,v!, ~52!

where now ky5k0y/x, kz5k0z/x, v5@2v0(t2tcl)/tcl#
1v0 . Equation~52! tells us that for a fixedx coordinate in
the region around the classical time, the space depende~
y and z dependences! and the time dependence of the d
fraction pattern represent the dependence on the spatia
quencies~ky and kz! and on the temporal frequency~v! of
the square of the Fourier transform in space and in tim
respectively, of the incident wave in the time-dependent
erture. Obviously, this result is significant for the evoluti
of ‘‘nearly classical’’ wave packets.

VI. CONCLUDING COMMENTS

The Green’s function of the Schro¨dinger equation to-
gether with initial and boundary conditions contains
quantum mechanically allowed information about the syst
considered. Seen as an effect of a point source in space
in time, the Green’s function enriches our understanding
helps us to solve nonstationary diffraction problems.

Huyghens’s principle, postulating that each point on
wave front acts as a point source of secondary wav
supplemented by Fresnel with the statement that these
ondary waves are mutually coherent, is basic for the Fre
method of an intuitive description of stationary diffractio
The solution, involving some time-dependent boundary c
ditions, is equivalent to that of an appropriate tim
dependent distribution of sources over the boundary surf
thus extending Huygens’ and Fresnel principles to non
tionary problems. This leads to the introduction of Fres
zones in time by appropriately dividing the time axis
emission of the secondary waves. The center of the ze
zone is determined by the time emission of the classical
ticle. The graphic addition of the amplitudes of second
waves leads to a spiral, analogous to the well-known Co
spiral of stationary diffraction. With the help of the conce
of Fresnel zones in time, we introduced a device which
call the temporal Fresnel lens.

In the present calculations we used a boundary condi
approach. We assumed Dirichlet conditions and fou
equivalent counterparts in initial conditions.

In the physics of electromagnetic waves in vacuum,
solution for an ‘‘edge in time’’ has a sharp shadow in tim
while for matter waves it has a close resemblance to
m
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solution for stationary diffraction at an edge in space. Th
in analogy to stationary diffraction at an edge in space,
transitional region from ‘‘time shadow’’ to ‘‘time-
illuminated region’’ for the diffraction at the edge in time
of the order ofATtcl, whereT is the de Broglie wave period
and tcl[mx/k0\ is the time a classical particle needs
travel from 0 tox. The classical limit of the solution for
matter wave diffraction at the edge in time is equivalent
the solution for diffraction at the edge in time for electr
magnetic waves.

We also calculated the time-dependent wave function
sulting from the passage of a semi-infinite monochroma
beam through a slit with time varying width. Such-two d
mensional problems imply simultaneous diffraction in spa
and in time. We computed and analyzed in detail the anal
cal solutions for various slit opening functions: edges
space and in time, single slits in space and in time, a dou
slit in space and a single slit in time, a single slit in space a
a double slit in time, as well as double slits in space and
time. Due to the different roles of space and time for Sch¨-
dinger Green’s function, diffraction patterns in space and
time do not have fully equivalent space and time depend
cies.

A wave diffracted at the edge in space and in time is
superposition of the freely propagating incident wa
~present only in the illuminated region! and the one scattere
from the edge~present both in the illuminated region and
the geometric shadow!. The solution in the light-shadow
boundary exhibits transitional regions both in space of
orderAlx ~l is the de Broglie wavelength! and in time of
the orderATtcl . Only within the geometric shadow an
around the light-shadow boundary is the solution for the d
fraction at the edge in space and in time the product of
solution for stationary diffraction at an edge in space and
solution for diffraction at the edge in time.

In the Fraunhofer limit the solution for diffraction at th
slit both in space and in time is a product of two term
closely associated with both the position-momentum a
time-energy uncertainty relations. Our results are still va
when the conditions for simultaneous strong diffraction
space and in time are satisfied, that is, when the slit widta
becomes comparable with the de Broglie wavelengthl, and
the chop timeTch becomes comparable with the de Brog
wave periodT. The different space and time dependencies
the diffraction pattern become equivalent only for times
the region around the classical propagation timetcl . Such
expansion of the solution around the classical time o
makes sense for the evolution of ‘‘nearly classical’’ wa
packets when the chop times are much longer than the
Broglie wave period and the slit widths are much larger th
the de Broglie wavelength. Then the solution become
product between the solution for stationary diffraction at t
slit in space and the solution for temporal diffraction at t
slit in time.

Combining a double slit in space with a single slit in tim
as well as a single slit in space with a double slit in time,
obtain solutions exhibiting Young’s interference fringes
space and time, respectively. For diffraction at a double
both in space and in time we find a highly structured pac
with simultaneous Young’s fringes in space and in time.

Through Fourier transformation we found a connecti



te
n

d
a
he
e

u
x

ob-

ur
No.
rant
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between an incident wave and a resulting time-modula
wave in the limit of large times. It is shown that in the regio
around the classical time, diffraction patterns in space an
time can be represented as the square of the Fourier tr
form both in space and in time of the incident wave in t
time-dependent aperture. This is a generalization of the w
known analogous situation in stationary diffraction.

We regard our calculations as a further step toward s
cessfully preparing precision de Broglie wave diffraction e
B

s

d

in
ns-

ll-

c-
-

periments for atoms, molecules, and possibly heavier
jects.
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