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Charge-dependent electronic stopping of swift nonrelativistic heavy ions

Peter Sigmund
Physics Department, Odense University, DK-5230 Odense M, Denmark

~Received 3 June 1997!

The stopping of swift nonrelativistic heavy ions has been analyzed theoretically as a function of the projec-
tile chargeq1 . Excitation and ionization of target electrons are described within Bohr’s classical theory and the
limitations toward Bethe’s quantal description are outlined. For oxygen ions in carbon the Bethe regime is
found to be confined to the velocity range where the ion is essentially stripped in charge equilibrium. The effect
of projectile electrons is taken into account mainly via screening of the Coulomb interaction, but excitation of
projectile electrons is discussed briefly. The significance of projectile screening hinges on a parameters that
depends on projectile and target parameters and varies substantially over the electron shells of the target.
Calculated fixed-charge stopping cross sections agree well with measured values in absolute magnitude and in
their variation with charge state.q1

2 scaling frequently has been assumed in the literature. A continuous
transition is predicted between such scaling and a stopping power that is almost independent of the projectile
charge.@S1050-2947~97!05411-5#

PACS number~s!: 34.50.Bw, 61.85.1p, 52.40.Mj, 79.20.Rf
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I. INTRODUCTION

The stopping of ions penetrating through matter is g
erned by a number of scattering processes such as~i! excita-
tion and ionization of target electrons,~ii ! electron capture,
~iii ! projectile excitation and ionization, and~iv! recoiling
nuclei. While this classification is not unique and individu
processes are not necessarily uncoupled, existing theory@1–
5# has, by and large, been based on this scheme or s
modifications thereof with considerable success. The rela
significance of these processes depends primarily on
speedv and the atomic numberZ1 of the penetrating ion and
to some extent on target parameters and projectile state
the following, ‘‘swift’’ refers to ions withv.v05e2/\, the
Bohr velocity, and ‘‘heavy’’ refers toZ1@1.

For swift ions nuclear stopping~iv! is small and only
weakly coupled to electronic stopping~i!–~iii ! @1,6#. This
process will not be considered in the present study. E
tronic stopping is best understood for swift light ions sin
target excitation and/or ionization dominates and Coulo
forces are weak enough to encourage the use of perturb
theory@1,2,7,8#. For heavier ions the validity of perturbatio
theory becomes questionable and the role of projectile e
trons needs attention@1#.

A. Bloch theory

The electronic stopping power2dE/dx is commonly
written in the form

2
dE

dx
5NS5

4pZ1
2e4

mv2 NZ2L, ~1!

where S is the stopping cross section,N and Z2 are the
density and atomic number of target atoms,m and 2e are
the electron mass and charge, andL is the stopping number
For a bare ion the standard expression is Bloch’s formula@9#
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LBloch5LBethe1DL5 ln
2mv2

I
1ReFc~1!2cS 11 i

Z1v0

v D G ,
~2!

whereI denotes the mean excitation energy of a target at
c the digamma function@10#, and Re the real part. Equatio
~2! needs shell and polarization~Barkas! corrections at low
velocities and density and relativistic corrections at high
locities @2,8#. Moreover, Eq.~2! ignores electron capture
The physical basis underlying Bloch’s formula has been c
firmed and extended recently@11#. For light ions the Bloch
correctionDL in Eq. ~2! becomes small andLBloch reduces to
the Bethe formula@7#,

LBethe5 ln
2mv2

I
, ~3!

which follows from first-order quantal perturbation theory
Figure 1 showsLBloch as a function of the scaled velocit

variablev/Z1v0 . A universal plot, valid for allZ1 and Z2 ,
has been generated by subtraction of a constant t
ln(2mv0

2Z1
2/I). Disregard for a moment the fact thatLBloch

drops below zero below a certain threshold velocity. It
seen thatLBloch is made up of two distinct logarithmic

FIG. 1. Comparison of the Bloch stopping numberL for a bare
ion with limiting expressions on a universal plot. Solid line,LBloch;
dashed lines,LBethe and LBohr; thin line, LBethe amended byZ1

4

correction.
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branches intersecting atv52.25Z1v0 . Above this point
LBloch rapidly approaches the Bethe logarithm~3!. The loga-
rithmic curve below the intersection reflects the classi
Bohr formula@12#

LBohr5 ln
Cmv3

Z1e2v
, C51.1229, ~4!

wherev stands for a characteristic resonant frequency of
target. In the present context one may identifyv with I /\.

The velocity interval of interest,v0,v,c is equivalent to
a rangeZ1

21,v/Z1v0,137/Z1 for the scaled variable in Fig
1. For light ions this interval lies almost completely in th
right half of the graph, i.e., the Bethe regime. Conversely,
very heavy ions it falls predominantly into the Bohr regim
For intermediate ions such as forZ1;10, there is a Bethe
regime at high and a Bohr regime at low velocities. T
physical origin of this distinction has been discussed in de
@1#.

Note that interpolation between the two logarithmic e
pressions is necessary only over a very narrow velocity ra
around the intersection. In that region,DL may be approxi-
mated by its high-speed expansion@8#

DL;21.202S Z1v0

v D 2

. ~5!

The resulting expression forL also has been included in Fig
1 (Bethe1Z1

4). It is clear that this expansion is valid onl
when DL is small, but would yield unreasonable resu
when applied at low values ofv/Z1v0 . Considering the
Bloch correctionDL assynonymouswith Eq. ~5!, i.e., aZ1

4

correction to the stopping power, is appropriate only for ve
light ions.

The implications of Fig. 1 have not entered existing tab
lations of heavy-ion stopping powers@5,13–16#, which are
all based on quantal perturbation theory. Figure 1 shows
this, taken as an isolated feature, will overestimate stopp
powers. When a Bloch correction was applied, only theZ1

4

term was included@17#. Figure 1 shows that this tends t
underestimate stopping powers.

LBloch drops below zero below some threshold veloc
dependent onZ1 and Z2 . The same is true for the Beth
logarithm, although the threshold is lower and therefore l
disturbing. The appearance of negative stopping cross
tions is not a consequence of the underlying physical mo
but of the use of asymptotic~high velocity! expansions in the
evaluation. For the Bethe theory this artifact has been eli
nated long ago@2,18#. For the Bohr and the Bloch theory th
was done recently@19#.

B. Effective charge

Swift heavy ions carry typically a number of electron
With increasing penetration depth the ionic chargeq1e fluc-
tuates around a certain equilibrium value, which is co
monly estimated from an expression of the type of@20,21#

qeqe.Z1e~12e2v/vTF!, ~6!

wherevTF5Z1
2/3v0 is the Thomas-Fermi velocity. The resul

ing screening of the Coulomb field of the nuclear cha
l
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must affect the stopping power. As a first estimate it is co
mon to replace the nuclear chargeZ1e by an effective charge
@20# qeffe, which in general depends on the impact parame

Attempts have been made to establish a theoretical b
for the effective charge@22–25#, all starting from quantal
perturbation theory and therefore limited to light ions, ev
though this is not commonly recognized. One of the mod
@22# has in fact been applied to generate stopping-po
tables that include high-Z1 ions @5#.

Frequently, the effective charge has been treated as
empirical parameter to be determined from Northcliffe
scaling rule@3#

2
dE

dx
5~q2!effS 2

dE

dxD
Z151

, ~7!

where (2dE/dx)Z151 is the stopping power for a bare pro
ton. However, the stopping power is not generally prop
tional to a power of the charge and, unlike for proton
heavy-ion stopping powers are not governed by the Be
theory.

The second problem can be overcome by an alterna
definition, going over the stopping fraction or fractional e
fective charge

F5
~2dE/dx!q1

~2dE/dx!bare
, ~8!

whereq1 is the ion charge and (2dE/dx)bare the stopping
power for the bare ion~chargeZ1e!. This ensures that the
two quantities that are compared belong into comparable
gimes of stopping theory. A valid calculation of this quanti
allows predictions on the dependence of the stopping po
on the ion chargeq1 .

The former problem is essentially unsolved: It is by
means obvious that the effective charge numberqeff replac-
ing Z1 in Eq. ~1! should be identical to or just similar to th
one to be replaced in Eq.~2!, as has been implied in Re
@17#. The Bloch correctionDL originates in close collisions
hence the effective charge entering there ought to be ra
close to the nuclear charge.

C. Processes involving projectile electrons

The role of projectile electrons is not restricted to sta
cally screening the Coulomb force of the projectile nucle
Charge exchange affects the stopping process both thro
the dependence of the stopping cross section onq1 and
through the energy lost in charge transfers@1#. Another
source of energy loss is projectile excitation by scattering
target electrons and/or nuclei. Standard theory of projec
excitation and ionization follows closely that of target pr
cesses@1#, while electron capture belongs into an altogeth
different category.

Quite independent of the processes taken into account
statistics of stopping no longer obeys Eq.~1! when changes
in projectile state occur and the stopping cross section
pends on the state. Instead of a single stopping cross sec
statistics is then governed by a stopping matrixiSIJi , where
I and J label the projectile state before and after an in
vidual collision@26–28#. ElementsSIJ of the stopping matrix
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have been extracted from measurements of heavy-ion en
losses differential in entrance and exit state versus foil th
ness@29#. If the equilibrium population comprisesn signifi-
cant projectile states, a reliable estimate of the stopp
power may require up ton2 stopping cross sectionsSIJ .

D. Scope of present work

This work represents a followup on a recent study of
stopping of bare ions@19# that extended the range of prac
cal applicability of the Bohr and Bloch theory down to v
locities where Fig. 1 predicts major inadequacies of the
the formula. The modified Bohr formula resulting from th
work was found to reproduce the qualitative behavior of
stopping power for the O-Si system surprisingly well ev
without allowance for necessary low-velocity correction
This encouraged an extension of the theory to ions carry
electrons. The primary goal of the present study has bee
explore the role of projectile screening in the velocity ran
where the Bloch theory reduces to the Bohr limit. Wh
combined with a parallel treatment on the basis of the B
approximation, this treatment provides charge-depend
stopping cross sections over a wide range of velocities
projectiles. Allowance for projectile excitation extends t
range of applicability of the theory even further. Howev
estimates of the contribution of electron capture to nondia
nal elements of the stopping matrix will not be presen
here because such estimates cannot be obtained from
Bohr theory or a related classical model. Therefore, pertin
data for comparison with experiment are fixed-charge st
ping cross sections rather than equilibrium stopping pow

II. QUALITATIVE CONSIDERATIONS

A. Screening and adiabatic radius

Consider a projectile ion screened byN15Z12q1 elec-
trons distributed over a screening radiusa. The range of
effective interaction between a swiftpoint chargeinteracting
with a bound target electron is confined by Bohr’s adiaba
radius@12#

aad5
v
v

, ~9!

wherev is a ~classical! resonant frequency of a target ele
tron. A qualitative measure of the importance of project
screening is found by considering the ratioaad/a: For
aad/a!1 the projectile-target interaction will essentially b
that of a point charge, while screening becomes signific
for aad/a*1.

B. Bohr limit

For a point charge, Bohr’s theory@12,19# predicts a stop-
ping numberL(j) dependent on the variable

j5
mv3

Z1e2v
, ~10!

which reduces to Eq.~4! at high speed (j@1). Expressing
the velocity dependence inaad by the Bohr parameterj, one
finds
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aad

a
5

1

a S Z1e2j

mv2 D 1/3

. ~11!

Now, assume Thomas-Fermi scaling where

a5aTFgS q1

Z1
D , aTF5

0.8853a0

Z1
1/3 , ~12!

a0 being the Bohr radius andg(q1 /Z1) a dimensionless
function of the charge fraction so thatg(0)51 for a neutral
projectile. With this, Eq.~11! reads

aad

a
5

sj1/3

0.8853g~q1 /Z1!
, ~13!

where

s5S Z1e2/a0

\v D 2/3

. ~14!

The velocity-independent parameters is a measure of the
importance of screening at givenj and projectile charge frac
tion.

If the target is characterized by a single resonant f
quencyv5I /\, and if Bloch’s relation@30#

I .Z2I 0 ~15!

with @18# I 0.10 eV is inserted for the mean excitation e
ergy, then Eq.~14! reduces to

s.2S Z1

Z2
D 2/3

. ~16!

It is seen that at constantj and q1 /Z1 the significance of
screening increases with increasingZ1 and decreasingZ2
and thats is equally sensitive to the target as to the proje
tile. This finding is in contrast to the rather common assum
tion of an effective-charge parameter independent of the
terial @13#.

A more detailed analysis would start at the spectrum
resonant frequencies. Then the increase ins with decreasing
v reflects the longer range of interactions with outer el
trons, which are therefore more sensitive to projectile scre
ing.

C. Bethe limit

In the Bethe limit the stopping numberL depends on the
Bethe parameter

j85
2mv2

\v
, ~17!

in accordance with Eq.~3!. Then Eq.~13! changes into

aad

a
5

s8j81/2

0.8853g~q1 /Z1!
, ~18!

with

s85S Z1
2/3e2/2a0

\v D 1/2

~19!
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3784 56PETER SIGMUND
or, with the Bloch relation~15!, s8.1.2Z1
1/3/Z2

1/2. This leads
to the same qualitative conclusions as in the Bohr limit.

III. BOHR THEORY

A. Close and distant collisions

In the Bohr theory@12# interactions between a bare pr
jectile and target electrons are classified into close and
tant collisions according to impact parameters below
above a certain critical valuep0 . Close interactions are as
sumed to obey the law of free Coulomb scattering, wh
distant interactions are governed by a time-dependent
induced by the projectile at therest positionof the target
electron. The electron is bound to this position by
harmonic-oscillator force with a resonant frequencyv.

Bohr’s treatment will be generalized here to an ion car
ing electrons. This generalization is straightforward in t
case of distant collisions, while the opposite limit leaves
couple of options, the feasibility of which needs discussi

B. Dipole limit

The contribution from distant interactions to the ener
lossT in an individual scattering event is evaluated from t
expression

T5
1

2m U E
2`

`

dtF~ t !e2 ivtU2

, ~20!

where F(t)52“V is the force acting on a harmonicall
bound target electron in its equilibrium position. Consider
ion in uniform motion along a trajectoryR„t…5p1vt and
accompanied by N1 electrons in parallel trajectorie
Rn(t)5R(t)1r n , n51,...,N1 , with p denoting the vectoria
impact parameter from the target electron to the ion tra
tory. Then Eq.~20! reduces to

T5
2p2e2

m E d3kE d3k8~k•k8!V* ~k!V~k8!ei ~k2k8!•p

3d~v1k•v!d~v1k8•v!, ~21!

whereV(k) is the Fourier transform of the potential,

V~k!5
e

2p2k2 F~k!, F~k!5Z12 (
n51

N1

e2 ik•rn, ~22!

V* the complex conjugate, andd~ ! the Dirac function. Equa-
tion ~21! can be rewritten in the form

T5
e4

2p2mv2 S Uvv B~p!U2

1U¹pB~p!U2D , ~23!

where

B~p!5E d2k'

k'
2 1~v/v !2 FS k' ,2

v

v De2 ik'•p ~24!

andk' is the component ofk in the direction ofp.
Alternatively one may average Eq.~21! over the distribu-

tion of ~independent! projectile electrons via
s-
r

e
ld

-
e
a
.

n

-

F* ~k!F~k8!5@Z12N1f~k!#@Z12N1f~k8!#

1N1@f~ uk2k8u!2f~k!f~k8!#, ~25!

where

f~k!5S sin krn

krn
D . ~26!

This yields

T5T11T2 , ~27!

whereT1 is the leading contribution forZ1@1,

T15
2e4

mv2 H U v

v
AS vp

v D U2

1U ]

]p
AS vp

v D U2J , ~28!

with

AS vp

v D5E
0

` k'dk'

k'
2 1v2/v2 J0~k'p!

3FZ12N1fSAk'
2 1

v2

v2 D G , ~29!

while T2 contains terms proportional toN1 in Eq. ~25! that
become insignificant forZ1@1. J0 is a Bessel function in
standard notation@10#.

The integral overk' can be carried out for a charge di
tribution characteristic of exponential screening,

1

4pra2 e2r /a, ~30!

so that

T~p!.T15
2Z1

2e4

mv2 S v

v D 2

f ~p!, ~31!

with

f ~p!5@bK1~z!1daK1~az!#21@bK0~z!1dK0~az!#2

~32!

and

b5
q1

Z1
, d5

N1

Z1
, z5

vp

v
, a5A11S aad

a D 2

.

~33!

The Kn are modified Bessel functions in standard notat
@10#. Bohr’s result@12# is recovered in the limits ofb51
and/ora5`.

An alternative and more direct derivation of Eq.~32!
could be obtained by replacing the Coulomb interaction
Bohr’s original calculation by a screened potential equival
to the charge distribution~30!. This possibility was recog-
nized some time ago for the special case of a neutral pro
tile @31#. However, the present calculation shows that ther
a correction termT2 that can be neglected only forZ1@1,
and it illuminates the relation to form factors appearing
the Bethe theory.
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C. Wide-angle extrapolation: Point charge

Consider first the case of a point charge (b51). At small
impact parameters the energy loss~31! reduces to

T~p!;
2Z1

2e4

mv2p2 , ~34!

which becomes infinite atp50. However, the replacement

p2→p21p0
2, ~35!

with p05Z1e2/mv2, turns Eq.~34! into Rutherford’s law,
which is appropriate for close collisions. One may tentativ
make the substitution~35! for all impact parameters. Thi
has little effect at largep, but allows integration of the stop
ping cross sectionS5*T(p)2p p dp in closed form, with
the result

L5j21K0~j21!K1~j21!, ~36!

which is readily seen to reduce to Bohr’s original formula~4!
at largej.

Equation~36! represents a modification of Bohr’s sto
ping formula that extends the meaningful behavior down
lower projectile speeds than the original version~4!, which
turns negative nearj51. An alternative extrapolation wa
found recently@19#. Figure 2 shows a comparison betwe
the two results as well as the Bohr logarithm. It is seen t
the difference between the two extrapolations is noticea
for j5mv3/Z1e2v&5 and significant forj&2. While the
error margin inL for j&2 appears larger than one might lik
it to be, other effects, especially polarization correctio
which are neglected presently, may cause errors of sim
magnitude.

D. Wide-angle extrapolation: Dressed ion

Within the spirit of the Bohr theory, close collisions are
be treated as free collisions between the projectile and
target electron. For a structured projectile two limiting cas
offer themselves for consideration. If the spacing betwe
projectile particles exceeds the collision diameter of C
lomb scattering one may view close collisions as an incoh
ent superposition of individual Rutherford events. Co
versely, for closely spaced projectiles the dressed ion ca
viewed as a stiff charge distribution so that the dynamic
governed by screened Coulomb scattering. Before estab

FIG. 2. Stopping number for a point charge evaluated from c
sical theory.j5mv3/Z1e2v. Thin line, Bohr logarithm@12#; solid
line, from Ref.@19#; dashed line, Eq.~36!.
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ing criteria to distinguish between the two extremes, let
look at the respective predictions.

1. Incoherent scattering

For independent Coulomb scattering of the projectile a
its electrons on a target electron, the energy transfer rea

T5
2Z1

2e4

mv2~p21p0
2!

1(
n

2e4

mv2@~p1pn!21p08
2#

, ~37!

wherep0 was introduced in Eq.~35!, p0852e2/mv2, andpn

is the component of the electron coordinater n in the direc-
tion of p. It is implied that only one of the terms on th
right-hand side is significant in any individual interaction.

The maximum value of any of the electron terms in E
~37! amounts to 1/4 of the ionic term. Therefore, an estim
is necessary to establish whether or not the electonic te
which must be roughly proportional toN1 , can be ignored
after integration over the impact parameter. In the aver
over all orientations the maximum influence must be e
pected atp50. Here the right-hand side of Eq.~37! reduces
to

2Z1
2e4

mv2p0
2 F11N1S p0

Z1aD 2

GS p08

a D G , ~38!

where G(h)5*0
`dt t exp(h sinht) for the charge distribu-

tion ~30!. The physical picture can be valid only fo
p0 ,p08!a, i.e., it implies thath5p08/a is small. Numerical
evaluation shows thatG(h);4h21/4 in that limit. Hence the
relative significance of the sum of the electronic terms in E
~38! is

;
4N1

Z1
2 S p0

a D 2S a

p08
D 1/4

. ~39!

This expression is dominated by the first two factors a
therefore is clearly!1. Thus a collision at impact paramete
p50 is a Rutherford collision between the unscreened
and a target electron.

The above estimate assumed classical scattering betw
electrons accompanying the projectile and target electro
While this assumption is not justified, the fact that this co
tribution to the stopping power is negligible forZ1@1 ren-
ders this difference immaterial.

Now, in the same limit Eq.~32! reduces tof (p)51/z2.
This can be joined to Rutherford’s law by the substituti
~35! in Eq. ~32!. The remaining integral can be carried o
and the final expression for the stopping number reads

L5z0@b2K0~z0!K1~z0!1d2aK0~az0!K1~az0!

12bdK1~z0!K0~az0!#2
d2

2
~a221!z0

2$@K1~az0!#2

2@K0~az0!#2%, ~40!

-
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3786 56PETER SIGMUND
wherez05vp0 /v. Apart from standard recursion relation
for Bessel functions, integration formulas have been e
ployed, which are listed in Ref.@10#.1

2. Coherent scattering

For coherent interaction the appropriate wide-angle
trapolation is the binary scattering law applying to a scree
ion, taken as a stiff charge distribution and hitting a tar
electron. For a repulsive interaction a substitution of the ty
of Eq. ~35! has been applied successfully in the descript
of elastic ion-atom scattering@6# with the difference that the
parameterp0 was chosen such as to satisfy conservation la
in the limit of p50. The validity of the procedure is les
obvious for attractive interaction since the scattering angl
the center-of-mass system may exceed 180° in this case,
the consequence of oscillatory effects at small impact par
eter. Disregarding this potential source of error, let us ap
a substitution

p2→p21p09
2, ~41!

with p09 fixed by conservation laws, i.e.,T(p50)52mv2,
the maximum permissible energy transfer in a free bin
collision between a heavy particle and a target electron
rest. In dimensionless variables this reduces to

f ~z09!5j2, ~42!

wherez095vp09/v. Integration then yields a stopping numb
given by Eq.~40! with z0 replaced byz09 . L5L(j) can then
be tabulated from Eqs.~42! and ~40!, z09 being taken as the
independent variable@19#.

3. Coherentversus incoherent scattering

If the target atom is considered as an entity, i.e., if
differentiation is made between the electron shells, the tr
sition from predominantly coherent to predominantly inc
herent scattering takes place when the ratiop0 /a drops be-
low ;1. In dimensionless units this is equivalent to

j.S s

0.8853g~b! D
3/2

. ~43!

While incoherent scattering thus tends to prevail at high
coherent scattering at lowj, the limiting value varies propor
tionally to Z1 /Z2 according to Eqs.~43! and ~16!. For
Z1@Z2 that limit is reached only at quite high values ofj.
Conversely, forZ1!Z2 , incoherent scattering will dominat
over most of the pertinent velocity range. This is consist
with experience from light-ion stopping@32,33#.

E. Screening radius

For numerical estimates information is needed ab
g(b), Eq. ~12! describing the dependence of the ion
screening radius on charge state. Screening functions ma

1Caution had to be exerted with regard to signs~specifically Eqs.
11.3.29 and 11.3.31!.
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determined from Thomas-Fermi theory@34#. In that descrip-
tion, positive ions have a finite radiusr 0 . Potentials are writ-
ten in the form

V~r !5H Z1e

r
fTFS r

aTF
D1

q1e

r 0
for r ,r 0

q1e

r
for r .r 0,

~44!

where fTF can be estimated by a procedure of Fermi a
Amaldi @35,36#. g(b) has been determined by matching t
potential equivalent to the charge distribution~30! to Eq.
~44!. The result is shown Fig. 3. Within the accuracy of
exponential fit to a Thomas-Fermi screening function, it a
pears justified to adopt the expression

g~b!5~12b!r5d r . ~45!

With the exception of Fig. 5, explicit evaluations report
below assumer 51.

F. Evaluation

The stopping numberL(j) has been tabulated for bot
incoherent and coherent scattering. Sincea depends onv
and hence onj, iteration was necessary in the coherent ca
starting from a trial value ofa. Three iterations have bee
adequate in all cases. Results are shown in Fig. 4 for f
values of s @Eq. ~14!#. Figure 5 shows results fors510
evaluated with different values ofr @Eq. ~45!# characterizing
the dependence of the screening radius on the charge s
While an influence is noticeable, it appears weaker than
effect of the absolute value of the screening radius, wh
acts as an inverse variation ins; cf. Eq. ~13!.

Figure 4 shows that higher stopping numbers are obtai
for coherent than for incoherent scattering. This stems fr
the fact that the limiting impact parameterp0 for unscreened
Coulomb scattering is too large in the presence of screen
In agreement with the considerations made in Sec. III D
the relative difference increases with increasings and de-
creasingj. Moreover, the relative difference is largest f
low charge fracionsb5q1 /Z1 . However, the relative differ-
ence is significant mainly forj&5 and it nowhere exceed
the difference between the two predictions of the stopp
number for a bare ion in Fig. 2. While the rangej<5 is of
considerable interest in applications, we need to keep

FIG. 3. Ratioa/aTF5g versus charge fractionb extracted from
Thomas-Fermi theory by matching to the exponentially scree
Coulomb potential ~squares!. Lines represent Eq.~45! with
r 50.5,1.0,1.5~top to bottom!.
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mind that this is also the regime where a substantial Bar
correction must be expected, although reliable estimates
heavy ions are not available, as discussed below. Moreo
estimates on the basis of coherent scattering suffer from
certainties regarding scattering angles exceeding 180°, m
tioned in Sec. III D 1. Consequently, despite a system
underestimate of stopping cross sections on the basis o
coherent scattering for larges, small j, and lowb, several
numerical results reported below have been based upon
model for definiteness as well as analytical and numer
convenience.

It is seen from Fig. 4 that the stopping number is ve
sensitive to the ionic charge fors550 and 10, while fors51
and 0.5 a much weaker dependence is found. Stopping
tions have been plotted in Fig. 6. The central role of
scaling parameters together with the charge stateb is evi-
dent, while the variation withj is much less pronounced, i
particular for larges, whereF is essentially independent o
j. Figure 7 shows values of the stopping fractionF at
j5mv3/Z1e2v5100 versus the ionic charge fractio
b5q1 /Z1 . The result fors550 coincides very closely with
a q1

2 dependence, which has often been implied and oc
sionally been found in experiments@37#. Here this emerges
only in the limit of high-Z1 ions.

FIG. 4. Stopping number versus the Bohr parame
j5mv3/Z1e2v for the fractional chargeb5q1 /Z1 varying from 0
to 1 in steps of 0.1. Thick lines, close collisions treated as incoh
ent Coulomb scattering; thin lines, close collisions treated
screened Coulomb~coherent! scattering. The four graphs refer t
different values ofs @Eq. ~14!#.

FIG. 5. Illustration of the influence of the parameterr in Eq.
~45! on the stopping numberL for s510. The five groups of curves
refer to b5q1 /Z1 running from 1 to 0 in steps of 0.25~top to
bottom!. The fine structure corresponds tor 51.5 ~thin solid lines!,
1.0 ~thick solid lines!, and 0.5~dashed lines!.
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G. Projectile excitation

A full treatment of projectile excitation or ionization i
outside the scope of the present paper since this is at lea
much a problem of statistics as of atomistics. However, a
comments are appropriate.

For a given projectile state the contribution of project
excitation to the total inelastic energy loss may be found
symmetrization, i.e., adding a term in which the roles
projectile and target are interchanged. Denoting the cr
section for target excitation evaluated above byS12, we have
to add a term of the form

S215
4pZ2

2e4

mv2 N1F~s21,b2 ,j21!L0~j21!, ~46!

whereF is the stopping fraction introduced in Eq.~8!,

j215
mv3

Z2e2v1h~b1!
, s215S Z2e2/a0

\v1h~b1! D
2/3

. ~47!

Here\v1 is the mean excitation energy of a neutral proje
tile andh(b1) accounts for the variation of this quantity wit
charge state.L0 is the modified Bohr stopping number for
bare nucleus.

For a neutral target we obtain the expression for the ra
between the stopping cross sections for projectile and ta
excitation,

S21

S12
5

Z2

Z1

N1

Z1

F~s21,0,j21!

F~s12,b1 ,j12!

L0~j21!

L0~j12!
, ~48!

where quantities characterizing target excitation have b
labeled similarly andh(b2)51. Now, Bloch’s relation~15!
indicates thatZ2v1.Z1v2 . Hence the variation of the ratio
of L0 functions is governed by the logarithm ofh(b1) and
thus weak. For a neutral projectile Eq.~48! reduces to

S21

S12
.

Z2

Z1

F~s21,0!

F~s12,0!
, ~49!

where the weak dependence ofF on j has likewise been
ignored. The two factors vary in opposite directions and
comparable rates. Hence, for a neutral projectile and not
widely different Z1 and Z2 , projectile and target excitation
and ionization yield comparable contributions to the stopp

r

r-
s

FIG. 6. Stopping fractionsF defined in Eq.~8!. Otherwise the
notation is as in Fig. 4. Only incoherent scattering is shown.
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FIG. 7. Values of the stopping fractionF at j5100 plotted as a function of the ionic charge fractionb5q1 /Z1 . Dashed curves,s
50.2,0.5,1,2,5,10,20,50~top to bottom!; thin solid line,F5b2.
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cross section. With increasing projectile charge bothN1 /Z1
and the ratio of stopping ratiosF in Eq. ~48! decrease, with
the consequence of dominating target excitation.

For the purpose of estimating fixed-charge stopping cr
sections, the above procedure overestimates the contribu
due to projectile electrons since only projectile excitati
contributes, while projectile ionization enters nondiagonal
ements of the stopping matrix. For neutral projectiles w
Z1@1 this is a major reduction. For highly charged proje
tiles one may assume hydrogenlike behavior, i.e., excita
and ionization should contribute about equally. On the ot
hand, for highly charged ions projectile excitation and
ionization is of minor importance altogether, as indicat
above.

In summary, the relative contribution to the stoppi
cross section from projectile excitation and/or ionization d
creases with increasing projectile charge. Its contribution
equilibrium stopping powers is substantial for neutral proj
tiles while a minor perturbance to fixed-charge stopp
cross sections.

IV. BETHE THEORY

When Bethe’s theory of stopping@7# is carried out for a
dressed ion a form factor enters@23,24,38# so that the con-
tribution from target processes to the stopping number m
be written in the form

L5
1

2 (
j

f jE
Qmin

2mv2 dQ

Q
G~Q!, ~50!

where thef j are dipole oscillator strengths characterizing t
energy levelse j of the target, normalized according t
( j f j51, and Qmin5(\vj)

2/2mv2 with \v j5e j2e0 . The
form factor

G~Q!5(
l
US 12

1

N1
(
n51

N1

eiq•rnD
l0
U2

, Q5
\2q2

2m

~51!
s
ion

l-

-
n
r

r
d

-
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-
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involves the projectile states labeled byl and can be evalu-
ated in straight analogy to the classical case. For indepen
electrons one finds

G~Q!.@12df~k!#2, ~52!

wheref(k) andd are the quantities introduced in Eqs.~26!
and~33!, respectively, and terms proportional toN1 /Z1

2 have
been ignored just as in the classical case. For expone
screening~30! one finds

G~Q!5S Q1bQ1

Q1Q1
D 2

, Q15
\2

2ma2 . ~53!

Equation~50! excludes shell corrections. For heavy ions t
Bethe limit is reached at higher projectile speeds than

FIG. 8. Bethe stopping number plotted in variables appropr
to Bohr scaling. Upper graph,s510; lower graph,s51.
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TABLE I. Parameters governing the comparison with experiments in Tables II and III.k52Z1v0 /v
separates the Bohr from the Bethe regime@1#. Values forv j and f j tabulated in Ref.@45# were employed
because of convenience and easy access, even though subshells are not weighted in accordance
straight oscillator strengths in Refs.@43, 44# from which they originate.

Ion target Energy~MeV/u! k 1s 2s 2p

C-Ca 3 1.091 s 0.508 3.272 3.927
j 13.37 218.9 287.8

O-Ca 3 1.455 s 0.615 3.964 4.757
j 10.03 164.2 215.8

58Ni-Cb 1.034 8.672 s 1.417 9.138 10.97
j 0.580 9.49 12.48

aReference@41#.
bReference@42#.
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light ions. Hence the neglect of shell corrections is justifi
for Z1@1 ~cf. also Sec. VI B!. Since the leading shell cor
rections are proportional tov22 and v24 @2#, terms of this
type will be neglected. With this one finds

L5b2 ln
2mv2

I
1~12b2!ln

2mav
\

2
1

2
~12b!2, ~54!

with ln I5(j f j ln(\vj). This reduces toLBethe for a point
charge (b51) and to

L5 ln
2mav

\
2

1

2
~55!

in the opposite extreme of a neutral projectile. As in t
classical case, the contribution from projectile excitation
ionization to the stopping cross section may be obtained
interchanging the roles of target and projectile. This is rig
ous within the first Born approximation@23,38#.

Standard stopping theory for an electron gas@39# has been
applied to screened projectiles@22,25#. It is shown in the
Appendix that this theory also leads to Eq.~54!.

Equation~55! predicts a stopping cross section for targ
processes dependent onZ2 , the number of electrons pe
atom, but no other target parameters. This originates in
fact that for a neutral projectile the limiting impact parame
for target excitation is given by the screening radius of
projectile instead of the adiabatic radius through which bi
ing frequencies enter. It is easily verified that Eq.~55! re-
flects free Coulomb collisions between the projectile nucl
and the target electrons with a cutoff energy trans
Tmin52.718Q1 .

Equation~54! is easily seen to depend on the parametes8
only through an additive term2 ln s8. Going over to stopping
d

r
y
-

t

e
r
e
-

s
r

fractions would remove this basic simplicity and therefo
discourages one from using stopping fractions in this lim

In the present context Eq.~54! is of interest mainly for the
identification of the upper limit of validity of the modified
Bohr theory. Therefore, it is useful to write it down in term
of the variablesj ands. This yields

L5
1

3
~11b2!ln j1S b22

1

2D ln s1 ln~2Z1
1/3!

1~12b2!ln@0.8853g~b!#2
1

2
d2. ~56!

An explicit dependence onZ1 remains in this expression. A
few examples shown in Fig. 8 indicate a greater sensitivity
Z1 than to the fractional chargeb5q1 /Z1 . The fact thatL
increases significantly with increasingZ1 at constantj andb
confirms that the transition from Bohr-like to Bethe-like b
havior moves up rapidly to greater values ofj with increas-
ing Z1 at all values ofb.

V. APPLICATIONS

A. Fixed-charge stopping cross sections

Cowern et al. @29,40,41# measured charge-selecte
energy-loss spectra with 3 MeV/u carbon and oxygen io
penetrating amorphous carbon foils. Fixed-charge stopp
cross sections were extracted by careful analysis base
the Winterbon formalism@26#. Data for.1 MeV/u 58Ni ions
on carbon were reported recently@42#.

The present estimate was done on the basis of bun
oscillator strengths@43–45#. Pertinent parameters are show
in Table I. It is seen that the C and O data lie near
transition between the Bohr and the Bethe regime, as
TABLE II. Calculated and measured@41# stopping cross sectionsS (keV Å2/atom) for carbon and oxy-
gen ions in carbon, with target excitation or ionization only and incoherent scattering assumed.

Ion target Charge state LBohr LBloch Stheor Sexpt

C-C 61 4.688 4.370 0.753 0.71460.003
51 3.478 3.160 0.544 0.51960.004

O-C 81 4.398 3.927 1.202 1.10860.018
71 3.439 2.968 0.908 0.93360.018
61 2.790 2.319 0.710 0.73560.22
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TABLE III. Calculated and measured@42# stopping powers2dE/dx @keV/~mg/cm2!# of carbon for
nickel, with target excitation or ionization only. Calculations are given for both coherent and incoh
scattering, with the latter in parentheses.

Ion target Charge state LBohr LBloch (2dE/dx) theor (2dE/dx)expt

58Ni-C 181 0.853~0.702! 0.849~0.698! 46.0~37.8! 52.7
161 0.706~0.555! 0.702~0.551! 38.0~29.8! 47.5
131 0.501~0.369! 0.497~0.365! 26.9~19.74! 40.2
81 0.271~0.148! 0.267~0.143! 14.5~7.75! 22.5
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pressed by Bohr’s kappa parameterk52Z1v0 /v, while the
Ni data lie clearly in the classical regime. Hence there i
noticeable difference betweenLBohr andLBloch in the former
case. It is also seen that the data cover a wide range of va
of boths andj. Note the pronounced variations from shell
shell.

Table II shows a comparison of calculated with measu
stopping cross sections for carbon and oxygen ions@41#. Dis-
crepancies range from 3% to 8% in either direction. Ap
from potential experimental errors and errors in the d
analysis, which could have been underestimated by the
thors, the main source of discrepancy is likely to lie in t
treatment of target K electrons, which contribute;20% of
the total stopping number. In particular, atj;10 there must
be a noticeable Barkas correction~see below!. Since the ions
are almost stripped, projectile excitation must be a mi
perturbation, while improved input on atomic oscillat
strengths is likely to produce noticeable changes.

For Ni bombardment Table III shows larger discrepa
cies. In view of the small values ofj ~cf. Table I!, stopping
cross sections were evaluated both for coherent and inco
ent scattering. The difference is seen to be substantial an
expected, better agreement is achieved for coherent sca

FIG. 9. Calculated stopping power of carbon for oxygen io
Contribution from target excitation or ionization separated into c
tributions from three target shells~f j and v j tabulated in@45#!.
Modified Bohr theory and incoherent scattering are shown. Up
graph, bare ion; lower graph, neutral ion.
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ing, although stopping cross sections are underestimate
both cases. Now, unlike the data from Ref.@41#, which are
the result of a detailed analysis, Ref.@42# did not separate the
energy loss suffered under charge exchange. Moreover,
jectile excitation is not negligible and increases with decre
ing charge state. The discrepancy in Table III shows a si
lar trend. There must also be a~positive! Barkas correction,
but that is more likely to show the opposite tendency.

Fixed-charge stopping cross sections have been meas
long ago for light ions at keV@46,47# and more recently a
MeV energies@48#. More directly related to the present wor
are measurements with swift heavy ions under channe
conditions @37,49#. In this geometry interactions with cor
electrons are suppressed and the leading resonance go
ing s becomes the plasma frequencyvP of the conduction
electrons. Since\vP;e2/a0 one findss.Z1

2/3, according to
Eq. ~14!. Figure 7 shows that the stopping fraction in th
case comes close to being proportional toq1

2. This is in
agreement with the main finding in those experiments. F
ther support is drawn from the fact that minor deviatio
from q1

2 scaling were found for the lowest charge states@49#
corresponding tob50.6 for sulphur and chlorine ions. De
viations from q1

2 scaling were positive, in agreement wit
Fig. 7.

Similar conclusions emerge from more recent expe
ments on energy losses of channeled Br and Kr ions@50# at
10–15 MeV/u, i.e.,k.3. The fixed-charge energy loss o
highly stripped ions was found to scale well proportionally
q1

2, in complete agreement with Fig. 7 fors.10.

B. Oxygen on carbon

Figure 9 shows fixed-charge stopping powers of carb
for oxygen ions as a function of the ion energy for ful
stripped and neutral ions, respectively. The graphs differ
only in absolute magnitude, but also in the position of t

.
-

r

FIG. 10. Calculated stopping power of carbon for neutral ox
gen ions from projectile excitation or ionization, separated into c
tributions from three projectile shells~f j andv j tabulated in@45#!.
Modified Bohr theory and incoherent scattering are shown.
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stopping maximum and the relative contributions from t
three subshells: Screening affects mainly 2s and 2p excita-
tions. For qualitative orientation the contribution from pr
jectile excitations has been evaluated for neutral oxy
~Fig. 10!. A behavior very similar to that of target excitatio
is found, except for a slight shift of the maximum and t
threshold toward lower velocities. This is consistent with t
qualitative arguments put forth in Sec. III G.

Figure 11 shows total fixed-charge stopping powers~tar-
get excitation or ionization only! for five charge states rang
ing from fully stripped to neutral projectiles. It is seen th
the stopping power of a neutral projectile is an order of m
nitude smaller than that of the stripped ion. Available expe
mental values of equilibrium stopping powers compiled
Refs.@51,52# have been included for orientation. These d
approach calculated stopping powers for stripped ions (O81)
aboveE.3 MeV/u. This is close to the crossover from th
Bohr to the Bethe regime for a bare oxygen ion. The conc
sion emerges that for oxygen on carbon the Bethe regim
confined to velocities where the projectile is essentia
stripped in charge-state equilibrium.

The energy range depicted in Fig. 11 goes down to
MeV, which corresponds tov5vTF , i.e., the Thomas-Ferm
velocity introduced in Sec. I B or an overall value ofj.0.5.
A substantial Barkas correction may thus be expected n
the left end of the graph, which raises the theoretical curv
Qualitatively one would expectb;0.5 to be appropriate
near the Thomas-Fermi velocity. It is clear from Fig. 10 th
projectile excitation or ionization cannot contribute notic
ably here. The role of electron capture would have to
studied separately.

VI. DISCUSSION

A. Bohr versus Bethe theory

It was shown in Fig. 1 that stopping powers predict
from Bohr’s theory for a moving point charge may diffe
substantially from the corresponding predictions from
Bethe theory. Differences of similar magnitude are found
screened projectiles, but the scaling properties with ato
number and charge state are by no means identical. The
models reflect different velocity regimes for a given ion. A
plication of either model outside its range of validity ma
lead to substantial errors.

B. Shell corrections and the Barkas term

Shell corrections originate in the orbital motion of targ
electrons and become important when the projectile velo
is comparable to or smaller than the orbital speedsve in the
target shells. The leading term goes as2ve

2/v2 in the Bethe
theory @2,53,54# and as

21.5ve
2/v2.2

2.9

~Z1Z2j!2/3

ve
2

v0
2 ~57!

in the Bohr theory@19#. For j.1 and ve
2.(Z2

2/3v0)2 this
implies an upper limit of.3(Z2 /Z1)2/3. Thus shell correc-
tions are most pronounced forZ1!Z2 , in agreement with
experience from light-ion stopping@2#.
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Barkas corrections, like shell corrections, become sign
cant at low projectile speed. They originate in target pol
ization by the field of the projectile and scale approximat
like j215(Z1e2v/mv3)L8 @55# in the Bethe regime, with
L8.LBethe @8#. Unlike the Bloch correction, the Barkas ter
is sensitive to distant collisions. It is therefore not justified
take over estimates derived for unscreened Coulomb inte
tion in the analysis. Early estimates of the Barkas effect@55#
were performed on the basis of Bohr theory and are there
applicable to heavy ions, except that they increase rap
with increasingZ1 if screening is left out of consideration.

Explicit evaluations of the Barkas effect for a poi
charge interacting with a quantal harmonic oscillator@56#
show a variation with impact parameter very similar to t
one predicted from the Bethe theory for the same sys
@57#. This finding is relevant to heavy-ion stopping since,
the long-distance limit, classical and quantum theory yi
equivalent results@58#. One may expect, therefore, a comp
rable influence of projectile screening on target polarizat
to what is found for the leading~Bohr! contribution to the
stopping cross section.

For stopping powers in the range ofj,1 the above esti-
mate indicates that Barkas corrections may become subs
tial. This is relevant to Fig. 11. Another look at the Bark
correction, aiming at moderate or largeZ1 and including
screening, may be a prerequisite for reliable theoretical p
dictions of stopping powers in the velocity range equivale
to j&1.

C. Brandt-Kitagawa theory

A theoretical description of the stopping of a screened
was developed 15 years ago@22# where the target was mod
eled as a free electron gas~cf. the Appendix!. The range of
validity of this theory is limited to the Bethe limi
v@2Z1v0 .

An electron-gas description is relevant since it is the m
weakly bound electrons that have the highest value ofs or s8
and therefore are most drastically affected by projec
screening. In general, the most weakly bound electrons
not necessarily provide the leading contribution to the st
ping power, but Fig. 9 shows that they do so at low projec
speed. Indeed, the applications discussed in Ref.@22# refer
mostly to low velocities.

The theory presented in Ref.@22# had a significant impac

FIG. 11. Comparison of calculated fixed-charge stopping po
ers with measured equilibrium stopping powers of carbon for o
gen ions. Lines are calculated from modified Bohr theory for cha
states 81 to 0 in steps of 2 for target excitation and/or ionizatio
only. Experimental points are taken from 14 sets of data comp
in Refs.@51,52#.



ne
a

on

tio
et
is
o

th
ed
s

t
lly
te
b

ng
pt
nic

he
ta
on
ef
ha
th
s
ot
,
a

tly
l
hi

e
rg
a

io
to
or
s

th
s.
tio
is

r
a

o
r
o
te

ne

ing
are
ss
ed

ugh

nd
ol in

c-
en
om-
are

nish

tron

on

-

3792 56PETER SIGMUND
and led to further studies and applications along similar li
@5,59,60#. It appears appropriate to mention common fe
tures with the present work as well as differences bey
those mentioned already.

The major common feature is the focus on the connec
between charge state and stopping power, leaving the d
mination and incorporation of equilibrium charge-state d
tributions as a separate problem. The analytic simplicity
exponential screening functions is a very useful feature
emerged from Ref.@22#. The theoretical treatment was bas
on what has been labeled coherent scattering in the pre
work.

An effort was made in Ref.@22# to construct a consisten
version of the Thomas-Fermi model for exponentia
screened ions. That model is possibily more sophistica
than the approach adopted here. It was not utilized here
cause the description emerging from Ref.@22# differs sub-
stantially from standard Thomas-Fermi theory in the limiti
case of a neutral atom and because the present descri
readily allows incorporation of more accurate specific io
charge distributions.

Apart from this the main difference lies in the scope. T
present work focuses on swift heavy ions where several
get shells contribute to stopping and where shell correcti
are small. Comparatively little attention was given in R
@22# to the high-speed behavior. It was mentioned t
asymptotically the stopping fraction should approach
form F;11b2/2 in the present notation. This result follow
from Eq. ~54! if the second and third terms, which do n
depend on the velocity parameterj8, can be neglected. Note
however, that the logarithmic approach to asymptotic beh
ior may be quite slow, dependent on the value ofs8.

D. q1
2 scaling and effective charge

In all early and much recent work it is more or less taci
assumed that the stopping power for an ion is proportiona
the square of its charge. Deviations from this relations
were sought in conjunction with higher-orderZ1 effects, i.e.,
deviations, of the stopping power for apoint chargefrom a
strict Z1

2 dependence@15,29,37,49,61,62#. Stopping due to
charge exchange causes similar deviations, but can be s
rated experimentally by measurements at different cha
states@41#. However, since the projectile charge ‘‘seen’’ by
target electron is impact-parameter dependent, deviat
from q1

2-dependent stopping must be seen even if the s
ping cross section for a point charge were strictly prop
tional to Z1

2. An initial attempt to quantify this feature date
back to Brandt and Kitagawa@22,63#. That work showed
clearly that there is no universally valid relation between
ion charge and the stopping fraction or one of its analog

Figure 7 provides clear evidence that the stopping frac
depends equally well on the target as on the ion. There
wide range of the pertinent parameter sets, b, andj whereF
is independent ofj. Deviations from this simple behavio
have been found when coherent scattering is assumed
must be expected when Barkas and shell corrections bec
significant. All these effects enter the low-speed behavio
various stages. However, even in the absence of those c
plications the need to compute stopping fractions separa
for the main target shells makes numerical estimates un
s
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essarily clumsy compared to straight evaluation of stopp
cross sections without going over reference values for a b
ion or a proton. Finally, the physics of the stopping proce
for a bare ion may differ substantially from that of a screen
ion, especially for highZ1 and lowq1 , possibly more than
that for proton stopping at the same speed. Hence, altho
the stopping fraction defined by Eq.~8! is more appropriate
than the effective charge defined by Eq.~7! to illustrate the
significance of projectile screening on stopping powers a
related quantities, neither appears to be a necessary to
the computation of stopping powers.
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APPENDIX: ELECTRON GAS

For completeness it is shown that Eq.~54! also follows
from standard stopping theory for a homogeneous elec
gas. This case was considered in Refs.@22,25#. Here the
established expression for the stopping power@39# has to be
appended by a factorG(Q), @Eq. ~53!# so that

2
dE

dx
5 i

Z1
2e2

pv2 E
0

` dq

q E
2qv

qv
dv

v

e~q,v!
G~Q!. ~A1!

On the basis of Lindhard’s dielectric function for an electr
gas at rest@39#,

e~q,v!511
~\vP!2

Q22~\v1 ig!2 , ~A2!

with the plasma frequencyvP5A4pne2/m, electron density
n, and an infinitesimal damping constantg, the integrations
can be performed in closed form, leading to

2
dE

dx
5

2pZ1
2e4n

mv2 Fb2 ln
Q1

Q2
1~12b2!ln

Q11Q1

Q21Q1

2~12b!2
Q1~Q12Q2!

~Q11Q1!~Q21Q1!G , ~A3!

with

Q65mv26A~mv2!22~\vP!2. ~A4!

This is equivalent to the central result of Ref.@22#. A prac-
tical difference originates in the dielectric functions used.

In the limit of mv2@\vP the stopping number per elec
tron reduces to

L5b2 ln
2mv2

\vP
1~12b2!ln

2mva

\
2

1

2
~12b!2,

~A5!

which is completely equivalent to Eq.~54!.



s
ie

K.

ys

er

ta

k.

ys

-

-

B

m.

ys.

ev.

n,

.

ds

v. B

d

56 3793CHARGE-DEPENDENT ELECTRONIC STOPPING OF . . .
@1# N. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk.18, No. 8,
1 ~1948!.

@2# U. Fano, Annu. Rev. Nucl. Sci.13, 1 ~1963!.
@3# L. C. Northcliffe, Annu. Rev. Nucl. Sci.13, 67 ~1963!.
@4# P. Sigmund, inRadiation Damage Processes in Material,

Vol. 8 of NATO Advanced Study Institutes, Series E: Appl
Sciences, edited by C. H. S. Dupuy~Noordhoff, Leyden,
1975!, pp. 3–117.

@5# J. F. Ziegler, J. P. Biersack, and U. Littmark,The Stopping and
Range of Ions in Solids~Pergamon, New York, 1985!, Vol. 1.

@6# J. Lindhard, V. Nielsen, and M. Scharff, Mat. Fys. Medd.
Dan. Vidensk. Selsk.36, No. 10, 1~1968!.

@7# H. Bethe, Ann. Phys.~Leipzig! 5, 324 ~1930!.
@8# J. Lindhard, Nucl. Instrum. Methods132, 1 ~1976!.
@9# F. Bloch, Ann. Phys.~Leipzig! 16, 285 ~1933!.

@10# Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun~Dover, New York, 1964!.

@11# J. Lindhard and A. H. So”rensen, Phys. Rev. A53, 2443~1996!.
@12# N. Bohr, Philos. Mag.25, 10 ~1913!.
@13# L. C. Northcliffe and R. F. Schilling, Nucl. Data, Sect. A7,

233 ~1970!.
@14# F. Hubert, A. Fleury, R. Bimbot, and D. Gardes, Ann. Ph

~Paris! 5, 1 ~1980!.
@15# J. F. Ziegler,Handbook of Stopping Cross Sections for En

getic Ions in All Elements~Pergamon, New York, 1980!, Vol.
5.

@16# F. Hubert, R. Bimbot, and H. Gauvin, At. Data Nucl. Da
Tables46, 1 ~1990!.

@17# J. M. Anthony and W. A. Lanford, Phys. Rev. A25, 1868
~1982!.

@18# J. Lindhard and M. Scharff, Mat. Fys. Medd. K. Dan. Videns
Selsk.27, No. 15, 1~1953!.

@19# P. Sigmund, Phys. Rev. A54, 3113~1996!.
@20# N. Bohr, Phys. Rev.58, 654 ~1940!.
@21# J. Knipp and E. Teller, Phys. Rev.59, 659 ~1941!.
@22# W. Brandt and M. Kitagawa, Phys. Rev. B25, 5631~1982!.
@23# Y. K. Kim and K. T. Cheng, Phys. Rev. A22, 61 ~1980!.
@24# O. H. Crawford, Phys. Rev. A39, 4432~1989!.
@25# A. Arnau and P. M. Echenique, Nucl. Instrum. Methods Ph

Res. B42, 165 ~1989!.
@26# K. B. Winterbon, Nucl. Instrum. Methods144, 311 ~1977!.
@27# P. Sigmund, Nucl. Instrum. Methods Phys. Res. B69, 113

~1992!.
@28# P. Sigmund, Phys. Rev. A50, 3197~1994!.
@29# N. E. B. Cowernet al., Phys. Rev. A30, 1682~1984!.
@30# F. Bloch, Z. Phys.81, 363 ~1933!.
@31# R. E. Johnson,Introduction to Atomic and Molecular Colli-

sions~Plenum, New York, 1982!, Appendix C.
@32# J. S. Briggs and K. Taulbjerg, inStructure and Collisions of

Ions and Atoms, edited by I. A. Sellin, Current Topics in Phys
ics Vol. 5 ~Springer, Berlin, 1978!, Chap. 4, pp. 105–153.

@33# N. M. Kabachnik, J. Phys. B26, 3803~1993!.
@34# P. Gombas, inHandbuch der Physik, edited by S. Flu¨gge
d

.

-

.

~Springer, Berlin, 1956!, Vol. 36, pp. 109–231.
@35# E. Fermi, Mem. Accad. Italia1, 1 ~1930!.
@36# E. Fermi and E. Amaldi, Mem. Accad. Italia6, 117 ~1934!.
@37# S. Datzet al., Phys. Rev. Lett.38, 1145~1977!.
@38# M. Inokuti, Argonne National Laboratory Report No. ANL-76

88, 1976, p. 177~unpublished!.
@39# J. Lindhard, Mat. Fys. Medd. K. Dan. Vidensk. Selsk.28, No.

8, 1 ~1954!.
@40# N. E. B. Cowernet al., Nucl. Instrum. Methods Phys. Res.

2, 112 ~1984!.
@41# N. E. B. Cowern, P. M. Read, and C. J. Sofield, Nucl. Instru

Methods Phys. Res. B12, 43 ~1985!.
@42# C. M. Frey et al., Nucl. Instrum. Methods Phys. Res. B107,

31 ~1996!.
@43# J. L. Dehmer, M. Inokuti, and R. P. Saxon, Phys. Rev. A12,

102 ~1975!.
@44# M. Inokuti, J. L. Dehmer, L. T. Baer, and J. D. Hanson, Ph

Rev. A 23, 95 ~1981!.
@45# J. Oddershede and J. R. Sabin, At. Data Nucl. Data Tables31,

275 ~1984!.
@46# S. K. Allison, J. Cuevas, and M. Garcia-Munos, Phys. R

127, 792 ~1962!.
@47# J. Cuevas, M. Garcia-Munos, P. Torres, and S. K. Alliso

Phys. Rev.135, A335 ~1964!.
@48# H. Ogawaet al., Nucl. Instrum. Methods Phys. Res. B69, 108

~1992!.
@49# J. A. Golovchenkoet al., Phys. Rev. B23, 957 ~1981!.
@50# J. U. Andersenet al., Nucl. Instrum. Methods Phys. Res. B90,

104 ~1994!.
@51# M. J. Berger and H. Paul,Atomic and Molecular Data for

Radiotherapy and Radiation Research~International Atomic
Energy Agency, Vienna, 1995!, No. IAEA-TECDOC-799,
Chap. 7, pp. 415–546.

@52# H. Paul~unpublished!.
@53# J. Lindhard and A. Winther, Mat. Fys. Medd. K. Dan

Vidensk. Selsk.34, No. 4, 1~1964!.
@54# P. Sigmund, Phys. Rev. A26, 2497~1982!.
@55# J. C. Ashley, R. H. Ritchie, and W. Brandt, Phys. Rev. B5,

2393 ~1992!.
@56# H. H. Mikkelsen and P. Sigmund, Phys. Rev. A40, 101

~1989!.
@57# H. H. Mikkelsen and P. Sigmund, Nucl. Instrum. Metho

Phys. Res. B27, 266 ~1987!.
@58# K. W. Hill and E. Merzbacher, Phys. Rev. A9, 156 ~1974!.
@59# R. J. Mathar and M. Posselt, Phys. Rev. B51, 107 ~1995!.
@60# Q. Yang, Phys. Rev. A49, 1089~1994!.
@61# B. S. Yarlagadda, J. E. Robinson, and W. Brandt, Phys. Re

17, 3473~1978!.
@62# H. H. Andersen, inSemiclassical Descriptions of Atomic an

Nuclear Collisions, edited by J. Bang and J. D. Boor~North-
Holland, Amsterdam, 1985!, pp. 409–430.

@63# W. Brandt, Nucl. Instrum. Methods194, 13 ~1982!.


