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Charge-dependent electronic stopping of swift nonrelativistic heavy ions
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The stopping of swift nonrelativistic heavy ions has been analyzed theoretically as a function of the projec-
tile chargeq, . Excitation and ionization of target electrons are described within Bohr's classical theory and the
limitations toward Bethe’s quantal description are outlined. For oxygen ions in carbon the Bethe regime is
found to be confined to the velocity range where the ion is essentially stripped in charge equilibrium. The effect
of projectile electrons is taken into account mainly via screening of the Coulomb interaction, but excitation of
projectile electrons is discussed briefly. The significance of projectile screening hinges on a pasaimeater
depends on projectile and target parameters and varies substantially over the electron shells of the target.
Calculated fixed-charge stopping cross sections agree well with measured values in absolute magnitude and in
their variation with charge stateﬁ scaling frequently has been assumed in the literature. A continuous
transition is predicted between such scaling and a stopping power that is almost independent of the projectile
charge [S1050-294@7)05411-9

PACS numbses): 34.50.Bw, 61.85tp, 52.40.Mj, 79.20.Rf

I. INTRODUCTION 2mu?2
Lgioch= Lgethe AL=1n | +R5{l/f(1)—lﬂ 1+i ”

The stopping of ions penetrating through matter is gov- )
erned by a number of scattering processes sugh agcita-
tion and ionization of target electron§i) electron capture, wherel denotes the mean excitation energy of a target atom,
(iii) projectile excitation and ionization, an@) recoiling  « the digamma functiofl0], and Re the real part. Equation
nuclei. While this classification is not unique and individual (2) needs shell and polarizatidBarkas corrections at low
processes are not necessarily uncoupled, existing théery Vvelocities and density and relativistic corrections at high ve-
5] has, by and large, been based on this scheme or slighacities [2,8]. Moreover, Eq.(2) ignores electron capture.
modifications thereof with considerable success. The relativéhe physical basis underlying Bloch’s formula has been con-
significance of these processes depends primarily on thémed and extended recentfg 1]. For light ions the Bloch
speedy and the atomic numbet;, of the penetrating ion and correctionAL in Eq.(2) becomes small anldg.., reduces to
to some extent on target parameters and projectile state. i€ Bethe formulg7],
the following, “swift” refers to ions withv>v,=e%4, the 2mu
Bohr velocity, and “heavy” refers t&Z;>1. L gethe=1N T ©)

For swift ions nuclear stoppingiv) is small and only
weakly coupled to electronic stoppin@—(iii) [1,6]. This  which follows from first-order quantal perturbation theory.
process will not be considered in the present study. Elec- Figure 1 showd g, as a function of the scaled velocity
tronic stopping is best understood for swift light ions sincevariablev/Z,v,. A universal plot, valid for allZ; andZ,,
target excitation and/or ionization dominates and Coulomthas been generated by subtraction of a constant term
forces are weak enough_to encourage 'ghg use of perturpancm(ngZ%“)_ Disregard for a moment the fact thatoe,
theory[1,2,7,8. For heavier ions the validity of perturbation grops below zero below a certain threshold velocity. It is

theory becomes qgestionable and the role of projectile elecsgen thatLgee is made up of two distinct logarithmic
trons needs attentigrl].
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A. Bloch theory = N <
The electronic stopping power dE/dx is commonly e 0:—8 o
written in the form § L Benelod
k= - ~
) L.—" Bloch
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where S is the stopping cross sectiol and Z, are the FIG. 1. Comparison of the Bloch stopping numhefor a bare

density and atomic number of target atomsand —e are  jon with limiting expressions on a universal plot. Solid ity
the electron mass and charge, dni the stopping number. dashed linesL gepe and Lggp; thin line, Lgeme amended byZ$
For a bare ion the standard expression is Bloch's forrf@jla correction.
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branches intersecting ai=2.2%,v,. Above this point must affect the stopping power. As a first estimate it is com-

Lgioch rapidly approaches the Bethe logaritfi). The loga-  mon to replace the nuclear chargee by an effective charge

rithmic curve below the intersection reflects the classica[20] g.s€, which in general depends on the impact parameter.

Bohr formula[12] Attempts have been made to establish a theoretical basis
for the effective charg¢22-25, all starting from quantal

4) perturbation theory and therefore limited to light ions, even
though this is not commonly recognized. One of the models
[22] has in fact been applied to generate stopping-power

wherew stands for a characteristic resonant frequency of thegples that include higi, ions [5].

target. In the present context one may identifyvith 1/7. Frequently, the effective charge has been treated as an

The velocity interval of interest,p<v<c is equivalentto  empirical parameter to be determined from Northcliffe’s
a rangezl’l<v/21v0< 1371z, for the scaled variable in Fig. scaling rule[3]

1. For light ions this interval lies almost completely in the

3
LBohr=In m, C=11229,

right half of the graph, i.e., the Bethe regime. Conversely, for dE 5 dE
very heavy ions it falls predominantly into the Bohr regime. o &—(q Jeff| — dx L @)
For intermediate ions such as f@;~ 10, there is a Bethe S

regime at high and a Bohr regime at low velocities. The h — dE/d is the stopDi f b i
physical origin of this distinction has been discussed in detaiYV ere ( X)z,-1 IS the stopping power for a bare pro

[1] ton. However, the stopping power is not generally propor-
Note that interpolation between the two logarithmic ex-tIonal to a power of the charge and, unllkg tf)or ErotEc;nsﬁ
pressions is necessary only over a very narrow velocity rang eavy-ion stopping powers are not governed by the Betne

; ; ; . theory.
igé%dgc?t;n;?éi?gsggd lgxg];rt]srigt%lam' may be approxi The second problem can be overcome by an alternative

definition, going over the stopping fraction or fractional ef-

Z1vo\? fective charge

AL~—120{ (5)

(—dE/dx)q,

f:—,
(_dE/dX)bare

®

The resulting expression far also has been included in Fig.
1 (Bethet Z‘l‘). It is clear that this expansion is valid only _ ) )
when AL is small, but would yield unreasonable resultsWhered; is the ion charge and<{dE/dX)par the stopping
when applied at low values of/Z,v,. Considering the POWer for't.he bare iorichargeZqe). This ensures that the
Bloch correctionAL assynonymousvith Eq. (5), i.e., az¢ WO quantities that are compared belong into comparable re-
correction to the stopping power, is appropriate only for verydimes of stopping theory. A valid calculation of this quantity

light ions. allows predictions on the dependence of the stopping power
The implications of Fig. 1 have not entered existing tabu-O" the ion chargey;. , _
lations of heavy-ion stopping powefs,13—16, which are The former problem is essentially unsolved: It is by no

all based on quantal perturbation theory. Figure 1 shows thdP'€@ns obvious that the effective charge numipgrreplac-

this, taken as an isolated feature, will overestimate stoppin$!d Z1 In EQ. (1) should be identical to or just similar to the

powers. When a Bloch correction was applied, only #fe ~ ONne to be replaced in Eq2), as has been implied in Ref.

term was included17]. Figure 1 shows that this tends to [17]. The Bloch correctiom\L originates in close collisions;

underestimate stopping powers. hence the effective charge entering there ought to be rather
Lee, drops below zero below some threshold velocity €/0S€ t0 the nuclear charge.

dependent orZ; and Z,. The same is true for the Bethe _ _ o

logarithm, although the threshold is lower and therefore less C. Processes involving projectile electrons

disturbing. The appearance of negative stopping cross sec- The role of projectile electrons is not restricted to stati-
tions is not a consequence of the underlying physical modeda|ly screening the Coulomb force of the projectile nucleus.
but of the use of asymptotiigh velocity expansions inthe charge exchange affects the stopping process both through
eVaantion. For the Bethe theory th|S al‘tifaCt haS been el|m|the dependence of the Stopping Cross Sectionqpmnd
nated long ag$2,18|. For the Bohr and the Bloch theory this through the energy lost in charge transfédd. Another

was done recentlj/19)]. source of energy loss is projectile excitation by scattering on
target electrons and/or nuclei. Standard theory of projectile
B. Effective charge excitation and ionization follows closely that of target pro-

Swift heavy ions carry typically a number of electrons. cesse$1], while electron capture belongs into an altogether

With increasing penetration depth the ionic chagge fluc-  different category. ,
tuates around a certain equilibrium value, which is com- Quite independent of the processes taken into account, the

monly estimated from an expression of the typd28,21] statistics of stopping no longer obeys Ef)) when changes
in projectile state occur and the stopping cross section de-
qeqezzle(l—e*”’”TF), (6) pends on the state. Instead of a single stopping cross section,

statistics is then governed by a stopping mat&||, where
whereuTF=Z§’3uo is the Thomas-Fermi velocity. The result- | and J label the projectile state before and after an indi-
ing screening of the Coulomb field of the nuclear chargevidual collision[26—28. ElementsS;; of the stopping matrix
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have been extracted from measurements of heavy-ion energy a,g 1(Z,e% 13
losses differential in entrance and exit state versus foil thick- 2 a\ mo? (1)
ness[29]. If the equilibrium population comprises signifi-
cant prO]eCtl'e states, a reliable estimate of the StOpplanW assume Thomas-Fermi Sca“ng where
power may require up ta? stopping cross sectiors; .
0.8853a,
D. Scope of present work a=arsd Z,) are= zis (12

This work represents a followup on a recent study of the
stopping of bare iongl9] that extended the range of practi-
cal applicability of the Bohr and Bloch theory down to ve-
locities where Fig. 1 predicts major inadequacies of the Be’
the formula. The modified Bohr formula resulting from that

o being the Bohr radius and(q;/Z;) a dimensionless
funcuon of the charge fraction so thgf0)=1 for a neutral
projectile. With this, Eq(11) reads

1/3
8ad _ s¢

work was found to reproduce the qualitative behavior of the — =5, (13
stopping power for the O-Si system surprisingly well even a  0.88539(q:/Z4)

without allowance for necessary low-velocity corrections.nere

This encouraged an extension of the theory to ions carrying

electrons. The primary goal of the present study has been to Z,€%la\??

explore the role of projectile screening in the velocity range :( ho (14)

where the Bloch theory reduces to the Bohr limit. When

combined with a parallel treatment on the basis of the Borrhe velocity-independent parametgris a measure of the
approximation, this treatment provides charge-dependeninportance of screening at givérand projectile charge frac-
stopping cross sections over a wide range of velocities angtion.

projectiles. Allowance for projectile excitation extends the |If the target is characterized by a single resonant fre-
range of applicability of the theory even further. However, quencyw=1/%, and if Bloch’s relatior{30]

estimates of the contribution of electron capture to nondiago-

nal elements of the stopping matrix will not be presented =25l (15
here because such estimates cannot be obtained from the

Bohr theory or a related classical model. Therefore, pertinenf/ith [18] 10=10 eV is inserted for the mean excitation en-
data for comparison with experiment are fixed-charge stop€r9y then Eq(14) reduces to

ping cross sections rather than equilibrium stopping powers. 7,23

s:2<z—) . (16)
Il. QUALITATIVE CONSIDERATIONS 2
A. Screening and adiabatic radius It is seen that at constagtand q,/Z; the significance of

screening increases with increasidg and decreasing@,
distributed X di H ‘ and thats is equally sensitive to the target as to the projec-
tr;ns_ Istribute _ovgr a screening ra |a|hsT € rangeé ot e This finding is in contrast to the rather common assump-
effective interaction between a swiibint chargeinteracting o of an effective-charge parameter independent of the ma-
with a bound target electron is confined by Bohr's adiabatiGg i [13].

radius[12] A more detailed analysis would start at the spectrum of
v resonant frequencies. Then the increase with decreasing

Ap=—, (9) o reflects the longer range of interactions with outer elec-
w trons, which are therefore more sensitive to projectile screen-

ing.

Consider a projectile ion screened by=2,—q; elec-

wherew is a(classical resonant frequency of a target elec-
tron. A qualitative measure of the importance of projectile
screening is found by considering the ratigg/a: For
a,q/a<<l the projectile-target interaction will essentially be  In the Bethe limit the stopping numberdepends on the
that of a point charge, while screening becomes significanBethe parameter
for a,g/a=1.

C. Bethe limit

,_2mvz
g - ﬁw ’ (17)

B. Bohr limit

For a point charge, Bohr's theof{t2,19 predicts a stop- in accordance with Eq(:3). Then Eq.(13) changes into
ping number_ (&) dependent on the variable

ayg s’ g/ 1/2
mp® — = e (18)
- 21:2(0' (10 a  0.8853)(q,/Z;)
with
which reduces to Eq4) at high speed {>1). Expressing 230 1
the velocity dependence i, by the Bohr parametef, one ,_[Z17€2ag
finds S = T he (19
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or, with the Bloch relatior(15), s'=1.22}"%/z3/. This leads F* (K)F(K)=[Z,— Ny (K)][Z1— Ny (k)]
to the same qualitative conclusions as in the Bohr limit.
+Ni[ (k=K'= (k) d(k)], (29

lll. BOHR THEORY

where
A. Close and distant collisions —_—
In the Bohr theorny{12] interactions between a bare pro- ¢(k)=(sm kr”). (26)
jectile and target electrons are classified into close and dis- kr,,

tant collisions according to impact parameters below OFppq yields
above a certain critical valup,. Close interactions are as-

sumed to obey the law of free Coulomb scattering, while T=T;+T,, (27
distant interactions are governed by a time-dependent field

induced by the projectile at theest positionof the target whereT, is the leading contribution foZ,>1,

electron. The electron is bound to this position by a

. . , 4 2 2
harmonic-oscillator force with a resonant frequengy T.— 2e CAlCPY L iA wp 28

Bohr's treatment will be generalized here to an ion carry- Yme? (| v v ap v '
ing electrons. This generalization is straightforward in the
case of distant collisions, while the opposite limit leaves awith
couple of options, the feasibility of which needs discussion.

A(wp) fw k dk, 34k, p)
1= | vz 2 2YKp
B. Dipole limit v Jo Ki+e?u? 0

The contribution from distant interactions to the energy ) w2
lossT in an individual scattering event is evaluated from the X|Z;—Ny¢ ki+ 22/ | (29
expression

2 while T, contains terms proportional 4, in Eq. (25) that

, (20) become insignificant fozZ,>1. J, is a Bessel function in
standard notatiopl10].
The integral ovek, can be carried out for a charge dis-

where F(t)=—VV is the force acting on a harmonically tripution characteristic of exponential screening,
bound target electron in its equilibrium position. Consider an

ion in uniform motion along a trajectorR(t)=p+vt and 1 1

accompanied byN; electrons in parallel trajectories a-ralt (30
R, (t)=R(t)+r,, v=1,... Ny, with p denoting the vectorial

impact parameter from the target electron to the ion trajecso that

tory. Then Eq.(20) reduces to

= f dtF(t)e 't
2m | )

202 T(p)=T —2—22564 (“’)Zf( ) (31)
2 e . ' p = 1= - p ’
T= Wm J’d3kJ’ d3k’ (k-k")V*(K)V(k")e'kk)-p mu= v
with
X S(w+k-v)S(w+k'-v), (22
_ _ , f(p) =[ BK1({) + 8K y(ad) 2+ BKo( ) + SKo( ad) ]2
whereV(Kk) is the Fourier transform of the potential, (32
e Np o and
VK =5 z2F(k), F)=2,-2 e " (22
m v=1 3 J: s Ny ¢ wp 1+(aad2
= = = = = s a= —
V* the complex conjugate, arf ) the Dirac function. Equa- 2y 2y v a 33
tion (21) can be rewritten in the form (33
4 2 The K, are modified Bessel functions in standard notation
w y . . —
_ e 4 2 [10]. Bohr's result[12] is recovered in the limits of3=1
T 27202 ( » B(p) VeB(p) )7 (23 and/ora—os.
An alternative and more direct derivation of E(R2)
where could be obtained by replacing the Coulomb interaction in

Bohr's original calculation by a screened potential equivalent
“ikep (24 to the chargg distributiori30). This possibility was recog-
nized some time ago for the special case of a neutral projec-
tile [31]. However, the present calculation shows that there is
andk, is the component ok in the direction ofp. a correction termr, that can be neglected only faf;>1,
Alternatively one may average E@®1) over the distribu- and it illuminates the relation to form factors appearing in
tion of (independentprojectile electrons via the Bethe theory.

B —f Ty F(k w)
P el e
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5 — T ing criteria to distinguish between the two extremes, let us
i / look at the respective predictions.
L Bare lon _
I _ 1. Incoherent scattering
/ | For independent Coulomb scattering of the projectile and
S its electrons on a target electron, the energy transfer reads
0 = A 22%64 2e4
0.1 1 10 100 T= + . (3
E mo?(p®+ pg) 2 moZ(prp2+pl

FIG. 2. Stopping number for a point charge evaluated from clas-
sical theory.é&=muv®/Z;e°w. Thin line, Bohr logarithn{12]; solid  wherep, was introduced in Eq(35), py=2e%/mv?, andp,
line, from Ref.[19]; dashed line, Eq(36). is the component of the electron coordinaein the direc-
tion of p. It is implied that only one of the terms on the

C. Wide-angle extrapolation: Point charge right-hand side is significant in any individual interaction.

Consider first the case of a point chargg=<(1). At small The maximum value of any of the electron terms in Eq.
impact parameters the energy 1¢84) reduces to (37) amounts to 1/4 of the ionic term. Therefore, an estimate
is necessary to establish whether or not the electonic terms,
27%¢* which must be roughly proportional td,, can be ignored
T(p)~ mv?p?’ (34) after integration over the impact parameter. In the average

over all orientations the maximum influence must be ex-
which becomes infinite go=0. However, the replacement pected ap=0. Here the right-hand side of E¢37) reduces

to
p?— P+ pj, (35
with po=2Z,e%/mv?, turns Eq.(34) into Rutherford’s law 2Zje* Po |2 [ Po
N Po= &€ MUY, 9.t4) | v, —— 5 |1+ Ny 0| G| =], (39)
which is appropriate for close collisions. One may tentatively mv “pg Z,a a

make the substitutiori35) for all impact parameters. This

has little effect at larg@, but allows integration of the stop- w0 . o
ping cross sectios= [T(p)2 p dp in closed form, with where G(#7) = [,dt t exp(nsinht) for the charge distribu-
the result tion (30). The physical picture can be valid only for

Po.Po<a, i.e., it implies thaty=pj/a is small. Numerical
L=¢ "Ko(§ HK(E7Y), (36)  evaluation shows tha®(7)~4%~ “*in that limit. Hence the
relative significance of the sum of the electronic terms in Eq.
which is readily seen to reduce to Bohr's original form@#a  (38) is
at largeé.
Equation (36) represents a modification of Bohr's stop-

2 1/4
ping formula that extends the meaningful behavior down to ~ ﬂ\lzi Po (i{ (39
lower projectile speeds than the original versid, which Zr \a) \po

turns negative neaf=1. An alternative extrapolation was
found recently{19]. Figure 2 shows a comparison beW"eenThis expression is dominated by the first two factors and

the two results as well as the Bohr Ioganthm. |t_|s seen tha{herefore is clearly<1. Thus a collision at impact parameter
the difference between the two extrapolations is notlceablcf):0 is a Rutherford collision between the unscreened ion

—m,3 2 i i
for é&=mv°/Z,e“w=<5 and significant foré=2. While the and a target electron.

error margin inL for £=2 appears larger than one might I!ke The above estimate assumed classical scattering between
It tp be, other effects, especially polarization CorreCt.'OnSelectrons accompanying the projectile and target electrons.
Wh'Ch_ are neglected presently, may cause errors of SImIIa\r/\/hile this assumption is not justified, the fact that this con-
magnitude. tribution to the stopping power is negligible f@nr>1 ren-
ders this difference immaterial.
D. Wide-angle extrapolation: Dressed ion Now, in the same limit Eq(32) reduces tof(p)zl/gz_

Within the spirit of the Bohr theory, close collisions are to This can be joined to Rutherford’s law by the substitution
be treated as free collisions between the projectile and th€35 in Eq. (32). The remaining integral can be carried out
target electron. For a structured projectile two limiting casesnd the final expression for the stopping number reads
offer themselves for consideration. If the spacing between
projectile particles exceeds the collision diameter of Cou-
lomb scattering one may view close collisions as an incoher-
ent superposition of individual Rutherford events. Con- 52 )
versely, for closely spaced projectiles the dressed ion can be ~ +28K1({o)Ko(afo)]— 7((12— DZ6{[Ke(alo) 1
viewed as a stiff charge distribution so that the dynamics is
governed by screened Coulomb scattering. Before establish-  —[Kq(a{o)]%, (40

L= ol BPKo(L0)K1(Lo) + 8% aKo(a@lo)K1(alo)
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where (o= wpg/v. Apart from standard recursion relations 1.0
for Bessel functions, integration formulas have been em- I
ployed, which are listed in Ref10].! 9

2. Coherent scattering 0.5

For coherent interaction the appropriate wide-angle ex-
trapolation is the binary scattering law applying to a screened
ion, taken as a stiff charge distribution and hitting a target L L L
electron. For a repulsive interaction a substitution of the type 0 0.5 1.0
of Eq. (35) has been applied successfully in the description B
of elasticion-atom scatterin¢6] with the difference that the FIG. 3. Ratioa/are=g versus charge fractiof extracted from

parametep, was chosen such as to satisfy conservation lawshomas-Fermi theory by matching to the exponentially screened

in the limit of p=0. The validity of the procedure is less coulomb potential (squares Lines represent Eq.(45) with
obvious for attractive interaction since the scattering angle in=0.5,1.0,1.5top to botton.

the center-of-mass system may exceed 180° in this case, with
the consequence of Qscillatory effects at small impact paranmdetermined from Thomas-Fermi thedi34]. In that descrip-
eter. Disregarding this potential source of error, let us applyion, positive ions have a finite radiug. Potentials are writ-

a substitution ten in the form
p?—p?+pg’, (4D 218 ' %8 for r<r
— PTF S -~ 0
r arr )
with pg fixed by conservation laws, i.€T,(p=0)=2mv?, V(r)= o (44)
the maximum permissible energy transfer in a free binary a:€ for r>ry,
collision between a heavy particle and a target electron at r

rest. In dimensionless variables this reduces to . .
where ¢1¢ can be estimated by a procedure of Fermi and

f(Lh)=¢2, (42) Amaldi [35,36. g(8) has been determined by matching the

potential equivalent to the charge distributi¢80) to Eg.
(44). The result is shown Fig. 3. Within the accuracy of an
exponential fit to a Thomas-Fermi screening function, it ap-
pears justified to adopt the expression

where{g= wpg/v. Integration then yields a stopping number
given by Eq.(40) with ¢, replaced byg. L=L(¢&) can then
be tabulated from Eq$42) and (40), ¢ being taken as the
independent variablgL9]. g(B)=(1-pB)'=4¢" (45)

3. Coherentversusincoherent scattering With the exception of Fig. 5, explicit evaluations reported

If the target atom is considered as an entity, i.e., if noP€lOW assume=1.

differentiation is made between the electron shells, the tran-

sition from predominantly coherent to predominantly inco- F. Evaluation
herent scattering takes place when the ratida drops be- The stopping numbek (£) has been tabulated for both
low ~1. In dimensionless units this is equivalent to incoherent and coherent scattering. Sincelepends orv
3 and hence og, iteration was necessary in the coherent case
£ S (43) starting from a trial value ofv. Three iterations have been
0.8853)(B) adequate in all cases. Results are shown in Fig. 4 for four

values ofs [Eq. (14)]. Figure 5 shows results fos=10
While incoherent scattering thus tends to prevail at high anévaluated with different values of[Eq. (45)] characterizing
coherent scattering at logy the limiting value varies propor- the dependence of the screening radius on the charge state.
tionally to Z,/Z, according to Egs.(43) and (16). For  While an influence is noticeable, it appears weaker than the
Z,>7Z, that limit is reached only at quite high values f effect of the absolute value of the screening radius, which
Conversely, foiZ,<Z,, incoherent scattering will dominate acts as an inverse variation & cf. Eq. (13).
over most of the pertinent velocity range. This is consistent Figure 4 shows that higher stopping numbers are obtained

with experience from light-ion stopping2,33. for coherent than for incoherent scattering. This stems from
the fact that the limiting impact parameteg for unscreened
E. Screening radius Coulomb scattering is too large in the presence of screening.

) ) ) . ) In agreement with the considerations made in Sec. IlI D 3,
For numerical estimates information is needed aboufe rejative difference increases with increast@nd de-
9(B), Eg. (12) describing the dependence of the ionic creasings, Moreover, the relative difference is largest for
screening radius on charge state. Screening functions may @e,, charge fraciong=q, /Z,. However, the relative differ-

ence is significant mainly foé<5 and it nowhere exceeds
the difference between the two predictions of the stopping
Caution had to be exerted with regard to sigsecifically Egs. nhumber for a bare ion in Fig. 2. While the range5 is of
11.3.29 and 11.3.31 considerable interest in applications, we need to keep in
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FIG. 4. Stopping number versus the Bohr parameter FIG. 6. Stopping fractions” defined in Eq.(8). Otherwise the
£=mv3/Z,e%w for the fractional charg@=q, /Z, varying from 0  notation is as in Fig. 4. Only incoherent scattering is shown.
to 1 in steps of 0.1. Thick lines, close collisions treated as incoher-

ent Coulomb scattering; thin lines, close collisions treated as G. Projectile excitation
screened Coulomkcoheren scattering. The four graphs refer to A full treatment of projectile excitation or ionization is
different values of [Eq. (14)]. outside the scope of the present paper since this is at least as

gmch a problem of statistics as of atomistics. However, a few

mind that this is also the regime where a substantial Barka: )
mments are appropriate.

correction must be expected, although reliable estimates f6° i LT o —
heavy ions are not available, as discussed below. Moreover, F_or_a given prOJect_|Ie state the contribution of projectile
estimates on the basis of coherent scattering suffer from ur?—xc'tat'on to_the ;otal melgastlc energy_loss may be found by
certainties regarding scattering angles exceeding 180°, mefyMmetrization, i.e., adding a term in which the roles of

tioned in Sec. Il D 1. Consequently, despite a systemati(!;)mj(.aCtiIe and target are interchanged. Denoting the cross
underestimate of stopping cross sections on the basis of jpection for target excitation evaluated aboveshy, we have

coherent scattering for large small &, and low 83, several to add a term of the form

numerical results reported below have been based upon this 477264
model for definiteness as well as analytical and numerical snszerf(le”gz,521)|_0(§21), (46)
12

convenience.

It is seen from Fig. 4 that the stopping number is very ; . . .
sensitive to the ionic charge fe=50 and 10, while fos=1 where"is the stopping fraction introduced in EG),

and 0.5 a much weaker dependence is found. Stopping frac- mo3 Z,€%la, 213
. . . = , So=|T—— 4
tions have been plotted in Fig. 6. The central role of the &21 72,208y’ 2\ hwgh(By) (47

scaling parametes together with the charge stagis evi-
dent, while the variation witfg is much less pronounced, in Here# w, is the mean excitation energy of a neutral projec-
particular for larges, where F is essentially independent of tile andh(/3;) accounts for the variation of this quantity with

& Figure 7 shows values of the stopping fractidghat charge statel is the modified Bohr stopping number for a
é=mv3/Z,°w=100 versus the ionic charge fraction bare nucleus.

B=d1/Z,. The result fors=50 coincides very closely with For a neutral target we obtain the expression for the ratio
a g2 dependence, which has often been implied and occabetween the stopping cross sections for projectile and target
sionally been found in experimen87]. Here this emerges excitation,

only in the limit of highZ, ions.
Sa1_Zo N1 F(S21,.0621) Lo(é21)
S1o 2y Zy F(s12:B1,610) Lo(é1d)’

where quantities characterizing target excitation have been
labeled similarly anch(8,)=1. Now, Bloch’s relation(15)
indicates tha¥Z,w,=2Z,w,. Hence the variation of the ratio

of Ly functions is governed by the logarithm b{3;) and
thus weak. For a neutral projectile E@8) reduces to

0.1 1 10 100 Su_Z 7lon0)
' g Si2 Zy F(s120)°

5.0 (49)

L

2.5

(49

FIG. 5. lllustration of the influence of the parameten Eq. ~ Where the weak dependence &fon ¢ has likewise been
(45) on the stopping number for s= 10. The five groups of curves ignored. The two factors vary in opposite directions and at
refer to B=q,/Z; running from 1 to 0 in steps of 0.28op to ~ comparable rates. Hence, for a neutral projectile and not too
bottom). The fine structure correspondsrte 1.5 (thin solid lineg,  widely differentZ, andZ,, projectile and target excitation
1.0 (thick solid lineg, and 0.5(dashed lines and ionization yield comparable contributions to the stopping
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FIG. 7. Values of the stopping fractiafi at £=100 plotted as a function of the ionic charge fractierq,/Z,. Dashed curvess
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cross section. With increasing projectile charge etz involves the projectile states labeled bynd can be evalu-
and the ratio of stopping ratiag in Eq. (48) decrease, with ated in straight analogy to the classical case. For independent

the consequence of dominating target excitation. electrons one finds
For the purpose of estimating fixed-charge stopping cross )
sections, the above procedure overestimates the contribution G(Q)=[1-3¢(k)]%, (52

due to prOJecu!e eIeptro_ns_smce .only projectile .exc'tat'onwhere¢(k) and § are the quantities introduced in Eq26)
contributes, while projectile ionization enters nondiagonal el'and(33) respectively, and terms proportionalig /Z2 have
ements of the stopping matrix. For neutral projectiles with » resp Y prop L

7,51 this is a major reduction. For highly charged projec-been ignored just as in the classical case. For exponential
tiles one may assume hydrogenlike behavior, i.e., excitatioﬁ‘creemng?’o) one finds

and ionization should contribute about equally. On the other Q+Q,\2 2

hand, for highly charged ions projectile excitation and/or G(Q):(W , 1= 5m2" (53
ionization is of minor importance altogether, as indicated 1

above. Equation(50) excludes shell corrections. For heavy ions the

In summary, the relative contribution to the stoppingBethe limit is reached at higher projectile speeds than for
cross section from projectile excitation and/or ionization de-

creases with increasing projectile charge. Its contribution to 5.0 T
equilibrium stopping powers is substantial for neutral projec- [ [ =- p0.z.-100
tiles while a minor perturbance to fixed-charge stopping L[| — p=0z=10 s=10

----- B=.5.2,=100

cross sections.

IV. BETHE THEORY

When Bethe's theory of stoppifd] is carried out for a
dressed ion a form factor ent€d3,24,38 so that the con-

tribution from target processes to the stopping number may 1 10 100
be written in the form 5.0 —— —
1 2mw2 d [ | —- B=0,Z =100
L=> > fJJ ™S G(Q), (50) L[| — p=0z=10 s=1
2 4 Qmn @ o p=.5,2 =100

where thef; are dipole oscillator strengths characterizing the
energy levelse; of the target, normalized according to
Ejfj =1, and Qmin=(ﬁwj)2/2mv2 with th =€~ €p. The

form factor ol
1 10 100
1 M 2 %292 g
G(Q=2 (1—N— > e““v) . Q=7
7 1v=1 10 m FIG. 8. Bethe stopping number plotted in variables appropriate

(51 to Bohr scaling. Upper grapls=10; lower graphs=1.



56 CHARGE-DEPENDENT ELECTRONIC STOPPINGR . . 3789

TABLE |. Parameters governing the comparison with experiments in Tables Il and+HRZ,v,/v
separates the Bohr from the Bethe regiitig Values forw; andf; tabulated in Ref[45] were employed
because of convenience and easy access, even though subshells are not weighted in accordance with the
straight oscillator strengths in Ref&l3, 44| from which they originate.

lon target EnergyMeV/u) K 1s 2s 2p

c-c 3 1.091 s 0.508 3.272 3.927
& 13.37 218.9 287.8

o-c 3 1.455 s 0.615 3.964 4.757
13 10.03 164.2 215.8

S8Nj-CP 1.034 8.672 s 1.417 9.138 10.97
13 0.580 9.49 12.48

3Referencd41].

bReferencd42].

light ions. Hence the neglect of shell corrections is justifiedfractions would remove this basic simplicity and therefore
for Z;>1 (cf. also Sec. VI B. Since the leading shell cor- discourages one from using stopping fractions in this limit.
rections are proportional to~2 andv ~4 [2], terms of this In the present context E€G4) is of interest mainly for the
type will be neglected. With this one finds identification of the upper limit of validity of the modified
Bohr theory. Therefore, it is useful to write it down in terms

2mp? 2mav 1 ' is Vi
L=42In IU +(1-YIn = E(l_'B)Z’ (54) of the variablest ands. This yields
L= 1(1+/32)In &+| g2~ 2in s+in(2z2)
with In I=3f; In(fie;). This reduces td_gepe for a point 3 2 1
charge =1) and to 1
omar 1 +(1—-B?%)In[0.8853)(B)]— 552. (56)
L=In -= (55

f 2
An explicit dependence oA, remains in this expression. A

in the opposite extreme of a neutral projectile. As in thefew examples shown in Fig. 8 indicate a greater sensitivity to
classical case, the contribution from projectile excitation orZ, than to the fractional chargé=q,/Z,. The fact that_
ionization to the stopping cross section may be obtained bincreases significantly with increasig at constant and 8
interchanging the roles of target and projectile. This is rigor-confirms that the transition from Bohr-like to Bethe-like be-
ous within the first Born approximatior23,38|. havior moves up rapidly to greater valueséofdvith increas-
Standard stopping theory for an electron (28 has been ing Z, at all values ofg.
applied to screened projectil¢®2,25. It is shown in the
Appendix that this theory also leads to E§4). V. APPLICATIONS
Equation(55) predicts a stopping cross section for target
processes dependent @, the number of electrons per
atom, but no other target parameters. This originates in the Cowern etal. [29,40,4] measured charge-selected
fact that for a neutral projectile the limiting impact parameterenergy-loss spectra with 3 MeV/u carbon and oxygen ions
for target excitation is given by the screening radius of thepenetrating amorphous carbon foils. Fixed-charge stopping
projectile instead of the adiabatic radius through which bindcross sections were extracted by careful analysis based on
ing frequencies enter. It is easily verified that E§5) re-  the Winterbon formalismi26]. Data for=1 MeV/u °®Ni ions
flects free Coulomb collisions between the projectile nucleusn carbon were reported recenf42].
and the target electrons with a cutoff energy transfer The present estimate was done on the basis of bundled
Tmin=2.718Q; . oscillator strength§43—45. Pertinent parameters are shown
Equation(54) is easily seen to depend on the paramster in Table I. It is seen that the C and O data lie near the
only through an additive term In s'. Going over to stopping transition between the Bohr and the Bethe regime, as ex-

A. Fixed-charge stopping cross sections

TABLE Il. Calculated and measurdd1] stopping cross sectior (keV A%atom) for carbon and oxy-
gen ions in carbon, with target excitation or ionization only and incoherent scattering assumed.

lon target Charge state Leohr LBioch Stheor Sexpt

C-C 6+ 4.688 4.370 0.753 0.7140.003
5+ 3.478 3.160 0.544 0.5190.004

o-C 8+ 4.398 3.927 1.202 1.1080.018
7+ 3.439 2.968 0.908 0.9330.018

6+ 2.790 2.319 0.710 0.73%0.22
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TABLE lll. Calculated and measure#2] stopping powers—dE/dx [keV/(ug/cn?)] of carbon for
nickel, with target excitation or ionization only. Calculations are given for both coherent and incoherent

scattering, with the latter in parentheses.

lon target Charge state Lgonr L gioch (—dE/dX)heor (—dE/dX) expt
58Ni-C 18+ 0.8530.702 0.8490.698 46.037.9 52.7
16+ 0.7060.555 0.7020.55)) 38.0029.9 47.5
13+ 0.50%0.369 0.4970.365 26.919.79 40.2
8+ 0.2710.148 0.2670.143 14.57.75 225

pressed by Bohr's kappa parameter 2Z,v,/v, while the  ing, although stopping cross sections are underestimated in
Ni data lie clearly in the classical regime. Hence there is &oth cases. Now, unlike the data from REf1], which are
noticeable difference betweérn,, andL g, in the former  the result of a detailed analysis, Ref2] did not separate the
case. It is also seen that the data cover a wide range of valuesergy loss suffered under charge exchange. Moreover, pro-
of boths andé£. Note the pronounced variations from shell to jectile excitation is not negligible and increases with decreas-
shell. ing charge state. The discrepancy in Table Ill shows a simi-
Table 1l shows a comparison of calculated with measuredar trend. There must also be(positive) Barkas correction,
stopping cross sections for carbon and oxygen jdig Dis-  but that is more likely to show the opposite tendency.
crepancies range from 3% to 8% in either direction. Apart Fixed-charge stopping cross sections have been measured
from potential experimental errors and errors in the datdong ago for light ions at ke\[46,47] and more recently at
analysis, which could have been underestimated by the alMeV energied48]. More directly related to the present work
thors, the main source of discrepancy is likely to lie in theare measurements with swift heavy ions under channeling
treatment of target K electrons, which contribut€0% of  conditions[37,49. In this geometry interactions with core
the total stopping number. In particular, &t 10 there must  electrons are suppressed and the leading resonance govern-
be a noticeable Barkas correctitsee below. Since the ions ing s becomes the plasma frequeney of the conduction

are almost stripped, projectile excitation must be a minorlectrons. Sincé wp~e?/a, one findss=Zz2", according to
perturbation, while improved input on atomic oscillator Eq. (14). Figure 7 shows that the stopping fraction in that
strengths is likely to produce noticeable changes. case comes close to being proportionalqi) This is in

For Ni bombardment Table Ill shows larger discrepan-agreement with the main finding in those experiments. Fur-
cies. In view of the small values @f(cf. Table )), stopping  ther support is drawn from the fact that minor deviations
cross sections were evaluated both for coherent and incohefrom qi scaling were found for the lowest charge st4#3
ent scattering. The difference is seen to be substantial and, @grresponding tg8= 0.6 for sulphur and chlorine ions. De-
expected, better agreement is achieved for coherent scattgfixtions from Cﬁ scaling were positive, in agreement with
Fig. 7.

Similar conclusions emerge from more recent experi-
ments on energy losses of channeled Br and Kr [&8 at
10-15 MeV/u, i.e.,k=3. The fixed-charge energy loss of
highly stripped ions was found to scale well proportionally to
g3, in complete agreement with Fig. 7 fer=10.

B. Oxygen on carbon

Figure 9 shows fixed-charge stopping powers of carbon
E (MeV/u) for oxygen ions as a function of the ion energy for fully
stripped and neutral ions, respectively. The graphs differ not

-dE/dx (M chmz/mg)

5 O/ ly in absol itude, b Iso in th iti f th
z L ol 0-C,p=0 ] only In absolute magnitude, but also In the position of the
= T (Target) 5.0 e
2 i - 1s 2 — Total O-C, =0
[ 2.5 5 I === 2p (Projectile)
= L <3 ---- 28
= I ] =
3 [ . © 25F
ul -;N s
o r N >
; 0 L TN S
10 E L
E (MeV/u) 0 0.1 1

10
E (MeV/u)

FIG. 9. Calculated stopping power of carbon for oxygen ions.
Contribution from target excitation or ionization separated into con-  FIG. 10. Calculated stopping power of carbon for neutral oxy-

tributions from three target shelld; and w; tabulated in[45]). gen ions from projectile excitation or ionization, separated into con-
Modified Bohr theory and incoherent scattering are shown. Uppetributions from three projectile shell$; and w; tabulated in(45]).
graph, bare ion; lower graph, neutral ion. Modified Bohr theory and incoherent scattering are shown.
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stopping maximum and the relative contributions from the
three subshells: Screening affects maing/dhd 2 excita-
tions. For qualitative orientation the contribution from pro-
jectile excitations has been evaluated for neutral oxygen
(Fig. 10. A behavior very similar to that of target excitation
is found, except for a slight shift of the maximum and the
threshold toward lower velocities. This is consistent with the
qualitative arguments put forth in Sec. Il G. 0 —
Figure 11 shows total fixed-charge stopping powgas- 0.1 1 E (MeV/u)'0
get excitation or ionization on)yfor five charge states rang-
ing from fully stripped to neutral projectiles. It is seen that  FIG. 11. Comparison of calculated fixed-charge stopping pow-
the stopping power of a neutral projectile is an order of magers with measured equilibrium stopping powers of carbon for oxy-
nitude smaller than that of the stripped ion. Available experi-gen ions. Lines are calculated from modified Bohr theory for charge
mental values of equilibrium stopping powers compiled instates 8 to O in steps of 2 for target excitation and/or ionization
Refs.[51,52 have been included for orientation. These dataonly. Experimental points are taken from 14 sets of data compiled
approach calculated stopping powers for stripped iorf§ YO in Refs.[51,52.
aboveE=3 MeV/u. This is close to the crossover from the ) ) ) o
Bohr to the Bethe regime for a bare oxygen ion. The conclu- Barkas corrections, like shell corrections, become signifi-

sion emerges that for oxygen on carbon the Bethe regime 2Nt at low projectile speed. They originate in target polar-
confined to velocities where the projectile is essentiallyiZation by the field of the projectile and scale approximately

stripped in charge-state equilibrium. like &= (Z,e*w/mv®)L’ [55] in the Bethe regime, with
The energy range depicted in Fig. 11 goes down to 0.1 =Leetne[8]. Unlike the Bloch correction, the Barkas term

MeV, which corresponds to=uv ¢, i.e., the Thomas-Fermi is sensitive to distant collisions. It is therefore not justified to

velocity introduced in Sec. | B or an overall value&#0.5. take over estimates derived for unscreened Coulomb interac-

A substantial Barkas correction may thus be expected nedfon in the analysis. Early estimates of the Barkas eff8b}

the left end of the graph, which raises the theoretical curvedVere performed on the basis of Bohr theory and are therefore
Qualitatively one would expecB~0.5 to be appropriate appll_cable to hea\_/y ions, except that they increase .rapldly
near the Thomas-Fermi velocity. It is clear from Fig. 10 thatWith increasingZ, if screening is left out of consideration.
projectile excitation or ionization cannot contribute notice- EXPlicit evaluations of the Barkas effect for a point

ably here. The role of electron capture would have to bé&harge interacting with a quantal harmonic oscillat66]
studied separately. show a variation with impact parameter very similar to the

one predicted from the Bethe theory for the same system
[57]. This finding is relevant to heavy-ion stopping since, in
the long-distance limit, classical and quantum theory yield
A. Bohr versus Bethe theory equivalent result§58]. One may expect, therefore, a compa-
rable influence of projectile screening on target polarization

It was shown in Fig. 1 that stopping powers predicted ) ) I
from Bohr's theory forga moving ch))Fi)nt gchparge mgy differ t© what is found for the leadingBohr) contribution to the
stopping cross section.

substantially from the corresponding predictions from the . in th he ab .
Bethe theory. Differences of similar magnitude are found for For stopping Eowerskln the range o1 the above esti-
screened projectiles, but the scaling properties with atomi&nate indicates that Barkas corrections may become substan-

number and charge state are by no means identical. The twitl- This is relevant to Fig. 11. Another look at the Barkas

models reflect different velocity regimes for a given ion. Ap- €Orection, aiming at moderate or largg and including
plication of either model outside its range of validity may SC'€€ning, may be a prerequisite for reliable theoretical pre-
lead to substantial errors. dictions of stopping powers in the velocity range equivalent

to é=1.

N
o

-dE/dx (MeV cm?®/mg)
=)

VI. DISCUSSION

B. Shell corrections and the Barkas term ]
C. Brandt-Kitagawa theory

Shell corrections originate in the orbital motion of target

electrons and become important when the projectile velocity A theoretical description of the stopping of a screened ion
is comparable to or smaller than the orbital speegdin the W3S developed 15 years afz?] where the target was mod-

. 2, 2 eled as a free electron gé&sf. the Appendix. The range of
target shells. The leading term goes-as./v” in the Bethe validity of this theory is limited to the Bethe limit
theory[2,53,54 and as

U>221U0.
L 29 o2 An electron-gas description is relevant since it is the most
—1.5%2v’=— ——=—=p — (57)  weakly bound electrons that have the highest value@fs’
(Z21Z26)7" vg and therefore are most drastically affected by projectile
screening. In general, the most weakly bound electrons do
_ not necessarily provide the leading contribution to the stop-
in the Bohr theory[19]. For £>1 and ugz(Z%’?‘vo)2 this  ping power, but Fig. 9 shows that they do so at low projectile
implies an upper limit of=3(Z,/2,)%%. Thus shell correc- speed. Indeed, the applications discussed in 2 refer
tions are most pronounced f@;<Z,, in agreement with mostly to low velocities.
experience from light-ion stoppin@]. The theory presented in R¢R2] had a significant impact
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and led to further studies and applications along similar linegssarily clumsy compared to straight evaluation of stopping
[5,59,60. It appears appropriate to mention common fea-cross sections without going over reference values for a bare
tures with the present work as well as differences beyondon or a proton. Finally, the physics of the stopping process
those mentioned already. for a bare ion may differ substantially from that of a screened

The major common feature is the focus on the connectiofon, especially for highZ; and lowq;, possibly more than
between charge state and stopping power, leaving the detdfat for proton stopping at the same speed. Hence, although
mination and incorporation of equilibrium charge-state dis-the stopping fraction defined by E(g) is more appropriate
tributions as a separate problem. The analytic simplicity ofhan the effective charge defined by E@) to illustrate the
exponential screening functions is a very useful feature thatignificance of projectile screening on stopping powers and
emerged from Ref.22]. The theoretical treatment was based related quantities, ne|the_r appears to be a necessary tool in
on what has been labeled coherent scattering in the preseme computation of stopping powers.
work.

An effort was made in Ref.22] to construct a consistent

version of the Thomas-Fermi model for exponentially piscussions with Henning H. Mikkelsen are gratefully ac-
screened ions. That model is possibily more sophisticatefinowledged. The author thanks H. Paul for having given
than the approach adopted here. It was not utilized here bggcess to his database on heavy-ion stopping powers. Com-
cause the description emerging from RE#2] differs sub-  ments on the manuscript by H. Geissel and J. Lindhard are

stantially from standard Thomas-Fermi theory in the limiting appreciated. This work has been supported by the Danish
case of a neutral atom and because the present descriptiftural Science Research Coun@NP.

readily allows incorporation of more accurate specific ionic
charge distributions.

Apart from this the main difference lies in the scope. The
present work focuses on swift heavy ions where several tar- For completeness it is shown that E§4) also follows
get shells contribute to stopping and where shell correctionffom standard stopping theory for a homogeneous electron
are small. Comparatively little attention was given in Ref.gas. This case was considered in R¢f2,25. Here the
[22] to the high-speed behavior. It was mentioned thatestablished expression for the stopping po{@8] has to be
asymptotically the stopping fraction should approach theappended by a factdg(Q), [Eqg. (53)] so that
form F~ 1+ B2/2 in the present notation. This result follows

ACKNOWLEDGMENTS

APPENDIX: ELECTRON GAS

from Eq. (54) if the second and third terms, which do not dE Zfe2 = dq (o ®
depend on the velocity paramet€r, can be neglected. Note, Tdx a2 o q 7qu“’ e(q,w) G(Q). (AD
however, that the logarithmic approach to asymptotic behav-

ior may be quite slow, dependent on the valuesof On the basis of Lindhard’s dielectric function for an electron
gas at resf39],
D. qf scaling and effective charge

2
In all early and much recent work it is more or less tacitly e(d.w)=1+ L”)_
. . . . (q1 ) 2_ h 4 2
assumed that the stopping power for an ion is proportional to Q*~(hotiy)
the square of its charge. Deviations from this relationship . _ .
were sought in conjunction with higher-orcy effects, i.e., Wit the plasma frequenayp= y4mne’/m, electron density
deviations, of the stopping power formint chargefrom a n, and an |nf|n|te5|_mal damping consta_mtthe integrations
strict Zf dependencég15,29,37,49,61,62 Stopping due to can be performed in closed form, leading to
charge exchange causes similar deviations, but can be sepa- 272
. g e’n
rated experimentally by measurements at different charge _— d_E: Lz— B2 1In %4_(1_,32)"1 %
- - 1

(A2)

stated41]. However, since the projectile charge “seen” by a dx my

target electron is impact-parameter dependent, deviations 04Q,-Q.)

from qf-dependent stopping must be seen even if the stop- —(1-p)? Lt — , (A3)
ping cross section for a point charge were strictly propor- (Q++Q1)(Q-+Qy)

tional to Zf. An initial attempt to quantify this feature dates with
back to Brandt and Kitagawg22,63. That work showed

clearly that there is no universally valid relation between the Q. =mv2+ J(Mv2)2—(hwp)?. (A4)
ion charge and the stopping fraction or one of its analogs. -

Figure 7 provides clear evidence that the stopping fractionhis is equivalent to the central result of RE22]. A prac-
depends equally well on the target as on the ion. There is #ical difference originates in the dielectric functions used.

wide range of the pertinent parameter sgg, and¢ whereF In the limit of mv?>#% wp the stopping number per elec-
is independent of. Deviations from this simple behavior tron reduces to
2

have been found when coherent scattering is assumed and

must be expected when Barkas and shell corrections become , . 2My 5, 2mva 1 )
significant. All these effects enter the low-speed behavior at ~ L=5 In hwp +(1=49)In o 5(1_:3) '
various stages. However, even in the absence of those com- (A5)
plications the need to compute stopping fractions separately

for the main target shells makes numerical estimates unnegvhich is completely equivalent to E¢4).
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