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Electron-impact ionization of atomic hydrogen at intermediate energies
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The electron-impact ionization of atomic hydrogen at intermediate excess energies is considered in the
situation where the two continuum electrons escape with substantially different velocities and coplanar with the
incident direction. Calculations are performed within a model where the three-body final state is described by
a product wave function consisting of three symmetrical, Coulomb-type functions. Each of these functions
describes the motion of a particular two-body subsystem in the presence of the third charged particle. A
comprehensive comparison with available experimental data is presented, and the results are contrasted with
those of other theoretical models. Generally, good agreement is found with the absolute measurements; how-
ever, in some cases discrepancies between various theoretical predictions and experimental findings are obvi-
ous, which highlights the need for a theoretical and experimental benchmark study of these reactions.
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The first experimental studies on electron-impact ionizatrast, a quantitative theoretical description of the experimen-
tion of atomic systems with fully determined kinematics of tal findings, in particular the absolute magnitude of the cross
the reaction fragmentghereafter called €,2e)] were con-  section, turned out to be an intriguing task. Perturbative ap-
ducted at moderate incident energiasew times the ioniza- proaches using the Born seri@ghose convergence proper-
tion potential with little momentum being transferred to the ties are unclear for reactions involving infinite-range Cou-
target[1-5]. Under these conditions two continuum elec-lomb potentialy seem to reproduce quantitatively some
trons emerge with substantially different energies, and aréeatures of the measured angular distributi$9,10. How-
detected coplanar with the incident direction. This geometrygver, the range of validity of such approaches is difficult to
is an ideal candidate for benchmark measurements since, gftimate. Another approach using tkgquare integrabje
this case, the magnitude of the cross section is particularipseudostate close-coupling meth@®5CQ [11,12 resulted
large, and the small momentum transferred to the target all 9enerally good, although not perfect, agreement with the
lows an extrapolation to known absolute photoionizationexF’e”menta' data. A recent convergent close-coupling study

cross section$4]. Such measurements, in particular for the (Nereafter CCC[13] employs an orthogonal Laguerre basis

ionization of atomic hydrogen which leads to a pure threel0 diagonalize the target Hamiltonian. Convergence is
“hecked with respect to the basis size. In the final state the

body final state, are of prime importance in assessing thed ; )
retical approaches to the nonseparable, three-particle Col}y0 €lectrons are treated asymmetrically, one occupying a

lomb continuum problem. For the ionization of atomic Plane wave whereas a Coulomb wave is assumed for the
hydrogen in the ground state, the measured angular distrib@her electron. As stated in RefL3], for the case of hydro-
tion of the slow secondary electron exhibits a double-peal@€NiC targets this numerical approach treats the scattering
structure whose positions are mainly associated with the dieroplem essentially without approximation. Nonetheless,
. ~ . some discrepancies between the CCC results and the experi-
rection of the momentum-trans-fer \(?ctq)rA dominant peak mental findings are observgd3] (comparison is included
appears roughly around the directiqrand can be assigned pelow). In addition, the CCC method predicts additional sub-
to a direct(classical projectile-electron encounter. Hence, sjdiary structures in the angular distributions whose origins
this peak is called théinary peak[4,6,7]. A furtherA, less  are yet to be explained.
pronounced peak, thecoil peak is situated around-q and In an analytical treatment of this process, one focuses on
can be interpreted as the result of a sequential scatterintpe three-body final statéwo electrons in the residual ion
process in which the target electron recoils off the nucleudield), and attempts to derive approximate expressions for
after a direct scattering from the projectil8]. The recoil  this state. An approximation, which has previously been pro-
scattering from the nucleus can occur via initial-state bindposed for ion-atom collisionfl4], was adopted tod2e)
ing. The above-mentioned mechanisms for the emergence eéactions with remarkable succd4$,16, as far as the rela-
the binary-recoil peak structure are qualitatively present evetive angular distributions are concerned. In this approxima-
in the simplest theoretical treatment in which plane wavesion individual (isolated two-body scatterings are treated to
for incoming and outgoing particles are assurf@ld In con- infinite order(in a perturbative sengewhich is the origin of
the correct asymptotic behavior at large interparticle separa-
tions. This wave function is called 3C hereafter, as it consists
*Present address: Max-Planck-Institute for Microstructure Physof three Coulomb waveghe interelectronic plane-wave part
ics, Weinberg 2, 06120 Halle, Germany. Electronic addressbeing omitted each simulating an isolated two-body scatter-
joer@mpi-Halle.mpg.de ing. The success of the 3C approach in describing the rela-
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tive shape of the measured experimental data triggered ia some cases there are still substantial differences between
continuing debate about the importance of boundary conditheoretical predictiongincluding those from other theories
tions[15-21]. An interelectronic Coulomb phase factor was and experiment. Thus further theoretical and experimental
added to the distorted-wave Born approximati@®WBA)  Wwork is required in order to establish benchmark data for this
in order to restore the boundary condition at large interparmost fundamental case oé,2e) processes. Throughout this
ticle separation§20]. In Ref.[17] the first Born approxima- work atomic units are gsed. Corrections due to a finite
tion has been modified by two Coulomb phase factors t&l€ctron-proton mass ratio are neglected.

result in a correct asymptotic behavior. Although these modi-

fications have led to significant improvemer(ss far as |. THEORETICAL APPROACH

agreement with experiment is concerpé¢lde effect of the

high oscillatory behavior of these phase factors at lower en- The 3C approach is a nonperturbative method which
ergies is not clear. Further investigations of the asymptotidreats all two-body interactions on equal footing. However, it
properties of the three-body Schinger equation showed does not account for coupling between each of the two-body
that a proper description of the asymptotic regime, wheregubsystems to the third particles; i.e., within the 3C model
two particles approach each other while far away from thghe charged particles move due to their mutual two-body
third one, requires the introduction of local relative momentapotential, which is quite different from the total potential.
[22] (this treatment is hereafter called the AM modéllo  For example, the electron-electron scattering is considered as
attempt at describing the short-range dynamics has been u@n isolated two-body Rutherford scattering, whereas, accord-
dertaken. Application of the derived wave function to theing to Wannier analysig27—3@, which is based on proper-
present reaction is hampered by two major obstacles whichies of thetotal potential, one obtains a free motion of the
are typical for sophisticated analyticédeyond 3¢ models.  two-electron subsystem when both electrons recede from the
Due to the complicated analytical form of the wave function,residual proton in opposite directions and equal distances
scattering amplitudes have to be deduced numerically. Thiom the nucleus. To include this dynamical screenfagd
necessitates a six-dimensional numerical integration. Of paitherefore this theory is called DS3Gvhile still treating all
ticular difficulty is the long-range integration over the pro- two-body potentials in an exact manner, it is advantageous to
jectile coordinates. This problem was recently attackedseparate dynamical from kinematical features of the three-
[21,23—-25. These kinds of numerical studies will shed newbody system and consider the latter properties in an appro-
light on the importance of the inclusion of proper boundarypriate coordinate system. First, to decouple kinematical from
conditions since they offer a direct insight into the contribu-dynamical quantities, for the eigenfunctioh of the total
tions of various regimes of the phase space to the scatterirffgamiltonian’t, at the total energ¥, we write

amplitudes. The second difficulty associated with the AM

wave function is the evaluation of its normalization. An ex- W(ra,rp) =NW'(ra,r)

pression for this normalization was proposed in Reg]; . . —

however, no justifications for this particular choice were =N exp(ira-Katiry-kp)W(ra,rp), (1)
given. One might think of deducing the normalization by
requiring that the asymptotic flux generated by such func
tions must be identical to that associated with plane wave
While imposing this requirement improves the asymptoti
flux properties of the wave functions used, it does not yiel

wherer ., are the positions of the two electrons with respect
to the nucleus, an#l,;, are the momenta conjugate to these
Yoordinates, respectively. The normalization fadtbis de-
gduced from the requirement

the correct normalization as derived from a six-dimensional INI2 (W7 (ra,piKa ko) [P (1o Ty KL KD))
integration over the configuration space. For example, a sin- 2 2 2 a
gular short-range behavior of a wave function would not af- = 83(ka—k}) 83(kp—Kp). 2

fect the asymptotic flux, and hence its flux normalization, but
would certainly show up in an integration over the entireThe plane-wave part of Eql) is an eigenfunction of the
configuration space. As this “approximate” normalization kinetic-energy operator with eigenval& Thus the modifi-
severely influences the angular distributions, calculationsation to the plane-wave motion, which is described by
with the AM wave function, as proposed in RE22], do not W (r;; ,R,), is due to the presence of the total potential, and
provide unique information on the range of validity of the can be determined as an eigenfunction of a differential op-
approximations assumed in the Safirger equation to ar- eratorH (with zero eigenvalue[26]. To obtain an insight
rive at the radial part of the wave function. into the properties of, the problem is reformulated in the
These same two difficulties are encountered in a furtheburvi"near coordinate Syste(n,n]y outgoing_wa\/e boundary
treatment which deals with the short-range dynamics by inconditions are considered hgre
corporating some rotationally invariant properties of the total

potential surface into the wave functip®6] while maintain- {&=ri+ki-r&n=r), je{ab,ablke[1,3],
ing a proper asymptotic. This approach and its subsets, as S .
well as the methods employed to deal with the aforemen- me[4,6], €)

tioned problems, are briefly discussed in Sec. |. Low-energy ) ) ) .
measurements were reasonably reproduced and interpreté¢fereras, andkyy, are the interelectronic relative coordinate
by this method. In this work application is extended to inter-and its conjugate momentum, respectively. The directions of
mediate energies with small momentum transfer. Althougtthe momentz;,j e{a,b,ab} are denoted bk;. As shown

the prediction of this model can be considered satisfactoryin Ref.[26], the three-body operatdt can be decomposed
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into two parametrically coupled differential operators; an has to be fulfilled. The constructed wave functi®igsc is
operatorH ., which is differential in theparabolic coordi-  compatible with the boundary conditions specified by the
nates¢; , sonly, and an operator differential in the rotation- shape and size of the triangle formed by the three particles,
ally invariant coordinates,, r,, andr,,. An additional i.e., it is, to leading order, an asymptotic solution of the
mixing term, which is due to the off-diagonal elements of thethree-body Schidinger equation if the aforementioned tri-
metric tensor, couples internal to parabolic motion. It is theangle tends to a linéwo particles are close to each other and
last term which prevents the separability of the three-bodyar away from the thirflor in the case where, for an arbitrary
Schralinger equation. The key point is that the differential shape, the size of this triangle becomes infinite. The latter
operator H,, is exactly separable in the coordinateslimit implies that all interparticle coordinates, p, o, must
&, . 3 Since it factorizes as grow with the same order, otherwise we eventually fall back
to the limit of the three-particle triangle being reduced to a
o line [26], as described above. The applicability of the wave
i’ [Hg,-’Hgi]:o’ vV ije{l.23, (4  function W hsac to scattering reactions is hampered by the
involved functional dependence leading to the complications
where, after factoring out the relative plane-wave motion,encountered with the AM method, as discussed in the intro-

H,. is the Hamiltonian for two-body Rutherford scattering ducti_on. Furthermor_e, the incorporation of the i_oni_za'gion _dy-
i . . . L namics at shorter distances brings about the intrinsic disad-
expressed in parabolic coordinateg’]. Hence, within the

T . . vantage that, in contrast to the 3C approach, the construction
approximatiorH ~Hy, the three-body system is considered of Wpsac has to be individually undertaken for given charge

as the sum of three spatially decoupled two-b_ody COUIom%nd mass states of the three particles. This is comprehensible
systems on the two-body energy shell. At a given total en-

ergy E. the exact regular eigenfunction of the operaar since properties of the total potential are inherent to the par-
wi?ﬁ/in 'the a roximgtionH ~gH thus has thepex licit ticular three-body system under investigation. As far as the
form PP —lpan P unigueness off pg3c is concerned, it should be mentioned

that this function is an approximate solution. Various choices
— ] for Z; result in different partsid —H ,,, of the total Hamil-
Wossd €1, .6:Ka kp) tonian H being neglected. The best choice fa; would
. . . . minimize H—H . In the course of constructindf psac, it
=1Fa(iBa, 1.~ 1Kag1)1Fa(i By, 1=Ky &2) has not been pgassible to show thit Hp, is minimaIS?r(ws the

X 1F1(i Bap, 1~ iKapéa). (5)  entire Hilbert spacéminimal only in the asymptotic region

and along the Wannier mofleHence, the pad —H,, can

The eigenstat® pssc of H is then readily deduced from Eq. be regarded as the “free parameter” in this theory. It should

(1). In Eq. (5), ;F4(a,b,x) denotes the confluent hypergeo- be emphasized, however, that there is no physical or math-

metric function andg;, je{a,b,ab} are the Sommerfeld ematical reason to believe that, for example, the 3C wave
parameters function, which is a special case 53¢, is more unique

thanW¥ psac, even though the product charges used by the 3C
zZ wave function are uniquely given byY,=-1=Z2Z, and
sz;' je{a,b,ab}, (6) Zap=1.
! As shown in Ref[16] the normalization of the 3C wave
with v; being the velocities corresponding to the momentafunction can be deduced in the sense of Eg. To my
kj andZ;, je{a,b,ab} the electron-nucleus and electron- knowledge, this procedure has not been accessible in the
electron product charges, respectively. The operdorde- ~ Cases of¥ ps3c and AM wave functions. Normalization of

: ; v through flux arguments, in the manner discussed
ends parametrically on the coordinatgas ¢ €.g., through DS3C : 2 ' o
!cohe twg-body Coulgmb potential. Tt%?s"pgran%etric dgpen-above' resulted in position-dependent normalizafizih 39

: . hich is clearly at variance with E¢2). To overcome this
H | ff loited"/ . . ) overcom
dence o g On internal degrees of freedom can be exp Oltedd|ff|culty (and that associated with the six-dimensional nu-

to introduce coupling of each two-body subsystem to th&nerical integrationwe note that the position dependence of
third particle[26] by assuming that an individual two-body Z;(Fa.Tp." ap) OCCurs(due to dimensionality considerations
Coulomb interaction retains its functional form; i.e., it is of through ratios of the interparticle distances. Thus this depen-

the form V;=Z;/r;,je{ab,ab}. Its strength(expressed dence can be converted into velocity dependence by assum-
throughZ;), however, is determined by all two-body inter- ing that

actions. Considering that this coupling can depend only on

internal coordinategthe total potential is rotationally invari- rov

anh we end up withZ;=Z;(&, o). In Ref.[26] the func- o ()
tions Zj(&, .. ¢ were given, which preserve the total poten- b

tial and incorporate the motion along the Wannier rif@e-  The proportionality constant in Eg8) could be of an arbi-
36]. To ensure invariance of the Schifoger equation under trary functional dependence. It should be emphasized that
the introduction of the product charg&x(é,...¢ the con-  approximation(8) is not a classical one, i.e., it is not as-
dition sumed that the particles’ motions proceed along classical tra-
jectories[conversely, if the motion were classically free, Eq.
D Zj(és...0 _ __1+ __1+ i jela,b,abl (7) (8) holdg|. It merely means that the total potential is exactly
7 r| la e  Tap T diagonalized in the phase space where [Byis satisfied, as

3
H par— jgl H ¢
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FIG. 1. The triply differential cross sectigiiDCS) for the coplanar electron-impact ionization of atomic hydrogen(ajrone electron

is detected under a fixed angle ¢f=344° with respect to the incident directié, whereas the other one is detected under the varying
angle ¢y, and with fixed energ¥,=10 eV. The incident energy I§;=150 eV. Experimental data are from REf]. The solid thick curve
represents the DS3C results, whereas the CCC calculafi@hgield the light solid curve. the dashed curve is the 3C resulté)ithe angle

of the fast electron is fixed t@,=350°, in (c) ¢,=356°, in(d) E,=5 eV and ¢,=344°, in(e) E,=5 eV, and¢,=350°, in (f)
E,=5 eV and¢,=356°, in(g) E,=3 eV and¢,=344°, in(h) E,=3 eV and¢,=350° and in(i) E,=3 eV and¢,=356°.

readily deduced from Ed7). Equation(8) renders possible of double escap§27-36,39. This results in the velocity-
the normalization of¥' pg3c in the sense of Eq2), since in  dependent product charge40]
this case we obtaiZ;=Z;(k,,kp,Ka,) and the arguments

used in Ref[16] can be repeated to deduce fithe expres- Zpa(Va V) =[1—(f g)%a’1]a’?, (10
sion

1+a

z =—1+(1-Zp)—5—ea— 11

N:H Nj a(Vava) ( ba)(U:"'Ug)Uab, ( )
J %+a

. Zy(Va,Vp)=—1+(1-Zp)————. 12

Ny = x0T~ ) (Ka Ko Ko T/2ITTL 1 51 (e Ko Ko, Vako) === Zapar gy 1P

je{a,b,bal. (99  The functions occurring in Eq$10) and(11) are defined as
An additional advantage of employing approximati@j is - w' tany = r_a (13)
that it allows the incorporation of the Wannier threshold law 4 I
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FIG. 1. (Continued.
Vab from H(1s) in the coplanar asymmetric energy-sharing kine-
9= oy (14 matics at the incident energi€&= 250, 150, and 54.4 eV.
a
1. ANGULAR DISTRIBUTIONS
 200pC0Yap/2
by:= UZJ”)g ' (15 For electron-impact ionization of atomic hydrogen, the
2 spin-non-resolved triply differential cross sectighDCY
by — for the coincident detection of the two continuum electrons is
2:=9(=05+w), (16) the statistically weighted average of singlet and triplet scat-
tering
- 17 ka k
a = ,
E+0.5 oroceKa kp) = (2m)4 = GITPP+3TS, (18

Ki

whereE is being measured in atomic units apd=1.127 IS\ herek; is the momentum of the incident projectile. The
the Wannier index in the case considered here. The mterelegingbt and triplet transition matrix element§ and T, re-

tronic relative angled,y, is given by 6,,:=cos ,-Vv,. In spectively, derive from the corresponding transition opera-
case of higher excess energidsX1) it is readily verified  tors7® and7t, where
thata—1 [Eq. (17)], and all modifications of chargg40)—

(12) which are due to incorporating the Wannier threshold o= (14 Pap) Zsi(Ka ,Kp),
law become irrelevant. Chargd40)—(12) then reduce to
those given in Ref.26], with Eq.(8) being applied. From the 7'=(1—Pap) Tri(Ka ,Kp). (19

functional forms of charge&l0)—(12) it is clear that when .
two particles approach each othén velocity spacgthey 1 he action of the exchange operafey;, on the7y; operator
experience their full two-body Coulomb interactions, IS 9iven byPapTi(Ka,kp) =Ti(kp,ka). The prior, position-
whereas the third one “sees” a net charge equal to the suriPace representation @fi(k, k) is given by
of the charges of the two close patrticles. _

The wave functionWpssc, constructed with charges Tri(Ka ko) = (W |Vi| D). (20
(10—(12), proved to be quite successful in predicting the

absolute and relative angular distributions at quite low ener . o . .
gies[5,40—42. Additionally, the spin-non-resolved total ion- three-body s_ystem in the initial chann_el_ls_descnbe_d by
ization cross section as well as the spin asymmetry are saiPk)- Assuming|® ) to be the asymptotic initial state, i.e.,
isfactorily described by this method from threshold up to{ra:'s|®x,) is @ product of an incoming plane wave repre-
intermediate energid26,40. Here we present a comprehen- senting the incident projectile electron and an undistorted
sive comparison with available experimenta,de) data 1s state of atomic hydrogen, the perturbation operator

The wave function¥ is defined by Eq.(1), whereas the
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FIG. 2. The same kinematical arrangements as in Fig. 1 but the
incident energy is increased Ej=250 eV. In(a) E,=5 eV and
$,=352°, and in(b) E,=5 eV and¢,=357°. The curves are the
same as in Fig. 1. CCC calculations are not available here.
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occurring in Eq.(20) is given by 1yr,—r,|— 1/, (which is
the part of the total Hamiltonian not diagonalized by
|<I>ki>). In what follows we choose the axis as the incident

0.0
. . I . . 0 60 120 180 240 300 360
directionk;. The final-state electrons are detected in a co- 0, Ldeg]

planar geometry, i.ek;- (kX k,)=0. Thez axis lies along
the direction perpendicular to the scattering plane, i.e., par- 40 ; » ' '

allel tok,x k, . The polar and azimuthal angles of the vector @
k, (kp) are denoted by, , ¢, (6y,dy), respectively. In the
coplanar geometry considered here the polar angles are fixed
to 8,= /2= 0,. For the sake of clarity, the DS3C calcula-
tions with product charged0)—(12) and within approxima-

tion (8) are contrasted only with experiments, and the 3C and
CCC results. Comparison of CCC and 3C with 3DWBA and
PSCC can be found in Reff13], while Ref.[21] compares

3C calculations with the results of the AM model as well as
with those of the DS3C, without approximati¢8), and with

the wave function being normalized by the flux method, as 00 p o 0 20 w360
mentioned earlier. In Figs.(8-1(i) the TDCS's for the in- ¢, [deg]

cident energy of;=150eV are depicted along with the ab-

solute measurement, as normalized to photoionization cross

sectiong 4]. In general, we note a satisfactory, although not

perfect, agreement of the DS3C results with experimental

findings. The role of final-state interactions in determining g, 3. The same coplanar asymmetric geometry as in Fig. 1;
the shape and magnitude of the TDCS has been analyzed jfywever, the incident energy is decreasedEte 54.4 eV. In(a)

full detail in Refs.[5,41,43,44, and is not repeated here. We g, =5 eV and ¢,=337°, whereas in(b) E,=5 eV and
remark, however, that the present results confirm the analysig,=344°, in (c) E,=5 eV and ¢,=350°, and, finally, in(d)
made in Ref[41] in that three-body coupling primarily af- E,=5 eV and¢,=356°. Experimental data are taken from Ref.
fects the magnitude of the TDCS rather than its shape. ThifL6]. The error bars indicate the uncertainty in the absolute value of
is readily concluded by comparing the 3C and DS3C resultshe TDCS[46]. Curves are the same as in Fig. 1.
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since, in the former case, three-body coupling is neglectedhat the 3C fails to reproduce the measured TDCS in shape
whereas the merit of the DS3C is the inclusion of this cou-and magnitude, whereas the DS3C offers reasonable, though
pling. The general trend is that the 3C model underestimatesot perfect, predictions. As done in Ref§,41], the influ-
the magnitude of the TDCS but reproduces, however, thence of final-state interactions as well as the effects of three-
angular shape with sufficient accuracy, as shown in Refbody coupling on the cross sections, shown in Figs)-3
[15]. The reason for this shortcoming of the 3C model is an3(d), have been investigate@l5]. The conclusions drawn
incorrect weighting of different scattering amplitudes whichfrom this study indicate that the origin and the rough posi-
alters their interference behavi@b,41]. This underestima- tions of the two peaks occurring in Figs(ag-3(d) can be
tion of cross sections by the 3C model persists down tdraced to single, and sequential, double-binary collisions.
threshold. In fact, as is well known, at lower excess energie¥he heights of these peaks is determined by three-body cou-
the 3C model grossly underestimates the measured absolyténg. A study of the spin-resolved TDCS in the geometry
value of the cross sections. This behavior, also similar to thatorresponding to Figs.(8—3(d) revealed a rich structure of
observed in Figs. @-1(i), is not the result of a wrong in- the spin asymmetrf: = (| T5|2—|T'|?)/(|T%|2+ 3| TY?) [45].
terference pattern but rather due to a vanishing density ofhe origin of this variation is basically unexplained as yet.
states of the “unscreened” electron-electron scattering subAt higher energies and small momentum trangfeigs. 1
system. and 2 the TDCS is determined by direct ionization events.
Generally, differences between the CCC and the DS3Gence the magnitude of the spin asymmetry is vanishingly
are marginal and, in some cases, both of them are clearlymall.
beyond a perfect agreement with the data. In REF] it is
stated that the CCC is “essentially without approximations.”
Hence, the agreement between the DS3C and the CCC re-
sults can lead to the conclusion that the approximations made Contrasting a fully numerical treatment og,@e) reac-
to arrive at the DS3C wave function are justified in the ge-tions, such as the CCC approach, with approximate analyti-
ometries studied here. In fact, it can be shown analyticallycal methods, such as 3C and DS3C, yields additional insight
that the neglected paH-H ,, vanishes at higher excess en- into the mathematical and physical structure of the three-
ergies [26] [lim, g_,w(H Hpa) —0]. Unfortunately, the body Coulomb problem. Deviations of the results of approxi-
moderate incident energies and the still remaining differnate analytical methods from those predicted by exact nu-
ences between experiment and theory shed doubt on thigerical approaches can be used as an indicator for the
conclusion. strength of the neglected part of the total Hamiltonian to
In Ref.[21] calculations were performed using the DS3C arrive at these analytical approximations. Unfortunately, the
without approximation(8). As stated above, the normaliza- discrepancies between theory and experiments, as observed
tion then has to be deduced from the asymptotic flux rathein Figs. 1 and 3, leave some doubts about the reliability of
than according to Eq2). This procedure yielded a position- such a procedure. Hence it is highly desirable to establish
dependent normalizatiof88]. The predicted cross sections Some benchmarkbsolutemeasurements for atomic hydro-
turned out to be substantially different from the DS3C resultggen against which various models can be judged. Hydrogenic
presented here and in some cases substantial discrepanci@egets are of particular importance since mas®¢) theo-
with experiments were observed. Unfortunately, the “ap-retical models impose additional approximations in order to
proximate” normalization procedure prevents an unambigudeal with ,2e) processes from many-electron targets.
ous assessment of the approximatior H,~0 which has The DS3C results presented in this work, combined with
been made to arrive at the radial part of the wave functionthose at low impact energies and the integrated cross-section
This same argument applies to the TDCS calculations withiesults [5,40-43, lead to the conclusion that the part
the AM model. H—H,, of H, which has been disregarded to arrive at the
At higher impact energidgrigs. 2a) and 2b)] the 3C and DS3C wave function, has minor effects on the measured
DS3C results converge to each other, whereas in this geonfe,2e) cross sections in a wide range of the six-dimensional

IIl. CONCLUSIONS

etry no CCC calculations are available. spacek,®ky, .
At lower excess energig¢&igs. 3a)—3(d)] differences be-
tween various theoretical models extend to the shape of the ACKNOWLEDGMENTS
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