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Electron-impact ionization of atomic hydrogen at intermediate energies

Jamal Berakdar*
Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering,

Australian National University, Canberra, ACT 0200, Australia
~Received 15 January 1997!

The electron-impact ionization of atomic hydrogen at intermediate excess energies is considered in the
situation where the two continuum electrons escape with substantially different velocities and coplanar with the
incident direction. Calculations are performed within a model where the three-body final state is described by
a product wave function consisting of three symmetrical, Coulomb-type functions. Each of these functions
describes the motion of a particular two-body subsystem in the presence of the third charged particle. A
comprehensive comparison with available experimental data is presented, and the results are contrasted with
those of other theoretical models. Generally, good agreement is found with the absolute measurements; how-
ever, in some cases discrepancies between various theoretical predictions and experimental findings are obvi-
ous, which highlights the need for a theoretical and experimental benchmark study of these reactions.
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The first experimental studies on electron-impact ioni
tion of atomic systems with fully determined kinematics
the reaction fragments@hereafter called (e,2e)# were con-
ducted at moderate incident energies~a few times the ioniza-
tion potential! with little momentum being transferred to th
target @1–5#. Under these conditions two continuum ele
trons emerge with substantially different energies, and
detected coplanar with the incident direction. This geome
is an ideal candidate for benchmark measurements sinc
this case, the magnitude of the cross section is particul
large, and the small momentum transferred to the targe
lows an extrapolation to known absolute photoionizat
cross sections@4#. Such measurements, in particular for t
ionization of atomic hydrogen which leads to a pure thr
body final state, are of prime importance in assessing th
retical approaches to the nonseparable, three-particle C
lomb continuum problem. For the ionization of atom
hydrogen in the ground state, the measured angular distr
tion of the slow secondary electron exhibits a double-p
structure whose positions are mainly associated with the
rection of the momentum-transfer vectorq̂. A dominant peak
appears roughly around the directionq̂ and can be assigne
to a direct ~classical! projectile-electron encounter. Henc
this peak is called thebinary peak @4,6,7#. A further, less
pronounced peak, therecoil peak, is situated around2q̂ and
can be interpreted as the result of a sequential scatte
process in which the target electron recoils off the nucl
after a direct scattering from the projectile@8#. The recoil
scattering from the nucleus can occur via initial-state bi
ing. The above-mentioned mechanisms for the emergenc
the binary-recoil peak structure are qualitatively present e
in the simplest theoretical treatment in which plane wa
for incoming and outgoing particles are assumed@8#. In con-
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trast, a quantitative theoretical description of the experim
tal findings, in particular the absolute magnitude of the cr
section, turned out to be an intriguing task. Perturbative
proaches using the Born series~whose convergence prope
ties are unclear for reactions involving infinite-range Co
lomb potentials! seem to reproduce quantitatively som
features of the measured angular distributions@6,9,10#. How-
ever, the range of validity of such approaches is difficult
estimate. Another approach using the~square integrable!
pseudostate close-coupling method~PSCC! @11,12# resulted
in generally good, although not perfect, agreement with
experimental data. A recent convergent close-coupling st
~hereafter CCC! @13# employs an orthogonal Laguerre bas
to diagonalize the target Hamiltonian. Convergence
checked with respect to the basis size. In the final state
two electrons are treated asymmetrically, one occupyin
plane wave whereas a Coulomb wave is assumed for
other electron. As stated in Ref.@13#, for the case of hydro-
genic targets this numerical approach treats the scatte
problem essentially without approximation. Nonethele
some discrepancies between the CCC results and the ex
mental findings are observed@13# ~comparison is included
below!. In addition, the CCC method predicts additional su
sidiary structures in the angular distributions whose orig
are yet to be explained.

In an analytical treatment of this process, one focuses
the three-body final state~two electrons in the residual ion
field!, and attempts to derive approximate expressions
this state. An approximation, which has previously been p
posed for ion-atom collisions@14#, was adopted to (e,2e)
reactions with remarkable success@15,16#, as far as the rela-
tive angular distributions are concerned. In this approxim
tion individual ~isolated! two-body scatterings are treated
infinite order~in a perturbative sense!, which is the origin of
the correct asymptotic behavior at large interparticle sep
tions. This wave function is called 3C hereafter, as it cons
of three Coulomb waves~the interelectronic plane-wave pa
being omitted! each simulating an isolated two-body scatte
ing. The success of the 3C approach in describing the r
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56 371ELECTRON-IMPACT IONIZATION OF ATOMIC . . .
tive shape of the measured experimental data triggere
continuing debate about the importance of boundary co
tions @15–21#. An interelectronic Coulomb phase factor w
added to the distorted-wave Born approximation~3DWBA!
in order to restore the boundary condition at large interp
ticle separations@20#. In Ref. @17# the first Born approxima-
tion has been modified by two Coulomb phase factors
result in a correct asymptotic behavior. Although these mo
fications have led to significant improvements~as far as
agreement with experiment is concerned! the effect of the
high oscillatory behavior of these phase factors at lower
ergies is not clear. Further investigations of the asympt
properties of the three-body Schro¨dinger equation showed
that a proper description of the asymptotic regime, wh
two particles approach each other while far away from
third one, requires the introduction of local relative mome
@22# ~this treatment is hereafter called the AM model!. No
attempt at describing the short-range dynamics has been
dertaken. Application of the derived wave function to t
present reaction is hampered by two major obstacles w
are typical for sophisticated analytical~beyond 3C! models.
Due to the complicated analytical form of the wave functio
scattering amplitudes have to be deduced numerically. T
necessitates a six-dimensional numerical integration. Of
ticular difficulty is the long-range integration over the pr
jectile coordinates. This problem was recently attack
@21,23–25#. These kinds of numerical studies will shed ne
light on the importance of the inclusion of proper bounda
conditions since they offer a direct insight into the contrib
tions of various regimes of the phase space to the scatte
amplitudes. The second difficulty associated with the A
wave function is the evaluation of its normalization. An e
pression for this normalization was proposed in Ref.@22#;
however, no justifications for this particular choice we
given. One might think of deducing the normalization
requiring that the asymptotic flux generated by such fu
tions must be identical to that associated with plane wav
While imposing this requirement improves the asympto
flux properties of the wave functions used, it does not yi
the correct normalization as derived from a six-dimensio
integration over the configuration space. For example, a
gular short-range behavior of a wave function would not
fect the asymptotic flux, and hence its flux normalization,
would certainly show up in an integration over the ent
configuration space. As this ‘‘approximate’’ normalizatio
severely influences the angular distributions, calculati
with the AM wave function, as proposed in Ref.@22#, do not
provide unique information on the range of validity of th
approximations assumed in the Schro¨dinger equation to ar-
rive at the radial part of the wave function.

These same two difficulties are encountered in a furt
treatment which deals with the short-range dynamics by
corporating some rotationally invariant properties of the to
potential surface into the wave function@26# while maintain-
ing a proper asymptotic. This approach and its subsets
well as the methods employed to deal with the aforem
tioned problems, are briefly discussed in Sec. I. Low-ene
measurements were reasonably reproduced and interp
by this method. In this work application is extended to int
mediate energies with small momentum transfer. Althou
the prediction of this model can be considered satisfact
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in some cases there are still substantial differences betw
theoretical predictions~including those from other theories!
and experiment. Thus further theoretical and experime
work is required in order to establish benchmark data for t
most fundamental case of (e,2e) processes. Throughout thi
work atomic units are used. Corrections due to a fin
electron-proton mass ratio are neglected.

I. THEORETICAL APPROACH

The 3C approach is a nonperturbative method wh
treats all two-body interactions on equal footing. However
does not account for coupling between each of the two-b
subsystems to the third particles; i.e., within the 3C mo
the charged particles move due to their mutual two-bo
potential, which is quite different from the total potentia
For example, the electron-electron scattering is considere
an isolated two-body Rutherford scattering, whereas, acc
ing to Wannier analysis@27–36#, which is based on proper
ties of thetotal potential, one obtains a free motion of th
two-electron subsystem when both electrons recede from
residual proton in opposite directions and equal distan
from the nucleus. To include this dynamical screening~and
therefore this theory is called DS3C!, while still treating all
two-body potentials in an exact manner, it is advantageou
separate dynamical from kinematical features of the thr
body system and consider the latter properties in an ap
priate coordinate system. First, to decouple kinematical fr
dynamical quantities, for the eigenfunctionC of the total
HamiltonianH, at the total energyE, we write

C~ra ,rb!5NC r~ra ,rb!

5N exp~ i ra•ka1 i rb•kb!C̄~ra ,rb!, ~1!

wherera/b are the positions of the two electrons with respe
to the nucleus, andka/b are the momenta conjugate to the
coordinates, respectively. The normalization factorN is de-
duced from the requirement

uNu2 ^C r~ra ,rb ;ka ,kb!uC r~ra ,rb ;ka8 ,kb8!&

5d3~ka2ka8!d3~kb2kb8!. ~2!

The plane-wave part of Eq.~1! is an eigenfunction of the
kinetic-energy operator with eigenvalueE. Thus the modifi-
cation to the plane-wave motion, which is described
C̄(r i j ,Rk), is due to the presence of the total potential, a
can be determined as an eigenfunction of a differential
eratorH ~with zero eigenvalue! @26#. To obtain an insight
into the properties ofH, the problem is reformulated in th
curvilinear coordinate system~only outgoing-wave boundary
conditions are considered here!

$jk5r j1 k̂ j•r j ;jm5r j%, jP$a,b,ab%;kP@1,3#,

mP@4,6#, ~3!

whererab andkab are the interelectronic relative coordina
and its conjugate momentum, respectively. The directions
the momentak j , jP$a,b,ab% are denoted byk̂ j . As shown
in Ref. @26#, the three-body operatorH can be decompose
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372 56JAMAL BERAKDAR
into two parametrically coupled differential operators; a
operatorHpar which is differential in theparabolic coordi-
natesj1,2,3 only, and an operator differential in the rotatio
ally invariant coordinatesr a , r b , and r ab . An additional
mixing term, which is due to the off-diagonal elements of t
metric tensor, couples internal to parabolic motion. It is
last term which prevents the separability of the three-bo
Schrödinger equation. The key point is that the different
operator Hpar is exactly separable in the coordinat
j1 . . . 3, since it factorizes as

Hpar5(
j51

3

Hj j
, @Hj j

,Hj i
#50, ; i , jP$1,2,3%, ~4!

where, after factoring out the relative plane-wave moti
Hj j

is the Hamiltonian for two-body Rutherford scatterin
expressed in parabolic coordinates@37#. Hence, within the
approximationH'Hpar, the three-body system is consider
as the sum of three spatially decoupled two-body Coulo
systems on the two-body energy shell. At a given total
ergy E, the exact regular eigenfunction of the operatorH,
within the approximationH'Hpar, thus has the explicit
form

C̄DS3C~j1 . . . 6;ka ,kb!

51F1~ iba ,1,2 ikaj1!1F1~ ibb ,1,2 ikb j2!

31F1~ ibab ,1,2 ikabj3!. ~5!

The eigenstateCDS3Cof H is then readily deduced from Eq
~1!. In Eq. ~5!, 1F1(a,b,x) denotes the confluent hyperge
metric function andb j , jP$a,b,ab% are the Sommerfeld
parameters

b j5
Zj

v j
, jP$a,b,ab%, ~6!

with v j being the velocities corresponding to the mome
k j andZj , jP$a,b,ab% the electron-nucleus and electro
electron product charges, respectively. The operatorHj j

de-

pends parametrically on the coordinatesj4 . . . 6, e.g., through
the two-body Coulomb potential. This parametric depe
dence ofHj j

on internal degrees of freedom can be exploi
to introduce coupling of each two-body subsystem to
third particle@26# by assuming that an individual two-bod
Coulomb interaction retains its functional form; i.e., it is
the form V̄ j5Zj /r j , jP$a,b,ab%. Its strength ~expressed
throughZj ), however, is determined by all two-body inte
actions. Considering that this coupling can depend only
internal coordinates~the total potential is rotationally invari
ant! we end up withZj5Zj (j4 . . . 6). In Ref. @26# the func-
tionsZj (j4 . . . 6) were given, which preserve the total pote
tial and incorporate the motion along the Wannier ridge@27–
36#. To ensure invariance of the Schro¨dinger equation unde
the introduction of the product chargesZj (j4 . . . 6) the con-
dition

(
j

Zj~j4 . . . 6!

r j
5

21

r a
1

21

r b
1

1

r ab
, jP$a,b,ab% ~7!
e
y
l

,

b
-

a

-
d
e
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has to be fulfilled. The constructed wave functionCDS3C is
compatible with the boundary conditions specified by t
shape and size of the triangle formed by the three partic
i.e., it is, to leading order, an asymptotic solution of t
three-body Schro¨dinger equation if the aforementioned tr
angle tends to a line~two particles are close to each other a
far away from the third! or in the case where, for an arbitrar
shape, the size of this triangle becomes infinite. The la
limit implies that all interparticle coordinatesr a,b,ab must
grow with the same order, otherwise we eventually fall ba
to the limit of the three-particle triangle being reduced to
line @26#, as described above. The applicability of the wa
function CDS3C to scattering reactions is hampered by t
involved functional dependence leading to the complicatio
encountered with the AM method, as discussed in the in
duction. Furthermore, the incorporation of the ionization d
namics at shorter distances brings about the intrinsic dis
vantage that, in contrast to the 3C approach, the construc
of CDS3Chas to be individually undertaken for given char
and mass states of the three particles. This is comprehen
since properties of the total potential are inherent to the p
ticular three-body system under investigation. As far as
uniqueness ofCDS3C is concerned, it should be mentione
that this function is an approximate solution. Various choic
for Zj result in different parts,H2Hpar, of the total Hamil-
tonian H being neglected. The best choice forZj would
minimizeH2Hpar. In the course of constructingCDS3C, it
has not been possible to show thatH2Hpar is minimal in the
entire Hilbert space~minimal only in the asymptotic region
and along the Wannier mode!. Hence, the partH2Hpar can
be regarded as the ‘‘free parameter’’ in this theory. It sho
be emphasized, however, that there is no physical or m
ematical reason to believe that, for example, the 3C w
function, which is a special case ofCDS3C, is more unique
thanCDS3C, even though the product charges used by the
wave function are uniquely given byZa5215Zb and
Zab51.

As shown in Ref.@16# the normalization of the 3C wave
function can be deduced in the sense of Eq.~2!. To my
knowledge, this procedure has not been accessible in
cases ofCDS3C and AM wave functions. Normalization o
CDS3C through flux arguments, in the manner discuss
above, resulted in position-dependent normalization@21,38#
which is clearly at variance with Eq.~2!. To overcome this
difficulty ~and that associated with the six-dimensional n
merical integration! we note that the position dependence
Zj (r a ,r b ,r ab) occurs~due to dimensionality considerations!
through ratios of the interparticle distances. Thus this dep
dence can be converted into velocity dependence by ass
ing that

r i
r j

}
v i
v j
. ~8!

The proportionality constant in Eq.~8! could be of an arbi-
trary functional dependence. It should be emphasized
approximation~8! is not a classical one, i.e., it is not a
sumed that the particles’ motions proceed along classical
jectories@conversely, if the motion were classically free, E
~8! holds#. It merely means that the total potential is exac
diagonalized in the phase space where Eq.~8! is satisfied, as
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FIG. 1. The triply differential cross section~TDCS! for the coplanar electron-impact ionization of atomic hydrogen. In~a! one electron
is detected under a fixed angle offa5344° with respect to the incident directionk i , whereas the other one is detected under the vary
anglefb and with fixed energyEb510 eV. The incident energy isEi5150 eV. Experimental data are from Ref.@4#. The solid thick curve
represents the DS3C results, whereas the CCC calculations@13# yield the light solid curve. the dashed curve is the 3C results. In~b! the angle
of the fast electron is fixed tofa5350°, in ~c! fa5356°, in ~d! Eb55 eV andfa5344°, in ~e! Eb55 eV, andfa5350°, in ~f!
Eb55 eV andfa5356°, in ~g! Eb53 eV andfa5344°, in ~h! Eb53 eV andfa5350° and in~i! Eb53 eV andfa5356°.
w

readily deduced from Eq.~7!. Equation~8! renders possible
the normalization ofCDS3C in the sense of Eq.~2!, since in
this case we obtainZj5Zj (ka ,kb ,kab) and the arguments
used in Ref.@16# can be repeated to deduce forN the expres-
sion

N5)
j
Nj ,

Nj5exp@2b j~ka ,kb ,kba!p/2#G@12 ib j~ka ,kb ,kba!#,

jP$a,b,ba%. ~9!

An additional advantage of employing approximation~8! is
that it allows the incorporation of the Wannier threshold la
of double escape@27–36,39#. This results in the velocity-
dependent product charges@40#

Zba~va ,vb!5@12~ f g!2ab1#ab2, ~10!

Za~va ,vb!5211~12Zba!
va
11a

~va
a1vb

a!vab
, ~11!

Zb~va ,vb!5211~12Zba!
vb
11a

~va
a1vb

a!vab
. ~12!

The functions occurring in Eqs.~10! and~11! are defined as

f :5
31cos24a

4
, tana5

r a
r b
, ~13!
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FIG. 1. ~Continued!.
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vab

va1vb
, ~14!

b1 :5
2vavbcosuab/2

va
21vb

2 , ~15!

b2 :5g~20.51m!, ~16!

a:5
E

E10.5
, ~17!

whereE is being measured in atomic units andm51.127 is
the Wannier index in the case considered here. The intere
tronic relative angleuab is given byuab :5cos21v̂a• v̂b . In
case of higher excess energies (E@1) it is readily verified
thata→1 @Eq. ~17!#, and all modifications of charges~10!–
~12! which are due to incorporating the Wannier thresh
law become irrelevant. Charges~10!–~12! then reduce to
those given in Ref.@26#, with Eq.~8! being applied. From the
functional forms of charges~10!–~12! it is clear that when
two particles approach each other~in velocity space! they
experience their full two-body Coulomb interaction
whereas the third one ‘‘sees’’ a net charge equal to the s
of the charges of the two close particles.

The wave functionCDS3C, constructed with charge
~10!–~12!, proved to be quite successful in predicting t
absolute and relative angular distributions at quite low en
gies@5,40–42#. Additionally, the spin-non-resolved total ion
ization cross section as well as the spin asymmetry are
isfactorily described by this method from threshold up
intermediate energies@26,40#. Here we present a comprehe
sive comparison with available experimental (e,2e) data
c-

m

r-

at-

from H(1s) in the coplanar asymmetric energy-sharing kin
matics at the incident energiesEi5250, 150, and 54.4 eV.

II. ANGULAR DISTRIBUTIONS

For electron-impact ionization of atomic hydrogen, t
spin-non-resolved triply differential cross section~TDCS!
for the coincident detection of the two continuum electrons
the statistically weighted average of singlet and triplet sc
tering

sTDCS~ka ,kb!5~2p!4
ka kb
ki

~ 1
4 uTsu21 3

4 uTtu2!, ~18!

where k i is the momentum of the incident projectile. Th
singlet and triplet transition matrix elementsTs andTt, re-
spectively, derive from the corresponding transition ope
tors Ts andTt, where

Ts5~11Pab!Tf i~ka ,kb!,

Tt5~12Pab!Tf i~ka ,kb!. ~19!

The action of the exchange operatorPab on theTf i operator
is given byPabTf i(ka ,kb)5Tf i(kb ,ka). The prior, position-
space representation ofTf i(ka ,kb) is given by

Tf i~ka ,kb!5^CuVi uFki&. ~20!

The wave functionC is defined by Eq.~1!, whereas the
three-body system in the initial channel is described
uFki&. AssuminguFki& to be the asymptotic initial state, i.e

^ra ,rbuFki& is a product of an incoming plane wave repr
senting the incident projectile electron and an undistor
1s state of atomic hydrogen, the perturbation operatorVi
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56 375ELECTRON-IMPACT IONIZATION OF ATOMIC . . .
occurring in Eq.~20! is given by 1/ura2rbu21/r a ~which is
the part of the total Hamiltonian not diagonalized
uFki&). In what follows we choose thex axis as the inciden

direction k̂ i . The final-state electrons are detected in a
planar geometry, i.e.,k i•(ka3kb)50. Thez axis lies along
the direction perpendicular to the scattering plane, i.e., p
allel to k̂a3 k̂b . The polar and azimuthal angles of the vec
ka (kb) are denoted byua ,fa (ub ,fb), respectively. In the
coplanar geometry considered here the polar angles are
to ua5p/25ub . For the sake of clarity, the DS3C calcul
tions with product charges~10!–~12! and within approxima-
tion ~8! are contrasted only with experiments, and the 3C a
CCC results. Comparison of CCC and 3C with 3DWBA a
PSCC can be found in Ref.@13#, while Ref. @21# compares
3C calculations with the results of the AM model as well
with those of the DS3C, without approximation~8!, and with
the wave function being normalized by the flux method,
mentioned earlier. In Figs. 1~a!–1~i! the TDCS’s for the in-
cident energy ofEi5150eV are depicted along with the a
solute measurement, as normalized to photoionization c
sections@4#. In general, we note a satisfactory, although n
perfect, agreement of the DS3C results with experime
findings. The role of final-state interactions in determini
the shape and magnitude of the TDCS has been analyze
full detail in Refs.@5,41,43,44#, and is not repeated here. W
remark, however, that the present results confirm the ana
made in Ref.@41# in that three-body coupling primarily af
fects the magnitude of the TDCS rather than its shape. T
is readily concluded by comparing the 3C and DS3C res

FIG. 2. The same kinematical arrangements as in Fig. 1 but
incident energy is increased toEi5250 eV. In~a! Eb55 eV and
fa5352°, and in~b! Eb55 eV andfa5357°. The curves are the
same as in Fig. 1. CCC calculations are not available here.
-

r-
r

ed
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s
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e

FIG. 3. The same coplanar asymmetric geometry as in Fig
however, the incident energy is decreased toEi554.4 eV. In ~a!
Eb55 eV and fa5337°, whereas in ~b! Eb55 eV and
fa5344°, in ~c! Eb55 eV andfa5350°, and, finally, in~d!
Eb55 eV andfa5356°. Experimental data are taken from Re
@16#. The error bars indicate the uncertainty in the absolute valu
the TDCS@46#. Curves are the same as in Fig. 1.
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376 56JAMAL BERAKDAR
since, in the former case, three-body coupling is neglec
whereas the merit of the DS3C is the inclusion of this co
pling. The general trend is that the 3C model underestim
the magnitude of the TDCS but reproduces, however,
angular shape with sufficient accuracy, as shown in R
@15#. The reason for this shortcoming of the 3C model is
incorrect weighting of different scattering amplitudes whi
alters their interference behavior@5,41#. This underestima-
tion of cross sections by the 3C model persists down
threshold. In fact, as is well known, at lower excess energ
the 3C model grossly underestimates the measured abs
value of the cross sections. This behavior, also similar to
observed in Figs. 1~a!–1~i!, is not the result of a wrong in
terference pattern but rather due to a vanishing density
states of the ‘‘unscreened’’ electron-electron scattering s
system.

Generally, differences between the CCC and the DS
are marginal and, in some cases, both of them are cle
beyond a perfect agreement with the data. In Ref.@13# it is
stated that the CCC is ‘‘essentially without approximations
Hence, the agreement between the DS3C and the CCC
sults can lead to the conclusion that the approximations m
to arrive at the DS3C wave function are justified in the g
ometries studied here. In fact, it can be shown analytic
that the neglected partH-Hpar vanishes at higher excess e
ergies @26# @ limkjj j→`(H2Hpar)→0#. Unfortunately, the
moderate incident energies and the still remaining diff
ences between experiment and theory shed doubt on
conclusion.

In Ref. @21# calculations were performed using the DS3
without approximation~8!. As stated above, the normaliza
tion then has to be deduced from the asymptotic flux rat
than according to Eq.~2!. This procedure yielded a position
dependent normalization@38#. The predicted cross section
turned out to be substantially different from the DS3C resu
presented here and in some cases substantial discrepa
with experiments were observed. Unfortunately, the ‘‘a
proximate’’ normalization procedure prevents an unambi
ous assessment of the approximationH2Hpar'0 which has
been made to arrive at the radial part of the wave functi
This same argument applies to the TDCS calculations wi
the AM model.

At higher impact energies@Figs. 2~a! and 2~b!# the 3C and
DS3C results converge to each other, whereas in this ge
etry no CCC calculations are available.

At lower excess energies@Figs. 3~a!–3~d!# differences be-
tween various theoretical models extend to the shape of
TDCS. In particular the CCC yields additional subsidia
shoulders in the TDCS. As yet, there is no physical expla
tion for the appearance of those structures while the
dominant peaks can still be roughly identified as binary a
recoil peaks. In fact, at an excess energy as low
13.6 eV the TDCS still possesses the double-peak struc
@5,41#. In this low-energy region it has been shown@5,41#
s.
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that the 3C fails to reproduce the measured TDCS in sh
and magnitude, whereas the DS3C offers reasonable, tho
not perfect, predictions. As done in Refs.@5,41#, the influ-
ence of final-state interactions as well as the effects of th
body coupling on the cross sections, shown in Figs. 3~a!-
3~d!, have been investigated@45#. The conclusions drawn
from this study indicate that the origin and the rough po
tions of the two peaks occurring in Figs. 3~a!–3~d! can be
traced to single, and sequential, double-binary collisio
The heights of these peaks is determined by three-body
pling. A study of the spin-resolved TDCS in the geome
corresponding to Figs. 3~a!–3~d! revealed a rich structure o
the spin asymmetryA:5(uTsu22uTtu2)/(uTsu213uTtu2) @45#.
The origin of this variation is basically unexplained as y
At higher energies and small momentum transfer~Figs. 1
and 2! the TDCS is determined by direct ionization even
Hence the magnitude of the spin asymmetry is vanishin
small.

III. CONCLUSIONS

Contrasting a fully numerical treatment of (e,2e) reac-
tions, such as the CCC approach, with approximate ana
cal methods, such as 3C and DS3C, yields additional ins
into the mathematical and physical structure of the thr
body Coulomb problem. Deviations of the results of appro
mate analytical methods from those predicted by exact
merical approaches can be used as an indicator for
strength of the neglected part of the total Hamiltonian
arrive at these analytical approximations. Unfortunately,
discrepancies between theory and experiments, as obse
in Figs. 1 and 3, leave some doubts about the reliability
such a procedure. Hence it is highly desirable to estab
some benchmarkabsolutemeasurements for atomic hydro
gen against which various models can be judged. Hydroge
targets are of particular importance since most (e,2e) theo-
retical models impose additional approximations in order
deal with (e,2e) processes from many-electron targets.

The DS3C results presented in this work, combined w
those at low impact energies and the integrated cross-se
results @5,40–42#, lead to the conclusion that the pa
H2Hpar of H, which has been disregarded to arrive at t
DS3C wave function, has minor effects on the measu
(e,2e) cross sections in a wide range of the six-dimensio
spaceka^kb .
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