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Ab initio study of interelectronic correlations in electron-impact ionization of hydrogen
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Electron-impact ionization of hydrogen is investigated based wgiminitio quantal calculations. In the
present calculations, strong interelectronic correlations are represented by the hyperspherical channel functions
and accurate numerical solutions of the two-electron atomic Slafger equation are obtained by means of the
smooth-variable-discretization method in combination with Bienatrix propagation method. The double-
continuum boundary condition is represented by matching the numerical solutions to asymptotic solutions,
which are described by superpositions of approximate asymptotic channel functions. We obtained the ioniza-
tion threshold law, which is in good agreement with Wannier’s conjecture, and also an almost uniform energy
distribution in double-continuum states at low energies, syl a.u. At low energies, the angular distribu-
tions of the electrons in double-continuum states'8f localize where the interelectronic angular distance
0.,= . As the energy increases, the binary-encounter and the dipolelike transition mechanisms manifest
themselves in the angular distribution. The spin-averaged total ionization cross section and the spin asymmetry
from the present method agree well with experimental measurements as well as the convergent-close-coupling
result, while for the spin asymmetry there is a noticeable disagreement with the hidden-crossing result at
moderately low energies. An essential role of the potentigle during the ionization process is apparent in the
convergence of the present calculatiof&1050-294717)02611-3

PACS numbes): 34.50.Fa, 34.80.Dp

I. INTRODUCTION and 6,,= 7, wherer, andr, are radial distances of indi-
vidual electrons and, is the angular distance between the
Electron-impact ionization of hydrogen is a basic atomictwo electrons. The value of the exponert1.127) is asso-
process that leads to disintegration of one heavy and tweiated with the Lyapunov-type exponent of the above-
light Coulombic particles. The disintegrated state is fre-mentioned specific classical trajectories. Later, semiclassical

quently referred to as the double-continuum state and quantal local solutions that correspond to Wannier's
classical trajectories were found independently by Peterkop
e +H—e +e +p*. (1) [4] and Rau[5]. Klar and Schlech{6] applied Wannier's

theory to the states of arbitrary values of the total angular

The bulk of the ionization cross sections that provide impor-momentum. Feagin7] reformulated Wannier's theory for
tant information for plasma physics, for example, are distrib-arbitrary masses and charges. A quantal calculation of the
uted in a high- to intermediate-energy range. At high enerabsolute cross sections for electron-impact ionization of he-
gies, the time spent by the incident electron in an effectivdium near the first-ionization threshold was made by Crothers
range of the interaction potential should be even smaller thaf8] using Peterkop’s solutions. Other theoretical eff¢g$
a characteristic time for the potential to have a significanilso have been made to examine the threshold law; however,
effect. Indeed, perturbative treatments were applicable in thiall of them largely resorted to Wannier’'s conjecture. On the
energy rang¢l]. At intermediate energies where the ioniza- other hand, experimental efforts to determine the threshold
tion cross section has a maximum, the convergent-closeexponent also exist. McGowan and ClarkKiE)] measured
coupling method of Bray and Stelbovil&| has succeeded in relative ionization cross sections for electron-impact ioniza-
bridging a gap between theoretical predictions and experition of hydrogen in energy range up to a few hundreds of
mental measurements for the ionization cross section. meV from the threshold. They obtained the value #0303

However, theoretical interests are rather strong on théor the exponent. Later, Cvecjanovand Read 11] deter-
low-energy side because what has been attracting the interasined the exponent with a carefully designed apparatus for
of atomic theoretists is the interelectronic correlations inelectron-impact ionization of helium and obtained the value
double-continuum states that become pronounced at low en-131+0.019. Both of the measurements are consistent with
ergies. In particular, the correlations manifest themselves iWannier's threshold law. Since then, Wannier's conjecture
the threshold law of the ionization cross section: The threshhas been largely accepted by atomic physicists.
old law is frequently described Wy”, whereE is the energy Nevertheless, it is nontrivial to obtain the threshold law
excess from the ionization threshold. Wannier's famousheoretically without recourse to Wannier's conjecture be-
theory[3] provides the exponent=1.127 for the electron- cause of difficulties in theb initio treatment of interelec-
impact ionization of neutral atoms. In his theory, the thresh+tronic correlations in double-continuum states. In this regard,
old ionization paths are presumably represented by specifiwe must mention some existing theories. Proulx and Shake-
classical trajectories that correspond to correlated motions afhaft[12] calculated the absolute cross section for double-
the two electrons astride the potentielge, namely,r;=r, photoionization of helium by means of a initio basis-set
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method, but with the aid of some semiclassical ansatz fodue after subtracting from the total wave function the exci-
final-state wave functions. Their result is consistent with thetation components, the latter components being better de-
conjecture of Wannier’s theory for the double photoioniza-fined since the asymptotic channel functions satisfy the well-
tion of helium. Ros{13] applied the semiclassic&matrix ~ defined excitation boundary condition. In actual
theory for the threshold ionization of the electron-hydrogenimplementations, the target states that involve discrete as
collision, in particular for a collinear model in which the Well as continuum spectra of the target atom are discretized
motions of the two electrons are restricted in a line with theRy confining the target wave functions within a sphere whose
nucleus between them. In Rost’s theory, the ionization dyjlnlte radius is determined from the matching hyperradius.

namics is represented solely by the classical trajectories of € discretization procedure is required not only for repre-

the two electrons. He obtained an ionization cross sectiofeNting the continuum spectrum effectively, but also for de-
that is consistent with Wannier's threshold law. Recently,f'nmg the normalization of the asymptotic channel functions

Macek et al. [14] applied the hidden-crossing theory to the ON the hypersphere of a given matching hyperradius. The

threshold ionization of electron-hydrogen collision. They de_techr)ical problems being res_olved in this manner, we gre_in a
duced the Wannier-Peterkop-Rau solution approximately b}posmon to explore the physics of e_Iectron—|mpact. ionization
means of the angle Sturmian basis expansion; the hiddeif! hydrogen at relatively low energies on the basis of quan-

i i tum mechanics.
crossing theory provided the threshold exponerit104 us- _ ; . .
ing only one angle Sturmian basis. This paper is organized as follows. We describe the

For further insight into details of ionization dynamics, the present theoretical method in Sec. Il. An accurate numerical

energy distribution as well as the angular distribution of theTethod for solving the two-electron atomic Satfireger

two electrons in double-continuum states are important Subequatjo_n is given in Sep. . A'. Section 1B is .de'vot.ed_to
jects to be investigated. In particular, for the energy distribu-d€Scribing the asymptotic solutions and to specifying ioniza-
tion, experimental measuremeiitd, 15 provided an almost tion components. In Sec. I_II we a_nalyze theoretical results. In
uniform distribution near the threshold. However, the local>€CS- Il A and 1l B the ionization threshold law and the
solutions of Peterkop and Rau are not capable of explainingnergy distribution of the two electrons in double-continuum
the uniform energy distribution. Feagin obtained a Gaussia tates are examined in a m0d6| In Wh.'Ch the angular degrees
distribution peaked a¢; = ¢,, wheree, ande, are the ener- of freedom are frozen, while the radial degrees of freedom

gies of the individual electrons, by means of the fourth-orde?'® tal_<en _mto acc_ount co_mp_lete_ly. An important role of the
Wannier theory[16] in which the interaction potential are POtential ridge during the ionization process becomes appar-

expanded up to the fourth order around the ridge. The poinfnt PY analyzing the convergence of the present calculations
is that the Wannier-Peterkop-Rau solution is valid only nea Sec. 11 Q. The_angula_\r _correlat|ons of dogble-contmuum
f,=r,, though to obtain the correct energy distribution it is Sttes are examined within the® symmetry in Sec. 1l D.
necessary to take the whole radial coordinate space into a fom t.he gngular d|str|bgt|on; th‘.':lt are obtamed.fraimnl- .
count. On the other hand, Vinkalns and Gailfti’] carried tio ionization wave functions, ionization mechanisms are in-
out a classical trajectory calculation and obtained an almos\fesug""ted In a v_wde energy range. In Sec. .”I E we demon-
uniform energy distribution. Other classical trajectory calcu-Strate t'he validity Of. the present thelore'ncall method by
lations[13,18], a semiclassical calculatiqi9], and quantal cOMpParson of the sp|r_1-averaged total_ lonization cross sec-
calculations aided by a semiclassical an$a;21] also pro- tions as well as the spin asymmetry with experlmental mea-
vided the almost uniform energy distribution. Is the correctSUrements and other theoretical results in the low- to
energy distribution really uniform at low energies? No exist-Ntermediate-energy range. In Sec. IV we conclude the paper.
ing theory appears to be in a position to provide a full quan-
tal answer. _ _ - Il. THEORETICAL METHOD

The purpose of this paper is ab initio study of the
threshold law as well as the energy and the angular distribu- A. Accurate numerical :solution of the two-electron atomic
tion based upon fully quantal calculations. To this end, the Schradinger equation
hyperspherical ao!iabatic chan_nel functk_)ns are exploited to 4 Hyperspherical coordinates and adiabatic expansion
represent strong interelectronic correlations rigorously. Ac- o ] ]
curate numerical solutions of the two-electron atomic $chro ~ The Schrdinger equation for a two-electron atom is
dinger equation are obtained by means of the smooth-
variable-discretization methd@2] in combination with the 1 1 Z 7 1
R-matrix propagation methof23]. In order to impose the - EVf— ng— ———+——E|U(ry,ry)=0, (2
double-continuum boundary condition on the solutions, we
match the hyperspherical solutions to some asymptotic solu-
tions on a fixed hyper-radius, which is subsequently referresvhereV? represents the Laplacian operatfim;,r,} are the
to as the matching hyperradius. However, a principal probradial coordinates of the two electrorrs; is the interelec-
lem here is that we do not know any exact analytical exprestronic distance, and is the nuclear charge. Atomic units are
sions representing asymptotic solutions for double-used throughout{=m,=1) unless otherwise stated. The
continuum states. Instead, in this paper, approximateepresentation of the system by the independent-particle co-
asymptotic channel functions, each of which is representedrdinates suffers a slow convergence from strong interelec-
simply by a product of a pseudohydrogenic target wave functronic correlations. Instead, we represent the system by the
tion and a free scattering wave function, are employ@l.  hyperspherical coordinates that are suited for describing the
The double-continuum components are specified as the resiterelectronic correlations.
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In the hyperspherical coordinates, the Sclimger equa- 2. Stable propagation of the solutions in tHR-matrix form

tion reads The hyperspherical coordinates consist of one noncom-

pact variable that is the hyperradiBs=[0,~] and the other
compact variable§). Systems bounded in a finite range pro-
vide well-defined eigenvalue problems. Thus we divide the
hyperradius into finite intervals, calculate solutions within
X¥(R,Q)=0, (3 each interval, and then propagate them with respect to the

i . hyperradius so as to construct globally continuous and
where the hyperradiuR represents the mean-square radiussmaath solutions. This section is devoted to the mathemati-

of the system, namelwri+r3, and{) groups fjvg residual  ¢a| formulation of theR-matrix propagation methof®3].
angular coordinates, namelya=arctanf,/ry),r{,r,). The Scaling the solutions ag=R¥*¥ leads to the Schro
grand-angular momentum operathf(Q)) and the effective dinger equation

chargeC({1) are

1R*5‘9R5a+11AZQ+RQ E
RRRN R R2 (Q)+RC(Q)

1ﬁRZ(7 o 1A29 RC(Q)—R%E|#(R,Q
O S PSP S 2R GR g T TRAMTRE R
Sinf2a da da  sita  cofa’ -0 @
L2 1 9 9 d N 1 9 4 The Bloch operator is then introduced in a finite interval
Tsing, 3096, sirfe, 92 @ [ab],
Z Z 1 L(R)=R? (S(R—b)i—(sm—a)i (8)
C(Q)= JR IR|’

- + ,
SN COsx /1 —sin2aCcosh;»
so thatH(R,Q)+ £(R) becomes Hermitian in the interval,

where 60,, is the interelectronic angular distance. Adiabaticwhere
separability of the system with respect to the hyperradius

becomes apparent in the hyperspherical coordinf2&s __Ei 2 9 E) } 5
The adiabatic Hamiltonian operator is H(R.Q)= 2 &RR 3R+ 8 + 2A (@) +RC(Q).
1 ©)
Haa(Q2;R)= §A2(9)+ RC(Q). (®  The solutionsy are formally written using the Green’s func-
tion

Adiabatic states provide a convergent representation of cor- .

rglated motlon§ of two electrons on the.hypersph_ere of azp(R,Q):f dR,f dQ'G(R,Q:R", Q) L(R) (R’ Q).
given hyperradiug. In the present calculations, solutions of a

the two-electron atomic Schilinger equation are thus ex- (20
panded in terms of adiabatic channel functions that are ob-

tained by diagonalizing the adiabatic Hamiltonian operatorA spectral resolution of the Green’s function is constructed,
More specifically, in the present calculations the adiabatic
channel functions are represented by u(R,Q)u(R",Q7)

E,—E ’

g(R,Q;R',Q')zg (12)

B — ERVNPES l1+1p2lat12+1
Q“(Q’R)_g (1=x)27(1+x) 7Py () where{u,(R,Q),E,} is a set consisting of the solutions and

the corresponding eigenvalues of

X, 1,0m(F1,72)Can(R), (6) ,
[H(R,Q)+ L(R) - R°E]Ju(R,Q)=0, (12

. 2l,+1,24+1
wherex [=(4/ma—1le[—- 11, a={il o} {P7> """} i is defined within the intervdla,b]. It is nontrivial to
are the Jacobi polynomials, and,,su} represents the goe such multidimensional eigenvalue problems with a
coupled angular momentum states. A set of coefficientsigh precision. An accurate method for solving this type of
{Can(R)} is determined by the diagonalization of the adia- multidimensional eigenvalue problem is presented in Sec.
batic Hamiltonian operator in the representation of|| A 3. Substituting the spectral resolution of the Green's
{Pf'2“'2’1+1}><{y,1|2m}. In this representation, solutions function into Eq.(10), we obtain an expression for the solu-

readily converge with respect o once the angular configu- tions in the form
rations {I,,l,} are fixed. However, the individual angular

configurations are coupled due to the interelectronic interacMR Q)ZE ug(R,©2) b2 u ‘9_'1’ —a2l u (7_'70
tion potential I/1,. The convergence with respect to the ’ k Ex—E KR Reb KaR Real
angular configuration is examined in Sec. Il D, which con- (13

cerns the angular correlations of the two electrons in double-
continuum states. where(|) represents the integration ovér.
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We represent the solutions in terms of the adiabatic chartative Hilbert space of the diabatic-by-sector solutions does
nel functions{®,(Q;R)}, which constitute an orthonormal not span as much solution space as does the adiabatic expan-
basis set at each hyperradius. Then&hmatrix with respect sion with the same number of adiabatic chanrieg], and
to the adiabatic channels is defined at both boundaries of thfe situation becomes even worse in exotic atomic systems
interval as such adtu [22]. Thus convergence must be achieved only

by increasing the number of diabatic-by-sector basis func-
5_¢/f> tions in the calculations. This leads to a sizable calculation,
R=a

<®”|¢>R:a_a% an(a)<d>m JR which should be avoided.
Recently, the smooth-variable-discretizatiofiSVD)

I method was introduced by Tolstikhet al. [22] to treat the
&—R> . (14 nonadiabatic couplings rigorously wi_t.hout labored calcula-

R=b tions. The SVD method treats the Scllimger equation in
the discrete-variable-representati@VR) [29] with respect
to R and in the adiabatic channel representation with respect
to Q2. Though the complete mathematical formulation of the
SVD method was presented in the original paper by Tol-
ban(b)=Gﬁ%— > Gﬁ,a[Ganr aR(a)],T,lGla,?n, stikhin et al., we reproduce the gist of the formulation for the

b present implementation.

<¢)n|¢>R=b:b% an(b)< P,

From Eqs(14) and(13) the R-matrix propagation formula is
obtained in the form

(15 We introduce a set of orthonormal basis functions within
where the interval[ a,b],
GRR_RR,S (@ n(Ry)|up(Ry)){(Ui(R) | P(R2)) ¢i(R)=VWOO/hy 5 P4(x),
nm T2 E.—E '
(16) x=(a—b—-2R)/(a—b)e[—1,1], (18

The R matrix is uniquely fixed at all values of the hyperra- where{P{*/;(x)} are Jacobi polynomials ane(x) andh;_,

dius once the boundary condition of the regular solutions a@re their weight function and normalization constants, re-
R=0 is applied. Thus th&k matrix is first set to zero at Spectively. In this paper we set=0 andg=3 for the initial
R=0. The performance of the propagation method is veryinterval[0,AR] in order to take the nonanalyticif®*? of the
stable since the numerical collapse due to exponentially insolutions aR=0 into account and set= =0 for the other
creasing or decreasing solutions does not occur in thétervals so that the basis functions represent arbitrary
R-matrix form. Moreover, the propagators for different en-boundary conditions. Using the basis functiqes(R)}, we
ergies can be readily constructed once the eigenvalue profefine a set of DVR basis functionsr;(R)} within an

lem of Eq.(12) is solved. M -dimensional subspac&™) by

3. Rigorous treatment of the nonadiabatic coupling by smooth- M
variable-discretization method ¢i(R)= 2 Tijm(R), (19

Now we consider the eigenvalue problem of EtR). In
the adiabatic representation of the solutions, we obtain a s#&there
of coupled ordinary differential equatiof®DES with re-
spect to the hyperradius. In the ODEs, nonadiabatic cou- Ti=(T Yi=«ei(R), xj=VW,/w(x;), (20
plings among the adiabatic states are represented by
(®,]0d, 1dR) whose elements sharply peak at avoidedwhere R;,W; are the quadrature abscissas and weights of
crossings of the adiabatic potential curves. It is quite cumPﬁ,,'ﬁ(x). The orthogonality ofT;; is readily deduced from
bersome to handle such sharp variations of the couplingthe Christoffel-Darboux identity. The DVR basis functions
since the avoided crossings occur rather randomly. have an important property, nameby,-(Rj,):Kj‘lﬁ“ .

To avoid laborious evaluations of the nonadiabatic cou- Then the solutions are expanded in terms of the DVR
plings, the diabatic-by-sector methf2b] was developed in  basis functions as
calculations of atom-molecule collisions; the method has
been applied frequently to atomic physics problef@g]. M
The diabatic-by-sector representation of the solutions does u(RQ)=2 7(R)O(Q). (21)
not require an explicit evaluation of the nonadiabatic cou- =1
plings. Instead, the method incorporates the nonadiabati/g\
couplings into matrix elements of the adiabatic Hamiltonian
operator in the representation

set of coupled ordinary differential equations with respect
to the coefficientd ®;, ()} reads

M
(P n(Rm)[Had(R)| P (Ry)), 17 Had( QR0 (Q) + E [Kjjr—pjj Ex]®j(Q)=0,
ji'=1

where{®,(R,)} represents the set of diabatic-by-sector ba- (22)
sis functions defined at the midpoint of the interyalb].
However, even in the limiAR (=b—a)—0, the represen- where
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b 1 9 J 15 space, which is described lby>r,. The other half triangle,
Kjjr= J;I Wj(R)( 3 ﬁRzﬁ +g TLR) |7 (R)AR, r,>r4, is taken into account through the antisymmetrization
condition, that isg(r;,r,)=(—1)3¢(r,,r,) whereSis the
b total spin of the two electrons. The facter 2 in Eq. (26) is
pPjj’ fa 7 (R)R?m (R)dR. (23  necessary for representing tR&’? behavior of the solutions
atR=0.
This is the DVR representation of the ScHiger equation The target wave functiong (r2)}, which correspond to

in HM). Then we represent the coefficients in terms of thediscrete as well as continuum states of the target atom, are
adiabatic channel functions, namely, the adiabatic expansiogolutions of the hydrogenic Schiimger equation within a
finite radial interval[O,Ry,/+2], whereR, represents the
matching hyperradius where the numerically obtained inte-
rior solutions are matched to the asymptotic ones. We sub-
sequently refer to the interior solutions as the hyperspherical
A set of coefficientgc,;} is determined by solving the al- solutions because they are represented in terms of the hyper-
gebraic generalized eigenvalue problem spherical adiabatic channel functions. We discretize the tar-
get continuum states by the boundary condition

,-k(m:; D (Q;R)) k- (24)

M
1 i + TR TR 1 ryr ryr =
U,(Rj)Cnjk ; jgl [Kijj»=pjj ExlOnjnrjrCarj=0, g6|2(0):gf|2(RM/\/§)=O. (27)

(25
] ] Then the solutions are normalized so that
whereO,,; ,/;- represent the overlap of the adiabatic channel

functions at different values of the hyperradial distances Ry V2 5

(®n(R)|®n(R;+)). The nonadiabatic couplings are incor- fo |9a,|“dro=1. (28
porated into the overlap matrix elements implicitly. The

SVD solutions principally coincide with those of the adia-
batic expansion of the same order as long as the DVR re
resentation of the Schadinger equation with respect ® is
valid. Indeed, the convergence of the SVD solutions is fas
since the Schidinger equations of Coulomb three-body sys-

Due to the boundary condition, the wave functifg.} of
I%ighly excited states whose energies Iie—in/i/RM< e<0
go not coincide with the true hydrogenic wave function.

The functions{fy, (r;)} represent solutions of the mono-

tems are quite smooth with respectRdsee Eq(7)]. pole Schrdinger equation
B. Asymptotic boundary condition 1 d? n l1(1;+1)  (Z-1) k? fry (r)=0
T 5T 5 - 5 | Tkl 1) =Y
In this section we explain how to represent the asymptotic 2drf 2rs ! 2

solutions of the Schidinger equation and how to extract the (29)
ionization components. The term “asymptotic” here means ] ) ] ] .

the region where the kinetic energy of the two electrongvhere the interelectronic Coulomb mte;ractlorrl;hs re-
dominates over the Coulomb interaction potential. Thereforeplaced by the monopole termri/ Here{f,; (r,)} represent
in terms of the hyperradius, the asymptotic region is characthe outgoing traveling waves ardy; (r1)} represent the

. _1 . B . - . . .
terized byR>E™*. Excitation as well as ioinization is pre- incoming traveling waves; they are energy normalized and
sumably completed when the asymptotic region is reaCheBreserve the Wronskian|f*(df /dry)—f (df*/dry)|.

since the two electrons hardly exchange their kinetic energiegy, s the two groups of the asymptotic channel functions are
thereafter. Thus the asymptotic solutions are described by tr‘lgz

independent-particle coordinates. There is another reasone‘cmed by{gb?}_{f‘i'l}x{gfb}' Evidently, Fhe f;\symptonc
why the independent-particle representation should be ag:hannel functiong ¢, } are a crude approximation to exact
plied in the asymptotic region. Disintegration of atomic sys-asymptotic solutions of the two-electron atomic Scfinger
tems, that is, ionization, is hardly specified in terms of theduation unless the multipole terms of the interelectronic in-
hyperspherical adiabatic channg89] because all adiabatic teraction are entirely negligible. However, it is worth noting
channels converge to excitation channels asymptotically a1t the Wronskian of the asymptotic channel functions is
R— . Disintegration channels are readily specified in thebreserved in this approximate representation. The Wronskian

independent-particle representation. with respect to the hyperradius is
1. A totic soluti R b, by
| symp0|(.:soumns | WR:‘RZJ fdrldrzf da(d); 2 _ 4o 2%a
In this paper the asymptotic channel functions are repre- 0 JR JR
sented by direct products of independent-particle solutions -
MmN
L. - =mf |g(r2)|?dr, (30)
Pa(r1,r2) =R (r)9e, (1) om(F1.12), F1>To, 0

26
(29 wherew;=|f*(df~/dr,)—f~(df*/dr,)| is the Wronskian

wherea={el4l,} andE=Kk?/2+ €. In the subsequent discus- of f~(r;). Using the normalization conditions 6f (r,) and
sion we consider only a half triangle of the radial coordinateg(r,), we find that the WronskialVy is preserved.
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Asymptotic solutions that satisfy the outgoing wave whereU is a column-orthogonal matri®/ is an orthogonal
boundary condition are represented by a superposition of theatrix, andw is a diagonal matrix whose elements represent
asymptotic channel functions singular values of the algebraic system. This is frequently

called the singular-value decompositip®l]. Then the in-
= b2 S +z ¢; Cuas (31) verse of the coefficient matrix is formally written

: (Z5)t=vw iUt (37)
where the first term represents the incoming part and the .
second term represents the outgoing part of the solutionéf‘.’here we use th(_a orthogon_allty tf and V. In case the .
Strictly speaking, the coefficien{sC,,,} for the continuum filgebralc sy_stem is almost smgl_JIar, there are Some vanish-
states depend logarithmically on the hyperradius due to th gly smgllf_s[nglul?r Valu_?ﬁ' thalt Iw:t% a;]nd their mvers%s
long-range interelectronic interaction potential. However, we?€¢0Me Iln |n|te|y arge. The column ‘;]V osei cprres]E)or? "
safely neglect the logarithmic dependence at a sufficiently’d Singular vaiue is zero repreients the S(I) ution ﬁ the ho-
large hyperradius. The set of coefficients are determined b{f'09€N€OUS _egqgatlon, nameky, Thus, by replacing the cor-
matching the hyperspherical solutions to the asymptotic exl€SPondingv™ === by zero, we obtain the desirable solution
pression of Eq(31) at Ry>E L. The matching condition is Uniauely.

2. Extraction of ionization components

+ _ HS +
Va (RM)_; 7 (Rm)Aga, The above-mentioned procedure provides the set of coef-
ficients{C,,} that contain complete scattering information.
Iy (Ry) IYHS(Ry) The next step is to extract ionization information from the

AL, (32 coefficients. In this work, the total flux is preserved within
four significant digits, that is),==,/|C,a|?=1. The coef-
ficients {C,/,} of each discrete target staté(e<<0) are

e identical to the corresponding scattering matrix elements be-
(32) there are two sets of unknown coefficients, namely.c, se the asymptotic channel functions satisfy the boundary
{Cara} and{Ay,}. Using theR matrix at the matching hy-  qndition for excitation. Thus the flux of excitation to each
perradius, we obtain a set of equations for the coefficientgjiscrete target state is well representedJgy. ,=|Caal?.
{Carals The excitation cross sections are readily obtained from
P 1/1+> J.—a. However, the coefficients of continuum target states

a

IR :; IR

where{ ¢S} represent the hyperspherical solutions. In Eq.

_ra . (33 a'(e>0) are different from the corresponding scattering ma-
IR [ 14 g trix elements because the asymptotic channel functions are a
M crude approximation to the exact asymptotic continuum
Substituting the form of the asymptotic solutio(&l) into  States[see Eq.(29)]. Nevertheless, since the flux conserva-
Eq. (33), we obtain a set of algebraic equations for the coeflion condition is satisfied in the present calculations, an ion-

<q)n|w;>|R:RM:E Rnn’<q)n’
n/

ficients{C,/,}, ization flux can be extracted by
E Z;a/ca/a:Z;a, (34) ‘]iom—a:Ja_ 2 Ja’<—a: E |Ca’a|2- (38)
2’ a’(e<0) a’(e>0)
where In the above equation the total excitation flux is represented

by a summation of the flux over discrete target states,
ddy namely,> ; (.<0)Jar—a- However, the flux of the highly ex-
R/ (39 cited statem’ (— v2/Ry < e<0) is different from that of the
true hydrogenic states. Thus a subtle uncertainty in the ion-
In the present paper the coefficient matdx always be- i;a}tion flux remain§ as long as the matching hyperrgdius is
comes rectangular because the order of the representativg'te' T he uncertal'nty is suppressed only by increasing the
Hilbert space is different between the interior and themat(_:h'_”g hyperr_ad!us._ L
asymptotic representations. More specifically, more Similarly, an ionization wave function is represented by
independent-particle solutions are required than the hyper-
spherical adiabatic channels to represent the correct solution Won: E ¢,;,ca,a_ (39
space. Thus the algebraic system becomes overdetermined, a'(e>0)
namely, singular. Therefore, the direct inversion of the coef- ) _ . . .
ficient matrix is not applicable. The overdetermined alge-n the asymptotic region, a constraifk={), is obtained
braic system has more than one solution: Any solutions ofVithin the validity of the stationary-phase approximatjei
the homogeneous equati@ x=0 can be added to the so- Where (= (a, = arctank,/k;) ki kp) andk, andk, are the
lution. Thus we must effectively throw away singular solu- individual momentum vectors of the two electrons. From the
tions and extract the proper solutions. classical mechanical viewpoint, this means that the direction
We first diagonalize the coefficient matrix in the form  of the asymptotic momentum of each electron coincides with
that of its radial vector asymptotically unless the two elec-
Zt=uwVvT, (36)  trons exchange their kinetic energies. Since the energy ex-

Zr?a:<q)n|¢ai>_z 7znn’<q)n’
n!
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change does not take place asymptotically, we can examine:

0

. . . . . A . . 0.01
differential ionization cross sections using the relation & o Tt
H 0.009F
d o
Tion + 2 w 0.008F
—5 *|¥ion(Q]%. (40) bt
ko on EZ'0.00W-
=
©

However, near the potentiaalley, namely,a~0 or /2, the 0. 008F

relation of Eq.(40) is not applicable because there the 0.0051
stationary-phase approximation becomes invalid as long as gosl
the matching hyperradius is finite. Therefore, there remains
an uncertainty for the normalization of the differential cross
section. Thus, in this paper we examine only relative shapes  ©-%02F
for the differential cross sections using E40). 0.001fF

0.003

Il. RESULTS AND DISCUSSION 00 ‘(;.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
E (a.u.)

A. Wannier exponent for the two-dimensional model

Wannier's threshold law is described in the formxE?, FIG. 1. Variation of the total ionization cross sections of the
where E is the energy excess from the threshold and thdwo-dimensional model with respect to the curvature of the poten-
exponenty=1.127, which is similar to the Lyapunov expo- tial ndge._ The sollillne represents the curve for,= withe long-
nent of the classical trajectory of the two electrons astride th?hasze?t II(:TT‘ forflze_ 71/ 2, /ih?l_;hort'daShe(:. line ffgl"’__ 77//23 é}gd
potential ridge, namelyg= /4 and 6,,= . In Wannier's ned 3 4eare";]%rr?:alli22;gto' thatec;rois SZ‘t:"EO_nz A ;2577 » TS,
theory the radial motion of the two electrons is decoupleof?1 m =T e
frgtrg ni?ael Z?gljjrl]?jr trr?gtlr(i)g Ig_ t?ﬁequg?éﬁﬂ; e(;(rl]a;nsmir; (r)(]; t:‘ee_cross sections of the two-dimensional model at low energies.
P . ge. 1he p 9y | P'he curvature dependence is evident in the figure.ofs
sented by an inverted paraboladrand by a parabola ifi;,.

. . . decreases, namely, as the curvature of the potential ridge
The_ threshold exponent is dgtermlne.d.s.olely by the radlgl increases, the ionization cross section becomes strongly sup-
motion of the two electrons in the vicinity of the potential

pressed near the threshold. This is because the instability of

ridge. Thus, in this section we examine the ionization threshfhe radial motion near the potential ridge becomes engrossed

old law using a modgl in which Fhe angular degrees of free-as the curvature increases; then it becomes more probable
dom are frozen, while the radial degrees of freedom ar

i , hat th I ly fall i ither of th -
treated completely. Aa posteriorijustification of using this That the two electrons prematurely fall into either of the po

. L nT d tential valleys ate~0 or at «~ /2, leading to excitation
model in low-energy ionization will be presented by analyz-[33]

ing ab initio results for energy as well as angular distribu-
tions of the double-continuum states @ in Sec. Ill D. We
refer to this model as the two-dimensional mofg®] be-
cause the Schdinger equation is of two degrees of freedom o=E""12G(E), (43)
{R,a}. In the two-dimensional model, the angular distance

between the radial vectors of the individual electréqhsis  where (6,,) is the 6,,-dependent threshold exponent and
treated as a parameter. Roughly speakingdetermines the G(E) is the correction to the energy dependence, which is
curvature of the potential ridge because the expansion of theresumably an analytic function in excess energy around
potential aroundv= /4 up to the quadratic term leads to E*>0,

C=—Zy(012) —Z(01) B2, (41

where B=ml4—a, Z(01,)=2\2—(1—cosh,) 2 and

Z,(012) =32+ cosd; (1~ cos)) ~ 32 The degree of insta- That is, we do not resolve nonanalyticity beyoEd. We
bility of the radial motion in the vicinity of the potential determine the threshold exponent by the least-squares fitting
ridge depends on the curvature. Thus the dependence of of the numerically obtained cross sections to the analytical
the curvature should be reflected in the threshold law. Inform, Eq.(43). In Table | the results are compared with the
deed, a straightforward implementation of Wannier’s theoryconjecture based upon Wannier's theory, &g). The nu-

in the two-dimensional model leads to thg-dependent ex- merical cross sections used in the least-squares fitting lie in

As the energy increases from the threshold, the ionization
cross section rises according to

G(E):i:Z0 a;(E—E*)'. (44)

ponent the range 0.064E=<0.2 a.u. Theab initio exponents are in
good agreement with the modified Wannier theory. How-
1 Zy6p) 1 ever, the systematic growth of the difference between them
0=\t 7" 71 (42 . : i
16 Zy(6) 4 for small values off,, is seen in the table. One possible

interpretation of this is as follows. The curvature of the po-
where 7(7)=1.127 coincides with the Wannier exponent. tential ridge becomes sharper as becomes smaller, thus
We examine thed,, dependence of the threshold law in the the range of validity of the quadratic expansion of the poten-
two-dimensional model bgb initio quantal calculations. tial becomes narrower. This would imply that for sméjl,
Figure 1 shows the numerically obtained total ionizationthe Wannier picture is valid only at vanishingly small energy
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TABLE |. Comparison of the numerically obtained threshold

exponent with the Wannier-type conjecture, E4R). The numbers

in the parentheses are calculated from &&). Theh, and\, are

obtained by fitting to Eq(43) and to Iro(E), respectively.

01 Wannier N1 N2

T 1.127(1.359 1.124+0.013 1.1190.006

- 1.177(1.409 1.168+0.014 1.156-0.004

15

T 1.294(1.523 1.283+0.016 1.3040.005

2

- 1.483(1.715 1.480+0.016 1.4920.005

25

- 1.766(2.000 1.711+0.017 1.740+0.005

3 o (rad)

T 2.169(2.408 2.021+0.021 2.07%0.005 FIG. 2. Squared amplitude of the asymptotic wave function for
3.5 E=0.1 a.u. and?yy,=4000 a.u. in the case @ ,= 7. The solid line

- 2.740(2.979 2.492+0.023 2.514 0.004 represents the ionization component and the dashed line the total
7 wave function. Diamonds represent sinfhat coincide with the

squared amplitude of the ionization component.

excess. Thus, according to the above observations, the syguantal calculations resorting to some semiclassical ansatz
tematic discrepancy may reflect that the energies where tH&0,21 provided an almost uniform energy distribution at
fitting is effected are not sufficiently low for small values of low energies. Here we examine the energy distribution
015. within the two-dimensional model af;»= 7 by carrying out
The two-dimensional model has two degrees of freedonfully quantal calculations.
of motion that are coupled, namel, and «. The coupling Figure 2 illustrates the squared amplitude of the
between theR mode and thew mode stabilizes the radial asymptotic wave function as well as its ionization compo-
motions of the two electrons astride the potential ridge. Thisient atE=0.1 a.u. forR,,=4000 a.u. In this figure the wave
stabilization phenomenon may be interpreted as an inertidlinctions are folded into the representation in terms of the
effect, akin to the Coriolis forcg34]. In Table | the numbers hyperspherical channel functions, that B,® (P, ¢").
in parentheses indicate the threshold exponents that are olNear the potential valley, namelg~0,7/2, the squared am-
tained by neglecting the coupling, plitude of the total wave function has a rapid oscillation that
corresponds to the formation of Rydberg states of the target
hydrogen, whereas apart from the potential valley the
(45) squared amplitude shows a quite smooth distribution that
corresponds to the ionization component. The rapid decline
The stabilization effect is evidently seen in the thresholdOf the ionization CO”?pO”e”t near the potentlal vqlley 'nqh
cates that the valley is strongly absorptive for the ionization

exponent. The exponent without the coupling is always

larger than that with the coupling. This indicates that theS°MPonent. Thus we may conclude that there is no revival

ionization cross sections that are obtained by neglecting thgom thel poﬁe”“?' \llalley bacrlf to th_e ridge inrt]he asymptotitlz
coupling become suppressed near the threshold much mo¥89'°n' n classical terms, the trajectories that prematurely

so than those that are obtained by including the coupling. a[l Into the valley a!ways lead to excitation. In Wanr_uer’s .
original paper, a similar statement was made as a basis of his

reasoning in terms of ridge trajectories of two electrons.
Moreover, it may indicate some classical feature of the
asymptotic wave function, namely, that the ionization com-
Wannier’s theory presumes that in the threshold ionizaponent is well localized with respect @ forming a wave
tion two electrons escape from the small region with equapacket.
energies, thus the energy distribution of the two electrons In the figure it is also evident that the squared amplitude
would localize ate;=e€, at the initial stage of escaping. of the ionization component is well described by sinex-
However, the escaping electrons continue to exchange thedept for the potential valley. The point is that the correct
kinetic energy under the influence of the long-range Coubehavior of an ionization wave function is not uniform with
lomb force between them, thus the energy distributionrespect toa: The uniformity that is derived from the local
evolves until they attain the asymptotic region where thesolutions of Peterkop and Rau just represents the local be-
kinetic energy dominates over the Coulomb interaction enhavior in the vicinity ofa= /4. Using Eq.(40) and taking
ergy. Thus the distribution finally established in thethe phase-space factor smMto account, we find that the
asymptotic region would differ from that at the initial stage good fit of the squared amplitude of the ionization compo-
of escaping. Classicdl13,17,18, semiclassical[19], and nent to sin2 indicates that the energy distribution is uni-

Zy( 612
Zy(012)

7(015)=

B. Energy distribution of double continuum states
for the two-dimensional model
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FIG. 3. Energy distribution of the two electrons in the case of £, 4. Convergence of the total ionization cross sections with
012=. The solid line is forE=0.1 a.u,, the long-dashed line for regpect to the number of hyperspherical chanheis the case of
E=0.5 a.u., the short-dashed line fB=2.0 a.u., and the dotted 6,,= . Diamonds represent the results for= 20, the long-dashed
line for E=5.0 a.u. The distributions are normalized to unity, where|ine for N= 13, the short-dashed line fot=12, and the dotted line
both of the electrons share the available energy evenly. The distrig, N=11.

bution appears uniform &=0.1 a.u. on this scale.
number of channels increases and then suddenly conver-
form. Figure 3 shows the energy distribution obtained fromgence obtains at all energies. In the figure, this sudden con-
the squared amplitude of the ionization wave function USing/ergence is particularly marked at low energies, while at
Eq. (40). In the figure it is evident that the energy distribu- high energies the cross sections are almost unaltered. It sug-
tion becomes uniform as the energy decreases. Thus we m@gsts that there is a specific ionization mechanism that domi-
infer that after leaving the small region the energy distribu-nates in low-energy ionization. Let us argue in favor of the
tion of the two electrons continuously diffuses from wheresuccessive promotion via the potential rid@s)]. Figure 5
€;= €, and becomes uniform asymptotically. shows the adiabatic potential curves that are associated with
It would be intriguing to consider the Temkin-Pd@)  the adiabatic channels up to where the matching is effected.
model for further investigation of the energy distribution at|t is evident in the figure that the number of adiabatic chan-
low energies. In the TP model the interelectronic interactiomels required for convergence coincides with the number of
potential is replaced by the monopole term, thus the potentiaddiabatic potential curves that possess avoided crossings
has a cusp at the ridge. It is expected that the cusp ridge hagong the potential ridge. It may be taken as direct evidence
a quite different effect on threshold ionization when com-of the successive promotion to ionization via the ridge.
pared to the inverted-parabola ridge as in the two- Next we examine the convergence with respect to the
dimensional model. While the inverted-parabola ridge reprematching hyperradial distances. It is expected that the two
sents a fixed point in the classical phase space, the cusp ridge
does not. Thus the energy distribution of the TP md@8é] ‘m L © ' ' ' ' '
at low energies would be considerably different from that of
the two-dimensional model. Our pilot calculations for the TP
model indeed indicate marked differences and will be re- 0004 [ 4
ported elsewhere.

v
-0.002 | \\

(a.u.)

-0.006

C. Role of the potential ridge in low-energy ionization -0.008 11

We examine the convergence of the present calculations
with respect to the number of hyperspherical channels in-
cluded in the calculations as well as to the hyperradial dis-
tances where the matching procedure is effected. We limit F
the analysis tof,,= 7. The essential role of the potential oop S ]
ridge manifests itself in the convergence. 100 18 200 20 @0 0 40 450 500

First, we examine the convergence with respect to the R (a.u.)
number of hyperspherical channels included in the calcula- T
tions, while the matching hyperradius is always fixed. Thus i 5. Adiabatic potential curves in the case fah= . The
the analysis would reveal the ionization dynamics within theso|id line represents the adiabatic potential curve that is associated

inFerior region bounded by the matching_hyperr_adius. Figureith the 13th channel. The potential ridge is represented by the
4 illustrates the convergence of the total ionization cross seGtashed curve, which monotonically rises from the bottom of the

tions at representative energies as a function of the numbeiure across the potential curves. Diamonds represent the middle
of hyperspherical channels for the matching hyperradiugoints of energy gaps between the potential curves at where the
Ry =500 a.u. The cross sections vary rather sharply as thavoided crossings occur.

‘\
0.01 |

-0.012

Adiabatic potential
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FIG. 6. Convergence of the total ionization cross section with | . : e
respect to the matching hyperradig, in the case off,,= . 5
Diamonds represent the result f8,=500 a.u., the long-dashed : 0-018F (D) ]
line for Ry,=300 a.u., the short-dashed line f&f, =100 a.u., and O 0.016F _ -
the dotted line folRy =50 a.u. Convergence seems to be achieved 9 0.014F ” ' |
at Ry =300 a.u. at all energies &=0.05 a.u. =
5 0.012F -1
electrons hardly exchange their kinetic energies at large hy- o o1k |
perradial distances where the total kinetic energy dominates &
over the Coulomb interaction energy. Thus, at finite energies ~ °-°°% ]
above the threshold the ionization process becomes com: 0.006[ .
pleted by reaching some large but finite hyperradius. Figure 0. 004k 4
6 illustrates the convergence of the ionization cross section
with respect to the matching hyperradius. In the figure the — °-°%

cross sections for each matching hyperradius have already P ”“6'1 — 'l o

converged with respect to the number of hyperspherical
channels. It is evident that the cross section at a finite energy E (a.u.)
converges with a finite hyperradius. However, the conver-
gence becomes slower as the energy decreases. This is bi °-911 : '
0.01F 1

cause at low energies the energy exchange between the tw
electrons takes place over up to even larger hyperradial dis-
tances; the distances may be scaled proportionaly t as
often argued in the manner of Wannier.

.008F

(units of ma
<

0.007F 1
0.006[ 1
D. Angular correlations of two electrons &

in double-continuum states: 1S® symmetry 0-005F i
0.004f 1
In addition toR and «, realistic three-body systems have o 00sk 1

one more internal degree of freedom that represents the mo '
tion with respect to the interelectronic angular distance, 00021 ]
namely,8,,. In this section we neglect the orientational de- 0.001F = 1
gree of freedom that can be described by the Euler angles 0 0- - =

0.01 .1

We consider!S® symmetry only.

In the present calculations the angular part of electronic
states are represented in terms of individual angular-
momentum stated {,,), wherel,=1,=1 sinceJ=0. Thus . FIG. 7. Partial ionization cross sections with respect to indi-
we first examine the convergence of ionization cross sectiongdual angular-momentum states in the casé$tfor (a) I=0, (b)
with respect to the individual angular momentlniigure 7 1=1, and(c) | =2. _The solid line represents the result f%x.zs’
illustrates the convergence of partial ionization cross section}spe long-dashed line fokma,=4, and the short-dashed line for
with respect tol ., Wherel ., is the maximum angular- ™2
momentum state included in the calculations. In the figure
the partial ionization cross sections fe£2 almost converge close to the threshold energy. In Fig. 8 the contribution from
whenl ,,.,=5. To obtain converged results for higdetom-  each angular-momentum state is identified. Tiravave
ponents, we need to increakg,,; however, as the angular component (=1) dominates over other angular-momentum
momentum| increases the contribution to the ionization states and this contribution increases as the energy increases,
cross section decreases rapidly unless the total energy v¥ghile the contributions from the other angular-momentum

E (a.u.)
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FIG. 8. Contribution of individual angular-momentum states to
the total ionization cross section o8&°. The solid line represents 2
- - - do/dede (b)
I=0, the long-dashed liné=1, the short-dashed line=2, dia- c/0eqa0,,

mondsl =3, crosse$=4, and squarek=5.
0.015

states become saturated or suppressed. This suggests that .

high energies the dipolelike transition dominates the ioniza- %
tion. BelowE=0.1 a.u. a qualitative change in the behavior %%f%%

Z /ff”/

7

of each component is seen in the figure; the contributions of 0005
large-angular-momentum states begin to grow. This may
suggest strong interelectronic correlations with respect to the
angular distance of the two electrofig, near the threshold.
Wannier’s theory presumes that near the threshold the twc
electrons escape from the small region in opposite direction:
leaving the nucleus in the middle of them, namely;~ .
The conjecture is intuitively reasonable because it is ex-
pected that the long-range interelectronic Coulomb repulsior
force pushes the escaping electrons away from each othe
Using an advanced photon source, angular distributions o
the two electrons in double-continuum states were measure
in double photoionization of helium near the threshi3d] d20-/d£d912
and recently recoil ion momentum spectroscopy was carriec
out in double photoionization of heliuf88]. These experi-

0.0035
ments showed that near the threshold the angular distributior  ¢.003
of the two electrons indeed localizes aroufyg= . 0.0025

Now let us demonstratab initio results for angular as 0.002

well as energy distributions of the two electrons in double- Ooog;f

continuum states. Figure 9 illustrates the angular and the (gogs

energy distributions of the two electrons in the electron- 0

impact ionization of hydrogen'&?). These distributions are : 3
obtained from ionization wave functions using E4Q). The 25
ionization wave functions are folded into the representation (rad)

in terms of the hyperspherical channel functions as was dont ®lo1s 0258

in the two-dimensional model. At the lowest energys 0.2 02035 g 4
a.u., it is evident that the angular distribution is localized ¢/E '
near 6,,= 7 and the energy distribution is almost uniform.
The distribution is seen to be almost constant with respect tg)ro
€ at all values of#,, and shows a quite simple behavior.
Within the validity of the stationary-phase approximation
this indicates that at low energies themotion of the two
electrons in double-continuum states is well decoupled fromential ridge becomes suppressed; the angular distribution at
the 6, motion. It may be regarded as anposteriorijusti-  small interelectronic angular distances grows and the energy
fication of using the two-dimensional model in low-energy distribution becomes nonuniform. At the highest energy,
ionization. As the energy increases, the amplitude at the pd==5.0 a.u., the distribution shows a quite different feature

FIG. 9. Energy as well as angular distribution of the two elec-
ns in electron-impact ioinization of hydrogen in the casé &f

for (a) E=0.2 a.u.,(b) E=2.0 a.u., andc) E=5.0 a.u. Note the

' manifestation of the binary-encounter peakdgi~ 7/2 in (c).
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TABLE II. List of individual angular-momentum pairs for each symmetry specified by, I1}. The
numberN in the parentheses represents the number of coupled hyperspherical channels.

135 (N=100) (0,0 1,2 2,2

13po (N=100) 0, 1,2 2,3

13pe (N=80) 0,2 1,2 1,3 2,2 (2,9

13F0 (N=80) 0,3 1,2 1,9 2,3 (2,5

13G® (N=80) 0,9 1,3 1,5 (2,2 2,9 (2,6)
L3H° (N=80) 0,5 (1,9 (1,9 2,3 (2,9 2,7
L3 e (N=80) (0,6 (1,5 1,7 (2,9 (2,6 2,9
137° (N=80) 0,7) (1,6 (1,8 2,9 2,7 2,9
1.3g¢ (N=80) 0,8 1,7 1,9 (2,6) 2,9 (2,10
130 (N=80) 0,9 1,9 (1,10 2,7 2,9

L3107 (N=80) (0,10 1,9 2,9 (2,10

from that of the lowest energy. The classical binary-of hyperspherical channels included in each partial wave are
encounter peak manifests itself nggp= /2 in the angular listed. Here we examine convergence of the partial-wave ex-
distribution. In the case that one of the electrons possess@ansion with respect td. Figure 10 illustrates the contribu-
the bulk of the available energy, the angular distributiontion of each partial-wave component to the ionization cross
aroundé;,=0 andw becomes enhanced, suggesting that thesection. At the lowest energ§=0.1 a.u., small} compo-
dipolelike mechanism manifests itself in the ionization. nents dominate the ionization cross section. On the contrary,
Strictly, speaking, the angular distribution peaksfaj=7  at the highest energ\s=2.0 a.u., the distribution extends
due to the Coulomb repulsion force exerted from the fasbver largeJ, indicating that the partial-wave expansion with
electron. As regards the relative importance of the dipolelikeespect toJ becomes disadvantageous at high energies. In
mechanism and the binary-encounter one, the figure indiealculating the total ionization cross sections, contributions
cates that the amplitude of the former mechanism totallffrom J>10 are extrapolated: The net contribution from
dominates over that of the latter at high energies. J>10 is less than 10% &=2.0 a.u.
Figure 11 illustrates comparison of the spin-averaged total
E. Comparison with experimental measurements as well as  ionization cross section with experiments as well as the
other theories: Spin-averaged total ionization cross convergent-close-couplingcCC) result of Bray and Stelbo-
section and spin asymmetry vics[2] in the energy rangE<2.0 a.u. The excellent agree-

In this section we demonstrate the validity of the presen ent with the experiment by Shat al. [39] is seen in the

X . . .~ _figure. Near the threshold, however, the present result indi-
theoretical method with regard to spin-averaged total ioniza- iceable d f h . b
tion cross sections as well as the spin asymmetry in the Iow(-:ates a noticeable departure from the experiment by
McGowan and Clark¢10]. The incomplete agreement may

to intermediate-energy range comparing .W'th experlmentall)e partly due to the finite energy resolution in the experiment
measurements as well as other theoretical results. In thé

) : .~ and partly due to the normalization of the experimental cross
present calculations we employ the partial-wave expansion

with respect to the total angular momentumin Table I sections. Indeed, for the energy dependence of the cross sec-
individual angular-momentum pairs$;(l,) and the number 0.8 . '

)

2
0

(units of ma

o

0.001

0.0001

'5- ) \ I L E (la..ll. )

10

J FIG. 11. Spin-averaged total ionization cross sections. The solid
line represents the present result, diamonds the experiment by Shah
FIG. 10. Contribution of each partial wave component to theet al. [39], crosses the experiment by McGowan and Cldrk@],
ionization cross section. The solid line is fBr=0.1 a.u. and the and open squares the convergent-close-coupling method of Bray
dashed line foE=2.0 a.u. and Stelbovic$2].
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0.65 e periment is very large at low energies. The spin asymmetry
0.6k _ of the S state alone is doomed to converge to 1 at the thresh-

[ old; therefore, we may at least conclude that at the threshold
total-angular-momentum statds>0 have rather large con-
tributions to ionization because the spin asymmetry seems to
converge to a value apparently smaller than 1 at the thresh-
old.

IV. CONCLUSION

In summary, we presented a theoretical method foathe
initio treatment of interelectronic correlations in double-
continuum states. In the method, the strong interelectronic

E (a.u.) corre_lations are represented by_ the hyperspherical channel
functions and accurate numerical solutions of the two-

FIG. 12. Comparison of spin asymmetry with experiment as€lectron atomic Schbnger equation are obtained by means
well as other theories. The solid line represents the present resuldf the smooth-variable-discretization method in combination
the dashed line the hidden-crossing theory of Maeell. [14],  with the R-matrix propagation method. The double-
crosses the convergent-close-coupling method, and diamonds witontinuum boundary condition is represented by matching
error bars the experiment by Fletchetral. [40]. the numerical solutions to asymptotic solutions that are de-

scribed by superpositions of approximate asymptotic channel
functions.
tion the present result agrees well with both experimental Armed with the efficient and stable scheme, we have pre-
results. The CCC result almost coincides with the presengentedab initio results on the ionization of the electron-
result at all energies in the figure. Since both theoreticahydrogen collision. Our theoretical results for the two-
methods are completely different, the complete agreement idimensional model definitively support Wannier’s threshold
convincing. law. Energy distributions of double-continuum states become

Figure 12 illustrates a comparison of the spin asymmetryuniform at low energies, indicating that interelectronic radial
of the ionization cross section with experiment as well ascorrelations become suppressed asymptotically due possibly
other theories. The spin asymmetry represents the differende some diffusive mechanisms around the potential ridge.
in contribution between the singlet spin state and the triplenalyzing the convergence of the present calculations led to
spin state in the form confirming that the potential ridge plays an essential role in

propagating the ionization flux at low energies. At low ener-
gies, angular distributions in double-continuum state$35f
os— O localize where the interelectronic angular distartge= 7.
=T (46)  As the energy increases, the classical binary-encounter as
7 well as the dipole-transition mechanisms become apparent in
angular distributions. Our theoretical results of spin-averaged
whereog andot represent the ionization cross section of thetotal ionization cross sections as well as the spin asymmetry
singlet spin state and that of the triplet spin state, respecshow good agreement with experimental measurements as
tively, and o represents the spin-averaged total ioinizationwell as the convergent-close-coupling result at low to inter-
cross section. The present result agrees very well with thEnediate energies. However, regarding the spin asymmetry,
CCC result[2], except near the threshold: The CCC resultthere is a noticeable disagreement with the hidden-crossing
indicates a rapid decline near the threshold. The hiddenesult at moderately low energies.
crossing result by Macelet al. [14] noticeably disagrees The present theoretical method is capable of handling the
with both of the CCC result and ours at moderately lowionization process in a wide energy range and also provides
energies. Near the threshold, the hidden-crossing result rag-unique perspective to the study of interelectronic correla-
idly increases, whereas the present result does not. Besidé@ns in double-continuum states. Thus the method may be
near the threshold, the disagreement with the hiddenapplied in the future to various atomic processes that involve
crossing result at moderately low energies is hardly underdouble-continuum states.
standable because the present calculations converge in this
energy range well. Because they are based upon completely
different theoretical schemes, the complete agreement with
the CCC result in this energy range is convincing. The We thank Dr. Matsuzawa for his continuing encourage-
present result totally agrees with the experimental result ofnent and interest in the problem. We also thank Dr. O. I.
Fletcheret al. [40], while all theories predict values within Tolstikhin for instructive discussions on the SVD method,
the experimental error bars. Strictly speaking, the theoreticdDr. P. F. O’Mahony for providing us with his own version of
results are always in the upper side of the experimental errdhe R-matrix propagation code, and Dr. J. H. Macek and Dr.
bars. We postpone critical examination of other theories. Let. Bray for kindly providing their own numerical data of
us note, however, that the statistical uncertainty in the exionization cross sections. We are grateful to Dr. K. Hino, Dr.
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