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Ab initio study of interelectronic correlations in electron-impact ionization of hydrogen
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Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1 Chofu-ga-oka,

Chofu-shi, Tokyo 182, Japan
~Received 15 May 1997!

Electron-impact ionization of hydrogen is investigated based uponab initio quantal calculations. In the
present calculations, strong interelectronic correlations are represented by the hyperspherical channel functions
and accurate numerical solutions of the two-electron atomic Schro¨dinger equation are obtained by means of the
smooth-variable-discretization method in combination with theR-matrix propagation method. The double-
continuum boundary condition is represented by matching the numerical solutions to asymptotic solutions,
which are described by superpositions of approximate asymptotic channel functions. We obtained the ioniza-
tion threshold law, which is in good agreement with Wannier’s conjecture, and also an almost uniform energy
distribution in double-continuum states at low energies, say;0.1 a.u. At low energies, the angular distribu-
tions of the electrons in double-continuum states of1Se localize where the interelectronic angular distance
u125p. As the energy increases, the binary-encounter and the dipolelike transition mechanisms manifest
themselves in the angular distribution. The spin-averaged total ionization cross section and the spin asymmetry
from the present method agree well with experimental measurements as well as the convergent-close-coupling
result, while for the spin asymmetry there is a noticeable disagreement with the hidden-crossing result at
moderately low energies. An essential role of the potentialridgeduring the ionization process is apparent in the
convergence of the present calculations.@S1050-2947~97!02611-5#

PACS number~s!: 34.50.Fa, 34.80.Dp
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I. INTRODUCTION

Electron-impact ionization of hydrogen is a basic atom
process that leads to disintegration of one heavy and
light Coulombic particles. The disintegrated state is f
quently referred to as the double-continuum state

e21H→e21e21p1. ~1!

The bulk of the ionization cross sections that provide imp
tant information for plasma physics, for example, are distr
uted in a high- to intermediate-energy range. At high en
gies, the time spent by the incident electron in an effect
range of the interaction potential should be even smaller t
a characteristic time for the potential to have a signific
effect. Indeed, perturbative treatments were applicable in
energy range@1#. At intermediate energies where the ioniz
tion cross section has a maximum, the convergent-clo
coupling method of Bray and Stelbovics@2# has succeeded in
bridging a gap between theoretical predictions and exp
mental measurements for the ionization cross section.

However, theoretical interests are rather strong on
low-energy side because what has been attracting the int
of atomic theoretists is the interelectronic correlations
double-continuum states that become pronounced at low
ergies. In particular, the correlations manifest themselve
the threshold law of the ionization cross section: The thre
old law is frequently described byEh, whereE is the energy
excess from the ionization threshold. Wannier’s famo
theory @3# provides the exponenth.1.127 for the electron-
impact ionization of neutral atoms. In his theory, the thre
old ionization paths are presumably represented by spe
classical trajectories that correspond to correlated motion
the two electrons astride the potentialridge, namely,r 15r 2
561050-2947/97/56~5!/3687~14!/$10.00
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and u125p, where r 1 and r 2 are radial distances of indi
vidual electrons andu12 is the angular distance between th
two electrons. The value of the exponent (.1.127) is asso-
ciated with the Lyapunov-type exponent of the abov
mentioned specific classical trajectories. Later, semiclass
and quantal local solutions that correspond to Wannie
classical trajectories were found independently by Peter
@4# and Rau@5#. Klar and Schlecht@6# applied Wannier’s
theory to the states of arbitrary values of the total angu
momentum. Feagin@7# reformulated Wannier’s theory fo
arbitrary masses and charges. A quantal calculation of
absolute cross sections for electron-impact ionization of
lium near the first-ionization threshold was made by Croth
@8# using Peterkop’s solutions. Other theoretical efforts@9#
also have been made to examine the threshold law; howe
all of them largely resorted to Wannier’s conjecture. On t
other hand, experimental efforts to determine the thresh
exponent also exist. McGowan and Clarke@10# measured
relative ionization cross sections for electron-impact ioni
tion of hydrogen in energy range up to a few hundreds
meV from the threshold. They obtained the value 1.1360.03
for the exponent. Later, Cvecjanovic´ and Read@11# deter-
mined the exponent with a carefully designed apparatus
electron-impact ionization of helium and obtained the va
1.13160.019. Both of the measurements are consistent w
Wannier’s threshold law. Since then, Wannier’s conject
has been largely accepted by atomic physicists.

Nevertheless, it is nontrivial to obtain the threshold la
theoretically without recourse to Wannier’s conjecture b
cause of difficulties in theab initio treatment of interelec-
tronic correlations in double-continuum states. In this rega
we must mention some existing theories. Proulx and Sha
shaft @12# calculated the absolute cross section for doub
photoionization of helium by means of anab initio basis-set
3687 © 1997 The American Physical Society
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method, but with the aid of some semiclassical ansatz
final-state wave functions. Their result is consistent with
conjecture of Wannier’s theory for the double photoioniz
tion of helium. Rost@13# applied the semiclassicalS-matrix
theory for the threshold ionization of the electron-hydrog
collision, in particular for a collinear model in which th
motions of the two electrons are restricted in a line with
nucleus between them. In Rost’s theory, the ionization
namics is represented solely by the classical trajectorie
the two electrons. He obtained an ionization cross sec
that is consistent with Wannier’s threshold law. Recen
Macek et al. @14# applied the hidden-crossing theory to th
threshold ionization of electron-hydrogen collision. They d
duced the Wannier-Peterkop-Rau solution approximately
means of the angle Sturmian basis expansion; the hid
crossing theory provided the threshold exponent.1.104 us-
ing only one angle Sturmian basis.

For further insight into details of ionization dynamics, th
energy distribution as well as the angular distribution of
two electrons in double-continuum states are important s
jects to be investigated. In particular, for the energy distri
tion, experimental measurements@11,15# provided an almost
uniform distribution near the threshold. However, the lo
solutions of Peterkop and Rau are not capable of explain
the uniform energy distribution. Feagin obtained a Gauss
distribution peaked ate15e2, wheree1 ande2 are the ener-
gies of the individual electrons, by means of the fourth-or
Wannier theory@16# in which the interaction potential ar
expanded up to the fourth order around the ridge. The p
is that the Wannier-Peterkop-Rau solution is valid only n
r 15r 2, though to obtain the correct energy distribution it
necessary to take the whole radial coordinate space into
count. On the other hand, Vinkalns and Gailitis@17# carried
out a classical trajectory calculation and obtained an alm
uniform energy distribution. Other classical trajectory calc
lations @13,18#, a semiclassical calculation@19#, and quantal
calculations aided by a semiclassical ansatz@20,21# also pro-
vided the almost uniform energy distribution. Is the corre
energy distribution really uniform at low energies? No exi
ing theory appears to be in a position to provide a full qu
tal answer.

The purpose of this paper is anab initio study of the
threshold law as well as the energy and the angular distr
tion based upon fully quantal calculations. To this end,
hyperspherical adiabatic channel functions are exploited
represent strong interelectronic correlations rigorously. A
curate numerical solutions of the two-electron atomic Sch¨-
dinger equation are obtained by means of the smo
variable-discretization method@22# in combination with the
R-matrix propagation method@23#. In order to impose the
double-continuum boundary condition on the solutions,
match the hyperspherical solutions to some asymptotic s
tions on a fixed hyper-radius, which is subsequently refer
to as the matching hyperradius. However, a principal pr
lem here is that we do not know any exact analytical expr
sions representing asymptotic solutions for doub
continuum states. Instead, in this paper, approxim
asymptotic channel functions, each of which is represen
simply by a product of a pseudohydrogenic target wave fu
tion and a free scattering wave function, are employed@24#.
The double-continuum components are specified as the
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due after subtracting from the total wave function the ex
tation components, the latter components being better
fined since the asymptotic channel functions satisfy the w
defined excitation boundary condition. In actu
implementations, the target states that involve discrete
well as continuum spectra of the target atom are discreti
by confining the target wave functions within a sphere who
finite radius is determined from the matching hyperradi
The discretization procedure is required not only for rep
senting the continuum spectrum effectively, but also for d
fining the normalization of the asymptotic channel functio
on the hypersphere of a given matching hyperradius. T
technical problems being resolved in this manner, we are
position to explore the physics of electron-impact ionizati
of hydrogen at relatively low energies on the basis of qu
tum mechanics.

This paper is organized as follows. We describe
present theoretical method in Sec. II. An accurate numer
method for solving the two-electron atomic Schro¨dinger
equation is given in Sec. II A. Section II B is devoted
describing the asymptotic solutions and to specifying ioni
tion components. In Sec. III we analyze theoretical results
Secs. III A and III B the ionization threshold law and th
energy distribution of the two electrons in double-continuu
states are examined in a model in which the angular deg
of freedom are frozen, while the radial degrees of freed
are taken into account completely. An important role of t
potential ridge during the ionization process becomes ap
ent by analyzing the convergence of the present calculat
~Sec. III C!. The angular correlations of double-continuu
states are examined within the1Se symmetry in Sec. III D.
From the angular distributions that are obtained fromab ini-
tio ionization wave functions, ionization mechanisms are
vestigated in a wide energy range. In Sec. III E we dem
strate the validity of the present theoretical method
comparison of the spin-averaged total ionization cross s
tions as well as the spin asymmetry with experimental m
surements and other theoretical results in the low-
intermediate-energy range. In Sec. IV we conclude the pa

II. THEORETICAL METHOD

A. Accurate numerical solution of the two-electron atomic
Schrödinger equation

1. Hyperspherical coordinates and adiabatic expansion

The Schro¨dinger equation for a two-electron atom is

F2
1

2
¹1

22
1

2
¹2

22
Z

r 1
2

Z

r 2
1

1

r 12
2EGC~rW1 ,rW2!50, ~2!

where¹2 represents the Laplacian operator,$r 1 ,r 2% are the
radial coordinates of the two electrons,r 12 is the interelec-
tronic distance, andZ is the nuclear charge. Atomic units ar
used throughout (\5me51) unless otherwise stated. Th
representation of the system by the independent-particle
ordinates suffers a slow convergence from strong intere
tronic correlations. Instead, we represent the system by
hyperspherical coordinates that are suited for describing
interelectronic correlations.
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In the hyperspherical coordinates, the Schro¨dinger equa-
tion reads

F2
1

2
R25

]

]R
R5

]

]R
1

1

R2S 1

2
L2~V!1RC~V! D2EG

3C~R,V!50, ~3!

where the hyperradiusR represents the mean-square rad
of the system, namely,Ar 1

21r 2
2, andV groups five residua

angular coordinates, namely,„a5arctan(r2 /r1),r̂1,r̂2…. The
grand-angular momentum operatorL2(V) and the effective
chargeC(V) are

L2~V!52
1

sin22a

]

]a
sin22a

]

]a
2

L1
2

sin2a
2

L2
2

cos2a
,

Li
25

1

sinu i

]

]u i
sinu i

]

]u i
1

1

sin2u i

]2

]f i
2

, ~4!

C~V!52
Z

sina
2

Z

cosa
1

1

A12sin2acosu12

,

whereu12 is the interelectronic angular distance. Adiaba
separability of the system with respect to the hyperrad
becomes apparent in the hyperspherical coordinates@25#.
The adiabatic Hamiltonian operator is

Had~V;R!5
1

2
L2~V!1RC~V!. ~5!

Adiabatic states provide a convergent representation of
related motions of two electrons on the hypersphere o
given hyperradiusR. In the present calculations, solutions
the two-electron atomic Schro¨dinger equation are thus ex
panded in terms of adiabatic channel functions that are
tained by diagonalizing the adiabatic Hamiltonian opera
More specifically, in the present calculations the adiaba
channel functions are represented by

Fn~V;R!5(
a

~12x! l 211~11x! l 111Pi
2l 211,2l 111

~x!

3Yl 1l 2JM~ r̂ 1 , r̂ 2!Can~R!, ~6!

wherex @5(4/p)a21#P@21,1#, a5$ i l 1l 2%,$Pi
2l 211,2l 111

%
are the Jacobi polynomials, and$Yl 1l 2JM% represents the
coupled angular momentum states. A set of coefficie
$Can(R)% is determined by the diagonalization of the ad
batic Hamiltonian operator in the representation
$Pi

2l 211,2l 111
%3$Yl 1l 2JM%. In this representation, solution

readily converge with respect toa once the angular configu
rations $ l 1 ,l 2% are fixed. However, the individual angula
configurations are coupled due to the interelectronic inte
tion potential 1/r 12. The convergence with respect to th
angular configuration is examined in Sec. III D, which co
cerns the angular correlations of the two electrons in dou
continuum states.
s
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2. Stable propagation of the solutions in theR-matrix form

The hyperspherical coordinates consist of one nonco
pact variable that is the hyperradiusRP@0,̀ # and the other
compact variablesV. Systems bounded in a finite range pr
vide well-defined eigenvalue problems. Thus we divide
hyperradius into finite intervals, calculate solutions with
each interval, and then propagate them with respect to
hyperradius so as to construct globally continuous a
smooth solutions. This section is devoted to the mathem
cal formulation of theR-matrix propagation method@23#.

Scaling the solutions asc5R3/2C leads to the Schro¨-
dinger equation

F2
1

2

]

]R
R2

]

]R
1

15

8
1

1

2
L2~V!1RC~V!2R2EGc~R,V!

50. ~7!

The Bloch operator is then introduced in a finite interv
@a,b#,

L~R!5R2Fd~R2b!
]

]R
2d~R2a!

]

]RG , ~8!

so thatH(R,V)1L(R) becomes Hermitian in the interva
where

H~R,V!52
1

2

]

]R
R2

]

]R
1

15

8
1

1

2
L2~V!1RC~V!.

~9!

The solutionsc are formally written using the Green’s func
tion

c~R,V!5E
a

b

dR8E dV8G~R,V;R8,V8!L~R8!c~R8,V8!.

~10!

A spectral resolution of the Green’s function is construct

G~R,V;R8,V8!5(
k

uk~R,V!uk~R8,V8!

Ek2E
, ~11!

where$uk(R,V),Ek% is a set consisting of the solutions an
the corresponding eigenvalues of

@H~R,V!1L~R!2R2Ek#uk~R,V!50, ~12!

which is defined within the interval@a,b#. It is nontrivial to
solve such multidimensional eigenvalue problems with
high precision. An accurate method for solving this type
multidimensional eigenvalue problem is presented in S
II A 3. Substituting the spectral resolution of the Green
function into Eq.~10!, we obtain an expression for the solu
tions in the form

c~R,V!5(
k

uk~R,V!

Ek2E Fb2K ukU]c

]RL
R5b

2a2K ukU]c

]RL
R5a

G ,

~13!

where^u& represents the integration overV.
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3690 56DAIJI KATO AND SHINICHI WATANABE
We represent the solutions in terms of the adiabatic ch
nel functions$Fn(V;R)%, which constitute an orthonorma
basis set at each hyperradius. Then theR matrix with respect
to the adiabatic channels is defined at both boundaries o
interval as

^Fnuc&R5a5a(
m
Rnm~a!K FmU]c

]RL
R5a

,

^Fnuc&R5b5b(
m
Rnm~b!K FmU]c

]RL
R5b

. ~14!

From Eqs.~14! and~13! theR-matrix propagation formula is
obtained in the form

bRnm~b!5Gnm
bb 2(

l
(
l 8

Gnl
ba@Gaa1aR~a!# l l 8

21Gl 8m
ab ,

~15!

where

Gnm
R1R25R1R2(

k

^Fn~R1!uuk~R1!&^uk~R2!uFm~R2!&
Ek2E

.

~16!

TheR matrix is uniquely fixed at all values of the hyperr
dius once the boundary condition of the regular solutions
R50 is applied. Thus theR matrix is first set to zero a
R50. The performance of the propagation method is v
stable since the numerical collapse due to exponentially
creasing or decreasing solutions does not occur in
R-matrix form. Moreover, the propagators for different e
ergies can be readily constructed once the eigenvalue p
lem of Eq.~12! is solved.

3. Rigorous treatment of the nonadiabatic coupling by smooth
variable-discretization method

Now we consider the eigenvalue problem of Eq.~12!. In
the adiabatic representation of the solutions, we obtain a
of coupled ordinary differential equations~ODEs! with re-
spect to the hyperradius. In the ODEs, nonadiabatic c
plings among the adiabatic states are represented
^Fnu]Fn8 /]R& whose elements sharply peak at avoid
crossings of the adiabatic potential curves. It is quite cu
bersome to handle such sharp variations of the coupl
since the avoided crossings occur rather randomly.

To avoid laborious evaluations of the nonadiabatic c
plings, the diabatic-by-sector method@26# was developed in
calculations of atom-molecule collisions; the method h
been applied frequently to atomic physics problems@27#.
The diabatic-by-sector representation of the solutions d
not require an explicit evaluation of the nonadiabatic co
plings. Instead, the method incorporates the nonadiab
couplings into matrix elements of the adiabatic Hamilton
operator in the representation

^Fn~Rm!uHad~R!uFn8~Rm!&, ~17!

where$Fn(Rm)% represents the set of diabatic-by-sector b
sis functions defined at the midpoint of the interval@a,b#.
However, even in the limitDR (5b2a)→0, the represen-
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tative Hilbert space of the diabatic-by-sector solutions d
not span as much solution space as does the adiabatic ex
sion with the same number of adiabatic channels@28#, and
the situation becomes even worse in exotic atomic syst
such asdtm @22#. Thus convergence must be achieved on
by increasing the number of diabatic-by-sector basis fu
tions in the calculations. This leads to a sizable calculati
which should be avoided.

Recently, the smooth-variable-discretization~SVD!
method was introduced by Tolstikhinet al. @22# to treat the
nonadiabatic couplings rigorously without labored calcu
tions. The SVD method treats the Schro¨dinger equation in
the discrete-variable-representation~DVR! @29# with respect
to R and in the adiabatic channel representation with resp
to V. Though the complete mathematical formulation of t
SVD method was presented in the original paper by T
stikhin et al., we reproduce the gist of the formulation for th
present implementation.

We introduce a set of orthonormal basis functions with
the interval@a,b#,

w i~R!5Aw~x!/hi 21Pi 21
a,b ~x!,

x5~a2b22R!/~a2b!P@21,1#, ~18!

where$Pi 21
a,b (x)% are Jacobi polynomials andw(x) andhi 21

are their weight function and normalization constants,
spectively. In this paper we seta50 andb53 for the initial
interval@0,DR# in order to take the nonanalyticityR3/2 of the
solutions atR50 into account and seta5b50 for the other
intervals so that the basis functions represent arbitr
boundary conditions. Using the basis functions$w i(R)%, we
define a set of DVR basis functions$p j (R)% within an
M -dimensional subspaceH(M ) by

w i~R!5(
j

M

Ti j p j~R!, ~19!

where

Ti j 5~T21! j i 5k jw i~Rj !, k j5AWj /w~xj !, ~20!

where Rj ,Wj are the quadrature abscissas and weights
PM

a,b(x). The orthogonality ofTi j is readily deduced from
the Christoffel-Darboux identity. The DVR basis function
have an important property, namely,p j (Rj 8)5k j

21d j j 8.
Then the solutions are expanded in terms of the D

basis functions as

uk~R,V!5(
j 51

M

p j~R!Q jk~V!. ~21!

A set of coupled ordinary differential equations with respe
to the coefficients$Q jk(V)% reads

Had~V;Rj !Q jk~V!1 (
j 851

M

@K j j 82r j j 8Ek#Q j 8k~V!50,

~22!

where
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K j j 85E
a

b

p j~R!S 2
1

2

]

]R
R2

]

]R
1

15

8
1L~R! Dp j 8~R!dR,

r j j 85E
a

b

p j~R!R2p j 8~R!dR. ~23!

This is the DVR representation of the Schro¨dinger equation
in H(M ). Then we represent the coefficients in terms of
adiabatic channel functions, namely, the adiabatic expans

Q jk~V!5(
n

Fn~V;Rj !cn jk . ~24!

A set of coefficients$cn jk% is determined by solving the al
gebraic generalized eigenvalue problem

Un~Rj !cn jk1(
n

(
j 851

M

@K j j 82r j j 8Ek#On j ,n8 j 8cn8 j 8k50,

~25!

whereOn j ,n8 j 8 represent the overlap of the adiabatic chan
functions at different values of the hyperradial distanc
^Fn(Rj )uFn8(Rj 8)&. The nonadiabatic couplings are inco
porated into the overlap matrix elements implicitly. Th
SVD solutions principally coincide with those of the adi
batic expansion of the same order as long as the DVR
resentation of the Schro¨dinger equation with respect toR is
valid. Indeed, the convergence of the SVD solutions is f
since the Schro¨dinger equations of Coulomb three-body sy
tems are quite smooth with respect toR @see Eq.~7!#.

B. Asymptotic boundary condition

In this section we explain how to represent the asympt
solutions of the Schro¨dinger equation and how to extract th
ionization components. The term ‘‘asymptotic’’ here mea
the region where the kinetic energy of the two electro
dominates over the Coulomb interaction potential. Therefo
in terms of the hyperradius, the asymptotic region is char
terized byR@E21. Excitation as well as ioinization is pre
sumably completed when the asymptotic region is reac
since the two electrons hardly exchange their kinetic ener
thereafter. Thus the asymptotic solutions are described by
independent-particle coordinates. There is another rea
why the independent-particle representation should be
plied in the asymptotic region. Disintegration of atomic sy
tems, that is, ionization, is hardly specified in terms of t
hyperspherical adiabatic channels@30# because all adiabati
channels converge to excitation channels asymptotically
R→`. Disintegration channels are readily specified in t
independent-particle representation.

1. Asymptotic solutions

In this paper the asymptotic channel functions are rep
sented by direct products of independent-particle solutio

fa~rW1 ,rW2!5R21/2f kl1
~r 1!ge l 2

~r 2!Yl 1l 2JM~ r̂ 1 , r̂ 2!, r 1.r 2 ,
~26!

wherea5$e l 1l 2% andE5k2/21e. In the subsequent discus
sion we consider only a half triangle of the radial coordin
e
n,

l
s

p-

st
-

ic

s
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e-

e

space, which is described byr 1.r 2. The other half triangle,
r 2.r 1, is taken into account through the antisymmetrizati
condition, that is,f(rW1 ,rW2)5(21)Sf(rW2 ,rW1) whereS is the
total spin of the two electrons. The factorR21/2 in Eq. ~26! is
necessary for representing theR3/2 behavior of the solutions
at R50.

The target wave functions$ge l 2
(r 2)%, which correspond to

discrete as well as continuum states of the target atom,
solutions of the hydrogenic Schro¨dinger equation within a
finite radial interval@0,RM /A2#, where RM represents the
matching hyperradius where the numerically obtained in
rior solutions are matched to the asymptotic ones. We s
sequently refer to the interior solutions as the hyperspher
solutions because they are represented in terms of the hy
spherical adiabatic channel functions. We discretize the
get continuum states by the boundary condition

ge l 2
~0!5ge l 2

~RM /A2!50. ~27!

Then the solutions are normalized so that

E
0

RM /A2
uge l 2

u2dr251. ~28!

Due to the boundary condition, the wave function$ge% of
highly excited states whose energies lie in2A2/RM,e,0
do not coincide with the true hydrogenic wave function.

The functions$ f kl1
(r 1)% represent solutions of the mono

pole Schro¨dinger equation

F2
1

2

d2

dr1
2

1
l 1~ l 111!

2r 1
2

2
~Z21!

r 1
2

k2

2 G f kl1
~r 1!50,

~29!

where the interelectronic Coulomb interaction 1/r 12 is re-
placed by the monopole term 1/r 1. Here$ f kl1

1 (r 1)% represent

the outgoing traveling waves and$ f kl1
2 (r 1)% represent the

incoming traveling waves; they are energy normalized a
preserve the Wronskianu f 1(d f2/dr1)2 f 2(d f1/dr1)u.
Thus the two groups of the asymptotic channel functions
defined by$fa

6%5$ f kl1
6 %3$ge l 2

%. Evidently, the asymptotic

channel functions$fa
6% are a crude approximation to exa

asymptotic solutions of the two-electron atomic Schro¨dinger
equation unless the multipole terms of the interelectronic
teraction are entirely negligible. However, it is worth notin
that the Wronskian of the asymptotic channel functions
preserved in this approximate representation. The Wrons
with respect to the hyperradius is

WR5UR2E E dr̂1dr̂2E
0

a/4

daS fa
1

]fa
2

]R
2fa

2
]fa

1

]R DU
5wfE

0

RM /A2
ug~r 2!u2dr2 , ~30!

wherewf5u f 1(d f2/dr1)2 f 2(d f1/dr1)u is the Wronskian
of f 6(r 1). Using the normalization conditions off 6(r 1) and
g(r 2), we find that the WronskianWR is preserved.
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Asymptotic solutions that satisfy the outgoing wa
boundary condition are represented by a superposition o
asymptotic channel functions

ca
15fa

2daa81(
a8

fa8
1 Ca8a , ~31!

where the first term represents the incoming part and
second term represents the outgoing part of the soluti
Strictly speaking, the coefficients$Ca8a% for the continuum
states depend logarithmically on the hyperradius due to
long-range interelectronic interaction potential. However,
safely neglect the logarithmic dependence at a sufficie
large hyperradius. The set of coefficients are determined
matching the hyperspherical solutions to the asymptotic
pression of Eq.~31! at RM@E21. The matching condition is

ca
1~RM !5(

k
ck

HS~RM !Aka
1 ,

]ca
1~RM !

]R
5(

k

]ck
HS~RM !

]R
Aka

1 , ~32!

where $ck
HS% represent the hyperspherical solutions. In E

~32! there are two sets of unknown coefficients, name
$Ca8a% and $Aka

1 %. Using theR matrix at the matching hy-
perradius, we obtain a set of equations for the coefficie
$Ca8a%,

^Fnuca
1&uR5RM

5(
n8
Rnn8K Fn8U]ca

1

]R L U
R5RM

. ~33!

Substituting the form of the asymptotic solutions~31! into
Eq. ~33!, we obtain a set of algebraic equations for the co
ficients$Ca8a%,

(
a8

Zna8
1 Ca8a5Zna

2 , ~34!

where

Zna
6 5^Fnufa

6&2(
n8
Rnn8K Fn8U]fa

6

]R L . ~35!

In the present paper the coefficient matrixZ1 always be-
comes rectangular because the order of the represent
Hilbert space is different between the interior and t
asymptotic representations. More specifically, mo
independent-particle solutions are required than the hy
spherical adiabatic channels to represent the correct solu
space. Thus the algebraic system becomes overdeterm
namely, singular. Therefore, the direct inversion of the co
ficient matrix is not applicable. The overdetermined alg
braic system has more than one solution: Any solutions
the homogeneous equationZ1x50 can be added to the so
lution. Thus we must effectively throw away singular sol
tions and extract the proper solutions.

We first diagonalize the coefficient matrix in the form

Z15UwVT, ~36!
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whereU is a column-orthogonal matrix,V is an orthogonal
matrix, andw is a diagonal matrix whose elements repres
singular values of the algebraic system. This is frequen
called the singular-value decomposition@31#. Then the in-
verse of the coefficient matrix is formally written

~Z1!215Vw21UT, ~37!

where we use the orthogonality ofU and V. In case the
algebraic system is almost singular, there are some van
ingly small singular values, that is,w.0, and their inverses
become infinitely large. The column ofV whose correspond
ing singular value is zero represents the solution of the
mogeneous equation, namely,x. Thus, by replacing the cor
respondingw21.` by zero, we obtain the desirable solutio
uniquely.

2. Extraction of ionization components

The above-mentioned procedure provides the set of c
ficients$Ca8a% that contain complete scattering informatio
The next step is to extract ionization information from t
coefficients. In this work, the total flux is preserved with
four significant digits, that is,Ja5(a8uCa8au251. The coef-
ficients $Ca8a% of each discrete target statea8(e,0) are
identical to the corresponding scattering matrix elements
cause the asymptotic channel functions satisfy the bound
condition for excitation. Thus the flux of excitation to eac
discrete target state is well represented byJa8←a5uCa8au2.
The excitation cross sections are readily obtained fr
Ja8←a . However, the coefficients of continuum target sta
a8(e.0) are different from the corresponding scattering m
trix elements because the asymptotic channel functions a
crude approximation to the exact asymptotic continu
states@see Eq.~29!#. Nevertheless, since the flux conserv
tion condition is satisfied in the present calculations, an i
ization flux can be extracted by

Jion←a5Ja2 (
a8~e,0!

Ja8←a5 (
a8~e.0!

uCa8au2. ~38!

In the above equation the total excitation flux is represen
by a summation of the flux over discrete target stat
namely,(a8(e,0)Ja8←a . However, the flux of the highly ex-
cited statesa8(2A2/RM,e,0) is different from that of the
true hydrogenic states. Thus a subtle uncertainty in the
ization flux remains as long as the matching hyperradiu
finite. The uncertainty is suppressed only by increasing
matching hyperradius.

Similarly, an ionization wave function is represented b

c ion
1 5 (

a8~e.0!

fa8
1 Ca8a . ~39!

In the asymptotic region, a constraintV5Vk is obtained
within the validity of the stationary-phase approximation@4#,
whereVk5„ak5arctan(k2 /k1),k̂1,k̂2… and kW1 and kW2 are the
individual momentum vectors of the two electrons. From t
classical mechanical viewpoint, this means that the direc
of the asymptotic momentum of each electron coincides w
that of its radial vector asymptotically unless the two ele
trons exchange their kinetic energies. Since the energy
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change does not take place asymptotically, we can exam
differential ionization cross sections using the relation

ds ion

dVk
}uc ion

1 ~Vk!u2. ~40!

However, near the potentialvalley, namely,a;0 or p/2, the
relation of Eq. ~40! is not applicable because there t
stationary-phase approximation becomes invalid as long
the matching hyperradius is finite. Therefore, there rema
an uncertainty for the normalization of the differential cro
section. Thus, in this paper we examine only relative sha
for the differential cross sections using Eq.~40!.

III. RESULTS AND DISCUSSION

A. Wannier exponent for the two-dimensional model

Wannier’s threshold law is described in the forms}Eh,
where E is the energy excess from the threshold and
exponenth.1.127, which is similar to the Lyapunov expo
nent of the classical trajectory of the two electrons astride
potential ridge, namely,a5p/4 andu125p. In Wannier’s
theory the radial motion of the two electrons is decoup
from the angular motion in the quadratic expansion of
potential around the ridge: The potential energy is rep
sented by an inverted parabola ina and by a parabola inu12.
The threshold exponenth is determined solely by the radia
motion of the two electrons in the vicinity of the potenti
ridge. Thus, in this section we examine the ionization thre
old law using a model in which the angular degrees of fr
dom are frozen, while the radial degrees of freedom
treated completely. Ana posteriori justification of using this
model in low-energy ionization will be presented by analy
ing ab initio results for energy as well as angular distrib
tions of the double-continuum states of1Se in Sec. III D. We
refer to this model as the two-dimensional model@32# be-
cause the Schro¨dinger equation is of two degrees of freedo
$R,a%. In the two-dimensional model, the angular distan
between the radial vectors of the individual electronsu12 is
treated as a parameter. Roughly speaking,u12 determines the
curvature of the potential ridge because the expansion o
potential arounda5p/4 up to the quadratic term leads to

C.2Z0~u12!2Z2~u12!b
2, ~41!

where b5p/42a, Z0(u12)52A22(12cosu12)
21/2, and

Z2(u12)53A21cosu12(12cosu12)
23/2. The degree of insta

bility of the radial motion in the vicinity of the potentia
ridge depends on the curvature. Thus theu12 dependence o
the curvature should be reflected in the threshold law.
deed, a straightforward implementation of Wannier’s the
in the two-dimensional model leads to theu12-dependent ex-
ponent

h~u12!5A 1

16
1

Z2~u12!

Z0~u12!
2

1

4
, ~42!

where h(p).1.127 coincides with the Wannier exponen
We examine theu12 dependence of the threshold law in th
two-dimensional model byab initio quantal calculations.

Figure 1 shows the numerically obtained total ionizati
ne
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cross sections of the two-dimensional model at low energ
The curvature dependence is evident in the figure. Asu12
decreases, namely, as the curvature of the potential r
increases, the ionization cross section becomes strongly
pressed near the threshold. This is because the instabilit
the radial motion near the potential ridge becomes engros
as the curvature increases; then it becomes more prob
that the two electrons prematurely fall into either of the p
tential valleys ata;0 or at a;p/2, leading to excitation
@33#.

As the energy increases from the threshold, the ioniza
cross section rises according to

s5Eh~u12!G~E!, ~43!

whereh(u12) is the u12-dependent threshold exponent a
G(E) is the correction to the energy dependence, which
presumably an analytic function in excess energy aro
E* .0,

G~E!5(
i 50

ai~E2E* ! i . ~44!

That is, we do not resolve nonanalyticity beyondEh. We
determine the threshold exponent by the least-squares fi
of the numerically obtained cross sections to the analyt
form, Eq. ~43!. In Table I the results are compared with th
conjecture based upon Wannier’s theory, Eq.~42!. The nu-
merical cross sections used in the least-squares fitting li
the range 0.01<E<0.2 a.u. Theab initio exponents are in
good agreement with the modified Wannier theory. Ho
ever, the systematic growth of the difference between th
for small values ofu12 is seen in the table. One possib
interpretation of this is as follows. The curvature of the p
tential ridge becomes sharper asu12 becomes smaller, thu
the range of validity of the quadratic expansion of the pot
tial becomes narrower. This would imply that for smallu12
the Wannier picture is valid only at vanishingly small ener

FIG. 1. Variation of the total ionization cross sections of t
two-dimensional model with respect to the curvature of the pot
tial ridge. The solid line represents the curve foru125p, the long-
dashed line foru125p/2, the short-dashed line foru125p/3, and
the dotted line foru125p/4. The cross sections foru125p/2, p/3,
andp/4 are normalized to that ofu125p at E50.2 a.u.
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3694 56DAIJI KATO AND SHINICHI WATANABE
excess. Thus, according to the above observations, the
tematic discrepancy may reflect that the energies where
fitting is effected are not sufficiently low for small values
u12.

The two-dimensional model has two degrees of freed
of motion that are coupled, namely,R anda. The coupling
between theR mode and thea mode stabilizes the radia
motions of the two electrons astride the potential ridge. T
stabilization phenomenon may be interpreted as an ine
effect, akin to the Coriolis force@34#. In Table I the numbers
in parentheses indicate the threshold exponents that are
tained by neglecting the coupling,

h̃~u12!5AZ2~u12!

Z0~u12!
. ~45!

The stabilization effect is evidently seen in the thresh
exponent. The exponent without the coupling is alwa
larger than that with the coupling. This indicates that t
ionization cross sections that are obtained by neglecting
coupling become suppressed near the threshold much m
so than those that are obtained by including the coupling

B. Energy distribution of double continuum states
for the two-dimensional model

Wannier’s theory presumes that in the threshold ioni
tion two electrons escape from the small region with eq
energies, thus the energy distribution of the two electr
would localize ate15e2 at the initial stage of escaping
However, the escaping electrons continue to exchange
kinetic energy under the influence of the long-range C
lomb force between them, thus the energy distribut
evolves until they attain the asymptotic region where
kinetic energy dominates over the Coulomb interaction
ergy. Thus the distribution finally established in th
asymptotic region would differ from that at the initial stag
of escaping. Classical@13,17,18#, semiclassical@19#, and

TABLE I. Comparison of the numerically obtained thresho
exponent with the Wannier-type conjecture, Eq.~42!. The numbers
in the parentheses are calculated from Eq.~45!. Thel1 andl2 are
obtained by fitting to Eq.~43! and to lns(E), respectively.

u12 Wannier l1 l2

p 1.127~1.354! 1.12460.013 1.11960.006

p

1.5

1.177~1.405! 1.16860.014 1.15660.004

p

2

1.294~1.523! 1.28360.016 1.30460.005

p

2.5

1.483~1.715! 1.48060.016 1.49260.005

p

3

1.766~2.000! 1.71160.017 1.74060.005

p

3.5

2.169~2.406! 2.02160.021 2.07360.005

p

4

2.740~2.979! 2.49260.023 2.51460.004
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quantal calculations resorting to some semiclassical an
@20,21# provided an almost uniform energy distribution
low energies. Here we examine the energy distribut
within the two-dimensional model ofu125p by carrying out
fully quantal calculations.

Figure 2 illustrates the squared amplitude of t
asymptotic wave function as well as its ionization comp
nent atE50.1 a.u. forRM54000 a.u. In this figure the wav
functions are folded into the representation in terms of
hyperspherical channel functions, that is,(nFn^Fnuc1&.
Near the potential valley, namely,a;0,p/2, the squared am
plitude of the total wave function has a rapid oscillation th
corresponds to the formation of Rydberg states of the ta
hydrogen, whereas apart from the potential valley
squared amplitude shows a quite smooth distribution t
corresponds to the ionization component. The rapid dec
of the ionization component near the potential valley in
cates that the valley is strongly absorptive for the ionizat
component. Thus we may conclude that there is no rev
from the potential valley back to the ridge in the asympto
region. In classical terms, the trajectories that prematu
fall into the valley always lead to excitation. In Wannier
original paper, a similar statement was made as a basis o
reasoning in terms of ridge trajectories of two electro
Moreover, it may indicate some classical feature of t
asymptotic wave function, namely, that the ionization co
ponent is well localized with respect toa forming a wave
packet.

In the figure it is also evident that the squared amplitu
of the ionization component is well described by sin2a ex-
cept for the potential valley. The point is that the corre
behavior of an ionization wave function is not uniform wi
respect toa: The uniformity that is derived from the loca
solutions of Peterkop and Rau just represents the local
havior in the vicinity ofa5p/4. Using Eq.~40! and taking
the phase-space factor sin2a into account, we find that the
good fit of the squared amplitude of the ionization comp
nent to sin2a indicates that the energy distribution is un

FIG. 2. Squared amplitude of the asymptotic wave function
E50.1 a.u. andRM54000 a.u. in the case ofu125p. The solid line
represents the ionization component and the dashed line the
wave function. Diamonds represent sin2a that coincide with the
squared amplitude of the ionization component.
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form. Figure 3 shows the energy distribution obtained fro
the squared amplitude of the ionization wave function us
Eq. ~40!. In the figure it is evident that the energy distrib
tion becomes uniform as the energy decreases. Thus we
infer that after leaving the small region the energy distrib
tion of the two electrons continuously diffuses from whe
e15e2 and becomes uniform asymptotically.

It would be intriguing to consider the Temkin-Poet~TP!
model for further investigation of the energy distribution
low energies. In the TP model the interelectronic interact
potential is replaced by the monopole term, thus the poten
has a cusp at the ridge. It is expected that the cusp ridge
a quite different effect on threshold ionization when co
pared to the inverted-parabola ridge as in the tw
dimensional model. While the inverted-parabola ridge rep
sents a fixed point in the classical phase space, the cusp
does not. Thus the energy distribution of the TP model@35#
at low energies would be considerably different from that
the two-dimensional model. Our pilot calculations for the T
model indeed indicate marked differences and will be
ported elsewhere.

C. Role of the potential ridge in low-energy ionization

We examine the convergence of the present calculat
with respect to the number of hyperspherical channels
cluded in the calculations as well as to the hyperradial d
tances where the matching procedure is effected. We l
the analysis tou125p. The essential role of the potentia
ridge manifests itself in the convergence.

First, we examine the convergence with respect to
number of hyperspherical channels included in the calc
tions, while the matching hyperradius is always fixed. Th
the analysis would reveal the ionization dynamics within
interior region bounded by the matching hyperradius. Fig
4 illustrates the convergence of the total ionization cross s
tions at representative energies as a function of the num
of hyperspherical channels for the matching hyperrad
RM5500 a.u. The cross sections vary rather sharply as

FIG. 3. Energy distribution of the two electrons in the case
u125p. The solid line is forE50.1 a.u., the long-dashed line fo
E50.5 a.u., the short-dashed line forE52.0 a.u., and the dotted
line for E55.0 a.u. The distributions are normalized to unity, whe
both of the electrons share the available energy evenly. The d
bution appears uniform atE50.1 a.u. on this scale.
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number of channels increases and then suddenly con
gence obtains at all energies. In the figure, this sudden c
vergence is particularly marked at low energies, while
high energies the cross sections are almost unaltered. It
gests that there is a specific ionization mechanism that do
nates in low-energy ionization. Let us argue in favor of t
successive promotion via the potential ridge@36#. Figure 5
shows the adiabatic potential curves that are associated
the adiabatic channels up to where the matching is effec
It is evident in the figure that the number of adiabatic cha
nels required for convergence coincides with the numbe
adiabatic potential curves that possess avoided cross
along the potential ridge. It may be taken as direct evide
of the successive promotion to ionization via the ridge.

Next we examine the convergence with respect to
matching hyperradial distances. It is expected that the

f

ri-

FIG. 4. Convergence of the total ionization cross sections w
respect to the number of hyperspherical channelsN in the case of
u125p. Diamonds represent the results forN520, the long-dashed
line for N513, the short-dashed line forN512, and the dotted line
for N511.

FIG. 5. Adiabatic potential curves in the case ofu125p. The
solid line represents the adiabatic potential curve that is assoc
with the 13th channel. The potential ridge is represented by
dashed curve, which monotonically rises from the bottom of
figure across the potential curves. Diamonds represent the mi
points of energy gaps between the potential curves at where
avoided crossings occur.
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3696 56DAIJI KATO AND SHINICHI WATANABE
electrons hardly exchange their kinetic energies at large
perradial distances where the total kinetic energy domin
over the Coulomb interaction energy. Thus, at finite energ
above the threshold the ionization process becomes c
pleted by reaching some large but finite hyperradius. Fig
6 illustrates the convergence of the ionization cross sec
with respect to the matching hyperradius. In the figure
cross sections for each matching hyperradius have alre
converged with respect to the number of hyperspher
channels. It is evident that the cross section at a finite ene
converges with a finite hyperradius. However, the conv
gence becomes slower as the energy decreases. This i
cause at low energies the energy exchange between the
electrons takes place over up to even larger hyperradial
tances; the distances may be scaled proportionally toE21, as
often argued in the manner of Wannier.

D. Angular correlations of two electrons
in double-continuum states: 1Se symmetry

In addition toR anda, realistic three-body systems hav
one more internal degree of freedom that represents the
tion with respect to the interelectronic angular distan
namely,u12. In this section we neglect the orientational d
gree of freedom that can be described by the Euler ang
We consider1Se symmetry only.

In the present calculations the angular part of electro
states are represented in terms of individual angu
momentum states (l 1 ,l 2), wherel 15 l 25 l sinceJ50. Thus
we first examine the convergence of ionization cross sect
with respect to the individual angular momentuml . Figure 7
illustrates the convergence of partial ionization cross sect
with respect tol max, where l max is the maximum angular
momentum state included in the calculations. In the fig
the partial ionization cross sections forl<2 almost converge
whenl max55. To obtain converged results for higherl com-
ponents, we need to increasel max; however, as the angula
momentum l increases the contribution to the ionizatio
cross section decreases rapidly unless the total energ

FIG. 6. Convergence of the total ionization cross section w
respect to the matching hyperradiusRM in the case ofu125p.
Diamonds represent the result forRM5500 a.u., the long-dashe
line for RM5300 a.u., the short-dashed line forRM5100 a.u., and
the dotted line forRM550 a.u. Convergence seems to be achie
at RM>300 a.u. at all energies ofE>0.05 a.u.
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close to the threshold energy. In Fig. 8 the contribution fro
each angular-momentum state is identified. Thep-wave
component (l 51) dominates over other angular-momentu
states and this contribution increases as the energy incre
while the contributions from the other angular-momentu

h

d

FIG. 7. Partial ionization cross sections with respect to in
vidual angular-momentum states in the case of1Se for ~a! l 50, ~b!
l 51, and~c! l 52. The solid line represents the result forl max55,
the long-dashed line forl max54, and the short-dashed line fo
l max52.
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states become saturated or suppressed. This suggests t
high energies the dipolelike transition dominates the ioni
tion. BelowE50.1 a.u. a qualitative change in the behav
of each component is seen in the figure; the contribution
large-angular-momentum states begin to grow. This m
suggest strong interelectronic correlations with respect to
angular distance of the two electronsu12 near the threshold

Wannier’s theory presumes that near the threshold the
electrons escape from the small region in opposite direct
leaving the nucleus in the middle of them, namely,u12;p.
The conjecture is intuitively reasonable because it is
pected that the long-range interelectronic Coulomb repuls
force pushes the escaping electrons away from each o
Using an advanced photon source, angular distribution
the two electrons in double-continuum states were meas
in double photoionization of helium near the threshold@37#
and recently recoil ion momentum spectroscopy was car
out in double photoionization of helium@38#. These experi-
ments showed that near the threshold the angular distribu
of the two electrons indeed localizes aroundu125p.

Now let us demonstrateab initio results for angular as
well as energy distributions of the two electrons in doub
continuum states. Figure 9 illustrates the angular and
energy distributions of the two electrons in the electro
impact ionization of hydrogen (1Se). These distributions are
obtained from ionization wave functions using Eq.~40!. The
ionization wave functions are folded into the representat
in terms of the hyperspherical channel functions as was d
in the two-dimensional model. At the lowest energy,E50.2
a.u., it is evident that the angular distribution is localiz
nearu125p and the energy distribution is almost uniform
The distribution is seen to be almost constant with respec
e at all values ofu12 and shows a quite simple behavio
Within the validity of the stationary-phase approximatio
this indicates that at low energies thea motion of the two
electrons in double-continuum states is well decoupled fr
the u12 motion. It may be regarded as ana posteriori justi-
fication of using the two-dimensional model in low-ener
ionization. As the energy increases, the amplitude at the

FIG. 8. Contribution of individual angular-momentum states
the total ionization cross section of1Se. The solid line represents
l 50, the long-dashed linel 51, the short-dashed linel 52, dia-
mondsl 53, crossesl 54, and squaresl 55.
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tential ridge becomes suppressed; the angular distributio
small interelectronic angular distances grows and the ene
distribution becomes nonuniform. At the highest ener
E55.0 a.u., the distribution shows a quite different featu

FIG. 9. Energy as well as angular distribution of the two ele
trons in electron-impact ioinization of hydrogen in the case of1Se

for ~a! E50.2 a.u.,~b! E52.0 a.u., and~c! E55.0 a.u. Note the
manifestation of the binary-encounter peak atu12;p/2 in ~c!.
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TABLE II. List of individual angular-momentum pairs for each symmetry specified by$J,S,P%. The
numberN in the parentheses represents the number of coupled hyperspherical channels.

1,3Se (N5100) ~0,0! ~1,1! ~2,2!
1,3Po (N5100) ~0,1! ~1,2! ~2,3!
1,3De (N580) ~0,2! ~1,1! ~1,3! ~2,2! ~2,4!
1,3Fo (N580) ~0,3! ~1,2! ~1,4! ~2,3! ~2,5!
1,3Ge (N580) ~0,4! ~1,3! ~1,5! ~2,2! ~2,4! ~2,6!
1,3Ho (N580) ~0,5! ~1,4! ~1,6! ~2,3! ~2,5! ~2,7!
1,3I e (N580) ~0,6! ~1,5! ~1,7! ~2,4! ~2,6! ~2,8!
1,37o (N580) ~0,7! ~1,6! ~1,8! ~2,5! ~2,7! ~2,9!
1,38e (N580) ~0,8! ~1,7! ~1,9! ~2,6! ~2,8! ~2,10!
1,39o (N580) ~0,9! ~1,8! ~1,10! ~2,7! ~2,9!
1,310e (N580) ~0,10! ~1,9! ~2,8! ~2,10!
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Bray
from that of the lowest energy. The classical bina
encounter peak manifests itself nearu125p/2 in the angular
distribution. In the case that one of the electrons posse
the bulk of the available energy, the angular distributi
aroundu1250 andp becomes enhanced, suggesting that
dipolelike mechanism manifests itself in the ionizatio
Strictly, speaking, the angular distribution peaks atu125p
due to the Coulomb repulsion force exerted from the f
electron. As regards the relative importance of the dipole
mechanism and the binary-encounter one, the figure i
cates that the amplitude of the former mechanism tot
dominates over that of the latter at high energies.

E. Comparison with experimental measurements as well as
other theories: Spin-averaged total ionization cross

section and spin asymmetry

In this section we demonstrate the validity of the pres
theoretical method with regard to spin-averaged total ion
tion cross sections as well as the spin asymmetry in the l
to intermediate-energy range comparing with experime
measurements as well as other theoretical results. In
present calculations we employ the partial-wave expans
with respect to the total angular momentumJ. In Table II
individual angular-momentum pairs (l 1 ,l 2) and the number

FIG. 10. Contribution of each partial wave component to
ionization cross section. The solid line is forE50.1 a.u. and the
dashed line forE52.0 a.u.
-
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e
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t
e
i-
y

t
-
-

al
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n

of hyperspherical channels included in each partial wave
listed. Here we examine convergence of the partial-wave
pansion with respect toJ. Figure 10 illustrates the contribu
tion of each partial-wave component to the ionization cro
section. At the lowest energy,E50.1 a.u., small-J compo-
nents dominate the ionization cross section. On the contr
at the highest energy,E52.0 a.u., the distribution extend
over largeJ, indicating that the partial-wave expansion wi
respect toJ becomes disadvantageous at high energies
calculating the total ionization cross sections, contributio
from J.10 are extrapolated: The net contribution fro
J.10 is less than 10% atE52.0 a.u.

Figure 11 illustrates comparison of the spin-averaged t
ionization cross section with experiments as well as
convergent-close-coupling~CCC! result of Bray and Stelbo-
vics @2# in the energy rangeE<2.0 a.u. The excellent agree
ment with the experiment by Shahet al. @39# is seen in the
figure. Near the threshold, however, the present result in
cates a noticeable departure from the experiment
McGowan and Clarke@10#. The incomplete agreement ma
be partly due to the finite energy resolution in the experim
and partly due to the normalization of the experimental cr
sections. Indeed, for the energy dependence of the cross

FIG. 11. Spin-averaged total ionization cross sections. The s
line represents the present result, diamonds the experiment by
et al. @39#, crosses the experiment by McGowan and Clarke@10#,
and open squares the convergent-close-coupling method of
and Stelbovics@2#.
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tion the present result agrees well with both experimen
results. The CCC result almost coincides with the pres
result at all energies in the figure. Since both theoret
methods are completely different, the complete agreeme
convincing.

Figure 12 illustrates a comparison of the spin asymme
of the ionization cross section with experiment as well
other theories. The spin asymmetry represents the differe
in contribution between the singlet spin state and the trip
spin state in the form

A5
sS2sT

s̄
, ~46!

wheresS andsT represent the ionization cross section of t
singlet spin state and that of the triplet spin state, resp
tively, and s̄ represents the spin-averaged total ioinizat
cross section. The present result agrees very well with
CCC result@2#, except near the threshold: The CCC res
indicates a rapid decline near the threshold. The hidd
crossing result by Maceket al. @14# noticeably disagrees
with both of the CCC result and ours at moderately lo
energies. Near the threshold, the hidden-crossing result
idly increases, whereas the present result does not. Be
near the threshold, the disagreement with the hidd
crossing result at moderately low energies is hardly und
standable because the present calculations converge in
energy range well. Because they are based upon compl
different theoretical schemes, the complete agreement
the CCC result in this energy range is convincing. T
present result totally agrees with the experimental resul
Fletcheret al. @40#, while all theories predict values within
the experimental error bars. Strictly speaking, the theoret
results are always in the upper side of the experimental e
bars. We postpone critical examination of other theories.
us note, however, that the statistical uncertainty in the

FIG. 12. Comparison of spin asymmetry with experiment
well as other theories. The solid line represents the present re
the dashed line the hidden-crossing theory of Maceket al. @14#,
crosses the convergent-close-coupling method, and diamonds
error bars the experiment by Fletcheret al. @40#.
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periment is very large at low energies. The spin asymme
of theS state alone is doomed to converge to 1 at the thre
old; therefore, we may at least conclude that at the thresh
total-angular-momentum statesJ.0 have rather large con
tributions to ionization because the spin asymmetry seem
converge to a value apparently smaller than 1 at the thre
old.

IV. CONCLUSION

In summary, we presented a theoretical method for theab
initio treatment of interelectronic correlations in doubl
continuum states. In the method, the strong interelectro
correlations are represented by the hyperspherical cha
functions and accurate numerical solutions of the tw
electron atomic Schro¨dinger equation are obtained by mea
of the smooth-variable-discretization method in combinat
with the R-matrix propagation method. The double
continuum boundary condition is represented by match
the numerical solutions to asymptotic solutions that are
scribed by superpositions of approximate asymptotic chan
functions.

Armed with the efficient and stable scheme, we have p
sentedab initio results on the ionization of the electron
hydrogen collision. Our theoretical results for the tw
dimensional model definitively support Wannier’s thresho
law. Energy distributions of double-continuum states beco
uniform at low energies, indicating that interelectronic rad
correlations become suppressed asymptotically due pos
to some diffusive mechanisms around the potential rid
Analyzing the convergence of the present calculations led
confirming that the potential ridge plays an essential role
propagating the ionization flux at low energies. At low ene
gies, angular distributions in double-continuum states of1Se

localize where the interelectronic angular distanceu125p.
As the energy increases, the classical binary-encounte
well as the dipole-transition mechanisms become appare
angular distributions. Our theoretical results of spin-avera
total ionization cross sections as well as the spin asymm
show good agreement with experimental measurement
well as the convergent-close-coupling result at low to int
mediate energies. However, regarding the spin asymme
there is a noticeable disagreement with the hidden-cros
result at moderately low energies.

The present theoretical method is capable of handling
ionization process in a wide energy range and also prov
a unique perspective to the study of interelectronic corre
tions in double-continuum states. Thus the method may
applied in the future to various atomic processes that invo
double-continuum states.
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