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Positron scattering from polar molecules: Rotovibrationally inelastic collisions with CO targets
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Quantum calculations have been carried out on the vibrational and rotational excitation processes for CO
molecules in collision with positron projectiles below the threshold of Ps formakgg£7 eV). The coupled
equations have been solved for the vibrationally inelastic process in the body-fixed frame of reference, and
Born-type corrections for the divergent behavior of the angular distributions due to the permanent molecular
dipole have been applied. Detailed comparisons are made between the (patiditdnal and/or vibrational
integral and differential cross sections and earlier available calculations and measurements.
[S1050-294{@7)09309-9

PACS numbd(s): 34.50.Gb, 34.80.Bm

I. INTRODUCTION electron-positron low-energy scattering calculatighs,12.
The system which we discuss here is the CO molecule in
Unlike low-energy electron-molecule scattering pro-its ground electronic state'¥). The scattering of positrons

cesses, where the collision dynamics for the simpler diatomi&om this polar target was experimentally studied earlier by
targets is now well documented both experimentally and<wan [13] and by Sueoka and Mofil4] who, however,
theoretically[1,2], the detailed behavior and the physical in- Presented only total integral cross sections without either re-
terpretation of low-energy positrore{) scattering from the s_olvmg inelastic contnbu_tlons or obtalnln_g angular o_llstrlbu-
same molecular targets are still not fully understood. Al-fions at the same energies. Corresponding theoretical work
though the absence of exchange-correlation effects shou S als_o been rather scarce: some ear!ler calculations by Jain
make the theoretical modeling somewhat simpler, the delil.}>] Using a model polarization potential were followed by

cate nature of the polarization effects and the occurrence &Fﬁ Rf-matdrlx cr?lculja_\ft]:ons of Telnn);son ar?d Morgahe],
positronium(P9 formation (either real or virtugl still make who foun r?t er II Frgnt ref]u tsf r?rg Ej%_lt)frewogsl Oones.
the corresponding calculations difficult to carry out. It is only MOré extensive calculations that included differential cross

recently that positrons have become a valuable tool for probsetf:t'onlf(pcsl s)é_momentumt—.transfer cross sections, and ro- i
ing a wide range of phenomena in chemistry and moleculafdtionally inelastic cross sections were given in a more recen

sciencd3—5], and the issue of positron attachment to atomg>tudy Dby Jain, where a different correlation-polarization po-
and molecules has become crucial to the interpretation g ntial was e_mploye@l?,lSI. Np reference to V|brat|onally
such studies. inelastic collisions was made in the above work, while that

The fact that the observed enhancement in positron annproblem was explicitly treated in a later study of long-lived

> © .
hilation rates[6] could proceed via a number of competing "€sonances ie”-CO scatterind 18].
processege.g., bound-state formation in the"-molecule In the present work we intend to approach all the above

system, bound states of the Ps-molecule complex, excitatio?SpGCts of low-energy positron scattering from CO targets

of molecular degrees of freedom, etmakes it essential to i.e., elastic scattering, angular distributions, and rotational
perform as manyab initio calculations as possible for the and vibrational in.elastic'scattering long-lived r_e_songhces
relevante* -molecule systems, while rather few of them arefror_n a gener_al point of vView by using a _nonemplrlcal Inter-
available even for the simplest molecular targéts]. We action potential and by solving the vibrational close-coupled
recently began to carry out calculations for vibrating molecy-8duations. Section Il therefore discusses the details of the

lar targets which make use of a parameter-free formuIatiorj{]ter"’“:tion and the_correspo_ndin_g quantum scattering equa-
of the full positron-molecule interaction, and looked into thetlons for a nonrotating, nonvibrating molecular target which

effects that the coupling of positron motion with molecular €1 Yield integral elasti¢rotationally summeyfixed-nuclei
vibrations has on the final cross sectig@sl(]. The present (FNA) cross sections. The treatment of vibrational degrees of

study is an extension of such an analysis to a rotatingff€8dom in a close-coupling, body-fixéBF) formulation is

vibrating target which is also a polar molecule, a featurefurther discussed in Sec. Ill, where our present results for the

which adds considerable complications to the dynamics 0?oupling potentials are al_so presentgd. Section IV furthgr
analyzes angular distributions and discusses the correction

needed to remove the pathological behaviour of BF-FNA
* Author to whom correspondence should be addressed. Presejl%clS St.m the forwatr.d-scattermg reglt(ﬁﬂ(;Z,l% (?Otatlonzlly s
address: Dipartimento di Chimica, Cittiniversitaria, 00185 Rome, IN€astic Cross sections are presented and discussed In Sec.
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II. INTERACTION AND DYNAMICS
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-1 focol 4 1fpcol the random-phase-approximation. Further, Boronski and Ni-
Vool 0,8)= 52 [ao(4m) Y20+ a3 m) 7S] eminen[27] described the density-functional theory of the
electron-positron system, and presented the results on the
+ad(f5m) S, (1)  positron-electron correlation energy as a function of the den-

sity parameter (see below for differentn_(r)/n_(r) ra-

whereS"% is a real spherical harmon[@0], (r,6,4) are the tios including the case of one positron in a homogeneous
coordinates of the projectile referring to the center of mas§'€ctron gas. Here, andn_ denote the densities of posi-
(c.0.m) of the target, and the sphericatf) and nonspheri- rons and electrons, respectively.

cal (o, anda}) polarizabilities are expressed in terms of the +B:{sed °“| the above work, explicit elxpress_io?s f%r the
polarizability tensore;; of the target, namely, e -e corre athn engrgyeco,r(rs) Interpo at!ng "F or the
whole radial region of interest have been given in R27).

o= (gt asyt az);ar=2(as— sap— am), These expressions are obtained without any divergence prob-

lems in the calculations of annihilation rates over the entire

range of the density parametey. e, is thus calculated

from the ground-state expectation value of the Hamiltonian,
The above asymptotic forfEq. (1)] of the polarization which describes the electron gas plus the incoming positron

potential is not true when the projectile is near the target. Afixed at a given distance. The analytic interpolated expres-

simple remedy has been to multiply Ed) by a cutoff func- ~ Sions foreqo, in the whole range of the density parameter

tion involving some adjustable parameter; nevertheless, thigt 7r3p(r)=1], wherep(r) is the undistorted electronic den-

approach is unsatisfactory, although the results may beity of the target, are given as

“tuned” to agree with observation&see, for example, Ref.

[21]). For e* collisions, most of the calculations prior to 156

1984 used an electron polarization potentiEiPP, assuming 2ecor(rs)=— —=+(0.051Inr,—0.08)In rg+1.14

that such distortion effects are not sensitive to the sign of the \/f_s

charge of projectile. Morrison and his gro{@2] found that

there is a need to generate a true positron polarization poten- r<0.302, (3

tial (PPP rather than employing the EPP: they strengthened

their point by presenting detailed calculations on ¢ieH, 0545

and -N, systems and comparing them with experimental2ec(rs)=—0.923 05- 7 0.302<r,<0.56, (4

1
a;= @~ ag). (2

data. Although earlier calculations on taé collisions using s

the EPP gave good results as compared to experimental total

cross sectiond,) values, these theoretical results are gener- 2eu(r)=— 13.151 11+ 2.8655 0.6298

ally poor at low energies. The more rigorous calculations, com”s (re+2.5%  (rs+2.5 ’
based on the variational polarized-orbital theories, are not

satisfactory either; Elzat al.[22], for instance, had to intro- 0.56<r,<8.0, (5

duce a cutoff function in both the short- and long-range in-

teractions, anq adjust two parameters to_bring theory a_ng_nd, finally,

measurement into close agreement. Even in a more sophisti-

Caod T approacy, an aceuale nchson of pOAZR" 5o, - 170656 2766 186.420m- 0524,
Here we summarize a computationally simple form of the

e’ -polarization potential which is different from the corre-

sponding EPP, and does not contain any arbitrary parameter . ) . )

which can be externally adjusted to fit some preselected ex¥heren(rs) is the electronic density corresponding to the

perimental features. The basic philosophy of the present aglensity parameters. L .

proach is similar to the method of O’'Connel and L4@é] The positron correlation polarization potenti@COB,

for the case o0&~ scattering based on the correlation energyd€fined as a functional derivative of the correlation energy

of the target in the presence of an incoming electron. VeryVith respect top(r), can be derived conveniently from the

recently, we modified the density functional approaChfollovylng equation in terms of functional derivative of the

method for thee* case by removing the exchange energydensity parameteli2s];

from the problen{25], and found this approach to be better

8.0<r,< (6)

than the EPP model, and closer to a more realistic PPP V() = 1—1r i)e (ro) @
model. The present PPP is also based on the correlation en- con 3 Sdrg) ™S

ergy of a localizede* in ane™ gas, and its hybridization

with the correct asymptotic forfEq. (1)]. The incominge™ One therefore obtains the following form &%, (r) (in
is assumed to be a charged impurity at a fixed distance in aatomic unit$ from Eqgs.(2)—(7):

homogeneous™ gas. for rg=<0.302,

Arponen and Pajann6], in fact, applied a different ap-
proach to the problem of a light impurity in an electron gas.
In their method the electron gas is described by a set of 2V . (r)=
interacting bosons representing the collective excitations in \/f—s

0
+(0.051 Inr—0.115In r¢+1.167; (8)
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for 0.302<r4=<0.56, d2 I(1+1)
g7z TRIPL =2 V(P (), (14)
0.090 98 P I
2Veon(r)=—0.923 05~ ———; 9
Is where the potential matri¥, is determined as usual. Here

A corresponds t& (A=0), II(A=1), A(A=2), D(A=3),
and, for 0.56<r;<8.0, etc. symmetrie$30].
8.7674, 13.151+0.9552, A polar molecule(CO) needs special attention in a BF-

2V or(1) = 5+ > FNA treatment of the theory where the forward DCS’s are
(rg+2.5 (rs+2.9 undefined[11]. In this respect, we employ the multipole-
2 8655 extracted-adiabatic-nucléMEAN) scheme of Norcross and
+ ——F——0.6298. (10)  Padial[31], in which the DCS'’s for thg— |’ rotational tran-
(rs+2.5) sition are given as

FBA .
do_jn_ 9o Kj

Note that for molecular systems the short-raagg(r) is to 1
+ 20 2 [C(1 00T

be divided by a factor of (2+1)/y4 to be consistent with

the single-center expansion in terms of symmetry adapted dQ dQ 4kj T

angular basis set. Here we do not worry about thes8rQ -

< region, as this range is beyond the crossing point where « _ RpFBA

the polarization potential is accurately described by @&g. éo (Bri~ Byl )P\(cosh), (19

Thus, the PCOP potentialig“(r) for the e*-molecule

system is given by17] where the first term is the usual closed form for the'}
rotational excitation DCS’s in the space-fixed first Born ap-
Vi ) =Veorlr),  r=rg, (11)  proximation(FBA), kj andkj’, respectively, are the wave

vectors in the initial and final channel€( ) is a Clebsh-

and by Eq.(1) for the r=r range. Herer. is the radius Gordan coefficient], is the angular momentum transferred
Wneref thechoF and — ao/2r* (or ay/2r®) terms cross each during the collision 4j), B, are the DCS expansion coef-
other for the first time. = FBA ; e

The new PCOP potentisEq, (11)] has several favorable ficients, andBH} are the corresponding quantities in the
points worth mentioning here: first, it involves a true corre-FBA evaluated in the BF frame of reference. The channel
lation of the incominge™ with the target electrons at short- vectors are related by
distance encounters, and it exhibits the correct behavior in Kj’2—kj?=B[j'(j’+1)—j(j+ 1)1, (16)
the asymptotic region; second, it is very easy to calculate and

convenient to incorporate into any model potential approachyyhereB is the rotational constant of the molecule in ques-

third, it is quite different from the corresponding EPP; andyj,, ringjly, the expressions for the totatl{') and the mo-
finally, it gives qualitatively good results on various collision

- i’ -

observables for several atomic and molecular targets as corf?€Ntum transferdy, ) cross sections are evaluated from Eq.
pared with experimental daf8,10]. (15) for any (jj') transition. Total(summed over all final
scattering equations are set up in the single center expansiéfim) Cross sections can easily be obtained from
formalism under the BF adiabatic-nuclei-rotatigsNR). We
have different _codes available to solve these equatic_ms fqr oy OF o=, U{i' or ULL’_ (17)
linear and nonlinear systems. In the present case of diatomic i’
speciegH,, N,, CO, etc), coupled equations are solved un-
der the integral equation meth¢é,10,29. lll. VIBRATIONAL DYNAMICS

Assuming the linear molecule in its ground electronic ) )
state and with a fixed nuclear geometry, the equation of the One may relax the FNA scheme by first allowing the nu-

continuum positron wave functioR(r,) can be written as  Cléi to move during the scattering process, thereby coupling
their motion with that of the impinging positron projectile.

[V+k2=2V(r,)]P(r,) =0, (120 Thus, in the BF scheme mentioned in Sec. Il, one can still
keep the expression over vibrational degrees of freedom such
wherek? is thee™ energy in Ry, and the interaction potential that they are dynamically linked to the positron during the
V(rp) includes the repulsive static and attractive polarizatiorscattering'32], and therefore write the total Hamiltonian as
forces. Expanding th&/(r,) in terms of Legendre projec-

tions, v, , HEFVEC= H(rp) +He(re) + Hyin(R) +V(rp re,R)  (18)
A max or poL. wherer, now labels the electronic coordinates in the target,
V(fp)IVst(rp)Jerol(rp):;::O [y (rp)+v, 1Py (cos), andR is the internuclear coordinate for the diatomit,;,

(13) describes the vibrational motion in the latter system, while

H¢ gives the quantum motion of its bound electrons, taken to

and the continuum functioR(r,) for a given symmetry\, be in their ground electronic state. The interaction potential
we obtain the following set of coupled differential equationsis of the same nature as the one discussed earlier and in-
for the fixed-nucleiFNA) situation cludes now the dependence on the internuclear coordinates.
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scheme the rotational paﬂ%lrot(li), of the full Hamiltonian
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e',(, being the energy of theth vibrational state within th&th
mode.V, is obtained in turn from the following expression:

has been omitted because the employed BF frame is still

rigidly fixed to the molecular targg83]. The corresponding
total wave function can then be expanded in terms of vibra-

tional states for the case of a diatomic target like CO,

WERVEC= Xo(relR) 2 dJ(RIUL, 1 (F) (T D Yia(Tp).
| (19

Xo(re|R) is the ground-state electronic wave functi@ara-

<Xo(re| R)|Vp-mol(rp e vR)|Xo(re| R))

=§ Vi (rp|R)Py(Fo-R). (24)

The C’s of Eq. (22) are the usual Clebsh-Gordan coeffi-
cients. The vibrational wave functions of the molecule can
be obtained first by solving the following differential equa-

metrically dependent ofR), ¢ is one of the vibrational tion for each of the normal coordinaté ;
wave functions of the molecule for the selected normal mode
k, and v labels the vibrational quantum number within that K o "
manifold. Y, ,(f,) now denotes the angular part of the posi- d_Rﬁ*'ZM[GV_ Uk(R ] #,(R)=0, (25
tron wave function, whergis its orbital angular momentum
and A is the projection off along the internuclear axid
=|-R. In the BF-VCC scheme for linear molecules this
guantity is a good quantum numbéronstant of motion

The. unknown funCt{omV"”O'o(rp) IS the radial part O,f the mode, the corresponding vibrational bound states.
positron wave function, wherevgl,) denotes the particular The solution of the coupled equatiof0), subject to the
initial channel which has been selected for the vibrational,g 4| asymptotic boundary conditions, finally yield tiie

and angular momenta. o matrix T, , , , and from this we can obtain the partial inte-
One should note here that tyg(r  R) wave function first 100

corresponds to the undistorted electronic ground state of t ral vibrational excitation cross section using the expression
target, and is thus employed to generate the eix,%\totoef— 4
ficients of Eq.(13). However, it is then distorted by the phe-
nomenological correlation potential discussed before in order

to provide thev?°" coefficients of Eq.(13). Thus, one
should, more correctly, consider expansi®) as being
given over some “effective” target electronic wave function
which is initially built via the asymptotic target electronic obviously present for CO.

wave function and then modified to yield the final interac- \y\hen the energy of the incoming positron is such that the
tion. Were we to use a conventional configuration-interaction, oo, spacing between rotational levels is only a small frac-
expansion to obtain correlation-polarization .effects, then Edtion of the total energy, then the molecule is considered to be
(19) will include a further sum over several eigenfunctions Ofnonrotating and the BE-VCC method states that the vibra-
Helre). tional motion of the molecule and the angular momentum of

Now USing EQS(18) and(19) in the SchfdiHQEF equation the pOSitron are Coupled via theA’k,V potential Only. The

. . . vl, v
(elr:?;ggu%?itgr'gs the corresponding BF-VCC coupled dlffer_scattering process, therefore, treats the actual dynamical cou-

pling between the vibrational modes of the molecule and the

d2

where u is the reduced mass of the molecule, ang(R,)
comes from the ground electronic stede, of the target
which provides the potential supporting, for edth normal

a
Uk(Vo—W):FEA: ; |T£|,VO|O|2 (26)

for each of thekth normal modes of interest. Only one is

d2  1(1+1) AN “Iogal” kinetic energy of the impinging posit_ron as acting
a2 —z— kU, (Tp) during the evolution of the scattering state in Eg0) for
Mo "p each of the molecular normal modes. This is therefore a bet-

ter approximation than the simpler vibrational adiabatic ap-

=22 V’V\,'; I,(rp)u’y\,l, o1 (o), (20 proach[35], whereby the convolution over vibrational levels,

vir nee initial and final, is carried out only after the fixed nuclei
rotation problem has been solved for each valuRpfisee
also Elzaet al. [22]). We shall further see below that this
more correct dynamical coupling is an essential ingredient
for the evaluation of possible threshold peaks in the vibra-
tionally inelastic channels.
and We have also recently examingd] an approximate for-
mulation for Eq.(22) which can be obtained by further con-
sidering each value of the positron angular momentuas
being conserved during the collision. If one further combines
this simplification of the helicity decoupling6] within the
and scattering process with the assumption that the rotational en-
ergy losses occurring during collision could be considered
small when compared with the magnitude of the initial wave-

with

Vf.',if,.,<rp>=§ (XRIVL(r IR (R)YGR(II)  (2D)

21" +1) 12

21+1

N
0O 0o o

N

A Y —
gy(")= o A A

) (22

k2=2(E—€), (23
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vector values, then one finds that the previous BF-VCC couln sum, we could say that in the BF-VCC scheme the vibra-
pling scheme is reduced to a simpler version in which thdional motion of the nuclei, via the electronic charge distri-
coupling originating from the positron angular momentum isbution of the molecule, is dynamically coupled to the motion
treated adiabatically. We call this simpler version the adia-of the positron, while in the BF-VCC-AAMC approxima-
batic angular momentum couplinGgAAMC) scheme, and tion the vibrational motion remains only adiabatically
have discussed its derivation in detail earliét; therefore  coupled to the motion of the positron. The complex recou-
we will not be repeating it here. pling of both partners’ angular momenta during the dynam-
The BF-VCC coupled equatiof20) and the coupling po- ics is thus simplified by an adiabatic treatment for each value
tential of Eq.(21) show that the orbital angular momenta of of | [9,10]. However, in previous work we have already
the positron motion are coupled through the angular part o§hown that such a simplification, although found to be useful
the effective potentiay, (I1"). Thus, in the BF-VCC equa- and fairly realistic for neutral systems interacting via van der
tions this geometric factor acts dynamically during the scat\Waals force$37], turns out to be too weak for describing the
tering processes. On the other hand, the BF-VCC-AAMCdynamical coupling of a charged quantum probe like the
coupled differential equatiori®] show that the angular mo- positron projectile at low scattering energ[@s10].
mentum of the positron is no longer coupled via the full
effective potential of Eq(22), and therefore the scattering
solutions are uncoupled with respect to their angular momen-
tum, which is in turn treated as a separate constant of motion, In order to give a more precise feeling of the behavior of
while one still has vibrationally coupled equations as in thethe coupling forces during the scattering process, in Figs. 1
BF-VCC treatment. The effect of the geometric factorand 2 we show the radial parts of the potentials given by Eq.
g.(ll,) on the scattering cross section now appears to b&€1). The employed target wave functions at the vari®us
modified in the BF-VCC—-AAMC scheme, and does not actvalues are those given long ago by McLean and Yoshimine
dynamically during the actual collision process but only in[38], and with those values one is able to span the first five
an adiabatic way by remaining fixed during each trajectoryvibrational levels of the CO target by numerically generating

A. Coupling potentials
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the bound-state wave functions. The valueg\afhich were  cesses; thel (') terms are always those associated with the
generated for the scattering states went us t013, keeping lowest allowed values for that specific scattering state. One
both odd and even values. The maximum value of the partiatlearly sees once more thatv=1 coupling terms are by far
wave in Eq.(21) wasl =20, and the multipolar potential the strongest, and that they extend over the largest range of
of Eq. (13) was expanded up to= 16. The radial integration radial values in comparison with»=1 couplings. Further-
over 7,, because of the dipole interaction present in thismore, the coupling is essentially located at very short dis-
system, was extended up tg=230 bohr. The correspond- tances from the c.o.m. of the target molecule, and dies out
ing vibrational energy spacings found here wéie ev)  Very rapidly as the positron moves outside the molecular
Aegy=0.266,A €gy=0.528, A €gz=0.787, andA ey,= 1.043. charge dlstrlbutlons_. That the melast!c vibrational coupl_lng is
Figure 1 shows two of the scattering statdss 0 and 1, here found to bg fairly §hort ranged in nature and dominated
for which the coupling potentials were computed: the topby Av=1 transitions will be seen to have marked effects on

part of the figure corresponds ¥ostate scattering, while the :ir:)ei];eatures of the computed inelastic vibrational cross sec-
lower part refers tdl-state scattering. The different vibra- '
tional levels, being coupled by the potentials, are indicated
for each curve; thel(l") indices further refer to the partial
waves of the scattering equations which are directly coupled The behavior of the partial integral cross sections of Eq.
by the potential terms. It is interesting to note that the  (26) is shown, in fact, by the calculations reported in Fig. 3
=1 terms, from the ground vibrational levet0, are by far  over the range of collision energies below the formation of
the strongest coupling terms, and extend over the largePs states. The largest cross section is given byitte— 1)
range of radial distances: multiple, direct excitations of vi-excitation process, which is still, however, rather small com-
brational levels by positron scattering are clearly less favoregared with the electron-CO results at the same enefgis
by the coupling potentials. The following comments can be easily made.

In Fig. 2 the coupling results are shown fdr and ® (i) The multiple excitation processédv=2, 3, and 4
scattering states and for the same range of excitation preshow cross sections which are markedly smaller than those

B. Inelastic cross sections
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show their enlargements in order to be in the
same scale as the {01) process.
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from the single-jump excitation collision: the reduction in for the symmetric stretching made in the C@rget[10].
size is of two orders of magnitude farv=2, and increases Thus one can see fairly clearly that the dipole interaction
to more than three orders of magnitude at the threshold opefiand its dependence on the molecular vibratiprovides a
ing for the Av=4 process. This feature indicates that, al-strong, long-range contribution which affects the vibrational
though the interaction between the low-energy positron anexcitation process, in spite of its dominant short-range fea-
the molecular charge distribution is not weak, and usually isures, when the collision occurs in the neighborhood of the
seen to induce sizable deformations of the total electron derthreshold energy.
sity, it appears to be less able to alter the electron density in (i) The presence of the marked peak at the threshold is
the inner region involved in the chemical bond formation asalso in keeping with what has been suggested in collisions of
the impinging probe mainly samples the outer region of theslectrons with polar molecules and in the excitations of their
molecular formation target at the low collision energy con-vibrational modes at very low energi¢40—43, where it
sidered here. was surmised that the Born point-dipole approximation could
(if) The (0—1) excitation cross section here, on the otherbe responsible for the rapid onset of the cross section and for
hand, is remarkably larger than that shown by nonpolar tarits rapid falloff with increasing energy. We see that the
gets like B, N, [9], and CQ [10]. At the collision energy present treatment of the coupled dynamics for positron scat-
just above the opening of the=1 threshold(0.266 eV}, in  tering strongly suggests that a similar process should occur
fact, the corresponding inelastic cross section is two orderfor the threshold collisions of such projectiles with polar
of magnitude larger than in the case of the excitation processolecules, in spite of the weaker coupling that positrons ex-
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hibit, with respect to electrons, in their interactions with mo-vibrational levelv=0 are shown in Fig. 4. The solid line
lecular vibrational modes. shows the calculations carried out using the BF-VCC equa-
Another useful indicator of the relative efficiency of rota- tion (21), while the dash-dotted line refers to the results ob-
tionally and vibrationally inelastic collisions is given by the tained by using the more approximate coupling, the BF-
evaluation, out of a selected rotational-vibrational level ofycc—AAMC equation mentioned befofé)].
the target molecule, of the average energy transfer index de- e see that both calculations exhibit a strong maximum
fined as region at low energies, although the more approximate cou-
o o pling causes the cross section to present strong additional
(A E>:E 0'0—»jAfoj/ E Tois (27) pgaks at the opening of 'Fhe ;econd threshold which are also
i=o i=o given, but much smaller in size, by the correct coupling dy-
namics of Eq(21). In other words, the full angular momen-
where|j) is the index of each final rotational or vibrational tum recoupling of Eq.(21) indicates that the dipole-
level which is being considered, add,; the corresponding supported excitation processes are the dominant ones for this
energy spacing(in meV). The indicator can be directly polar target, and therefore they also dominate the energy-
evaluated for the vibrational energy by considering, at eactransfer efficiency in the low-energy region. The other inter-
given energy, that the rotationally summed cross sections arsting feature of the vibrational energy-transfer values re-
decoupled from vibrationally inelastic collisions, since theyported in Fig. 4 is that the size of such average energy-
occur on a much slower time scale than the latter excitationgransfer processes is remarkably larger than that from other,
The results for such a quantity from the molecular initial nonpolar targets: the value at the peak is more than two
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orders of magnitude larger than in ¢{1L0], and similar to  Sshow calculations at a collision energy of 0.5 eV. The upper

the values from electron-scattering procedSss. part of the figure presents results for rotationally inelastic
processes within the vibrationalblastic channel, while the
IV. COMPUTED ANGULAR DISTRIBUTIONS lower part of the same figure shows the partial differential

cross sections for rotovibrationally inelastic excitations. All

As discussed in the previous sections, the BF calculationgesults have been corrected by using the Born correction as
of the elastic(rotationally summeq differential cross sec- inthe MEAN approximatiori31] given by Eq.(15). One can
tions diverge logarithmically in the forward directigd4], = make the following direct comments.
and require correction from the Born approximation as given (i) The vibrationally elastic partial cross section are, as
by Eg. (15). Furthermore, the evaluation of rotationally in- expected, larger than the rotovibrationally inelastic angular
elastic cross sections has been shown to eliminate the divedistributions. Within each manifold we also see that the
gence in the BF framé¢32], where vibrationally inelastic (0— 1) rotational excitation process, the one dominated by
processes are obtained from close-coued) equations as charge-dipole interaction, provides the largest rotationally in-
discussed in Sec. lll. It is therefore of some interest to actuelastic cross section.
ally verify through accurate computations how such angular (ii) In the small-angle scattering region the{Q) rota-
distributions for inelastic transitions behave at various colli-tional excitation is also larger than the elastic process in both
sion energies. sets of cross sections, where such an effect is much more

As an example, for the low-energy regimes, not far abovemarked in the case of rotovibrational inelastic collisions
the opening of thev=1 vibrational threshold, in Fig. 5 we (lower part of the figurg
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(i) The ANR approximation, employed here to obtain inelastic collisiong46], and employed the same target wave
rotationally inelastic cross sections from the BF-VCCfunction and positron-molecule interaction described in the
K-matrix elements, also indicates that multiple rotationalpresent work: it therefore becomes of interest to compare the
transitions have a much smaller probability than the<(D)  various results from the different coupling directly, in order
excitation, which is dipole dominated. One therefore explic-to better assess the relative reliability of the various schemes.
itly sees evidence of the different behavior of positrons asThe behavior of the rotationally and vibrationally elastic
molecular probes: their repulsive interaction with the targef{ 00— 00) cross section, for example, is shown in Fig. 7, and
causes the excitation to be dominated, at the energies coit-is compared with earlier calculations that did not employ
sidered, by long-range forces, and therefore the weakethe BF-VCC scheme of the present work.
higher multipoles yield smaller excitation cross sections. The solid line reports the present calculations which were

The above features of the rotationally inelastic processesbtained by applying the ANR approximation to the vibra-
obtained within the elastic channel of the BF-VCC calcula-tionally elastic channeK-matrix elements of the BF-VCC
tions are further shown by the results reported in Fig. 6: th@esults. The dashed line, on the other hand, shows the rigid-
rotationally inelastic differential cross section®C are rotor calculations which directly used the ANR approxima-
shown there for two different collision energiest 1.5(top)  tion with the FNA K-matrix elementd17]. One sees that
and 5.0 eV(bottom). both procedures produce essentially the same results over the

As the positron penetrates more deeply into the moleculawhole range of energies, with small differences at the open-
charge distribution we see that the dominance of the (Q ing of the vibrational threshold. Considering that the two sets
rotationally inelastic DCS'’s is markedly reduced. The elasticof results were obtained with different codes, although using
process becomes strongest in the forward-scattering regiothe same target wave function and the same PCOP potential,
and dominates the rotationally summed angular distributionghe agreement found here is a confirmation of the reliability

As mentioned in the previous sections, the MEAN ap-of the ANR computations even when vibrationally coupled
proximation, i.e., the Born-corrected form of the partial equations are solved for the scattering of positrons. Hence,
DCS’s[19,3]] for the state-to-state inelastic cross sectionsthese results give us a further indication of the fairly weak
can be applied either to the FNA calculations via the ANRcoupling between positron projectiles, below Ps formation,
adiabatic schem¢35], or to the BF-VCC calculations. It and molecular vibrational motion.
therefore becomes of interest to carry out numerical tests of The space-fixedSH calculations which solved the rigid-
the different behaviors of the inelastic cross sections prorotor coupled equationd FCC) are also reported in the fig-
duced by the use of the different coupling schemes. ure, and result from Refl46]. In those computations the
same target wave function and the same PCOP interaction
were also employed. The general shape of the cross-section
dependence on collision energy is rather similar to our

Because of the local nature of the PCOP interaction dispresent results, while differences in the value appear in the
cussed above, one can also compute the rotationally inelastiow-energy region below about 1.0 eV. The LFCC calcula-
cross sections by using a laboratory-fixédF) frame of ref-  tions included ten rotational states in the scattering wave-
erence, and then treat the scattering problem within the fafunction expansion, and up =11 in the angular momen-
miliar CC expansion over rotational states of the tafgéf. ~ tum expansion. Although their convergence tests were rather
Recent calculations which followed the above schemdimited, it is reasonable to assume that their final cross sec-
(LFCC) have been carried out for positron-CO rotationally tions were within less than 5% from the converged results

V. ROTATIONALLY INELASTIC PROCESSES
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[46]. The analysis of the other LFCC partial cross sectiongrocess most directly given by dipole coupling is obtained
show that below 1.0 eV the rotationally inelastic processesather reliably from Born-corrected ANR results down to
are the main contributors to the total cross sections, since tHew collision energies below 1.0 eV. As expected, the two
existence of the rotating dipole moment produces the largestets of rigid-rotor calculation6ANR and LFCQ are essen-
dynamical effects as the energy becomes smaller. Hence otially identical, as also suggested by previous tests gn H
can say that the ANR results are not treating the dynamics if47], as the collision energy increases and as the dynamical
that range of collision energy realistically. simplifications implied by the ANR scheme become more
The interplay between rotational dynamical coupling andacceptable. On the other hand, the inclusion of the vibra-
the relative strength of the various multipolar coefficients oftional coupling and of the dependence of the dipole moment
the interaction potential can be seen more clearly from @n the internuclear distance plays a rather important role
comparison between partial, rotationally inelastic cross sedaere, as opposed to the rotationally elastic case discussed in
tions within the vibrationally elastic channel which we haveFig. 7, and therefore the size of the inelastic cross sections is
displayed in Figs. 8 and 9. The upper part of Fig. 8 shows, irmodified rather markedly at all energies.
fact, the (G—1) rotational transition computed, using Born-  As one moves to the weaker quadrupole moment coupling
corrected results, from both the BF-VCC equations and théor the (0—2) direct excitation process, the results of the
ANR transformation from the FNA equations. The resultscomparison change as shown in the lower part of Fig. 8. The
from the SF dynamics of the rigid-rotor excitatighFCC) inclusion of vibrational coupling is now less important in the
are also shown by the dot-dashed line. long-range region, and therefore the BF-VCC and ANR re-
It is interesting to see there that the rotationally inelasticsults nearly coincide at all energies. They are also very close
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to the LFCC calculations where only very-low collision en- previous results. Such differences appear to suggest that vi-
ergies 0.1 eV) appear to affect the validity of the ANR brational coupling plays an increasingly important role as
scheme, and to indicate differences due to the vibrationahigher excited rotational states are reached by collision, and
coupling. The discrepancies of high collision energies fromtherefore one should take the simpler ANR results as only
the LFCC results could be due to their lack of convergencejualitative findings for such processes. Obviously, rotovibra-
as more rotational channels become open. tional coupling is bound to increase for a faster rotating tar-
The results relative to (8:3) and (0—4) rotationally  get, and we should expect that the vibrational motion is dy-
inelastic partial cross sections are further reported in the upramically more coupled to the impinging positron’s motion
per and lower parts of Fig. 9, respectively. The ANR andwhen the target is also rotationally excited.
LFCC results for the rigid-rotor calculations are again fairly A more general comparison between experiments and the-
similar in their energy dependence, but show some discreparetical results is finally shown in Fig. 10. In the main figure
ancies in terms of their relative size. The ANR results arewve report the results of the rotationally and vibrationally
invariably larger than the close-coupled calculations, possisummed total integral cross sections obtained from the BF-
bly suggesting that the latter are still not converged for thes& CC calculations described in this wogkolid line). We also
excitation processes withj=1. report the rigid-rotor, ANR calculations of RéfL7] (dashed
Furthermore, the same inelastic cross sections, extractdiuhe) and the rigid-rotor, close-coupled calculations in the
via the ANR scheme from the BF-VCC elaskcmatrix, are  space-fixed LFCC results from R¢#6] (dot-dashed lines
reported by the solid lines, and behave differently from theThe corresponding experimental results are given by the
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filled circles[13] and by the filled triangles from Ref14].  formation with polar molecules, and have focused on
Whenever possible, the corresponding error bars are also re*-CO collisions up to about 7 eV of collision energy.
ported. In the inset we show the effect of simplifying the In particular, we have explicitly included the dynamical
vibrational coupling by resorting to the CS approximation ascoupling between the motion of the projectile and the vibra-
discussed by us in R€]. The BF-VCC results are given by tional coordinate and evaluated the size of the vibrationally
the solid line again, while the BF-VCC—AAMC calculations inelastic processes in such collisional events. Furthermore,
are given by the dot-dashed line. we have_ included _the Born co_rrectk_)n for t_he \_Nell-known
As expected, the inclusion of vibrationally inelastic pro- pathological behaviour of the dipole interaction in a BF-FN

cesses has a rather small effect on the integral total crodi@me of reference, and extracted both elastic and inelastic
sections because of the smallness of the excitation probabilghgular distributions, providing rotationally inelastic transi-
ties shown in the previous analysis. Thus the computationé©n$ Within a vibrational manifold.

given by the BF-VCC approach and those produced by the The efficiency of the vibrational energy-transfer process
rigid-rotor ANR scheme come very close to each other afurns out to be rather low for positron scattering, as expected

low collision energy: they begin to differ as the collision from the physics of the interaction, but still shows a marked

energy increases, and therefore as the vibrationally inelastf@crease at the opening of the vibrational channel and up to
process becomes more important and subtracts flux to pureRPOUt 1 €V of collision energy. This effect could be attrib-

rotationally inelastic excitations. The space-fixed calculaUted to the possible presence of a long-range trapping of the

tions, on the other hand, are very different at very low enerP0Sitron at the threshold opening, as seen in vibrationally
gies, and indicate clearly the dynamical effects arising fronjnelastic processes from electron scattering off polar targets
correctly coupling the positron motion with the long-range[40:4143, and as also expected to occur for positron scat-

forces of the polar target. Such effects are reduced as tH&" N9 [6]- , _ .
collision energy increases, and therefore the dash-dotted In the calculations, the theoretical values of the_ multipole
curve follows more closely the BF results given by the othe/€MS were employed to generate the cross sections, as op-
two calculations. On the whole, however, we see that the0S€d 10 using the experimental values of the dipole and
present calculations agree well with the available experiduadrupole terms. Such differences are really rather unim-
ments, and describe the full rotovibrational dynamics markPertant for the whole picture of the processes at hand, and
edly better than the earli®-matrix calculation§16], where ~ ©ON€ can easily check this point by comparing both sets of
correlation forces produced by a more conventional€SUltS, as given in Fig. 11.

configuration-interaction expansion were still not yet well !N this figure we report the partial, state-to-state rotation-
described in the intermediate range of interaction. ally ‘inelastic cross sectionftop) and the corresponding
momentum-transfer cross sectiofimttom) as a function of

the transferred rotational angular momenttin The energy
being considered is 1.5 eV. We see three different types of
computations: the BF-VCC results with the theoretical mul-
tipoles (solid line), the rigid rotor results within the ANR

In the present study, we have analyzed the relative imporapproximation using the theoretical values for the multipoles
tance of various low-energy excitation processes which cafdashed lines and the same ANR results using the experi-
occur in collisions of positrongbelow the threshold of Ps mental multipolegdotted lines. In the last two calculations

VI. SUMMARY AND CONCLUSIONS
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the Born (MEAN) correction was applied, while the BF- tance of rotational and vibrational energy-transfer processes
VCC results do not need such a correctj@2]. in positron scattering from molecular targets. Last, but not

We clearly see in both sets of calculations shown in Figleast, the VCC treatment clearly shows the presence of
11 that the use of the correct dipole makes a small differencenarked threshold effects and of possible positron trapping by
in the cross sections withj=1, as expected, but has no the molecule during the inelastic dynamics.
effect on the momentum-transfer cross sectioms)( Fur-
thermore, we see there that the quadrupole term changes are
enhanced by the,, weighting of the larger angles, but again
make little difference in the cross sections.

In conclusion, a comparison of the present computed in- The financial support of the Italian National Research
tegral cross sections with the available experiments show€ouncil (CNR) and of the Italian Ministry for Universities
that our treatment of the dynamics in the Born-corrected BRand ResearcHMURST) is gratefully acknowledged. One
approach, and our modeling of correlation forces, providepf us (T.M.) also thanks the CNR for financial support.
for the CO target, one of the best available accords with thé&inally, F.A.G. wishes to thank the kind hospitality of
measured data down to very low collision energies. It alsdhe Max-Planck Society in Gtingen, where this work was
gives us a more quantitative feeling of the relative impor-completed.
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