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Calculational scheme for exact exchange and correlation potentials
based on the equation of motion for density matrix plus the perturbation theory
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The equation of motion method is used to express the external potential in terms of the first- and second-
order interacting density matricé®Ms) for a molecule. By also introducing noninteracting DMs built from
the Kohn-ShamKS) reference system orbitals, the exchange-correlation potential is derived. Applying the
perturbation theory of Gting and Levy[Phys. Rev. B47, 13 105(1993], this potential is separated into the
exchange-only potential and various orders of the correlation terms. Each potential term can be determined
self-consistently from a specific equation written in terms of both occupied and excited KS orbitals and
differences of orbital energies, plus potential terms of lower orders. Naturally, the determination of these
orbitals and energies requires a self-consistent solution of KS equations. Explicit expressions for calculation of
the exchange potential and the leading term of the correlation potential are obtained and discussed. An
approximate exchange potential written directly in terms of noninteracting DMs is also proposed.
[S1050-2947@7)05511-X

PACS numbgs): 31.15.Ew, 31.15.Md, 71.15.Mb

. INTRODUCTION densityn(r). The present authors noted intimate connection
of their result[5] in the exchange-only limit with the work
One of the approaches to the many-electron problem ofprmalism of Harbola and Sahf6]. Subsequently, Levy and
atoms and molecules that is currently of interest is thyarch [7] have expressed the “kinetic” correction to the
density-functional methogsee, e.g.[1]), having its origins  Harhola-Sahni result, which restores the latter's path inde-
in the statistical theory of Thomas, Fermi, and Dif@ee  endence, giving an exact expression for the exchange po-
e.g.,[2)). Slater[3] made a major step forward when he oniia| and correlation potential separately. The perturbation

recognized that approximations to tligingle-particle ki- theo —_ T
) X o ry applied if 7] had been developed earlier in the work
netic energy made in the Thomas-Fermi-Dirac the@rgw of Gorling and Levy[8]. This Galing-Levy (GL) theory

called the local-density approximatipwere too severe for . . )
L . involves scaling the electron-electron repulsifr;; to the
guantitative work. He therefore proposed a hybrid approac 5 ; !
orm ae“/rj; , together with anv-dependent one-body poten-

in which one-electron Schdinger equations were solved tial that trains th d-state densitv at eadh b
with a Hartree-like potential supplemented byn&® ex- lal that constrains the ground-state densily at ea €

change potentialn(r) being the ground-state density. Slat- the Same as in the fully interacting system. _

er's work was formally completed by Kohn and Shéi, More recently, a second approgch tg the cglculgtlon of
who showed that such a one-body potential could be contx(r) has been formulated by §8], in which the line inte-
structed as the sum of the external potential) (—Ze?/r in  9ral appearing iff5] is avoided. This alternative route in-
an atom of atomic numbeE), the electrostatic potential Volves, however, also the third-order DM and givgg(r) as
ve{r) created by the electronic charge cloud of number dena solution of an integral equation rather than as a line inte-
sity n(r), and the exchange-correlation potential(r),  gral. Holas and Levy10] have proposed a way in this sec-
which was to be obtained from the exchange-correlation enend approach, based again on the GL thd@iy to separate

ergy functionalg, [ n] as outv,, the exchange only part, from,.. The work in both
[7] and[10], due to applied perturbation thedi§], provides
SE.dNn] also a procedure to calculate self-consistently within the ex-
vxd13[n]) = sn(r) (1.1 tended Kohn-ShaniKS) approach the exchange potential

and various orders of the correlation potentig] expressed
Unfortunately, there is no direct means, within the density-via line integrals or integral equations, respectively.
functional theory framework, to derive,, or v4(r) as ex- The purpose of the present work is to employ yet a third
plicit functionals of the density and therefore, very recently,approach to the calculation of. in terms of DMs, by con-
we have used the differential virial theorem to writg(r)  structing and applying the equation of motion for the 1DM,
as a line integral in terms of first- and second-order densitjollowing the work of Dawson and Marc. 1] (see also the
matrices(1DMs and 2DMg [5]. The functional derivative in  work of Ziesche[12]). In addition to the external potential
Eq. (1.1) is thereby bypassed, but the price to be paid, in anyand 1DM, this equation involves only the 2DM coupled with
final theory, is that the 1D\, and 2DMp, must be, at least the electron-electron interaction potential. Next, by express-
implicitly, expressed as functionals of the diagonal 1DM, theing DMs in the same equation of motion as perturbation
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expansions according to GL thedr§], we derive equations simple that we merely give it in Appendix A in order to point

determining bottv, and various orders of the expanded out the assumptions and to establish the notation. In this
So three works|,7], [10], and the present study, combine equation[the spinless version of EGA3)]

the GL perturbation theor}y8] with three different equations

satisfied by low-order DMs to obtain, and expanded, 2 CrR(r! / -

self-consistently within the extended KS scheme for a given {tro) +o(ry]=[try) +o(r)hea(reiny)

many-electron system. A completely different way to evalu- 3 , ,

ate these potentials, based alsd 8 was proposed by Go +2J dro{u(ry,ra) —u(ry,ra)tpa(re,ra;ry,r2) =0,

ling and Levy in their subsequent work3,14. It involves

the inverse of the integral operator of the linear density re- 21

sponse, available within the extended KS scheme. All four

methods appear somewhat complex in detail: Therefore, it ithe 1DM p, is related to the 2DMp, via the electron-

presently difficult to predict which one will prove most con- electron interaction potential(r,,r,) =1/r;—r,|. Since the

venient for practical implementation. external potentiab (r) is local, one can solve E@2.1) with

respect to it,

Il. EXCHANGE-CORRELATION POTENTIAL IN TERMS
OF DENSITY MATRICES v(ry)=v(ry) —W(ry,ri;[up1,p2l), (2.2a

Although the equation of motion for the 1Dl (rq;r5)
is already knowr{see, e.g/,11] and[12]), its derivationis so  where

{’t\(rl)_’f(rjll)}pl(rl;r1)+2fd3r2{u(r1:r2)_u(rier)}pZ(rlrrZ;rj,L!rZ)

2.2b
pa(ry;ry) ( )

W(ry,ry;[U,pg,p2])=

The matrix functionaW shows anti-Hermicity and antisym- given is the exact solution of the Schtimger equation. By
metry. Therefore it is real and vanishes on the diagonalcomparing this potential with the original one, regions of
By noting that v(ry)—v(ry)={v(ry)—v(r)}+{v(r])— substantial discrepancy can be determined. This information
v(r})}, one obtains from Eq2.29 a very interesting iden- may be helpful for improvements in calculating, e.g., by
tity of “spatial additivity” concerning p;, p», and u, extending the basis functions set with functions significant
namely, for such regions. Taken with a negative sign, the potential
v(r,) given by Eq. (2.2 for DMs corresponding to the
’. _ ", ground-stat€GS) function ¥V of the system represents also
WCryrilu paip2]) =W(ra riifu,pypal) the functional derivative with respect to the density,) of
+W(r],ri;[u,p1,p2]). (2.3 the Hohenberg-Kohn function&[n] (see, e.g.[1]).
A similar equation can be obtained for the effective po-
" nony e tentialvkg(r) of the equivalent noninteracting reference KS
It demonstrates that the Sui(ry,ry)+W(ry,r1) is inde- system having the same GS density) [1], written in terms

pendent ofr], even though the separate terms are not. s . - :
The presence af(r;) on the right-hand side of E2.29 ?Zf ;;1%elir[])é]\/la%g::]ttzloswsystem[the interaction term of Eq.

reflects the fact that potentials that differ by an additive con-
stant lead to the same wave function and therefore the same

— A I.r .S
DMs. This arbitrary constant of the potential can be fixed vks(M1) =vks(r) = Wore riilpil), (243
here by choosing a value of the potentialg., Q at a chosen where
reference point; (e.g., ate). Thus Eq.(2.2) demonstrates
how the external potential can be reconstructed from given , ,
s, P g Wy(ry,riLpS ) =W(r1,r15[0,05,0])
As pointed out in Appendix A, the 1DM and 2DM, oc- fr) -2 pS(ryir))
curring in Egs.(2.1) and (2.2), are obtained by means of = S l_ ,l 1 (2.4b
reducing the pure-statiDM y,=¥¥* whereV is any p1(riiry)

eigenfunction of the system HamiltonidAl), or they rep-

resent a mixture of such pure-state DI#g}). Equation(2.2) ~ Obviously, the matriy(r,,r1) exhibits the same properties
opens an interesting way of checking the quality of any apas the matri®\/(ry,r;). The potentiabyg(r) is known to be
proximate eigenfunctio (the ground-state one or excited- a sum of two potentials: externalr) andv;.(r), the latter
state ongresulting from a numerical solution of the Schro taking account of interactions present in the original electron
dinger equation. In terms of DMs, andp,, generated from system

this ¥, one calculates (r;) according to Eq(2.2). The re-

sult may be thought of as the actual potential, for which the vs(N)=v(N) +vin(r)=v(r)tovedr) tuylr), (2.5
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] [ 3 moving in the external potentialg,(r;[n]) chosen such that
ves(rl,[n])—J d%rau(ry,ra)n(ry), (2.6 the electron density remains independentpf
while v, is given in Eq.(1.1). After subtracting Eqs(2.29 n“(ry=n(r) for a=0. (3.1

and(2.6) from Eq. (2.4 we arrive at the result
{tr)—trDipa(ry;ry)
pa(ryiry)

R R GNTHH vag (N=v(r). (3.2b
p1(ra;ry)

Obviously, this link demands

ch(rl):vxc(ri)+ Ug;o(r)Eva(r), (3.29

Denoting the DMs of this family of intermediate systems by
pi, we rewrite the equation of motiof2.1) as

+fd3r2{u(r1,r2)—u(ri,r2)} . A
{[t(ry) +ver)1=[t(r) +ver)p1(rairy)

(SR PHENP))
[—.f—n(u) L@
PaT1iry) +2] d3rp{au(ry,rp) —au(ry,ro)}ps(ry,rir,r) =0,
This form(2.7) is an exact and direct expression fQg(r) in (3.3a

terms of the low-order ground-state DMs,p,,n of the o .

interacting system anghj of the noninteracting system. SO We can obtaiwe, similarly asv in Eq. (2.23 from Eq.

Analogous exact relations, obtained by us earlier, had give|(12'1)'

v4(r) indirectly: either in the form of a line integrf] or as @ @ o . « a

axg(ol)ution of a¥1 integral equatid®]. ’ Ve M) =Vex(T1) =WIry,ryslat.pi,pz]), (330
We expect Eq(2.7) to be helpful in obtaining new ap-

proximations tov,.(r;[n]) by constructing approximations

S X .

to the DMsp,, p,, andp; as functionals oh. Such approxi- ¢ o intermediate system depends on the coupling parameter

mations to the DMs lead not only to,. but also to the , 4¢

exchange-correlation energy because it can be written in

terms of the same DMs: ve 1[N =vks(r[N]) — aves(r;[N]) —vi(r;[n]),

(3.9

whereW is defined in Eq(2.2h.
As shown by Gding and Levy[8], the external potential

— 3 7 '\ _ S !
Exdnl fd ritrodea(rairy pl(rl’rl)}‘rhrl where veg(r)=vedr)+v,(r) denotes the “electrostatic-

plus-exchange” potentidsee Eq(2.6) for veg], while v,(r)

+f d3r 13 u(r g, r){pa(ri,r2ir1,r5) together withv (r)=v2~*(r) are the exchange and correla-
tion potentials that sum to,.(r) of the KS theory, for the
—In(ryn(ry}. (2.8  considered electron density(r). It is interesting that the

correlation potentiab(r), occurring in Eq.(3.4), has an
It should be noted that the equation termed the differentiakxpansion in a power series i, commencing at second
virial theorem, which played the role of the starting point in order:
our route to the exchange-correlation potential in the line-

integral form[5], turns out to be the “diagonal” limit of the N S

differentiated equation of motio(2.1). This can be demon- ve(r)= Zz v g(r). (3.9
strated directly by acting with the operatbfa/dr,— /) .

on Eq.(2.1) and subsequently setting=r,. So, combining Eqs(3.4) and(3.5), the following expansion

can be written for the external potential
IIl. PERTURBATION-THEORY APPROACH

TO EXCHANGE-CORRELATION POTENTIAL

. . . . V(N =2 alvegy(n), (3.6
The equation of motiori2.1), which allowed us to obtain j=0

the exact expressiof2.7) for v, in terms of DMs, can be o .

also useful for setting up a working procedure for evaluationVhich is assumed to be convergent in the rangenG<1. A
of v, within the extended KS scheme by means of pertur-s'm'lar expansion is takel8] to hold also for theN-electron
bation theory. According to Gting and Levy[8], it is con- GS wave funct;onl’“(xl,...,x[\,) and therefore for the DMs
venient to link the interactingy-electron system, having the obtained from it(see Appendix B for details
interaction potentiali(r,,r,) and moving in the external po- - w

tential v(r), with the equivalent noninteractiny-electron a2 gy S
system moving in the effective potentiaks(r;[n]) [both Y <6 Yiti o Pi <o Pirj -
systems having the same GS denasity) |, by introducing an

intermediateN-electron system, having the interaction poten-  Similarly to the potential(3.2), the coupling parameter
tial au(r,,r,) (i.e., scaled by a coupling constany and link for DMs demands

(3.7
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P~ =pi=p;, (3.89
Piazlzjzo Pilj=pi - (3.8b

Since p{(rq;r;) occurs inW in Eg. (3.3b also in the de-
nominator[see Eq.(2.2b], we introduce a notation for the
expansion of its reciprocal:

©

aa(rl;ri)=1/pf(r1;ri)=jzo alb); (3.9a
00="Lpyo=1lp3, 01=—p1al(p})?  (3.9b
0= (p11)°/(p3)*— p11al (p3)?, (3.909

etc. Applying expansion$3.7) and (3.9), we obtain forwW
[Eq. (3.3b with (2.2b] the expansion

W(ry,riifeu,py.ps]) =Wyri,ri;[pfl)

©

+ 2 aWy(ra.rg),
(3.103
whereW; is given in Eq.(2.4b and

Wii(ry,r3:[U,paos - - - P P205 - - - P2s—1])

i
:Zo 9//(r1:ri)[f(rl)_E(ri)]Pl/j—/(fl;fi)

-1
+2 0,/(r1,r1)fd3r2[u(r1,r2)—u(r1,r2)]
/=0

Xpaji—1-11,12501,12). (3.10b
Since Eq.(3.3b holds for arbitrarya (from the rangg0,1]),
the coefficients at’ must be the same for eaghon both
sides of this equation written in terms of expansid8%)
and(3.1039. Thej=0 equation, resulting from E¢3.3b) is,
of course, the same as E@.49, while the higher equa-
tions are

(3.11

Uext/j(rl):Uext/j(ri)_W/j(rlir:ll)'
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Next, we rewrite the first, second, and high#r-order po-
tentials explicitly in terms of DMs:

VeskT1) = Vesd 1) + Oo(t—1) p1nt 0n(t—Dpso
+260,0f[(U—u)poql, (3.143

VA1) =01 + Oo(t—1) prot Oa(t—1)p1n
+ 0p(t=1) prsot 200 [ (U—U) 2]

+20, T(U=u)popl, (3.14b

j
Uc/j(f1)=vc/j(f1)+20 0,(t=t)pyj—,

-1
+2Z0 0, f/[(U—U)py;—1-,]. (3.140

Here 6,,=6,,(r1;r;) is a combination ofpy(ry;ry),...,
p1,/(r1;r7) [see Eq.(3.9] and the following shorthand no-
tation is introduced:

A-Dpu=[t(ry)—tr)lpwu(risry,  (3.1409
f[(u—u>p2n]=f d3rofu(ry,ry) —u(ry,ry)]
Xpoi(ry,F2;r1,ra). (3.14¢

The above equations allow direct evaluation of the
electrostatic-plus-exchange potential and consecutive terms
of the correlation potential expansion. The input information
consists of the KS reference system objects such as the 1DM
pi=p1p and the 2DMp3=p,, together with perturbation
expansion terms of the 1DM and 2DMhich will be shown
in following sections to be available within an extended KS
approach

Sincevg,(r1) plays a role of the external potential for the
intermediate N-electron system, the matriXW(r,ry;
Lau,p{,p5]), occurring in Eq(3.3b, must exhibit the same
properties as the matriwv(r,,r;;[u,p1,p»]), occurring in
Eq. (2.29. After expansion, this must remain true for each
matrix termW,;(r1,r1;[U,pyo,- -1 02105 - P2~ 1])-

It is worth noting that an expression, alternative to Eq.

For further discussion it is convenient to introduce the effec{3.11 or (3.13, can be derived also from the equation of

tive interaction potentiad;,(r) [satisfyingv frﬁfl(r)zvim(r),
Eg. (2.9] in place ofvg,(r) [Eqs.(3.9—-(3.6)]:

Viny1(1) = = Vexya(N) =ved 1) =ved 1) Fvy(1),
(3.12a

Vinyj (1N = = Vexyj(N) =vgi(r),  j=2,3,.., (3.12h

which transforms Eq(3.11) into
Vintj(F1) =vinyj(ry)

+Wi(ry,r;[uUpyo, - - P2 -1])-

(3.13

P1fj+P2/0s - - -

motion (3.38 by (i) inserting there expansions for potentials
and DMs, (ii) equating coefficients at' to obtain an equa-
tion for jth order, and(iii) solving thejth order equation
with respect to the highest-order potential term. The result is

Uint/j(rl):Uim/j(ri)Jr\TV/j(rl,ri), (3.153
where
Wia(ry,r1:[U,vks,P10:P11:P200])
= 01o] (hks—his)pant 20 [(u—w)papl
(3.15b
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IV. DENSITY-FUNCTIONAL ASPECTS OF THE RESULTS

W/j(rllri;[uavKvaintllv <o Vintj—1>
% e pupai ) As is shown in Appendixes B and C, the expanded DMs
Po: - - - Pl P2 ~1 p,ij can be calculated using the KS spin orbitas and
. . i-1 corresponding orbital energies, for i running over not
= 0,0|(th— hks)p1;— 2 (Ving/ = Viny/) P1j -/ only theN lowest-energy, occupied states, but also an infi-
/=1 nite sequence of excite@irtual) states {>N), and usingj
potential termsviny1,Viny2,.--Vinyj - Therefore, Eq.(3.14
+2f[(u—u)p2,j_1]}; (3.159  can be symbolically rewritten as
R Uesxrl)zvesir]’.)+W1(rl;r:ll;[{¢i1€i}1vesx])a
see Eqs(3.140 and(3.14¢ for notation. Herehig denotes (4.19

the one-body KS Hamiltonian
A VA1) =ver) +Walra;r1;[{ i€} veswverl),
hies(r) =) +ois(r). (3.16 (4.19

Since Egs(3.13 and (3.153 determine the same potential, Verj(F1) =vej(r1)

an identity, which connects expanded DMs and potentials, FWi(r;r1[{ i€} vesoban - - - Vel
namely, 410
Wii(ro,rii[upyo, - - D=Wy(ry,rii[uos, - - 1), Equation (4.19 represents a functiondintegra) equation

(3.17 determiningu ¢, as a functional of ¢; ,€;}. Next, Eq.(4.1b
[with v s, CcOnsidered to be the known solution of £4.13]

must hold forj=1,2,... and for any position pait,r . represents an equation for determining as a functional of
The main result of this section, E(.14), hinges on the {4, ¢}, and so on fow 3,004, .. -
expansion(3.9) of 1/p7(rq;ry). Although there are no gen-  What is interesting is that the above-mentioned expres-

eral reasons to expepf(ry;ry) to be zero at some positions sions forp,; are insensitive to any shift of potential terms
r,,r; [note that for large and large’ it is real and positive: by a constant, i.e., they are invariant with respect to transfor-
p(ri;r)=~nY2r)n¥4r}); see, e.g.[15]], nevertheless, Mationsviy;—vinyj+Cj, Wherec; are arbitrary constants.
we give below a plausible argument thapQ/is never sin- Therefore, the solutions of E¢4.1) are determined within
gular. Equatior(3.30 with Eq. (2.2b shows that the poten- an accuracy of additive constants, arbitragy;(r1) at arbi-

tial differencevg,(r1) —va(r1), a well-defined object of the trarily chosen reference point, . Equations(4.1) can be
intermediateN-electron system, is expressed in terms ofsolved iteratively, provided, of course, that such a method
DMs in a form of a fractionW, having p§(r,;r;) as its  turns out to be convgrgerﬁ&lternatwely, an algebraic splu-
denominator. The potential is not singular, except at nuclealion of a system of linear equations can be also applied, as
positions. Buip? is not zero at these points because its natudiscussed in Sec.)V. _

ral orbitals satisfy there the cusp condititsee, e.g.[16]). Being explicit functionals of ¢; i}, the potentialiyy

So, for the remaining positions, any occurrence of zerp®f '€ implicit functionals of the GS electronic densitfr), as
9P « / i follows from the Hohenberg-Kohn theorefsee, e.qg. irl])

would mean a singularity ofg,;, the contradiction. How- ) : . X
. . applied to the equivalent noninteracting reference system.
ever, may it happen in the numerator\&fthat at such zero ; .
Therefore, we recognize the functional dependence aot

pgsmon the contr|but|or_1 (_jue_ tpl cancels ou_t that due_ to only for the exchange potential
p5 , allowing thus for a finite limit of the resulting potential?

To a§certain if there is a chance for such a situgtion, let us V(N =vi(r;[N]) —vedT;[N]), (4.2)

consider also a completely different representation &f,

namely, but also for each term separately of the expanded correlation
potential (=2,3,..)

ve&dr)=—{t(ryps(roy;ry)
FW(ry,r;[veau,pt,p,p3 D} p1(reiry),

(3.18

Ui (1) =vinyj(r;[N]). (4.3

This property just reflects the fact that the perturbation
theory expansion for the potentiaf,; [Eqgs.(3.4) and(3.5)]

is obtained by Gding and Levy [8] within the density-
functional theory, in which potential terms are defined as
functional derivatives of the corresponding terms of the en-
‘ergy expansion

which follows directly from Eq.(9) of our paper[9]. The
functional w consists of a sum of two integrals involving
indicated potentials and DMs. The denominator in the ex
pression(3.18 is the same as iW, p{(ry;ry), while an

expression involving the 3DM3 (absent inW) is seen in Ves(T:[N])=vedr;[N]) +uy(r;[N])
the numerator. The complete cancellation in this numerator
and simultaneously in the/ numerator, exactly at the same _ OEe{n] OEJn]  OEjyln]

position pairr,,r;, must be regarded as improbable. —on(r) sn(r)  on(r) (4.43
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SEgi[n]  SEin;[n] . while their potential terms are related to energy terms via Eq.
(4.4b) These facts will allow us to interpret a “truncated” GS
' problem, in which, because of increasing complexity of
and whereE;y; are terms of the expansion of (vg;(r),Eg;) evaluation, only a finite(and rather small
. ~ number of terms can be handled. Consider the total-energy
Ex[n]=(V| T+ ald |¥*)—(¥O|T|¥O) functional truncated after thieth-order term:
= a(Eedn]+E,[n])+EC[n] (4.5 K
E{k}[n]:Ts[n]+f d®ro(r)n(r)+ 2, Eiyilnl,
in power series inx =1
(4.10
Ex[n]=> @ Ejpy;[n]. (4.6)  which approximates the exact total-energy functional of the
j=0

considered systefthere To=(¥°|7|¥° and compare Egs.
The energyEjr [ n] [EQ.(4.5] can be next written in terms of (4.5 and(4.6) ata=1]

DMs obtained fronW ¢, E[n]=E™![n]
Ef‘ét[n]=f d3r1f(r1){pi‘(r1;ri)—pi(rl:ri)}\q:rl =Ts[n]+J d3ro(r)n(r)+Eedn]

+f d3r1d3rau(ry,rp)pg(ry,rairy,ry). TEI+EdN]. .17

(4.7

After substituting the expansiof8.7) into Eq. (4.7) we ob-
tain the following expressions for the terms of expansion

The exact GS energii s and densityngg(r) correspond to

Ecs= mMinE[n]=E[ngg]. (4.12

n—N

(4.6): for j=1 Let EX andni(r) be a solution of
Einy1=Eest Ex=f d3ryd3r,u(ry, o) pS(ry,foir1,ro) Efd=minEMn]=EMnlY). (4.13
n—N

(4.89

But, obviously, these quantitigg{¥; andnf&(r) can be also
obtained, applying our scheme, via a self-consistent solution
of KS equations with the truncated effective potential

and forj=2

Eimjj:Ec/j:f dsrlf(rl)pllj(rl;ri)\rizrl )

Kk} _ _
Ui(s}_v'i_jzl Vingyj =V tUestUxtvgpt - tugk.
(4.14

= EE}TJF Egﬂt- (4.8b The exchange-only approximatidgk=1 case is equiva-
It should be noted that the first-order kinetic energy vanishelgf;?r;?’zgg tp%),:glrﬁ;en?el,?hﬁﬁi%? zlsée%?zzz?s\iﬁiyi[:{%?_] the
[8] The k=2 case may be termed the “leading-correlation ap-
Kin - proximation” (details of both are given in Sec.)VThe ac-
Egn=/[tp11]=0. (4.80 curacy of the abovéand, in generalkth-orde) approxima-
tion is connected with the speed of convergence of
perturbation-theory expansions for energy and potential. By

+ j dsrldsrzu(rlarz)PZ/j—l(rl,rz?rl:rz)

Thus Egs.(4.8) and (3.14) represent explicit formulas for

evaluation of the energy terms and their functional deriva- : -
tives (4.4), all in terms of expanded DMg;; . Zﬂz%a;tg:?ofqm'la from Eq.(4.12 we obtain for the GS

The above considerations can be summarized as follows.

Given the numbeN of electrons in the system and the set of E.c— EM=0((nK = n-.a2)+E nikl
eigensolutiong¢;(x), €, i=1,2,..} of some single-particle o5~ Ees=0((Nes™ Ned) )+ EoncralNas]
Hamiltonian(to be interpreted as the KS oneve are able, in +Egpes o[ L] + -+ (4.15

principle, to evaluate consecutively (vy(r),E,),

(verAr),Ecd), (vesa(r),Ega), and so on. These quantities are (the functional Taylor expansion & n] for n=n{ around
known to be functionals of the density expressed in terms of ;c was applied and minimum propert§.12) used. Antici-

the same orbitals as pating that the term quadratic in density deviation will be
N small, we need the value & 1[ni] to estimate the en-
nn=> > |a(r,9)|2, (4.9 ergy error. .In fact, this quantity is available within thkéh
s &1 approximation as
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1 P3a(F1,r2:r1,12)=2p1(r1;r)pi(ra;rp),  (5.30
Ec/k+1:mJd3r1d3r2U(r1,rz)lek(rl,fzirl,fz)
(4.19 PoT 1, 2iF1,12)=—3[p51(r1;ra)pi(ra;ry)
because, can be calculated within thieth approximation. +p1(risrops (rair)l. (5.309

Equation(4.16 was obtained from Eq4.8b using the fact . _ o .
that the kinetic-energy terr)! of Eg; is simply related to  For spin-compensated systems, i.e., satisfyjig = p3,

the accompanying interaction potential-energy teEff!, = 2p1, the above expression simplifies to
namely, s o 1s S ’
PoxlT1,r2:T1,12) = —3p1(r1;r2)p1(ra;ry).  (5.3d
)
Eqf=— J-_Egﬂt, (4.17  After inserting the above3 into Eq.(3.148 we notice can-

cellation of v ¢ contributions, leading to the result

as has been shown [B] (see alsd19]). _ , A a

A systematic investigation of convergence of the series vxlr1) =ox(ry) + Opp(t=tp1nt Ot pao
Eint= (Eest Ex) + E¢iot Egizt -+ and vy = (vest vx) T U2 +26 u—u)os 5.4
+vggt - at n=ngg can be performed for systems for ol 1€ )Paxl (543
which Egg and nggr) are known from configuration- But, from Eq. (2.4) follows 6,(t—1)p10= Oo(vks—vks)

iﬂterafcf:tiotr.l OrKgy”e{aii:bype( c?cal?tiogs.t Ht?]\'/ingS(r)i p1n; therefore, the above equation can be rewritten finally in
€ efiective potentiav ks (wWhich 1eads 1o this densily  yarmg of the one-body KS Hamiltonidrys (3.16) as
can be established numerically by various metheée, e.g., y s (3.16

[20] and references therginAfter solving KS equations . ~
(with this potentialvxs), one can evaluate the separate terms vx(r1)=vx(r1)+[[hKS(r1)— hks(r1)]pua(rairy)
of discussed series in terms of the obtaidef(x),e} by

applying the methods of the present paper. The truncated 3 ,

sums should be compared witlE§s— T{n]— f[vn]) and +2f d°ralu(ry,rz) —u(ry,ra)]

(vks—v), respectively. On the other hand, it would be inter-

esting also to solve for the same systems the truncated prob- s " S/ o

lem (4.13 and compareéEs and ngg(r) with the resulting Xpax(T12iT1,r2) pi(ry;ry),  (5.4b

E andn¥l(r) to see their accuracy. It is noteworthy that

Liu and Parr[19] performed an approximate numerical I-€- in @ form resembling Eq3.15. .
analysis of the serieE,=E,+Es+ - -- (in their notation The DM py, will be calculated by reduction ofy;, us-

E.=E'+E"+---) for atoms from He to Ar, concluding that Nd Eas.(B17b), (B12b), and (C17):
the magnitude ot is roughly 20% of that oE,.

yin(L1)=2 Y1102 {(Y olafadA)AIY 1)
V. CALCULATIONAL PROCEDURE FOR EXCHANGE ik A
AND LEADING-CORRELATION POTENTIALS ata
+(Y 1| AX(A[a]ay| Y o)} (5.9

A. Calculation of the exchange potential
Due to Eq.(C21), the summation oveA in Eq. (5.5 can be

The exchange-only potential can be easily separated from . P
Eq. (3.143 for the electrostatic-plus-exchange potential byrET:Iigt;%AL;ﬁa %r;ég%g)n;zare Eqs(B11) and (C)] and

taking into account the form gf,,= p3 due to the determi-

nantal KS wave function. Since the general spin structure of occ vir
the reference KS system 1DNEQ. (C34)] can be writter{1] yia(L1)=> > (YL 105 Y ;) + ¥ (1;1")
as a r
¥1(r181;7r181)=p1(re;ry) (s a(sy) X(Y;1|OH)} (5.6

+p1,(riir)B(sB(s)) (5D Next, using Eqs(C8—(C14 we evaluate{O'|Y ;) of Eq.
(B12b) to be
and reducedEqg. (A5)] to
1

P =p% (it 4o (rir), (62 (OUYw=7—14 2 (iillk/)(0:la/aa,a(0)
the reference system spinless 2DMq. (C35 with Eq. _ Cata
(A5)] can be split as —% (ilves|k)(O3laia0) ¢, (5.7
S ! ! S ! ! S ! !’
N PH NP SR (A PHEN PR >N EH PHEN PN
(5.39 where
where the direct and exchange parts of this DM are wa"ZEO_goQZ €a” € 58
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denotes minus the single-pair excitation energy, and using

Egs.(C26) and(C20), (O}|Yy) is transformed into

occ

<o;|m>=a{§<rb||ab>—<r|ves>1a>]. 59

But, from Egs.(C13 and(C14) we find

occ

S (rblfab)= [ 416 (Doe1)galD

+f d1¢:‘(1)f d2?)'§(12)¢a(2)
(5.10

=(rlveda)+(rlvija),

where we have introduced the Fock exchange nonl@oal

tegra) operatorz}i [analogous to the exchange operator of

the Hartree-FockHF) approach, but here in terms of the KS
orbitals rather than the HF orbitdls

01 p(1)= J d205(12) ¢(2), (5.113

vH(12)=—-u(12)%5(12). (5.11b

We note here tha”tf is a Hermitian operator. So, finally, we
have from Eq.(5.9) a simple expression

1 R 1
(OLlY ;)= w—(rlvi—vxla>z ——(rlxla) (5.12
a,r a,r

because of cancellation afyg contributions. The notation
x(1)=05(1)—v4(1) has been introduced.
Equation(5.6) can be thus rewritten as

occ vir

Y11= >
a r War

+aX|nyi' (L1}

{(rixla)yy*(1;1)
(5.13

It generalizes for complex orbitals the result of Levy and
March[7] obtained for real orbitals.

Note that [hys(1)—hks(1)171(L1)=w;;¥{(31)
follows from Eq.(C2) applied to Eq(C17b and the notation
(5.9). Therefore, the combination, occurring in E¢.4b),
can be found to be

occ vir

[ﬁKsu)—ﬁKs(l'ﬂm(l;l'):g 2 {—(r|x|a)y}(1;1")
+(alx|ryyd"(1,1)}. (5.149

Thus the final equation far, is

A. HOLAS AND N. H. MARCH

vx(rl>=vx<r1>+{§ 2 [(alog—vur)pi (ry;ry)
_<r|a>':_vx|a>Pr1a(r1§l’i)]+2f d3ro[u(ry,ry)

_U(ri,rz)]ng(rlJz;ri,rz)] / pi(ra;ry),

(5.19
where[compare Eq(C17b]
pU(rir)=2 dlris)¢(ris). (518

It should be noted that Ed5.15 is free of the energy
denominatorsw, , [Eq. (5.8)], which are characteristic for
perturbation theory expressions such as dl3. Because
of this, one may expect that E¢b.15 will be not too sen-
sitive to (inevitable in practicgtruncation in the summation
over the virtual orbitals. The alternative approach ofliag
and Levy[13,14 is lacking this property. The expression for
vy [e.9., Eq.(37) of [14]] does contain energy denominators.
Their role may be somehow outweighed on average by the
presence of thenverseresponse operat@ ~(r,,r;) in this
expression because thdrect response operatoB(rq,r,)
also contains such energy denominatpesy., Eq.(35) of

[24]].

B. Solution of the equation for the exchange potential

Let us note that, enters the right-hand sidehs) of Eq.
(5.15 via its off-diagonal, occupied-virtual matrix elements
only. Therefore, for a given set of KS orbita{sh;(x),i
=1,2,..,M} (which, for practical reasons, must be finite and
its dimensionM should satisfyM>N for accurate resuljs
and for some fixed;, one can solve Eq5.15 by finding
the values ofNX(M—N) complex matrix elements(,
=(blvyls) for b=1,...N and s=N+1,... M. From Eq.
(5.15 the following set of equations can be deduced:

occ vir

F
xbs=§ Z {Absar(Xar— Xar) = Bps.ar( X5 — Xar)*}

+Cbsa (5-17)
where[see Eq.(5.17)]
X5 =(alogr), (5.18
1(1;1)
Abs,ar:f dld);(l) F;li(l—ll) ¢4(1), (5.19
I’a(l;l/)
Booar | 41030 B2 000, 520
Cbs:J digy (DR(1;1) ¢s(1), (5.213

with
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R(l;l’)=[2j d2[u(12)—u(l’Z)]pgx(lz;l’Z)]/

p3(1;1"). (5.21b
The constanb,(r;) of Eq. (5.15 does not enter E(5.17)
becausebl|v,(r1)|s)=vx(ri) d,s=0. Equation(5.17) repre-
sents a set oNX (M —N) complex linear equations for the
same number of complex unknowHsg;. Its form is suitable
for iterative solution. For the initial step one may insert on
the rhs for the value oiX,, the matrix element of some
approximation forv,(r) or even just neglectX},— Xa).

Provided the iterative process converges, it may turn out to

EXACT EXCHANGE AND . .. 3605

Waprs=E0~ €~ € (5.29

5o;sb= €t €p—
denotes minus the two-pair excitation energy. We used the
fact that(O|y,|A) vanishes for triple- and higher-excited
[see Egs(C18 and(C28] and that{O; |VeS)JO> 0. Next,
using Eqgs.(C26) and (C27) for evaluation of matrix ele-
ments ofy, andl{, and also the resu(6.12), we arrive at the
final result

occ vir

22

ar

Y21(121'2") = [71(11 )Yr(2,2")

be more efficient than the alternative, algebraic method of

solution. This linear algebra problem, in a larg&xN
X (M —N)]-dimensional space, may be written in a block
matrix form as

I+A'-B" —A"-B" x'] [c’
A"-B" 1+A’+B’ |[X"] |C"
A/_B/ _A//_B// (XF), )
+ "l .
A//_B// A/+B/ (XF) (5 2
where X,,=X;,+iX5,, etc., and {+ A" —B')psar= Shalsr

+Apsar—Bpsar €tc. It should be noted that by using only

real orbitals we halve the dimensionality of this linear alge-

bra problem.
Since the matriced, B, andC [Egs.(5.19-(5.21)] de-
pend onr;, the solutionX,s of Eq. (5.17) or (5.22 depends

onr; too. However, this dependence should be rather weak,

diminishing with the increase dfl, because in the limit of
M — e the solution represents the matrix elem@riv,|s) of
the exactv,(r,), which is independent af; .

With (bjv,|s) determined, Eq(5.15 gives v,(r;) di-
rectly at arbitrary point,; at the cost of summations oveyr
and space integration ovep. This equation provides the
exact exchange potential for the densityr) given by Eqg.

L2 YR+ YA22) AL L)
A1)

>3 <rs”b YALL)Y2:2)
+H.c. (5.29

[note that the Hermitian conjugatél.c) of A(121'2') is
A*(1'2';12)].
In order to evaluatey,,, we rewrite Eq.(B17¢) as
YA L) = AZ (L1 + [ (1 D] + 95 (L1,
(5.26a
with
occ vir

Y2 = (Yol 1| Y 12) = ; Z (O] ¥1|0x)(0gl Y 12)

occ vir
=2 2 /(OLY ), (5.26h
Yo = (Y il ¥l Y ) = (Y Y1) 75 (5.260

According to Eq.(B13) with Eq. (B12) and taking into ac-

(4.9 in terms of the same orbitals as those used in Eqcount that(A|#,,|O) vanishes for triple- and higher-excited

(5.15.

C. Calculation of the leading-correlation potential

The leading ternv(r) of the expanded correlation po-
tentialv(r) [Eq. (3.5 for a=1] is given by Eq.(3.14h. Of

various DMs entering this equation, we already have deter-

minedp,=p3 andpy,1, the spin reduced forms of;, [Eq.
(C34] and yy; [Eq. (5.13] and alsop,=p5 [Eq. (5.3)].
Below we obtainyy;» and y,4, from which py;, and py
follow immediately by spin reduction.

By combining Eqs(B17b), (B12b), and(C8) we arrive at

occ vir

Yon= ; Er <O|3’2|O;><O;|Y/1>

occ vir

+> > (Ol¥,|O;
a<b r<s

)—(O |L1|O> +H.c.,

(5.23

where

A, we find

(OglY )= (Oa|H/2|O> (O|H,,|0) _<Oa|H/1| 0)

occ vir

+2 E <Oa|H/1|Ob>_<O | H,,|O)

occ vir

~ 1 ~
+1> > (OLHu| 05 —— (05t HlO) .-
b,c st bc,st

(5.27

After evaluation of all matrix elements using Eq€19-
(C30), we arrive at

occ vir

wa,r<og|Y/2>: - (rlvc/2| a>+ % zs

vir

+X

(rbl[as)(s|x|b)
Wy s

(r[x|b)(b|x|a)

Wh r

occ

B

(rIx|s)(s|x|a)

a,s
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occ vir
(sr||bc)(bcl||as)
+ Y
b<c s Whe,sr
2% Y (br||st)(st||ab)
_2 AT NN
b s<t Wap,st
occ vir
(sr||ab)(b|x|s)
>y (5.29
b s Wap, st

Evaluation ofy{})) [Eq. (5.269] is quite straightforward, al-

though tedious, and can be performed using the matrix ele-

ments(C19—(C30. The term(Y 4| Y,)y; cancels out ex-
actly one of the terms obtained froflY ;| ¥1| Y 1). The final
result is then

vir

p)

t,r

occ

(tlx|a)(alx|r)

Wa tWa r

11) _
7(1/2) -
a

occ vir
(ts||ab>(ba||sr)] .
+ e
aZb 2s Wap,ts@ab,sr N

vir

>

r

occ

-2

a,c

(alx|r)(r|x|c)

Wa rWe r

|

vir occ

+E%

r<s

(ab||rs){sr||bc)

Wap rsWhc,rs

ac
1

Iy

occ vir
(alx|r)(trljca)

+ —_—
az,c ; [ Wa,rWac,tr n
(ac|[rt)(r[x|a)

4 A el (5.29

Wac,rtWa,r
The argumentsi(1') of %, Y%, {33, andy! have been

omitted for brevity.

The exchange potential, determined in previous subsec-

tions, enters the expression fg#,, not only in a form of
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(having, however, a different rhsthe matrix inverted for
solution of Eq.(5.22 can be utilized again.

With (b|vsls) determined, Eq(3.14b givesv(r,) at
arbitrary r, at the cost of spatial integration oves. The
contributionv 5(r4) thereby obtained provides the leading
term of the expanded(r,), for the actual densityn(r),
corresponding to occupied KS orbitals used in the calcula-
tion (4.9).

VI. DISCUSSION AND CONCLUSIONS
A. Approximate exchange potential

Observing that the expression fag[ n] in terms of DMs
can be obtained from that f&,J n] [Eq. (2.8)] by means of
replacing the interacting DMg; with the noninteracting
onesp;, we applied previously the same replacement in our
works [5] and [9] to obtain approximate expressions for
vy(r) from those forv,(r). In particular, forv,. in a line-
integral form[5], this replacement has lead us to an expres-
sion that is equivalent to the Harbola-Sal@] approxima-
tion for vy in their work formalism.

Applying again this replacement to the present E437)
for v, (r), we obtain an expression for the approximate ex-
change potential, in which there are no terms containing
kinetic-energy operators, while the Dp of the interaction
term is replaced by in the form(5.3). Although the exact
vydr) [EQ. (2.7)] is obviously real(becauseV and W are
real), the approximation constructed above may happen to be
complex valued; therefore, we should take its real part. So,
finally,

vPr) =vir + f d3r{u(ry,rp)—u(ry,ry)}

|

Pox(r1,T2;71,F2)
p1(ryiry)

Pox(r1,r2;r1,r2)
pi(ry;ry)

|

(6.1a

matrix elements of occupied-virtual type, but also occupiedWhere

occupied and virtual-virtual types. Its diagonal elements oc-

cur in Eq.(5.28 for s=r andb=a only in a combination
((r|x|ry—(alx|a))/w,,, which is independent of the con-
stantv,(ry).

When determining ., from Eq.(3.14H we meet thiw

also on the rhs as off-diagonal, occupied-virtual matrix ele-

ments; see EJ5.26) with (5.28. Similarly to the case of the
exchange potential, we fix; (the same as previouslyand
then calculate the values dFX (M —N) complex matrix el-
ementsY,s=(blv.4S), integrating expressiol3.140H be-
tween(b| and|s) functions[a null contribution due to the
constantv o5(r1)]. This leads to an algebraic problem

occ vir
Yps= ; Er {_Abs,arYar+ Bbs,arYar* } +Dys,
(5.30

with the sameA and B as in Egs.(5.19 and (5.20. The
matrix D combines all terms independentwf,. Again, Eq.
(5.30 can be solved iteratively or algebraically. In the last
case, since the equation firis similar to Eq.(5.22) for X

Pox(F1.r2:71,12)

vi‘pp(ri)=fd3rzu(ri,rz) lim S (rr)
V1.t

rq—o

J

is chosen to provide$™r,)—0 whenr ;—, for any fixed
ry. With u(rq,r,)=1/r,—r,|, the larger,; behavior of the
approximate exchange potential

|

Pox(r1,F2:T1,12)

6.1b
PHGHR ©-.1h

b3 6.2

is the same as the behavior of the exadr,); see, e.g., our
discussion i 18]. The idempotency property

fd3fzpi0(f1;rz)pi,,(fzH’DIPL(M;H) (6.3

was used to derive the resy@.2) from Eq. (6.1).
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While the shape of the exchange-correlation potentiabquations satisfied by DMs: the differential virial equation,
vy(r1), given by the exact Eq2.7), is independent of the the integral equation, and the equation of motion for the
reference point; choice[due to Eq.(2.3 for W and its 1DM. The approximate, based on virial equation happens
analogue for W], the approximate exchange potential O be equi_valenfc to the Harbo_la-SaHiﬁ] approximation, de-
v¥r,) [Eq.(6.1)] depends, in general, o) (except maybe rived within their work formalism.
in the case of some high-symmetry systenidisr; depen-
dence is an analog of the path dependence of the approxi- B. Sum rules for checking accuracy

mate exchange potential in a line-integral fof&j, equiva- Any implementation of the, exact in principle, present
lent to the Harbola-Sahni potential. Therefore, for practicaimethod of solution of the ground-state problem leads inevi-
applications, it may be useful to average the right-hand sideably to inaccuracies due to various limitations. Among
of Eq. (6.1) over some set of; points. them, the most basic one is connected with the chosen order
Since, as discussed above, our approximattbf) is an  k of the perturbation theory. It causes the exact GS problem
analog of the Harbola-Sahni approximati@j, one may ex- (4.12 to be replaced by the truncated of#13. Complete
pect it to lead to a similarly promising result as theisge, formulas are given fok=1 and 2 and ways are indicated to
e.g., Sahni’'s revie\,[fz:l_])’ while being Simp|er in evaluation. handle othek. Remaining Computational inaccuracies arise
Let us notice, finally, that the exact exchange poteiifial) ~ due to a finite number of virtual KS orbitals taken into ac-
differs from the approximate or(.1) in the term involving ~ count, an approximate representation of each KS ortiital
p1n. What is crucial for applications is that™r,) is ex- it values on some grid or when expanded in some incom-
pressed entirely in terms of the noninteracting 1I:M§and _pIete. basis set of_ molecular orbg}a,lsand termlnatlons. in
Pil [see Eqs(5.2) and(5.39] or, for spin-compensated sys- iterative gpproachlng to self-consistency during solut|on_ of
s . KS equations, equations fox, v, and so on. Therefore, it
tems, justp; [see Eq(5.3d]. Therefore, it can be calculated .~ : .
self-consistently within the traditional KS scheme. Its form |s_|mportant tp have., dur_lng th? computa_tlonal process, some
) . ' . riteria allowing estimation of inaccuracies. We propose for
removes also the problem of the self-interaction correction

. is purpose to check how well the “sum rules,” the exact
the level of the exchange. We expect that this form of an qjations of the theory, are satisfied.

approximate exchange potential is suitable for application to A distinctive feature of the GL perturbation theory is pre-

extended systems too. . . sented by Eq(3.1). Since the density is the diagonal element
In general, approximate exchange potentials are obtaine

in two ways: either by functional differentiation of an ap- of the 1DM py, which is represented as expansi@?),

proximate expression for the enerfy as a functional of the therefore(3.1) is equivalent to the following pointwise iden-

density or by simplification of some exact expression ortities for each perturbational order:

equation for the potential, orv,.. The first way is the most ni(r)=py(rir)=0 for j=1,...k. (6.4)
popular one because it leads to inexpengimecalculational ) )
costg expressions, which are local in the density and den5|t3ft should be noted that this equation servesi@g and Levy
gradients. In its simplest form it is known therefore as the[l4] as a basis for determining,, atj=1, andv, , at |
local-density approximatiofLDA ), while various improved  _ 5 \jiun the help of the inverteé,operato; of the linear den-
versions are known as generalized gradient approximationsﬁty’ response

(GGAY) (see, e.g[,22—25 and references thergimlthough )

) . . As an indicator of calculational accuracy, one can take,
some modem GGAs give highly accurdig, they lead typi- for example, the smallness of either the ma>)</in(mverr) of

cally to less satisfactory pqtentigls after differ_enti.at_ion. The| n,;(r)]/n(r) or its average value. It is interesting that calcu-
;econd waly of approximating circumvents th|s difficulty. It Iatijonal defects, causing violation of the sum ryé4), do
is represented, first of all, by the Krieger-Li-lafraeLI) not lead to errors in the total number of electrons. Namely,

approximation26,27. The exact integral equation for, of - - -
the optimized effective potential methdd7] is simplified we find from £qs.(5.13 and (5.26) that the identity

there and an expression in terms of KS orbitals is obtained,

whic_h is similar to the .Slatgr construction@,f. Applicatior) f d3m/j(r):f dlyy;(1,1)=0 (6.5

of this the KLI approximation to self-consistent calculations

of atomic propertied28] demonstrates its high accuracy. o ) ) _
Gritsenkoet al. [29] propose and develop a family of ap- IS satisfied forj =1 and 2 despite truncated summations over
proximate exchange potentia'S, the form of which is base(yirtual KS Orbita!S and inaccurate matri.X elements of the
on the KLI approximation, while their evaluation involves, €xchange potential. What really matters is the orthogonality
to various extents, some elements of the GGA to the exf virtual orbitals with respect to occupied ones.

change energy. Reduced calculational costs accompany rea- Other sum rules originate in equivalence of two methods
sonably accurate results. It is interesting that the KLI ap-2pplied for the calculation of the GS enerf§ of the inter-
proximation can be derived alternatively, as shown by Nagyolating system, the solution of E(B1). Corresponding ex-
[30], by introducing approximations to the effective local Pansion coefficient¢see Eq.(B7)] can be evaluated either
potential of the Hartree-Fock method posed as a densityffom the perturbation theory(PT) expressions(B12a),
functional theory. Our three approximationsutp, discussed (B13a, and(B144), to be denoted in this section &', or
earlier in this section, belong also to the second way of apfrom the HamiltonianH® [Egs. (B2), (C1), (C8), and(C9)]
proximating because they represent simplifications of the exexpectation value, expressed next in terms of Dtsnpare
act results forv,. in terms of DMs, stemming from three Egs.(4.5 and(4.7)] as
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E*= (V| T+ all+ Vo W) decide if the discrepancies between the new and previous
potentials are acceptable. When they are not, the calcula-
. < tional procedure needs improvemefesy., by increasing the
=[[tyi1+ [ [Tauyz]+ [[vein“]= Z aERM, number of the virtual orbitals involved or by more accurate
1=0 representing each orbijal
(6.6

where the property(3.1) and expansiong3.7) and (3.6 C. Upper bound to the ground-state energy

should be used to obtain the last form. The resulting sum In the process of self-consistent determination vgf,
rules Uep,---» Dy means of our method, the expanded many-
electron wave function is obtained as a by-product. There-
E'=Ep" for j=1,..k (6.7)  fore, regardless of all computational deficiencies, an exact

upper boundUB) to the system GS energy can be obtained
can be satisfied only approximately because of computa-

tional inaccuracies. At first order we find o (YO Ry
~ EGS< EB%ZW, (6113
ER"—Ef'=(Jtyual + S Suyaol + [[vewn])
_ (ff[U72/0]+f[vexu1n])- (6.9 where[compare Eqs(B3) and(B5) for a=1]

k
This difference vanishes when E@.4) is accurately satis-
fied because we find for it, with@the help of Ec()é/i.16), |Y{k}>:j§O 1Y) (6.11b
(5.13 and(C2), that
- N andH is given in Eq.(Al). By using|Y/;) expanded in a

JTtyand=Jl(hes=vks) yanl=—Jlvksnal- - (6.9 form (B11), an explicit expression can be derived {4
with the help of methods described in Appendixes B and C.
However, it involves terms that are formally of higher order
than those in perturbational expansions. For examplek for

So, |[[vksnil/El|<1 may serve as a criterion of calcula-
tional accuracy. Similarly, at the second order, after tediou
algebra involving, among other equations, Ed5.12),

(C27). (5.29. and(5.25, we find =2, one meets the third-order terms suck ¥ig|H|Y ,) and
(Y 1|Y o) and fourth-order terméY | H|Y o) and({Y ;5| Y 1,).
EDM—ENT= [[vesnn]— STvkshsl; (6.10  For their determination the list of matrix elements19—

(C30 must be enlarged significantly. A recent paper by Go-

so again this difference vanishes when Egj4) is satisfied toh et al. [31] demonstrates that evaluation of such matrix
for j=1 and 2. On the way leading to the res(6t10, the ~ €lements can be automated by methods of computer alge-
identity (4.17 for j=2 is being proven in terms of explicit Praic calculation. This method may prove to be helpful also
expressions such as E.29 [note that the same identity in extending our perturbation theory formulaskio 2 cases.

for j=1 means vanishing of the left-hand side of E89)].

Altogether, obtaining the resu(6.10 provides a nontrivial D. Summary

cross-check of the whole collection of second-order formulas The main achievements of the present paper aré)to
given in our paper. Similarly, numerical satisfaction of Eq. lish the exchanae-correlation potential in terms of first-
(6.10 may serve as a sensitive confirmation of error-freeeStab ISh the exchange-correfatio .po ential in terms ot firs
coding of applied formulas. and second-order density matrices: both fully interacting and

We should also point out the sum rules connected with reference” KS system quantities, in E2.7) [it should be

basic properties of potentials, namely vanishing offrand noted that the exchange-correlation energy can be also writ-

. . ! L , ten in terms of the same input information, Eg.9)]; (ii)
the |dent|ty(2.3),_vv hich must be satisfied by eau;(r,,rq) obtain an approximate exchange potential in terms of first-
separately, forj=1,...k, the terms of the expanded

] o . - - order density matrix of the KS system, in E@.1); (iii)
W(ry,ry) [Eq. (3.10]. Similarly, identities (3.17 for | gerive an equation for the exact exchange potential, in terms
:1,'...,k can also serve as sum rules checking expanded pgsi the KS orbitals, in Eq(5.15; (iv) derive an equation for
tential and expanded DMs terms. _ the leading contribution to the correlation potential, in terms
Flna_lly, the accuracy of evaluafced potentials can be estiyf the KS orbitals, in Eq(3.14b with details in Eqs(5.23—
mated in the following way. Equation8.14 and(3.19 and  (5.30); and (v) indicate ways to obtain higher contributions
similar ones depend on two positions andry, of which g the correlation potential, in Eq3.149. Of course, in
r1, the reference point, is chosen arbitrarily at the beginningjii)—(v) one needs not only the Kohn-Sham orbitals required
and then kept fixed during all calculations. Potentialsto calculate thein principle) exact ground-state densityr)
VeswU¢j» determined according to the mentioned equationgut also excitedvirtual) orbitals generated by the same one-
as functions of the independent variablg should be the body potentiab s used to construat(r). Naturally, it will
same(up to additive constanksfor various choices of require numerical calculations on specific systems to demon-
provided computational inaccuracies are avoided. But thegtrate whether the present approach, with currently available
are present in practice: In order to estimate the resulting ineomputing power, can be competitive among known high-
accuracies of evaluated potentials, one should repeat all cakccuracy but costly approaches, such as configuration-
culations with a newv(significantly differen} choice ofr; and  interaction(Cl) one. While the present scheme involves the
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same two-electron integrals as in thegeinitio approaches,

thus being similarly expensive in calculation, its perturbation

expansion may be faster converging becange is kept
fixed during the perturbatiofin opposition to changing(r)
in the ClI approachand because the orbitalespecially vir-

tualg may be of better quality. Of course, all such schemes;
based on perturbation theory are not able to compete in coyf

not only with the LDA but also with the most sophisticated
GGA approaches.
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and the iDM 1y,; is obtained by reduction ofy,y
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lid not only for pure-state DMs, but also for ensemble-
state DMs of the system under consideration. Since(&8)

is independent of the numbét of electrons in the system,
the above-mentioned ensemble can contain systems with dif-
ferent numbers of electrons too. For many applications it

This collaboration was facilitated by the presence of bottSuffices to use spinless DMs, defined as

authors at the Research Workshop on Condensed Matter
Physics held at the International Centre for Theoretical Phys-

ics, Trieste, Italy. They wish to thank ICTP for hospitality.
N.H.M. wishes to acknowledge patrtial financial support from
the Leverhulme TrustUnited Kingdon).

APPENDIX A: MANY-ELECTRON SYSTEM
AND ITS DENSITY MATRICES

The N-electron finite system under consideratisnch as
an atom, a molecule, or a clustas characterized by the
Hamiltonian

H=T+U+Y, (A1)
representing the kinetic-energy, electron-electron repulsio
and electron-nuclear attractiofexternal potential energy
operatorgfor their definitions and also conventions concern-
ing DMs and remaining notation s€g,9]). Atomic units are
used throughout. From an obvious identity

Nf d2---dN{[HW (12...N)]¥* (1'2...N)

—W(12..N)[H¥(1'2...N)]*} =0, (A2)
satisfied by any normalized eigenfunctidn of the Hamil-
tonianH (Al), follows immediately the so-called equation of
motion for the 1DM(see, e.g.[11,12)

{[HL) +o(1)]- L) +o(1) ] y(L1)
+2f d2{u(12)—u(1'2)}y,(12,1'2)=0. (A3)

Here1=x,={r,,s;} means the first space and spin coordi-
nate, [d2f(2) means =, [d*,f(r;,s;), t(1)=-3V3
—1(alary)? is the kinetic-energy operator, ang(12)
=u(rq,rp) andv(1l)=wv(r,) denote electron-electron inter-
action and external potential, respectively.

Equation(A3) represents an exact relationlal’, involv-
ing potentialsu,v and DMsy; and vy, [generated from an
arbitrary eigenfunctiont of the Hamiltoniar?{ (Al)]. Since
Eq. (A3) is linear in DMs, it remains true if DM%; and y,
are replaced by a “mixture” of pure-state matricesg; :

Yi= EA: PA YA (Ada)

where the probabilitiep,, satisfy conditions

pi(12..0;1'2"..i")
vi(1812s,...iS;;1'512's,...1"s)).
(A5)

APPENDIX B: DENSITY MATRICES
VIA PERTURBATION THEORY

The GS energfE® and wave function?® of the “inter-
polating” N-electron system introduced by "@iag and
Levy [8], which is used in Sec. lll to obtain the exchange
potential and expanded correlation potential, satisfy the
F?,chr"cdinger equation

(H*—E*)We=0, (B1)
where the Hamiltonian is given as an expansion in powers of
the coupling parametet,

He= 20 alH; (B2)
i=

(see Appendix C for detajlsConsidering its leading term to
be the unperturbed Hamiltonian and all remaining terms to
be the perturbation, we shall proceed to solve @{) by
means of the perturbation theory. Followif&], we apply a
modified form (because of the presence in the perturbation
terms higher than linepiof Rayleigh-Schrdinger perturba-
tion theory and also assume that the GS is nondegenerate for
« in the rangdg0,1]. Owing to this assumption, the simplest
method of solution of Eq(B1) can be used. In general, this
restriction may have to be lifted in the future when a
degenerate-state perturbation theory will be elaborated. In
particular, its version formulated for an ensemble of pure
systems, leading to ensemble DMs, would be of special in-
terest because, as shown in Appendix A, the equation of
motion for the 1DM, the basis of the present paper, is valid
for ensemble DMs.

While the GS function ¥¢(1...N) normalized as
(V*¥*)=1 is necessary for construction of DMg', the
function Y “(1...N), proportional to it,

T41L.N)=C*Y*1...N), (B3)
having the so-called intermediate normalization
(YOlY®y=1 for a=0, (B4)
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is more convenient for perturbation expansi(see, e.g.,
[32]). Due to this normalization, the coefficient functions of
the expansion

o0

Yo=2 oY, (B5)
j=0
are orthogonal to the unperturbed function
(Y/0|Y/j>=0 for J?l (BG)

After inserting the expanded GS eigenfunctiff [Eq. (B3)
with Eqg. (B5)], the HamiltonianB2), and the GS eigenvalue

0

Ea: E ai E/]
j=0

(B7)

into the Schrdinger equationB1), a set of equations is ob-
tained

j
ZO (H//_E//)Y/j_/:O, for j=0,1,2,... . (88)

Its solution can be readily writtef82] in terms of a sef&a}

of eigenvalues and a complete §ét,=|A)} of orthonormal

eigenfunctiong A|B) = 8,5 of the unperturbed Hamiltonian
(Hio—E) @ a=0, (89)

among them its GS energiy=E°=E,, and the wave func-
tion

Do=]0)=|Y0)="°. (B10)

After inserting the expansion

[the prime mean& # O because of conditiofB6) with Eq.

(B10)], the following solutions are found from Eq.
(B8): for first order
En=(0|H|0), (8129
A|H,,|O
<A|Y/1>=—< |_'1| >; (B12b)
Eo~En

for second order

E/,=(O|H,,|0)+ g " (O|HulB)(B|Y ), (B13a

(A]Y ;)= <A|7%,2|o>—[E/1<A|Y/1>

I

and forjth order,j=2, which is written using:{,j and pre-
vious, (j —1)- and lower-order solutions,

Eo—gA[

(B13b)

— 2 (AlH[B)(BIY )
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i-1
E/j=(O|H,;|0)+ X 2' (OlH);-,/IB)BI|Y,,),
=1
(B143
1 . -1
(AlY )= foc. <A|H/j|o>—/§1 [E/j—/<A|Y//>
— 3 (Al BXBIY,) | (BL4D

The spinless DMg;* are found by spin reductiofEq.
(A5)] of the corresponding full DMsy{*, which can be ob-
tained as expectation values gf [we omit, for brevity, the
arguments X;,....X;Xi,...x) of ¥, ¥, and ],
namely,

(Y %Y%)

732<‘P“|3’i|‘P“>=W

(B15)

[see Eq.(B3)]. After inserting the expansio(B5) with the
condition(B6) into Eq. (B15) we arrive at a ratio of series

o j
R Y %l Y =)
<o o

Y= ) (B16)

© -1
1+2 oY Y1 Y 5-0)
|=2 /=1

which allows for immediate calculation of the coefficients
¥ijj in the expansior3.7) as

Yio= Y ol %Y 10)= 7}, (B17a
Yin=Y ol %Y ) + (Y nl %Y o), (B17b
2
Yir= /Zo <Y//|A'}’i|Y/2—/>} — (YY) %o,
(B170
3
Yiis= ZO Y Ayl Y =) | =Yl Y 1) ¥in
=YY )+ (YY) 1iro, (B170
and so on.

APPENDIX C: EVALUATION OF MATRIX ELEMENTS

The unperturbed ¢=0) HamiltonianH°="H,, (B2) co-
incides with the noninteractiniy-electron reference system
Hamiltonian, which in terms of the KS potentigdee Egs.
(3.29 and(3.16] equals

N
Hip= IZI his(ri). (Cy
Therefore, any solutio® 4 of the Schrdinger equatioriB9)
can be written in a form of a Slater determinant constructed

out of ¢; (the KS spin orbitals the solutions of the KS
equation
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hes(r) @j(rs)=e€;¢j(rs), j=1.2,.., (C2
with its eigenvalues ordered as
€IS €S SENTENLISENI2S (C3

The nondegeneraiy assumptionGS energy and function

are given by
N
o=En=2, €, (C4a
Do=(N!)" llzdet{¢1(r3 }JI 1=|0)= a-13-2 aN|>
(C4b)

The last form ofdy is expressed in terms of the creation

operatorsa acting on the vacuum state) having, together
with the ann|h|lat|on operatorzxJ (a )T the properties

(1)=1,

[éj 'él]"': 5j|<,

&l )=0=(1a/, (C53

T af
A l+ -

[8.8y]. =0=[4], (C5b

We follow closely the notation and relations developed by
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These can be written in terms of the creation and annihilation
operators as

{)ext/j:% <i|vextlj|k>aiJrakv (C10
1
_ T A A
=7, Z (C1D)
where
<i|vexﬂj|k>:f dx¢i*(x)uext,j(r)¢k(x), (C12
(jllk)y=(ijk)=(ij|/k), (C13

with
(i k) =i |ulk)
- [t o0 6 U1 i) 6, ),
(14

Szabo and Ostlun82], but apply them to KS orbitals rather having properties

than the Hartree-Fock ones.

The expansioriB11) in a complete set of eigenfunctions

of H,, can be specifiefi32] as
occ vir occ vir
|Y/j>:§ Z |O;><O;|Y/j>+a§b ZS |OZ(O
occ  vir

+ > X |OSNOSIY )+,

a<b<c r<s<t

abl Y/j)

(C6)

e., in terms of singly, doubly, up thl-tuply excited deter-
minants:

(C7)

A convention is adopted that indicesb,c,d belong to oc-
cupied orbitals(e.g., I=a<N), r,s,t,u to virtual orbitals
(e.g.,N<r), andi,j,k,| to orbitals of unspecified typee.g.,
1<i).

According to Goling and Levy(8], perturbing terms of
the expanded HamiltoniaH* (B2) consist of two-body and
one-body contributions in the first order,

|0L)=2/a,/0), |O%)=4ala,a]a,/0),..

7’:[/1:[:[4_ i>ext/1: Z:{_ ]>esx: (C9
and only one-body contributions in higher orders,
ﬂ/jzf)ext/jz _]}c/j , j =2,3,... . (Cg)

<Oa| aTak| O> 5II’ 5kaa

(018l a0y =(

(i]vexyj | K) = ((Klvexyj 1) * (C1Hy
(ij[[k)==(ijl|/ky=—(jil[k/)y=((7K[[ji))*.
(C16

The 1DM and 2DM operators, used in E¢B15)—(B17), are
defined as

noax)=3 Woandala, (€178
with
V(X1 3X0) = u(xy) F (X)), (C17h
R 1
Yo e G =5 2 ba)d(x)
X ¥ (xp) ¥ (x5)a]a/a, 4.
(C18

We see that all quantities of interest in perturbation theory
can be written in terms of matrix elemen(|aa,|B) and
(A|é?éfé/ék|8>, where|A) and|B) are Slater determinants.
Nonzero values arise wheA) and|B) are identical or differ
only slightly. Here we give a collection of results necessary

for the evaluation ob, andv, in Sec. V:

(C19
(C20)
5.kalaloy=o, (C21)
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<OL|5.T5|<| Og> = 5ab5r55ik+ 5ab5ri 5sk_ 5r56bi 5akr (022)
(O53a] 8| OL) = (8 8si— 8isr1) (Skadbe— Skpdac), (C23

<O;Sb| a|Tak| Otcl:j> = ( 5a05bd_ 5ad5bc)( 5rt 5su_ 5ru 5st) 5ik + (5ac5bd_ 5ad5bc)[ 5ir ( 5kt55u_ 5ku53t) - 5is( 5kt5ru - 5ku5rt)]

+ (81t 0su™ OruSst)[ Sid( kadbc— SkbOac) ~ Jic( Skadbd™ Skbdad) . (C249
(Olafala,a,|0) :Sikgj/_si /gjk : (C25

(Ol é?éfé/ékl 0)=( 82 Ok — ki) — S 5a/sjk_ 5ak’5j/): (C26
(Onlaala,a,|0)=(8ak8, — Bar Buk) (81 0= 8 5si), (C27
(Onpdalala a0)=(05. ylalala, a0)=0, (C28

<0;|éféj*é/ék|02>= OabOrs( Ok 0j = 6/ 6jk) T Sapl 61i(Oskbj = Is/ Oji) = 61 (Osk8i = Fs, Gik) 1 + Oyl O ( Spi Okj— Obj ki)

— Sai(6pi 0= 6pj6,4i) 1+ (661 = 64i Opj) (Fas Osk— Ss/0ak) s (C29

<O;|é-iTé-jTé-/ak|ogtc> =+ SapOirsl Ici( 5tksj/— 5t/5jk) — & 8481/ — 81, 51) 1~ Bapdul Beil 5sk5j/_ 5s/sjk) — &cj( 55D/
— 85/ ) 1= Bacrsl nil Bukdj,— Bty i) — Boi( Bk — Bt/ B 1+ BacOul Boil 8skbj,— Bs, Bix)
— 80i(BskBi/— Bs) Bik) 1+ ( 8pi 8= 30 0ci) Oyl 8as Sk — B Bat) = Bre(Bay Ssk— Is/ 0 1+ (85, S
— 85k6t/)[ Oan( O¢i6rj = 64i Ocj) — Sac( Opi6rj — 6ri Opj) 1, (C30

where - .
Vext/j = f dlv ext/j(l) y1(L1); (C36

occ

'Sikzé OaiOak - (C3)

i , the one-body kinetic-energy operator
The strategy to obtain such results is to move operators, us-

ing relations(C5b), and to apply properties

(0loy=1, &]0)=0=(0Ja’, al0)=0=(0|a,, AT=2k<i|f|k>é?ék (C37)
(C32 "

which follow from Eqgs.(C4) and(C53; e.g., in R
ata e pta ata ata where (i[t|k) is defined analogously t6i|ve,ylk) in Eq.
(O3laia| Op)=(Olaza aj'acasap| O) (C33  (C12), can be written in terms of the “close to diagonal”

Atn . 1DM operator
the operatorsaga, are moved to the left, while operators

ala, moved to the right. The well-known resul€19) and
(C29 [32] lead immediately to the KS reference system R A
DMs Tzf d1f(1) (L1, ; (C39

occ

S v — * !
yl(xl’xl)_é ba(X1) Pa (X1), (C34 and the two-body operatd€11), can be written as

Ya(X1, X3 X1, Xp) = 3 {7i(x0x0) ¥1(X25%3)
— %03 ¥i0ex)}. (€39 it- [ a10200127,1212, (€39

Let us note finally that the one-body potential operator
(C10 can be written in terms of the diagonal 1DM operator

(C17) as which all can be verified directly.
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