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Calculational scheme for exact exchange and correlation potentials
based on the equation of motion for density matrix plus the perturbation theory

A. Holas
Institute of Physical Chemistry of the Polish Academy of Sciences, 44/52 Kasprzaka, 01-224 Warsaw, Poland

N. H. March
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The equation of motion method is used to express the external potential in terms of the first- and second-
order interacting density matrices~DMs! for a molecule. By also introducing noninteracting DMs built from
the Kohn-Sham~KS! reference system orbitals, the exchange-correlation potential is derived. Applying the
perturbation theory of Go¨rling and Levy@Phys. Rev. B47, 13 105~1993!#, this potential is separated into the
exchange-only potential and various orders of the correlation terms. Each potential term can be determined
self-consistently from a specific equation written in terms of both occupied and excited KS orbitals and
differences of orbital energies, plus potential terms of lower orders. Naturally, the determination of these
orbitals and energies requires a self-consistent solution of KS equations. Explicit expressions for calculation of
the exchange potential and the leading term of the correlation potential are obtained and discussed. An
approximate exchange potential written directly in terms of noninteracting DMs is also proposed.
@S1050-2947~97!05511-X#

PACS number~s!: 31.15.Ew, 31.15.Md, 71.15.Mb
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I. INTRODUCTION

One of the approaches to the many-electron problem
atoms and molecules that is currently of interest is
density-functional method~see, e.g.,@1#!, having its origins
in the statistical theory of Thomas, Fermi, and Dirac~see
e.g., @2#!. Slater @3# made a major step forward when h
recognized that approximations to the~single-particle! ki-
netic energy made in the Thomas-Fermi-Dirac theory~now
called the local-density approximation! were too severe for
quantitative work. He therefore proposed a hybrid appro
in which one-electron Schro¨dinger equations were solve
with a Hartree-like potential supplemented by an1/3 ex-
change potential,n(r ) being the ground-state density. Sla
er’s work was formally completed by Kohn and Sham@4#,
who showed that such a one-body potential could be c
structed as the sum of the external potentialv(r ) ~2Ze2/r in
an atom of atomic numberZ!, the electrostatic potentia
ves(r ) created by the electronic charge cloud of number d
sity n(r ), and the exchange-correlation potentialvxc(r ),
which was to be obtained from the exchange-correlation
ergy functionalExc@n# as

vxc~r ;@n# !5
dExc@n#

dn~r !
. ~1.1!

Unfortunately, there is no direct means, within the dens
functional theory framework, to deriveExc or vxc(r ) as ex-
plicit functionals of the density and therefore, very recen
we have used the differential virial theorem to writevxc(r )
as a line integral in terms of first- and second-order den
matrices~1DMs and 2DMs! @5#. The functional derivative in
Eq. ~1.1! is thereby bypassed, but the price to be paid, in a
final theory, is that the 1DMr1 and 2DMr2 must be, at leas
implicitly, expressed as functionals of the diagonal 1DM, t
561050-2947/97/56~5!/3597~17!/$10.00
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densityn(r ). The present authors noted intimate connect
of their result@5# in the exchange-only limit with the work
formalism of Harbola and Sahni@6#. Subsequently, Levy and
March @7# have expressed the ‘‘kinetic’’ correction to th
Harbola-Sahni result, which restores the latter’s path in
pendence, giving an exact expression for the exchange
tential and correlation potential separately. The perturba
theory applied in@7# had been developed earlier in the wo
of Görling and Levy @8#. This Görling-Levy ~GL! theory
involves scaling the electron-electron repulsione2/r i j to the
form ae2/r i j , together with ana-dependent one-body poten
tial that constrains the ground-state density at eacha to be
the same as in the fully interacting system.

More recently, a second approach to the calculation
vxc(r ) has been formulated by us@9#, in which the line inte-
gral appearing in@5# is avoided. This alternative route in
volves, however, also the third-order DM and givesvxc(r ) as
a solution of an integral equation rather than as a line in
gral. Holas and Levy@10# have proposed a way in this se
ond approach, based again on the GL theory@8#, to separate
out vx , the exchange only part, fromvxc . The work in both
@7# and@10#, due to applied perturbation theory@8#, provides
also a procedure to calculate self-consistently within the
tended Kohn-Sham~KS! approach the exchange potenti
and various orders of the correlation potentialvc , expressed
via line integrals or integral equations, respectively.

The purpose of the present work is to employ yet a th
approach to the calculation ofvxc in terms of DMs, by con-
structing and applying the equation of motion for the 1DM
following the work of Dawson and March@11# ~see also the
work of Ziesche@12#!. In addition to the external potentia
and 1DM, this equation involves only the 2DM coupled wi
the electron-electron interaction potential. Next, by expre
ing DMs in the same equation of motion as perturbat
3597 © 1997 The American Physical Society
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3598 56A. HOLAS AND N. H. MARCH
expansions according to GL theory@8#, we derive equations
determining bothvx and various orders of the expandedvc .

So three works,@7#, @10#, and the present study, combin
the GL perturbation theory@8# with three different equations
satisfied by low-order DMs to obtainvx and expandedvc
self-consistently within the extended KS scheme for a giv
many-electron system. A completely different way to eva
ate these potentials, based also on@8#, was proposed by Go¨r-
ling and Levy in their subsequent works@13,14#. It involves
the inverse of the integral operator of the linear density
sponse, available within the extended KS scheme. All f
methods appear somewhat complex in detail: Therefore,
presently difficult to predict which one will prove most co
venient for practical implementation.

II. EXCHANGE-CORRELATION POTENTIAL IN TERMS
OF DENSITY MATRICES

Although the equation of motion for the 1DMr1(r1 ;r2)
is already known~see, e.g.,@11# and@12#!, its derivation is so
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simple that we merely give it in Appendix A in order to poin
out the assumptions and to establish the notation. In
equation@the spinless version of Eq.~A3!#

$@ t̂~r1!1v~r1!#2@ t̂~r18!1v~r18!#%r1~r1 ;r18!

12E d3r 2$u~r1 ,r2!2u~r18 ,r2!%r2~r1 ,r2 ;r18 ,r2!50,

~2.1!

the 1DM r1 is related to the 2DMr2 via the electron-
electron interaction potentialu(r1 ,r2)51/ur12r2u. Since the
external potentialv(r ) is local, one can solve Eq.~2.1! with
respect to it,

v~r1!5v~r18!2W~r1 ,r18 ;@u,r1 ,r2# !, ~2.2a!

where
W~r1 ,r18 ;@u,r1 ,r2# !5
$ t̂~r1!2 t̂~r18!%r1~r1 ;r18!12*d3r 2$u~r1 ,r2!2u~r18 ,r2!%r2~r1 ,r2 ;r18 ,r2!

r1~r1 ;r18!
. ~2.2b!
of
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The matrix functionalW shows anti-Hermicity and antisym
metry. Therefore it is real and vanishes on the diago
By noting that v(r1)2v(r18)5$v(r1)2v(r19)%1$v(r19)2

v(r18)%, one obtains from Eq.~2.2a! a very interesting iden-
tity of ‘‘spatial additivity’’ concerning r1 , r2 , and u,
namely,

W~r1 ,r18 ;@u,r1 ,r2# !5W~r1 ,r19 ;@u,r1 ,r2# !

1W~r19 ,r18 ;@u,r1 ,r2# !. ~2.3!

It demonstrates that the sumW(r1 ,r19)1W(r19 ,r18) is inde-
pendent ofr19 , even though the separate terms are not.

The presence ofv(r18) on the right-hand side of Eq.~2.2a!
reflects the fact that potentials that differ by an additive c
stant lead to the same wave function and therefore the s
DMs. This arbitrary constant of the potential can be fix
here by choosing a value of the potential~e.g., 0! at a chosen
reference pointr18 ~e.g., at`!. Thus Eq.~2.2! demonstrates
how the external potential can be reconstructed from gi
DMs.

As pointed out in Appendix A, the 1DM and 2DM, oc
curring in Eqs.~2.1! and ~2.2!, are obtained by means o
reducing the pure-stateNDM gN5CC* , whereC is any
eigenfunction of the system Hamiltonian~A1!, or they rep-
resent a mixture of such pure-state DMs~A4!. Equation~2.2!
opens an interesting way of checking the quality of any
proximate eigenfunctionC ~the ground-state one or excited
state one! resulting from a numerical solution of the Schr¨-
dinger equation. In terms of DMsr1 andr2 , generated from
this C, one calculatesv(r1) according to Eq.~2.2!. The re-
sult may be thought of as the actual potential, for which
l.

-
me

n

-

e

givenC is the exact solution of the Schro¨dinger equation. By
comparing this potential with the original one, regions
substantial discrepancy can be determined. This informa
may be helpful for improvements in calculatingC, e.g., by
extending the basis functions set with functions signific
for such regions. Taken with a negative sign, the poten
v(r1) given by Eq. ~2.2! for DMs corresponding to the
ground-state~GS! function C of the system represents als
the functional derivative with respect to the densityn(r1) of
the Hohenberg-Kohn functionalF@n# ~see, e.g.,@1#!.

A similar equation can be obtained for the effective p
tential vKS(r ) of the equivalent noninteracting reference K
system having the same GS densityn(r ) @1#, written in terms
of the 1DM r1

s of this system@the interaction term of Eq.
~2.2! being absent now#:

vKS~r1!5vKS~r18!2Ws~r1 ,r18 ;@r1
s# !, ~2.4a!

where

Ws~r1 ,r18 ;@r1
s# !5W~r1 ,r18 ;@0,r1

s,0# !

5
$ t̂~r1!2 t̂~r18!%r1

s~r1 ;r18!

r1
s~r1 ;r18!

. ~2.4b!

Obviously, the matrixWs(r1 ,r18) exhibits the same propertie
as the matrixW(r1 ,r18). The potentialvKS(r ) is known to be
a sum of two potentials: externalv(r ) andv int(r ), the latter
taking account of interactions present in the original elect
system

vKS~r !5v~r !1v int~r !5v~r !1ves~r !1vxc~r !, ~2.5!
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ves~r1 ;@n# !5E d3r 2u~r1 ,r2!n~r2!, ~2.6!

while vxc is given in Eq.~1.1!. After subtracting Eqs.~2.2a!
and ~2.6! from Eq. ~2.4a! we arrive at the result

vxc~r1!5vxc~r18!1
$ t̂~r1!2 t̂~r18!%r1~r1 ;r18!

r1~r1 ;r18!

2
$ t̂~r1!2 t̂~r18!%r1

s~r1 ;r18!

r1
s~r1 ;r18!

1E d3r 2$u~r1 ,r2!2u~r18 ,r2!%

3H 2r2~r1 ,r2 ;r18 ,r2!

r1~r1 ;r18!
2n~r2!J . ~2.7!

This form~2.7! is an exact and direct expression forvxc(r ) in
terms of the low-order ground-state DMsr1 ,r2 ,n of the
interacting system andr1

s of the noninteracting system
Analogous exact relations, obtained by us earlier, had gi
vxc(r ) indirectly: either in the form of a line integral@5# or as
a solution of an integral equation@9#.

We expect Eq.~2.7! to be helpful in obtaining new ap
proximations tovxc(r ;@n#) by constructing approximation
to the DMsr1 , r2, andr1

s as functionals ofn. Such approxi-
mations to the DMs lead not only tovxc but also to the
exchange-correlation energy because it can be written
terms of the same DMs:

Exc@n#5E d3r 1t̂~r1!$r1~r1 ;r18!2r1
s~r1 ;r18!% ur185r1

1E d3r 1d3r 2u~r1 ,r2!$r2~r1 ,r2 ;r1 ,r2!

2 1
2 n~r1!n~r2!%. ~2.8!

It should be noted that the equation termed the differen
virial theorem, which played the role of the starting point
our route to the exchange-correlation potential in the li
integral form@5#, turns out to be the ‘‘diagonal’’ limit of the
differentiated equation of motion~2.1!. This can be demon
strated directly by acting with the operator1

2 (]/]r12]/]r18)
on Eq.~2.1! and subsequently settingr185r1 .

III. PERTURBATION-THEORY APPROACH
TO EXCHANGE-CORRELATION POTENTIAL

The equation of motion~2.1!, which allowed us to obtain
the exact expression~2.7! for vxc in terms of DMs, can be
also useful for setting up a working procedure for evaluat
of vxc within the extended KS scheme by means of pert
bation theory. According to Go¨rling and Levy@8#, it is con-
venient to link the interactingN-electron system, having th
interaction potentialu(r1 ,r2) and moving in the external po
tential v(r ), with the equivalent noninteractingN-electron
system moving in the effective potentialvKS(r ;@n#) @both
systems having the same GS densityn(r )#, by introducing an
intermediateN-electron system, having the interaction pote
tial au(r1 ,r2) ~i.e., scaled by a coupling constanta! and
n

in

l

-

n
-

-

moving in the external potentialvext
a (r ;@n#) chosen such tha

the electron density remains independent ofa,

na~r !5n~r ! for a>0. ~3.1!

Obviously, this link demands

vext
a50~r ![vKS~r !, ~3.2a!

vext
a51~r ![v~r !. ~3.2b!

Denoting the DMs of this family of intermediate systems
r i

a , we rewrite the equation of motion~2.1! as

$@ t̂~r1!1vext
a ~r1!#2@ t̂~r18!1vext

a ~r18!#%r1
a~r1 ;r18!

12E d3r 2$au~r1 ,r2!2au~r18 ,r2!%r2
a~r1 ,r2 ;r18 ,r2!50,

~3.3a!

so we can obtainvext
a similarly asv in Eq. ~2.2a! from Eq.

~2.1!:

vext
a ~r1!5vext

a ~r18!2W~r1 ,r18 ;@au,r1
a ,r2

a#!, ~3.3b!

whereW is defined in Eq.~2.2b!.
As shown by Go¨rling and Levy@8#, the external potentia

of an intermediate system depends on the coupling param
a as

vext
a ~r ;@n# !5vKS~r ;@n# !2avesx~r ;@n# !2vc

a~r ;@n# !,
~3.4!

where vesx(r )5ves(r )1vx(r ) denotes the ‘‘electrostatic
plus-exchange’’ potential@see Eq.~2.6! for ves#, while vx(r )
together withvc(r )[vc

a51(r ) are the exchange and correl
tion potentials that sum tovxc(r ) of the KS theory, for the
considered electron densityn(r ). It is interesting that the
correlation potentialvc

a(r ), occurring in Eq.~3.4!, has an
expansion in a power series ina, commencing at second
order:

vc
a~r !5(

j 52

`

a jvc/ j~r !. ~3.5!

So, combining Eqs.~3.4! and~3.5!, the following expansion
can be written for the external potential

vext
a ~r !5(

j 50

`

a jvext/j~r !, ~3.6!

which is assumed to be convergent in the range 0<a<1. A
similar expansion is taken@8# to hold also for theN-electron
GS wave functionCa(x1 ,...,xN) and therefore for the DMs
obtained from it~see Appendix B for details!:

g i
a5(

j 50

`

a jg i / j , r i
a5(

j 50

`

a jr i / j . ~3.7!

Similarly to the potential~3.2!, the coupling paramete
link for DMs demands
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r i
a50[r i /0[r i

s, ~3.8a!

r i
a51[(

j 50

`

r i / j[r i . ~3.8b!

Sincer1
a(r1 ;r18) occurs inW in Eq. ~3.3b! also in the de-

nominator@see Eq.~2.2b!#, we introduce a notation for the
expansion of its reciprocal:

ua~r1 ;r18!51/r1
a~r1 ;r18!5(

j 50

`

a ju / j ; ~3.9a!

u /051/r1/051/r1
s , u /152r1/1/~r1

s!2, ~3.9b!

u /25~r1/1!
2/~r1

s!32r1/2/~r1
s!2, ~3.9c!

etc. Applying expansions~3.7! and ~3.9!, we obtain forW
@Eq. ~3.3b! with ~2.2b!# the expansion

W~r1 ,r18 ;@au,r1
a ,r2

a#!5Ws~r1 ,r18 ;@r1
s# !

1(
j 51

`

a jW/ j~r1 ,r18!,

~3.10a!

whereWs is given in Eq.~2.4b! and

W/ j~r1 ,r18 ;@u,r1/0, . . . ,r1/j ,r2/0, . . . ,r2/j 21# !

5 (
l 50

j

u /l ~r1 ,r18!@ t̂~r1!2 t̂~r18!#r1/j 2l ~r1 ;r18!

12 (
l 50

j 21

u /l ~r1 ,r18!E d3r 2@u~r1 ,r2!2u~r18 ,r2!#

3r2/j 212l ~r1 ,r2 ;r18 ,r2!. ~3.10b!

Since Eq.~3.3b! holds for arbitrarya ~from the range@0,1#!,
the coefficients ata j must be the same for eachj on both
sides of this equation written in terms of expansions~3.6!
and~3.10a!. The j 50 equation, resulting from Eq.~3.3b! is,
of course, the same as Eq.~2.4a!, while the higher-j equa-
tions are

vext/j~r1!5vext/j~r18!2W/ j~r1 ,r18!. ~3.11!

For further discussion it is convenient to introduce the eff
tive interaction potentialv int

a (r ) @satisfyingv int
a51(r )[v int(r ),

Eq. ~2.5!# in place ofvext
a (r ) @Eqs.~3.4!–~3.6!#:

v int/1~r !52vext/1~r !5ves~r !5ves~r !1vx~r !,
~3.12a!

v int/ j~r !52vext/j~r !5vc/ j~r !, j 52,3,..., ~3.12b!

which transforms Eq.~3.11! into

v int/ j~r1!5v int/ j~r18!

1W/ j~r1 ,r18 ;@u,r1/0, . . . ,r1/j ,r2/0, . . . ,r2/j 21# !.

~3.13!
-

Next, we rewrite the first, second, and higher-j th-order po-
tentials explicitly in terms of DMs:

vesx~r1!5vesx~r18!1u /0~ t̂2 t̂ !r1/11u /1~ t̂2 t̂ !r1/0

12u /0*@~u2u!r2/0#, ~3.14a!

vc/2~r1!5vc/2~r18!1u /0~ t̂2 t̂ !r1/21u /1~ t̂2 t̂ !r1/1

1u /2~ t̂2 t̂ !r1/012u /0*@~u2u!r2/1#

12u /1*@~u2u!r2/0#, ~3.14b!

vc/ j~r1!5vc/ j~r18!1 (
l 50

j

u /l ~ t̂2 t̂ !r1/j 2l

12 (
l 50

j 21

u /l *@~u2u!r2/j 212l #. ~3.14c!

Here u /l 5u /l (r1 ;r18) is a combination ofr1/0(r1 ;r18),...,
r1/l (r1 ;r18) @see Eq.~3.9!# and the following shorthand no
tation is introduced:

~ t̂2 t̂ !r1/i5@ t̂~r1!2 t̂~r18!#r1/i~r1 ;r18!, ~3.14d!

*@~u2u!r2/i #5E d3r 2@u~r1 ,r2!2u~r18 ,r2!#

3r2/i~r1 ,r2 ;r18 ,r2!. ~3.14e!

The above equations allow direct evaluation of t
electrostatic-plus-exchange potential and consecutive te
of the correlation potential expansion. The input informati
consists of the KS reference system objects such as the 1
r1

s5r1/0 and the 2DMr2
s5r2/0, together with perturbation

expansion terms of the 1DM and 2DM~which will be shown
in following sections to be available within an extended K
approach!.

Sincevext
a (r1) plays a role of the external potential for th

intermediate N-electron system, the matrixW(r1 ,r18 ;
@au,r1

a ,r2
a#), occurring in Eq.~3.3b!, must exhibit the same

properties as the matrixW(r1 ,r18 ;@u,r1 ,r2#), occurring in
Eq. ~2.2a!. After expansion, this must remain true for ea
matrix termW/ j (r1 ,r18 ;@u,r1/0,...,r1/j ,r2/0,...,r2/j 21#).

It is worth noting that an expression, alternative to E
~3.11! or ~3.13!, can be derived also from the equation
motion ~3.3a! by ~i! inserting there expansions for potentia
and DMs,~ii ! equating coefficients ata j to obtain an equa-
tion for j th order, and~iii ! solving the j th order equation
with respect to the highest-order potential term. The resu

v int/ j~r1!5v int/ j~r18!1W̃/ j~r1 ,r18!, ~3.15a!

where

W̃/1~r1 ,r18 ;@u,vKS,r1/0,r1/1,r2/0# !

5u /0$~ ĥKS2ĥKS!r1/112*@~u2u!r2/0#% ,

~3.15b!
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W̃/ j~r1 ,r18 ;@u,vKS,v int/1 , . . . ,v int/ j 21 ,

3r1/0, . . . ,r1/j ,r2/j 21# !

5u /0H ~ ĥKS2ĥKS!r1/j2 (
l 51

j 21

~v int/l 2v int/l !r1/j 2l

12*@~u2u!r2/j 21#J ; ~3.15c!

see Eqs.~3.14d! and ~3.14e! for notation. HereĥKS denotes
the one-body KS Hamiltonian

ĥKS~r !5 t̂~r !1vKS~r !. ~3.16!

Since Eqs.~3.13! and ~3.15a! determine the same potentia
an identity, which connects expanded DMs and potenti
namely,

W/ j~r1 ,r18 ;@u,r1/0, . . . # !5W̃/ j~r1 ,r18 ;@u,vKS, . . . # !,
~3.17!

must hold forj 51,2,... and for any position pairr1 ,r18 .
The main result of this section, Eq.~3.14!, hinges on the

expansion~3.9! of 1/r1
a(r1 ;r18). Although there are no gen

eral reasons to expectr1
a(r1 ;r18) to be zero at some position

r1 ,r18 †note that for larger and larger 8 it is real and positive:
r1

a(r1 ;r18)'n1/2(r1)n1/2(r18); see, e.g.,@15#‡, nevertheless
we give below a plausible argument that 1/r1

a is never sin-
gular. Equation~3.3b! with Eq. ~2.2b! shows that the poten
tial differencevext

a (r1)2vext
a (r18), a well-defined object of the

intermediateN-electron system, is expressed in terms
DMs in a form of a fractionW, having r1

a(r1 ;r18) as its
denominator. The potential is not singular, except at nuc
positions. Butr1

a is not zero at these points because its na
ral orbitals satisfy there the cusp condition~see, e.g.,@16#!.
So, for the remaining positions, any occurrence of zero ofr1

a

would mean a singularity ofvext
a , the contradiction. How-

ever, may it happen in the numerator ofW that at such zero
position the contribution due tor1

a cancels out that due to
r2

a , allowing thus for a finite limit of the resulting potential
To ascertain if there is a chance for such a situation, le
consider also a completely different representation ofvext

a ,
namely,

vext
a ~r1!52$ t̂~r1!r1

a~r1 ;r18!

1w~r1 ,r18 ;@vext
a ,au,r1

a ,r2
a ,r3

a#!%/r1
a~r1 ;r18!,

~3.18!

which follows directly from Eq.~9! of our paper@9#. The
functional w consists of a sum of two integrals involvin
indicated potentials and DMs. The denominator in the
pression~3.18! is the same as inW, r1

a(r1 ;r18), while an
expression involving the 3DMr3

a ~absent inW! is seen in
the numerator. The complete cancellation in this numera
and simultaneously in theW numerator, exactly at the sam
position pairr1 ,r18 , must be regarded as improbable.
s,

f

ar
-

s

-

or

IV. DENSITY-FUNCTIONAL ASPECTS OF THE RESULTS

As is shown in Appendixes B and C, the expanded D
r l / j can be calculated using the KS spin orbitalsf i and
corresponding orbital energiese i , for i running over not
only the N lowest-energy, occupied states, but also an in
nite sequence of excited~virtual! states (i .N), and usingj
potential termsv int/1 ,v int/2 ,...,v int/ j . Therefore, Eq.~3.14!
can be symbolically rewritten as

vesx~r1!5vesx~r18!1w1~r1 ;r18 ;@$f i ,e i%,vesx# !,
~4.1a!

vc/2~r1!5vc/2~r18!1w2~r1 ;r18 ;@$f i ,e i%,vesx,vc/2# !,
~4.1b!

vc/ j~r1!5vc/ j~r18!

1wj~r1 ;r18 ;@$f i ,e i%,vesx,vc/2, . . . ,vc/ j # !.

~4.1c!

Equation ~4.1a! represents a functional~integral! equation
determiningvesx as a functional of$f i ,e i%. Next, Eq.~4.1b!
@with vesx considered to be the known solution of Eq.~4.1a!#
represents an equation for determiningvc/2 as a functional of
$f i ,e i%, and so on forvc/3,vc/4,... .

What is interesting is that the above-mentioned expr
sions forr l / j are insensitive to any shift of potential term
by a constant, i.e., they are invariant with respect to trans
mationsv int/ j→v int/ j1cj , wherecj are arbitrary constants
Therefore, the solutions of Eq.~4.1! are determined within
an accuracy of additive constants, arbitraryv int/ j (r18) at arbi-
trarily chosen reference pointr18 . Equations~4.1! can be
solved iteratively, provided, of course, that such a meth
turns out to be convergent~alternatively, an algebraic solu
tion of a system of linear equations can be also applied
discussed in Sec. V!.

Being explicit functionals of$f i ,e i%, the potentialsv int/ j
are implicit functionals of the GS electronic densityn(r ), as
follows from the Hohenberg-Kohn theorem~see, e.g. in@1#!
applied to the equivalent noninteracting reference syst
Therefore, we recognize the functional dependence onn not
only for the exchange potential

vx~r !5v int/1~r ;@n# !2ves~r ;@n# ! , ~4.2!

but also for each term separately of the expanded correla
potential (j 52,3,...)

vc/ j~r !5v int/ j~r ;@n# !. ~4.3!

This property just reflects the fact that the perturbat
theory expansion for the potentialvext

a @Eqs.~3.4! and ~3.5!#
is obtained by Go¨rling and Levy @8# within the density-
functional theory, in which potential terms are defined
functional derivatives of the corresponding terms of the
ergy expansion

vesx~r ;@n# !5ves~r ;@n# !1vx~r ;@n# !

5
dEes@n#

dn~r !
1

dEx@n#

dn~r !
5

dEint/1@n#

dn~r !
, ~4.4a!
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vc/ j~r ;@n# !5
dEc/ j@n#

dn~r !
5

dEint/ j@n#

dn~r !
, j 52,3,...

~4.4b!

and whereEint/ j are terms of the expansion of

Eint
a @n#5^CauT̂1aÛ uCa&2^C0uT̂ uC0&

5a~Ees@n#1Ex@n# !1Ec
a@n# ~4.5!

in power series ina

Eint
a @n#5(

j 50

`

a jEint/ j@n#. ~4.6!

The energyEint
a @n# @Eq. ~4.5!# can be next written in terms o

DMs obtained fromCa,

Eint
a @n#5E d3r 1t̂~r1!$r1

a~r1 ;r18!2r1
s~r1 ;r18!% ur185r1

1E d3r 1d3r 2au~r1 ,r2!r2
a~r1 ,r2 ;r1 ,r2!.

~4.7!

After substituting the expansion~3.7! into Eq. ~4.7! we ob-
tain the following expressions for the terms of expans
~4.6!: for j 51

Eint/15Ees1Ex5E d3r 1d3r 2u~r1 ,r2!r2
s~r1 ,r2 ;r1 ,r2!

~4.8a!

and for j >2

Eint/ j5Ec/ j5E d3r 1t̂~r1!r1/j~r1 ;r18! ur185r1

1E d3r 1d3r 2u~r1 ,r2!r2/j 21~r1 ,r2 ;r1 ,r2!

5Ec/ j
kin1Ec/ j

pot. ~4.8b!

It should be noted that the first-order kinetic energy vanis
@8#

Ec/1
kin5*@ t̂r1/1#50. ~4.8c!

Thus Eqs.~4.8! and ~3.14! represent explicit formulas fo
evaluation of the energy terms and their functional deri
tives ~4.4!, all in terms of expanded DMsr i / j .

The above considerations can be summarized as follo
Given the numberN of electrons in the system and the set
eigensolutions$f i(x), e i , i 51,2,...% of some single-particle
Hamiltonian~to be interpreted as the KS one!, we are able, in
principle, to evaluate consecutively „vx(r ),Ex…,
„vc/2(r ),Ec/2…, „vc/3(r ),Ec/3…, and so on. These quantities a
known to be functionals of the density expressed in terms
the same orbitals as

n~r !5(
s

(
a51

N

ufa~r ,s!u2, ~4.9!
n

s

-

s.
f

f

while their potential terms are related to energy terms via
~4.4!.

These facts will allow us to interpret a ‘‘truncated’’ G
problem, in which, because of increasing complexity
„vc/ j (r ),Ec/ j… evaluation, only a finite~and rather small!
number of terms can be handled. Consider the total-ene
functional truncated after thekth-order term:

E$k%@n#5Ts@n#1E d3rv~r !n~r !1(
j 51

k

Eint/ j@n#,

~4.10!

which approximates the exact total-energy functional of
considered system@hereTs5^C0uT̂ uC0& and compare Eqs
~4.5! and ~4.6! at a51#:

E@n#5E$`%@n#

5Ts@n#1E d3rv~r !n~r !1Ees@n#

1Ex@n#1Ec@n#. ~4.11!

The exact GS energyEGS and densitynGS(r ) correspond to

EGS5 min
n→N

E@n#5E@nGS#. ~4.12!

Let EGS
$k% andnGS

$k%(r ) be a solution of

EGS
$k%5 min

n→N
E$k%@n#5E$k%@nGS

$k%#. ~4.13!

But, obviously, these quantitiesEGS
$k% andnGS

$k%(r ) can be also
obtained, applying our scheme, via a self-consistent solu
of KS equations with the truncated effective potential

vKS
$k%5v1(

j 51

k

v int/ j5v1ves1vx1vc/21•••1vc/k .

~4.14!

The exchange-only approximation~k51 case! is equiva-
lent to, but expressed in a completely different way from t
optimized potential method@17#, see our discussion in@18#.
The k52 case may be termed the ‘‘leading-correlation a
proximation’’ ~details of both are given in Sec. V!. The ac-
curacy of the above~and, in general,kth-order! approxima-
tion is connected with the speed of convergence
perturbation-theory expansions for energy and potential.
subtracting Eq.~4.13! from Eq. ~4.12! we obtain for the GS
energy error

EGS2EGS
$k%5O„~nGS

$k%2nGS!
2
…1Ec/k11@nGS

$k%#

1Ec/k12@nGS
$k%#1••• ~4.15!

„the functional Taylor expansion ofE@n# for n5nGS
$k% around

nGS was applied and minimum property~4.12! used…. Antici-
pating that the term quadratic in density deviation will
small, we need the value ofEc/k11@nGS

$k%# to estimate the en-
ergy error. In fact, this quantity is available within thekth
approximation as
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Ec/k115
1

k11 E d3r 1d3r 2u~r1 ,r2!r2/k~r1 ,r2 ;r1 ,r2!

~4.16!

becauser2/k can be calculated within thekth approximation.
Equation~4.16! was obtained from Eq.~4.8b! using the fact
that the kinetic-energy termEc/ j

kin of Ec/ j is simply related to
the accompanying interaction potential-energy termEc/ j

pot,
namely,

Ec/ j
kin52

j 21

j
Ec/ j

pot, ~4.17!

as has been shown in@8# ~see also@19#!.
A systematic investigation of convergence of the ser

Eint5(Ees1Ex)1Ec/21Ec/31••• and v int5(ves1vx)1vc/2
1vc/31••• at n5nGS can be performed for systems fo
which EGS and nGS(r ) are known from configuration
interaction or Hylleraas-type calculations. HavingnGS(r ),
the effective KS potentialvKS ~which leads to this density!
can be established numerically by various methods~see, e.g.,
@20# and references therein!. After solving KS equations
~with this potentialvKS!, one can evaluate the separate ter
of discussed series in terms of the obtained$f i(x),e i% by
applying the methods of the present paper. The trunca
sums should be compared with (EGS2Ts@n#2*@vn#) and
(vKS2v), respectively. On the other hand, it would be inte
esting also to solve for the same systems the truncated p
lem ~4.13! and compareEGS and nGS(r ) with the resulting
EGS

$k% and nGS
$k%(r ) to see their accuracy. It is noteworthy th

Liu and Parr @19# performed an approximate numeric
analysis of the seriesEc5Ec/21Ec/31••• ~in their notation
Ec5E81E91•••! for atoms from He to Ar, concluding tha
the magnitude ofEc/3 is roughly 20% of that ofEc/2.

V. CALCULATIONAL PROCEDURE FOR EXCHANGE
AND LEADING-CORRELATION POTENTIALS

A. Calculation of the exchange potential

The exchange-only potential can be easily separated f
Eq. ~3.14a! for the electrostatic-plus-exchange potential
taking into account the form ofr2/05r2

s due to the determi-
nantal KS wave function. Since the general spin structure
the reference KS system 1DM@Eq. ~C34!# can be written@1#
as

g1
s~r1s1 ;r18s18!5r1↑

s ~r1 ;r18!a~s1!a~s18!

1r1↓
s ~r1 ;r18!b~s1!b~s18! ~5.1!

and reduced@Eq. ~A5!# to

r1
s~r1 ;r18!5r1↑

s ~r1 ;r18!1r1↓
s ~r1 ;r18!, ~5.2!

the reference system spinless 2DM@Eq. ~C35! with Eq.
~A5!# can be split as

r2
s~r1 ,r2 ;r18 ,r28!5r2d

s ~r1 ,r2 ;r18 ,r28!1r2x
s ~r1 ,r2 ;r18 ,r28!,

~5.3a!

where the direct and exchange parts of this DM are
s

s

ed

-
b-

m

of

r2d
s ~r1 ,r2 ;r18 ,r28!5 1

2 r1
s~r1 ;r18!r1

s~r2 ;r28!, ~5.3b!

r2x
s ~r1 ,r2 ;r18 ,r28!52 1

2 @r1↑
s ~r1 ;r28!r1↑

s ~r2 ;r18!

1r1↓
s ~r1 ;r28!r1↓

s ~r2 ;r18!#. ~5.3c!

For spin-compensated systems, i.e., satisfyingr1↑
s 5r1↓

s

5 1
2 r1

s , the above expression simplifies to

r2x
s ~r1 ,r2 ;r18 ,r28!52 1

4 r1
s~r1 ;r28!r1

s~r2 ;r18!. ~5.3d!

After inserting the abover2
s into Eq. ~3.14a! we notice can-

cellation ofves contributions, leading to the result

vx~r1!5vx~r18!1u /0~ t̂2 t̂ !r1/11u /1~ t̂2 t̂ !r1/0

12u /0*@~u2u!r2x
s #. ~5.4a!

But, from Eq. ~2.4! follows u /1( t̂2 t̂)r1/05u /0(vKS2vKS)
r1/1; therefore, the above equation can be rewritten finally
terms of the one-body KS HamiltonianĥKS ~3.16! as

vx~r1!5vx~r18!1 H @ ĥKS~r1!2ĥKS~r18!#r1/1~r1 ;r18!

12E d3r 2@u~r1 ,r2!2u~r18 ,r2!#

3r2x
s ~r1 ,r2 ;r18 ,r2!J Y r1

s~r1 ;r18!, ~5.4b!

i.e., in a form resembling Eq.~3.15!.
The DM r1/1 will be calculated by reduction ofg1/1, us-

ing Eqs.~B17b!, ~B12b!, and~C17!:

g1/1~1;18!5(
i ,k

g1
ki~1;18!(

A
8 $^Y /0uâi

†âkuA&^AuY /1&

1^Y /1uA&^Auâi
†âkuY /0&%. ~5.5!

Due to Eq.~C21!, the summation overA in Eq. ~5.5! can be
limited to A5Oa

r only @compare Eqs.~B11! and ~C6!# and
evaluated, using Eq.~C20!, as

g1/1~1;18!5(
a

occ

(
r

vir

$g1
ra~1;18!^Oa

r uY /1&1g1
ar~1;18!

3^Y /1uOa
r &%. ~5.6!

Next, using Eqs.~C8!–~C14! we evaluatê Oa
r uY /1& of Eq.

~B12b! to be

^Oa
r uY /1&5

1

va,r
H 1

4 (
i , j ,k,l

^ i j uukl &^Oa
r uâi

†â j
†âl âkuO&

2(
i ,k

^ i uvesxuk&^Oa
r uâi

†âkuO&J , ~5.7!

where

va,r5EO2EO
a
r 5ea2e r ~5.8!
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denotes minus the single-pair excitation energy, and us
Eqs.~C26! and ~C20!, ^Oa

r uY /1& is transformed into

^Oa
r uY /1&5

1

va,r
H(

b

occ

^rbuuab&2^r uvesxua&J . ~5.9!

But, from Eqs.~C13! and ~C14! we find

(
b

occ

^rbuuab&5E d1f r* ~1!ves~1!fa~1!

1E d1f r* ~1!E d2ṽx
F~12!fa~2!

5^r uvesua&1^r uv̂x
Fua&, ~5.10!

where we have introduced the Fock exchange nonlocal~in-
tegral! operatorv̂x

F @analogous to the exchange operator
the Hartree-Fock~HF! approach, but here in terms of the K
orbitals rather than the HF orbitals#

v̂x
F~1!f~1!5E d2ṽx

F~12!f~2!, ~5.11a!

ṽx
F~12!52u~12!g1

s~1;2!. ~5.11b!

We note here thatv̂x
F is a Hermitian operator. So, finally, w

have from Eq.~5.9! a simple expression

^Oa
r uY /1&5

1

va,r
^r uv̂x

F2vxua&[
1

va,r
^r uxua& ~5.12!

because of cancellation ofves contributions. The notation
x(1)5 v̂x

F(1)2vx(1) has been introduced.
Equation~5.6! can be thus rewritten as

g1/1~1;18!5(
a

occ

(
r

vir
1

va,r
$^r uxua&g1

ra~1;18!

1^auxur &g1
ar~1;18!%. ~5.13!

It generalizes for complex orbitals the result of Levy a
March @7# obtained for real orbitals.

Note that @ ĥKS(1)2ĥKS(18)#g1
i j (1;18)5v i , jg1

i j (1;18)
follows from Eq.~C2! applied to Eq.~C17b! and the notation
~5.8!. Therefore, the combination, occurring in Eq.~5.4b!,
can be found to be

@ ĥKS~1!2ĥKS~18!#g1/1~1;18!5(
a

occ

(
r

vir

$2^r uxua&g1
ra~1;18!

1^auxur &g1
ar~1;18!%. ~5.14!

Thus the final equation forvx is
g

f

vx~r1!5vx~r18!1H(
a

occ

(
r

vir

@^auv̂x
F2vxur &r1

ar~r1 ;r18!

2^r uv̂x
F2vxua&r1

ra~r1 ;r18!] 12E d3r 2@u~r1 ,r2!

2u~r18 ,r2!#r2x
s ~r1 ,r2 ;r18 ,r2!J Y r1

s~r1 ;r18!,

~5.15!

where@compare Eq.~C17b!#

r1
ki~r1 ;r18!5(

s1

fk~r1s1!f i* ~r18s1!. ~5.16!

It should be noted that Eq.~5.15! is free of the energy
denominatorsva,r @Eq. ~5.8!#, which are characteristic fo
perturbation theory expressions such as Eq.~5.13!. Because
of this, one may expect that Eq.~5.15! will be not too sen-
sitive to ~inevitable in practice! truncation in the summation
over the virtual orbitals. The alternative approach of Go¨rling
and Levy@13,14# is lacking this property. The expression fo
vx †e.g., Eq.~37! of @14#‡ does contain energy denominator
Their role may be somehow outweighed on average by
presence of theinverseresponse operatorG21(r2 ,r1) in this
expression because thedirect response operatorG(r1 ,r2)
also contains such energy denominators†e.g., Eq.~35! of
@14#‡.

B. Solution of the equation for the exchange potential

Let us note thatvx enters the right-hand side~rhs! of Eq.
~5.15! via its off-diagonal, occupied-virtual matrix elemen
only. Therefore, for a given set of KS orbitals$f i(x),i
51,2,...,M % ~which, for practical reasons, must be finite a
its dimensionM should satisfyM@N for accurate results!
and for some fixedr18 , one can solve Eq.~5.15! by finding
the values ofN3(M2N) complex matrix elementsXbs
5^buvxus& for b51,...,N and s5N11,...,M . From Eq.
~5.15! the following set of equations can be deduced:

Xbs5(
a

occ

(
r

vir

$Abs,ar~Xar
F

2Xar!2Bbs,ar~Xar
F 2Xar!* %

1Cbs , ~5.17!

where@see Eq.~5.11!#

Xar
F 5^auv̂x

Fur &, ~5.18!

Abs,ar5E d1fb* ~1!
r1

ar~1;18!

r1
s~1;18!

fs~1!, ~5.19!

Bbs,ar5E d1fb* ~1!
r1

ra~1;18!

r1
s~1;18!

fs~1!, ~5.20!

Cbs5E d1fb* ~1!R~1;18!fs~1!, ~5.21a!

with
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R~1;18!5 H2E d2@u~12!2u~182!#r2x
s ~12;182!J Y

r1
s~1;18!. ~5.21b!

The constantvx(r18) of Eq. ~5.15! does not enter Eq.~5.17!
becausê buvx(r18)us&5vx(r18)dbs50. Equation~5.17! repre-
sents a set ofN3(M2N) complex linear equations for th
same number of complex unknownsXbs . Its form is suitable
for iterative solution. For the initial step one may insert
the rhs for the value ofXar the matrix element of some
approximation forvx(r ) or even just neglect (Xar

F 2Xar).
Provided the iterative process converges, it may turn ou
be more efficient than the alternative, algebraic method
solution. This linear algebra problem, in a large,@23N
3(M2N)# –dimensional space, may be written in a blo
matrix form as

F 11A82B8 2A92B9

A92B9 11A81B8
GFX8

X9G5FC8
C9G

1FA82B8 2A92B9

A92B9 A81B8
GF ~XF!8

~XF!9G , ~5.22!

whereXar5Xar8 1 iXar9 , etc., and (11A82B8)bs,ar5dbadsr

1Abs,ar8 2Bbs,ar8 , etc. It should be noted that by using on
real orbitals we halve the dimensionality of this linear alg
bra problem.

Since the matricesA, B, andC @Eqs. ~5.19!–~5.21!# de-
pend onr18 , the solutionXbs of Eq. ~5.17! or ~5.22! depends
on r18 too. However, this dependence should be rather we
diminishing with the increase ofM , because in the limit of
M→` the solution represents the matrix element^buvxus& of
the exactvx(r1), which is independent ofr18 .

With ^buvxus& determined, Eq.~5.15! gives vx(r1) di-
rectly at arbitrary pointr1 at the cost of summations overa,r
and space integration overr2 . This equation provides the
exact exchange potential for the densityn(r ) given by Eq.
~4.9! in terms of the same orbitals as those used in
~5.15!.

C. Calculation of the leading-correlation potential

The leading termvc/2(r ) of the expanded correlation po
tentialvc(r ) @Eq. ~3.5! for a51# is given by Eq.~3.14b!. Of
various DMs entering this equation, we already have de
minedr1/05r1

s andr1/1, the spin reduced forms ofg1
s , @Eq.

~C34!# and g1/1 @Eq. ~5.13!# and alsor2/05r2
s @Eq. ~5.3!#.

Below we obtaing1/2 and g2/1, from which r1/2 and r2/1
follow immediately by spin reduction.

By combining Eqs.~B17b!, ~B12b!, and~C8! we arrive at

g2/15H(
a

occ

(
r

vir

^Ouĝ2uOa
r &^Oa

r uY /1&

1 (
a,b

occ

(
r ,s

vir

^Ouĝ2uOab
rs &

1

vab,rs
^Oab

rs uÛ uO&J 1H.c.,

~5.23!

where
to
f

-

k,

.

r-

vab,rs5EO2EO
ab
rs 5ea1eb2e r2es ~5.24!

denotes minus the two-pair excitation energy. We used
fact that^Ouĝ2uA& vanishes for triple- and higher-excitedA
@see Eqs.~C18! and ~C28!# and that̂ Oab

rs uV̂esxuO&50. Next,
using Eqs.~C26! and ~C27! for evaluation of matrix ele-
ments ofĝ2 andÛ, and also the result~5.12!, we arrive at the
final result

g2/1~12;1828!5H(
a

occ

(
r

vir
^r uv̂x

F2vxua&
2va,r

@g1
s~1;18!g1

ra~2;28!

2g1
s~1;28!g1

ra~2;18!1g1
s~2;28!g1

ra~1;18!

2g1
s~2;18!g1

ra~1;28!#

1(
a,b

occ

(
r ,s

vir
^rsuuab&
2vab,rs

g1
ra~1;18!g1

sb~2;28!J
1H.c. ~5.25!

@note that the Hermitian conjugate~H.c.! of A(12;1828) is
A* (1828;12)#.

In order to evaluateg1/2 we rewrite Eq.~B17c! as

g1/2~1;18!5g1/2
~02!~1;18!1@g1/2

~02!~18;1!#* 1g1/2
~11!~1;18!,

~5.26a!

with

g1/2
~02!5^Y /0uĝ1uY /2&5(

a

occ

(
r

vir

^Ouĝ1uOa
r &^Oa

r uY /2&

5(
a

occ

(
r

vir

g1
ra^Oa

r uY /2&, ~5.26b!

g1/2
~11!5^Y /1uĝ1uY /1&2^Y /1uY /1&g1

s . ~5.26c!

According to Eq.~B13! with Eq. ~B12! and taking into ac-
count that̂ AuĤ/1uO& vanishes for triple- and higher-excite
A, we find

^Oa
r uY /2&5

1

va,r
H ^Oa

r uĤ/2uO&2^OuĤ/1uO&
1

va,r
^Oa

r uĤ/1uO&

1(
b

occ

(
s

vir

^Oa
r uĤ/1uOb

s&
1

vb,s
^Ob

suĤ/1uO&

1 1
4 (

b,c

occ

(
s,t

vir

^Oa
r uĤ/1uObc

st &
1

vbc,st
^Obc

st uĤ/1uO&J .

~5.27!

After evaluation of all matrix elements using Eqs.~C19!–
~C30!, we arrive at

va,r^Oa
r uY /2&52^r uvc/2ua&1(

b

occ

(
s

vir
^rbuuas&^suxub&

vb,s

1(
s

vir
^r uxus&^suxua&

va,s
2(

b

occ
^r uxub&^buxua&

vb,r
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1 (
b,c

occ

(
s

vir
^sruubc&^bcuuas&

vbc,sr

2(
b

occ

(
s,t

vir
^bruust&^stuuab&

vab,st

2(
b

occ

(
s

vir
^sruuab&^buxus&

vab,st
. ~5.28!

Evaluation ofg1/2
(11) @Eq. ~5.26c!# is quite straightforward, al-

though tedious, and can be performed using the matrix
ments~C19!–~C30!. The term^Y /1uY /1&g1

s cancels out ex-
actly one of the terms obtained from̂Y /1uĝ1uY /1&. The final
result is then

g1/2
~11!5(

t,r

vir H(
a

occ
^tuxua&^auxur &

va,tva,r

1 (
a,b

occ

(
s

vir
^tsuuab&^bauusr&

vab,tsvab,sr
J g1

tr

2(
a,c

occ H(
r

vir
^auxur &^r uxuc&

va,rvc,r

1(
r ,s

vir

(
b

occ
^abuurs&^sruubc&

vab,rsvbc,rs
J g1

ac

1(
a,c

occ

(
r ,t

vir H ^auxur &^tr uuca&
va,rvac,tr

g1
tc

1
^acuurt &^r uxua&

vac,rtva,r
g1

ctJ . ~5.29!

The arguments (1;18) of ĝ1 , g1/2
(02) , g1/2

(11), andg1
i j have been

omitted for brevity.
The exchange potential, determined in previous subs

tions, enters the expression forg1/2 not only in a form of
matrix elements of occupied-virtual type, but also occupi
occupied and virtual-virtual types. Its diagonal elements
cur in Eq. ~5.28! for s5r and b5a only in a combination
(^r uxur &2^auxua&)/va,r , which is independent of the con
stantvx(r18).

When determiningvc/2 from Eq.~3.14b! we meet thisvc/2
also on the rhs as off-diagonal, occupied-virtual matrix e
ments; see Eq.~5.26! with ~5.28!. Similarly to the case of the
exchange potential, we fixr18 ~the same as previously!, and
then calculate the values ofN3(M2N) complex matrix el-
ementsYbs5^buvc/2us&, integrating expression~3.14b! be-
tween ^bu and us& functions @a null contribution due to the
constantvc/2(r18)#. This leads to an algebraic problem

Ybs5(
a

occ

(
r

vir

$2Abs,arYar1Bbs,arYar* %1Dbs ,

~5.30!

with the sameA and B as in Eqs.~5.19! and ~5.20!. The
matrix D combines all terms independent ofvc/2. Again, Eq.
~5.30! can be solved iteratively or algebraically. In the la
case, since the equation forY is similar to Eq.~5.22! for X
e-

c-

-
-

-

t

~having, however, a different rhs!, the matrix inverted for
solution of Eq.~5.22! can be utilized again.

With ^buvc/2us& determined, Eq.~3.14b! givesvc/2(r1) at
arbitrary r1 at the cost of spatial integration overr2 . The
contribution vc/2(r1) thereby obtained provides the leadin
term of the expandedvc(r1), for the actual densityn(r ),
corresponding to occupied KS orbitals used in the calcu
tion ~4.9!.

VI. DISCUSSION AND CONCLUSIONS

A. Approximate exchange potential

Observing that the expression forEx@n# in terms of DMs
can be obtained from that forExc@n# @Eq. ~2.8!# by means of
replacing the interacting DMsr i with the noninteracting
onesr i

s, we applied previously the same replacement in o
works @5# and @9# to obtain approximate expressions f
vx(r ) from those forvxc(r ). In particular, forvxc in a line-
integral form@5#, this replacement has lead us to an expr
sion that is equivalent to the Harbola-Sahni@6# approxima-
tion for vx in their work formalism.

Applying again this replacement to the present Eq.~2.7!
for vxc(r ), we obtain an expression for the approximate e
change potential, in which there are no terms contain
kinetic-energy operators, while the DMr2 of the interaction
term is replaced byr2

s in the form~5.3!. Although the exact
vxc(r ) @Eq. ~2.7!# is obviously real~becauseW and Ws are
real!, the approximation constructed above may happen to
complex valued; therefore, we should take its real part.
finally,

vx
app~r1!5vx

app~r18!1E d3r 2$u~r1 ,r2!2u~r18 ,r2!%

3H r2x
s ~r1 ,r2 ;r18 ,r2!

r1
s~r1 ;r18!

1
r2x

s ~r18 ,r2 ;r1 ,r2!

r1
s~r18 ;r1! J ,

~6.1a!

where

vx
app~r18!5E d3r 2u~r18 ,r2! lim

r 1→`
H r2x

s ~r1 ,r2 ;r18 ,r2!

r1
s~r1 ;r18!

1
r2x

s ~r18 ,r2 ;r1 ,r2!

r1
s~r18 ;r1! J ~6.1b!

is chosen to providevx
app(r1)→0 whenr 1→`, for any fixed

r18 . With u(r1 ,r2)51/ur12r2u, the large-r 1 behavior of the
approximate exchange potential

vx
app~r1!52

1

r 1
1OS 1

r 1
2D ~6.2!

is the same as the behavior of the exactvx(r1); see, e.g., our
discussion in@18#. The idempotency property

E d3r 2r1s
s ~r1 ;r2!r1s

s ~r2 ;r18!5r1s
s ~r1 ;r18! ~6.3!

was used to derive the result~6.2! from Eq. ~6.1!.
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While the shape of the exchange-correlation poten
vxc(r1), given by the exact Eq.~2.7!, is independent of the
reference pointr18 choice @due to Eq.~2.3! for W and its
analogue for Ws#, the approximate exchange potent
vx

app(r1) @Eq. ~6.1!# depends, in general, onr18 ~except maybe
in the case of some high-symmetry systems!. This r18 depen-
dence is an analog of the path dependence of the app
mate exchange potential in a line-integral form@5#, equiva-
lent to the Harbola-Sahni potential. Therefore, for practi
applications, it may be useful to average the right-hand s
of Eq. ~6.1! over some set ofr18 points.

Since, as discussed above, our approximation~6.1! is an
analog of the Harbola-Sahni approximation@6#, one may ex-
pect it to lead to a similarly promising result as theirs~see,
e.g., Sahni’s review@21#!, while being simpler in evaluation
Let us notice, finally, that the exact exchange potential~5.4b!
differs from the approximate one~6.1! in the term involving
r1/1. What is crucial for applications is thatvx

app(r1) is ex-
pressed entirely in terms of the noninteracting 1DMsr1↑

s and
r1↓

s @see Eqs.~5.2! and~5.3c!# or, for spin-compensated sys
tems, justr1

s @see Eq.~5.3d!#. Therefore, it can be calculate
self-consistently within the traditional KS scheme. Its for
removes also the problem of the self-interaction correctio
the level of the exchange. We expect that this form of
approximate exchange potential is suitable for application
extended systems too.

In general, approximate exchange potentials are obta
in two ways: either by functional differentiation of an a
proximate expression for the energyEx as a functional of the
density or by simplification of some exact expression
equation for the potentialvx or vxc . The first way is the mos
popular one because it leads to inexpensive~in calculational
costs! expressions, which are local in the density and den
gradients. In its simplest form it is known therefore as t
local-density approximation~LDA !, while various improved
versions are known as generalized gradient approximat
~GGAs! ~see, e.g.,@22–25# and references therein!. Although
some modern GGAs give highly accurateEx , they lead typi-
cally to less satisfactory potentials after differentiation. T
second way of approximating circumvents this difficulty.
is represented, first of all, by the Krieger-Li-Iafrate~KLI !
approximation@26,27#. The exact integral equation forvx of
the optimized effective potential method@17# is simplified
there and an expression in terms of KS orbitals is obtain
which is similar to the Slater construction ofvx . Application
of this the KLI approximation to self-consistent calculatio
of atomic properties@28# demonstrates its high accurac
Gritsenkoet al. @29# propose and develop a family of ap
proximate exchange potentials, the form of which is ba
on the KLI approximation, while their evaluation involve
to various extents, some elements of the GGA to the
change energy. Reduced calculational costs accompany
sonably accurate results. It is interesting that the KLI a
proximation can be derived alternatively, as shown by Na
@30#, by introducing approximations to the effective loc
potential of the Hartree-Fock method posed as a dens
functional theory. Our three approximations tovx , discussed
earlier in this section, belong also to the second way of
proximating because they represent simplifications of the
act results forvxc in terms of DMs, stemming from thre
l
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equations satisfied by DMs: the differential virial equatio
the integral equation, and the equation of motion for t
1DM. The approximatevx based on virial equation happen
to be equivalent to the Harbola-Sahni@6# approximation, de-
rived within their work formalism.

B. Sum rules for checking accuracy

Any implementation of the, exact in principle, prese
method of solution of the ground-state problem leads ine
tably to inaccuracies due to various limitations. Amo
them, the most basic one is connected with the chosen o
k of the perturbation theory. It causes the exact GS prob
~4.12! to be replaced by the truncated one~4.13!. Complete
formulas are given fork51 and 2 and ways are indicated
handle otherk. Remaining computational inaccuracies ari
due to a finite number of virtual KS orbitals taken into a
count, an approximate representation of each KS orbital~by
its values on some grid or when expanded in some inco
plete basis set of molecular orbitals!, and terminations in
iterative approaching to self-consistency during solution
KS equations, equations forvx , vc/2, and so on. Therefore, i
is important to have, during the computational process, so
criteria allowing estimation of inaccuracies. We propose
this purpose to check how well the ‘‘sum rules,’’ the exa
relations of the theory, are satisfied.

A distinctive feature of the GL perturbation theory is pr
sented by Eq.~3.1!. Since the density is the diagonal eleme
of the 1DM r1

a , which is represented as expansion~3.7!,
therefore~3.1! is equivalent to the following pointwise iden
tities for each perturbational order:

n/ j~r ![r1/j~r ;r !50 for j 51,...,k. ~6.4!

It should be noted that this equation serves Go¨rling and Levy
@14# as a basis for determiningvx , at j 51, andvc/ j , at j
>2, with the help of the inverted operator of the linear de
sity response.

As an indicator of calculational accuracy, one can ta
for example, the smallness of either the maximum~overr ! of
un/ j (r )u/n(r ) or its average value. It is interesting that calc
lational defects, causing violation of the sum rule~6.4!, do
not lead to errors in the total number of electrons. Name
we find from Eqs.~5.13! and ~5.26! that the identity

E d3rn / j~r !5E d1g1/j~1;1!50 ~6.5!

is satisfied forj 51 and 2 despite truncated summations ov
virtual KS orbitals and inaccurate matrix elements of t
exchange potential. What really matters is the orthogona
of virtual orbitals with respect to occupied ones.

Other sum rules originate in equivalence of two metho
applied for the calculation of the GS energyEa of the inter-
polating system, the solution of Eq.~B1!. Corresponding ex-
pansion coefficients@see Eq.~B7!# can be evaluated eithe
from the perturbation theory~PT! expressions~B12a!,
~B13a!, and~B14a!, to be denoted in this section asE/ j

PT, or
from the HamiltonianĤa @Eqs. ~B2!, ~C1!, ~C8!, and~C9!#
expectation value, expressed next in terms of DMs@compare
Eqs.~4.5! and ~4.7!# as
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Ea5^CauT̂1aÛ1V̂ext
a uCa&

5*@ t̂g1
a#1**@aug2

a#1*@vext
a na#5(

j 50

`

a jE/ j
DM ,

~6.6!

where the property~3.1! and expansions~3.7! and ~3.6!
should be used to obtain the last form. The resulting s
rules

E/ j
PT5E/ j

DM for j 51,...,k ~6.7!

can be satisfied only approximately because of comp
tional inaccuracies. At first order we find

E/1
DM2E/1

PT5~ *@ t̂g1/1#1**@ug2/0#1*@vext/1n#!
2~ **@ug2/0#1*@vext/1n#! . ~6.8!

This difference vanishes when Eq.~6.4! is accurately satis-
fied because we find for it, with the help of Eqs.~3.16!,
~5.13! and ~C2!, that

*@ t̂g1/1#5*@~ ĥKS2vKS!g1/1#52*@vKSn/1#. ~6.9!

So, u*@vKSn/1#/E/1
PTu!1 may serve as a criterion of calcula

tional accuracy. Similarly, at the second order, after tedi
algebra involving, among other equations, Eqs.~5.12!,
~C27!, ~5.29!, and~5.25!, we find

E/2
DM2E/2

PT5*@vesxn/1#2*@vKSn/2#; ~6.10!

so again this difference vanishes when Eq.~6.4! is satisfied
for j 51 and 2. On the way leading to the result~6.10!, the
identity ~4.17! for j 52 is being proven in terms of explici
expressions such as Eq.~5.29! @note that the same identit
for j 51 means vanishing of the left-hand side of Eq.~6.9!#.
Altogether, obtaining the result~6.10! provides a nontrivial
cross-check of the whole collection of second-order formu
given in our paper. Similarly, numerical satisfaction of E
~6.10! may serve as a sensitive confirmation of error-fr
coding of applied formulas.

We should also point out the sum rules connected w
basic properties of potentials, namely vanishing of ImW and
the identity~2.3!, which must be satisfied by eachW/ j (r1 ,r18)
separately, for j 51,...,k, the terms of the expande
W(r1 ,r18) @Eq. ~3.10!#. Similarly, identities ~3.17! for j
51,...,k can also serve as sum rules checking expanded
tential and expanded DMs terms.

Finally, the accuracy of evaluated potentials can be e
mated in the following way. Equations~3.14! and~3.15! and
similar ones depend on two positionsr1 and r18 , of which
r18 , the reference point, is chosen arbitrarily at the beginn
and then kept fixed during all calculations. Potenti
vesx,vc/ j , determined according to the mentioned equatio
as functions of the independent variabler1 , should be the
same~up to additive constants! for various choices ofr18 ,
provided computational inaccuracies are avoided. But t
are present in practice: In order to estimate the resulting
accuracies of evaluated potentials, one should repeat all
culations with a new~significantly different! choice ofr18 and
m
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decide if the discrepancies between the new and prev
potentials are acceptable. When they are not, the calc
tional procedure needs improvements~e.g., by increasing the
number of the virtual orbitals involved or by more accura
representing each orbital!.

C. Upper bound to the ground-state energy

In the process of self-consistent determination ofvx ,
vc/2,..., by means of our method, the expanded man
electron wave function is obtained as a by-product. The
fore, regardless of all computational deficiencies, an ex
upper bound~UB! to the system GS energy can be obtain

EGS,EUB
$k%5

^Y$k%uĤuY$k%&

^Y$k%uY$k%&
, ~6.11a!

where@compare Eqs.~B3! and ~B5! for a51#

uY$k%&5(
j 50

k

uY / j& ~6.11b!

and Ĥ is given in Eq.~A1!. By using uY / j& expanded in a
form ~B11!, an explicit expression can be derived forEUB

$k%

with the help of methods described in Appendixes B and
However, it involves terms that are formally of higher ord
than those in perturbational expansions. For example, fok
52, one meets the third-order terms such as^Y /1uĤuY /2& and
^Y /1uY /2& and fourth-order termŝY /2uĤuY /2& and^Y /2uY /2&.
For their determination the list of matrix elements~C19!–
~C30! must be enlarged significantly. A recent paper by G
toh et al. @31# demonstrates that evaluation of such mat
elements can be automated by methods of computer a
braic calculation. This method may prove to be helpful a
in extending our perturbation theory formulas tok.2 cases.

D. Summary

The main achievements of the present paper are to~i!
establish the exchange-correlation potential in terms of fi
and second-order density matrices: both fully interacting a
‘‘reference’’ KS system quantities, in Eq.~2.7! @it should be
noted that the exchange-correlation energy can be also w
ten in terms of the same input information, Eq.~2.8!#; ~ii !
obtain an approximate exchange potential in terms of fi
order density matrix of the KS system, in Eq.~6.1!; ~iii !
derive an equation for the exact exchange potential, in te
of the KS orbitals, in Eq.~5.15!; ~iv! derive an equation for
the leading contribution to the correlation potential, in term
of the KS orbitals, in Eq.~3.14b! with details in Eqs.~5.23!–
~5.30!; and ~v! indicate ways to obtain higher contribution
to the correlation potential, in Eq.~3.14c!. Of course, in
~iii !–~v! one needs not only the Kohn-Sham orbitals requi
to calculate the~in principle! exact ground-state densityn(r )
but also excited~virtual! orbitals generated by the same on
body potentialvKS used to constructn(r ). Naturally, it will
require numerical calculations on specific systems to dem
strate whether the present approach, with currently availa
computing power, can be competitive among known hig
accuracy but costly approaches, such as configurat
interaction~CI! one. While the present scheme involves t
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same two-electron integrals as in theseab initio approaches,
thus being similarly expensive in calculation, its perturbat
expansion may be faster converging becausen(r ) is kept
fixed during the perturbation@in opposition to changingn(r )
in the CI approach# and because the orbitals~especially vir-
tuals! may be of better quality. Of course, all such schem
based on perturbation theory are not able to compete in
not only with the LDA but also with the most sophisticate
GGA approaches.
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APPENDIX A: MANY-ELECTRON SYSTEM
AND ITS DENSITY MATRICES

TheN-electron finite system under consideration~such as
an atom, a molecule, or a cluster! is characterized by the
Hamiltonian

Ĥ5T̂1Û1V̂, ~A1!

representing the kinetic-energy, electron-electron repuls
and electron-nuclear attraction~external potential! energy
operators~for their definitions and also conventions conce
ing DMs and remaining notation see@5,9#!. Atomic units are
used throughout. From an obvious identity

NE d2•••dN$@ĤC~12...N!#C* ~182...N!

2C~12...N!@ĤC~182...N!#* %50, ~A2!

satisfied by any normalized eigenfunctionC of the Hamil-
tonianĤ ~A1!, follows immediately the so-called equation
motion for the 1DM~see, e.g.,@11,12#!

$@ t̂~1!1v~1!#2@ t̂~18!1v~18!#%g1~1;18!

12E d2$u~12!2u~182!%g2~12;182!50. ~A3!

Here15x15$r1 ,s1% means the first space and spin coor
nate, *d2f (2) means (s2

*d3r 2f (r2 ,s2), t̂(1)52 1
2 ¹1

2

52 1
2 (]/]r1)2 is the kinetic-energy operator, andu(12)

5u(r1 ,r2) and v(1)5v(r1) denote electron-electron inte
action and external potential, respectively.

Equation~A3! represents an exact relation at1,18, involv-
ing potentialsu,v and DMsg1 and g2 @generated from an
arbitrary eigenfunctionC of the HamiltonianĤ ~A1!#. Since
Eq. ~A3! is linear in DMs, it remains true if DMsg1 andg2
are replaced by a ‘‘mixture’’ of pure-state matricesgL i :

g i5(
L

pLgL i , ~A4a!

where the probabilitiespL satisfy conditions
n

s
st

h
ter
s-

n

-

-

pL>0, (
L

pL51, ~A4b!

and the iDM gL i is obtained by reduction ofgLN

5CL(1...N)CL* (18...N8), whereCL is an eigenfunction of
Ĥ, labeled with the quantum numberL. Thus Eq.~A3! is
valid not only for pure-state DMs, but also for ensemb
state DMs of the system under consideration. Since Eq.~A3!
is independent of the numberN of electrons in the system
the above-mentioned ensemble can contain systems with
ferent numbers of electrons too. For many applications
suffices to use spinless DMs, defined as

r i~12...i ;1828...i 8!

5 (
s1 ,s2 ,...,si

g i~1s12s2 ...isi ;18s128s2 ...i 8si !.

~A5!

APPENDIX B: DENSITY MATRICES
VIA PERTURBATION THEORY

The GS energyEa and wave functionCa of the ‘‘inter-
polating’’ N-electron system introduced by Go¨rling and
Levy @8#, which is used in Sec. III to obtain the exchan
potential and expanded correlation potential, satisfy
Schrödinger equation

~Ĥa2Ea!Ca50, ~B1!

where the Hamiltonian is given as an expansion in power
the coupling parametera,

Ĥa5(
j 50

`

a jĤ/ j ~B2!

~see Appendix C for details!. Considering its leading term to
be the unperturbed Hamiltonian and all remaining terms
be the perturbation, we shall proceed to solve Eq.~B1! by
means of the perturbation theory. Following@8#, we apply a
modified form ~because of the presence in the perturbat
terms higher than linear! of Rayleigh-Schro¨dinger perturba-
tion theory and also assume that the GS is nondegenerat
a in the range@0,1#. Owing to this assumption, the simple
method of solution of Eq.~B1! can be used. In general, th
restriction may have to be lifted in the future when
degenerate-state perturbation theory will be elaborated
particular, its version formulated for an ensemble of pu
systems, leading to ensemble DMs, would be of special
terest because, as shown in Appendix A, the equation
motion for the 1DM, the basis of the present paper, is va
for ensemble DMs.

While the GS function Ca(1...N) normalized as
^CauCa&51 is necessary for construction of DMsg i

a , the
function Ya(1...N), proportional to it,

Ca~1...N!5CaYa~1...N!, ~B3!

having the so-called intermediate normalization

^Y0uYa&51 for a>0, ~B4!
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is more convenient for perturbation expansion~see, e.g.,
@32#!. Due to this normalization, the coefficient functions
the expansion

Ya5(
j 50

`

a jY / j ~B5!

are orthogonal to the unperturbed function

^Y /0uY / j&50 for j >1. ~B6!

After inserting the expanded GS eigenfunctionCa @Eq. ~B3!
with Eq. ~B5!#, the Hamiltonian~B2!, and the GS eigenvalu

Ea5(
j 50

`

a jE/ j ~B7!

into the Schro¨dinger equation~B1!, a set of equations is ob
tained

(
l 50

j

~Ĥ/l 2E/l !Y / j 2l 50, for j 50,1,2,... . ~B8!

Its solution can be readily written@32# in terms of a set$EA%
of eigenvalues and a complete set$FA[uA&% of orthonormal
eigenfunctionŝ AuB&5dAB of the unperturbed Hamiltonian

~Ĥ/02EA!FA50, ~B9!

among them its GS energyEO[E0[E/0 and the wave func-
tion

FO[uO&[uY /0&[C0. ~B10!

After inserting the expansion

Y / j[uY / j&5( 8
A

uA&^AuY / j& for j 51,2,... ~B11!

@the prime meansAÞO because of condition~B6! with Eq.
~B10!#, the following solutions are found from Eq
~B8!: for first order

E/15^OuĤ/1uO&, ~B12a!

^AuY /1&5
^AuĤ/1uO&
EO2EA

; ~B12b!

for second order

E/25^OuĤ/2uO&1( 8
B

^OuĤ/1uB&^BuY /1&, ~B13a!

^AuY /2&5
1

EO2EA
H ^AuĤ/2uO&2FE/1^AuY /1&

2( 8
B

^AuĤ/1uB&^BuY /1&G J ; ~B13b!

and for j th order, j >2, which is written usingĤ/ j and pre-
vious, (j 21)- and lower-order solutions,
E/ j5^OuĤ/ j uO&1 (
l 51

j 21

( 8
B

^OuĤ/ j 2l uB&^BuY /l &,

~B14a!

^AuY / j&5
1

EO2EA
H ^AuĤ/ j uO&2 (

l 51

j 21 FE/ j 2l ^AuY /l &

2( 8
B

^AuĤ/ j 2l uB&^BuY /l &G J . ~B14b!

The spinless DMsr i
a are found by spin reduction@Eq.

~A5!# of the corresponding full DMsg i
a , which can be ob-

tained as expectation values ofĝ i @we omit, for brevity, the
arguments (x1 ,...,xi ;x18 ,...,xi8) of g i

a , ĝ i , and g i / j #,
namely,

g i
a5^Cauĝ i uCa&5

^Yauĝ i uYa&

^YauYa&
~B15!

@see Eq.~B3!#. After inserting the expansion~B5! with the
condition ~B6! into Eq. ~B15! we arrive at a ratio of series

g i
a5

(
j 50

`

a j (
l 50

j

^Y /l uĝ i uY / j 2l &

11(
j 52

`

a j (
l 51

j 21

^Y /l uY / j 2l &

, ~B16!

which allows for immediate calculation of the coefficien
g i / j in the expansion~3.7! as

g i /05^Y /0uĝ i uY /0&[g i
s, ~B17a!

g i /15^Y /0uĝ i uY /1&1^Y /1uĝ i uY /0&, ~B17b!

g i /25F (
l 50

2

^Y /l uĝ i uY /22l &G2^Y /1uY /1&g i /0 ,

~B17c!

g i /35F (
l 50

3

^Y /l uĝ i uY /32l &G2^Y /1uY /1&g i /1

2@^Y /1uY /2&1^Y /2uY /1&#g i /0 , ~B17d!

and so on.

APPENDIX C: EVALUATION OF MATRIX ELEMENTS

The unperturbed (a50) HamiltonianĤ0[Ĥ/0 ~B2! co-
incides with the noninteractingN-electron reference system
Hamiltonian, which in terms of the KS potential@see Eqs.
~3.2a! and ~3.16!# equals

Ĥ/05(
i 51

N

ĥKS~r i !. ~C1!

Therefore, any solutionFA of the Schro¨dinger equation~B9!
can be written in a form of a Slater determinant construc
out of f j ~the KS spin orbitals!, the solutions of the KS
equation
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ĥKS~r !f j~rs!5e jf j~rs!, j 51,2,..., ~C2!

with its eigenvalues ordered as

e1<e2<•••<eN,eN11<eN12<•••. ~C3!

The nondegenerate~by assumption! GS energy and function
are given by

EO5E/05(
i 51

N

e i , ~C4a!

FO5~N! !21/2det$f j~r isi !% j ,i 51
N [uO&5â1

†â2
†•••âN

† u &.
~C4b!

The last form ofFO is expressed in terms of the creatio
operatorsâ j

† acting on the vacuum stateu &, having, together
with the annihilation operatorsâ j5(â j

†)†, the properties

^ u &51, â j u &505^ uâ j
† , ~C5a!

@ â j ,âk
†#15d jk , @ â j ,âk#1505@ â j

† ,âk
†#1 . ~C5b!

We follow closely the notation and relations developed
Szabo and Ostlund@32#, but apply them to KS orbitals rathe
than the Hartree-Fock ones.

The expansion~B11! in a complete set of eigenfunction
of Ĥ/0 can be specified@32# as

uY / j&5(
a

occ

(
r

vir

uOa
r &^Oa

r uY / j&1 (
a,b

occ

(
r ,s

vir

uOab
rs &^Oab

rs uY / j&

1 (
a,b,c

occ

(
r ,s,t

vir

uOabc
rst &^Oabc

rst uY / j&1•••, ~C6!

i.e., in terms of singly, doubly, up toN-tuply excited deter-
minants:

uOa
r &5âr

†âauO&, uOab
rs &5âs

†âbâr
†âauO&,... . ~C7!

A convention is adopted that indicesa,b,c,d belong to oc-
cupied orbitals~e.g., 1<a<N!, r ,s,t,u to virtual orbitals
~e.g.,N,r !, andi , j ,k,l to orbitals of unspecified type~e.g.,
1< i !.

According to Go¨rling and Levy @8#, perturbing terms of
the expanded HamiltonianĤa ~B2! consist of two-body and
one-body contributions in the first order,

Ĥ/15Û1V̂ext/15Û2V̂esx, ~C8!

and only one-body contributions in higher orders,

Ĥ/ j5V̂ext/j52V̂c/ j , j 52,3,... . ~C9!
y

These can be written in terms of the creation and annihila
operators as

V̂ext/j5(
i ,k

^ i uvext/j uk&âi
†âk , ~C10!

Û5
1

4 (
i , j ,k,l

^ i j uukl &âi
†â j

†âl âk , ~C11!

where

^ i uvext/j uk&5E dxf i* ~x!vext/j~r !fk~x!, ~C12!

^ i j uukl &5^ i j ukl &2^ i j ul k&, ~C13!

with

^ i j ukl &[^ i j uuukl &

5E dx1dx2f i* ~x1!f j* ~x2!u~r1 ,r2!fk~x1!f l ~x2!,

~C14!

having properties

^ i uvext/j uk&5~^kuvext/j u i &!* , ~C15!

^ i j uukl &52^ i j uul k&52^ j i uukl &5~^l kuu j i &!* .
~C16!

The 1DM and 2DM operators, used in Eqs.~B15!–~B17!, are
defined as

ĝ1~x1 ;x18!5(
i ,k

g1
ki~x1 ;x18!âi

†âk , ~C17a!

with

g1
ki~x1 ;x18!5fk~x1!f i* ~x18!, ~C17b!

ĝ2~x1 ,x2 ;x18 ,x28!5
1

2 (
i , j ,k,l

fk~x1!f l ~x2!

3f i* ~x18!f j* ~x28!âi
†â j

†âl âk .

~C18!

We see that all quantities of interest in perturbation the
can be written in terms of matrix elements^Auâi

†âkuB& and
^Auâi

†â j
†âl âkuB&, whereuA& anduB& are Slater determinants

Nonzero values arise whenuA& anduB& are identical or differ
only slightly. Here we give a collection of results necessa
for the evaluation ofvx andvc/2 in Sec. V:
^Ouâi
†âkuO&5 d̃ ik , ~C19!

^Oa
r uâi

†âkuO&5d ir dka , ~C20!

^Oab
rs uâi

†âkuO&5^Oab•••c
rs•••t uâi

†âkuO&50, ~C21!
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^Oa
r uâi

†âkuOb
s&5dabd rsd̃ ik1dabd ri dsk2d rsdbidak , ~C22!

^Oab
rs uâi

†âkuOc
t &5~d ir dst2d isd rt !~dkadbc2dkbdac!, ~C23!

^Oab
rs uâi

†âkuOcd
tu &5~dacdbd2daddbc!~d rtdsu2d rudst!d̃ ik1~dacdbd2daddbc!@d ir ~dktdsu2dkudst!2d is~dktd ru2dkud rt !#

1~d rtdsu2d rudst!@d id~dkadbc2dkbdac!2d ic~dkadbd2dkbdad!#, ~C24!

^Ouâi
†â j

†âl âkuO&5 d̃ ikd̃ j l 2 d̃ i l d̃ jk , ~C25!

^Oa
r uâi

†â j
†âl âkuO&5d r j ~dal d̂ ik2dakd̃ i l !2d ri ~dal d̃ jk2dakd̃ j l !, ~C26!

^Oab
rs uâi

†â j
†âl âkuO&5~dakdbl 2dal dbk!~d ri ds j2d r j dsi!, ~C27!

^Oabc
rst uâi

†â j
†âl âkuO&5^Oabc•••d

rs•••tu uâi
†â j

†âl âkuO&50, ~C28!

^Oa
r uâi

†â j
†âl âkuOb

s&5dabd rs~ d̃ ikd̃ j l 2 d̃ i l d̃ jk!1dab@d ri ~dskd̃ j l 2dsl d̃ jk!2d r j ~dskd̃ i l 2dsl d̃ ik!#1d rs@dal ~dbid̃k j2db jd̃ki!

2dak~dbid̃ l j2db jd̃ l i !#1~dbid r j 2d ri db j!~dal dsk2dsl dak!, ~C29!

^Oa
r uâi

†â j
†âl âkuObc

st &51dabd rs@dci~d tkd̃ j l 2d tl d̃ jk!2dc j~d tkd̃ i l 2d tl d̃ ik!#2dabd rt@dci~dskd̃ j l 2dsl d̃ jk!2dc j~dskd̃ i l

2dsl d̃ ik!#2dacd rs@dbi~d tkd̃ j l 2d tl d̃ jk!2db j~d tkd̃ i l 2d tl d̃ ik!#1dacd rt@dbi~dskd̃ j l 2dsl d̃ jk!

2db j~dskd̃ i l 2dsl d̃ ik!#1~dbidc j2db jdci!@d rs~dal d tk2d tl dak!2d rt~dal dsk2dsl dak!#1~dsl d tk

2dskd tl !@dab~dcid r j 2d ri dc j!2dac~dbid r j 2d ri db j!#, ~C30!
u

s

m

to
to

’’
where

d̃ ik5(
a

occ

daidak . ~C31!

The strategy to obtain such results is to move operators,
ing relations~C5b!, and to apply properties

^OuO&51, âr uO&505^Ouâr
† , âa

†uO&505^Ouâa ,
~C32!

which follow from Eqs.~C4! and ~C5a!; e.g., in

^Oa
r uâi

†âkuOb
s&5^Ouâa

†âr âi
†âkâs

†âbuO& ~C33!

the operatorsâs
†âb are moved to the left, while operator

âa
†âr moved to the right. The well-known results~C19! and

~C25! @32# lead immediately to the KS reference syste
DMs

g1
s~x1 ;x18!5(

a

occ

fa~x1!fa* ~x18!, ~C34!

g2
s~x1 ,x2 ;x18 ,x28!5 1

2 $g1
s~x1 ;x18!g1

s~x2 ;x28!

2g1
s~x1 ;x28!g1

s~x2 ;x18!%. ~C35!

Let us note finally that the one-body potential opera
~C10! can be written in terms of the diagonal 1DM opera
~C17! as
s-

r
r

V̂ext/j5E d1vext/j~1!ĝ1~1;1!; ~C36!

the one-body kinetic-energy operator

T̂5(
i ,k

^ i u t̂uk&âi
†âk ~C37!

where ^ i u t̂uk& is defined analogously tôi uvext/j uk& in Eq.
~C12!, can be written in terms of the ‘‘close to diagonal
1DM operator

T̂5E d1t̂~1!ĝ1~1;18! u1851
; ~C38!

and the two-body operator~C11!, can be written as

Û5E d1d2u~12!ĝ2~12;12!, ~C39!

which all can be verified directly.
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