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Molecular effects on antiproton capture by H2 and the states ofp̄p formed

James S. Cohen*
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 20 May 1997!

Complete five-body dynamical calculations of antiproton (p̄) capture by the hydrogen molecule (H2) have
been carried out using a generalization of the Kirschbaum-Wilets method~belonging to a class of quasiclassical
methods sometimes called fermion molecular dynamics!. The differences between capture by H2 and the H
atom are found to be dramatic. The effects due to the two-center structure, rotational motions, and vibrational
motions are distinguished. Of particular importance, the vibrational degree of freedom enables the molecule to
capture antiprotons having lab energies above 100 eV, whereas atomic capture cuts off sharply above the
ionization threshold of 27 eV~in the lab system!. Antiproton capture by the atom is calculated by the same
method as well as by the classical-trajectory Monte Carlo method, which is applicable only to the atom. The
initial quantum numbers~assigned quasiclassically! of the p̄p formed are found to be shifted to significantly
smaller values for the molecular target; then distribution is also narrower for the molecular target as compared
with the atomic target.@S1050-2947~97!05011-7#

PACS number~s!: 36.10.2k, 34.10.1x, 25.43.1t, 03.65.Sq
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I. INTRODUCTION

Antiprotonic atoms, in which an antiprotonp̄ is bound to
a normal nucleus, have been of interest since the disco
of the antiproton in 1955. Modern experiments include c
cade and spectroscopy, probes of nuclear structure,
nuclear absorption and annihilation@1#, and, recently, the
Barkas effect on stopping powers@2–6#, and anomalously
long-lived mixedp̄/e2 atoms@7–10#. The most studied, ex
perimentally and theoretically, and fundamental of these
oms is antiprotonic hydrogenp̄p. Already in this simplest
case, there is an experimental-theoretical disconnect~which
also applies to capture of other heavy negative particles
m2, p2, andK2!. All the experiments have been done wi
a molecular H2 target,1 while the theoretical subject has bee
an atomic H target or frozen molecule.

To connect experiments with theory, the earliest work
sumed that the H2 target could be represented bytwo sepa-
rate H atoms~Bragg’s rule!, but it became clear that such a
approximation is unjustified when it was shown that capt
occurs only after the negative particle is slowed to an ene
comparable to the target ionization potential~IP!. Then it
was suggested that the IP was the controlling parameter
that the stopping ofp̄ ~or m2, etc.! by H2 would be about the
same asoneH atom since the IP’s are similar~15.4 eV for
H2 vs 13.6 eV for H!. Furthermore, it was speculated that t
cross section for H2 would be slightlylarger than that for H
at the higher collision energies since H2 has two electrons, a
higher IP, and a larger geometric size, but slightlysmallerat

*Electronic address: cohen@lanl.gov
1Formation in corotating beams of antiprotons and negative i

via p̄1H2 collisions has been proposed@11# and calculated@12–
14#, but the experiment has not been carried out.
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low energies because the molecule cannot be adiabatic
ionized.2 A coupled-channel semiclassical approximati
~CCSA! with an adiabatic basis@17#, which took into ac-
count the anisotropy of the molecule but ignored vibrati
and rotation, seemed to corroborate this conclusion wit
crossover point at;9 eV ~for m2!.3

There have been few calculations ofp̄ capture, but there
have been a number of calculations ofm2 capture by the H
atom, which is expected to be qualitatively similar. The
include quantum-mechanical@19,20#, quasiclassical@21#,
and model@18# calculations, which yield results in quit
good agreement. Even for the atomic target, comple
quantum-mechanical calculations are difficult. Genera
time-independent quantal methods are not suitable s
m21H at small distances is embedded in an electronic c
tinuum and capture occurs in high Rydberg states; thus
necessary to include a large number of lower-lying and
termediate states. Time-dependent methods, with the w
function solved on a spatial grid, have been used succ
fully, and their recent development@22# might make them
even more apropos. However, the molecular target is
more difficult since the collision involves particle rearrang
ment and the Hartree-Fock H2 molecule does not dissociat
correctly.

On the other hand, the classical-trajectory Monte Ca
~CTMC! method is quite easy to apply, and has been u

s

2Adiabatic ionization@15# in p̄1H collisions occurs when thep̄-p
distance becomes small enough that the dipole formed can
longer bind an electron@16#. In the case ofp̄1H2, the electron can
migrate to the opposite end of the diatomic molecule, to form
stable negative atomic ion, and adiabatic ionization does not oc

3The CCSA method is a generalization of the diabatic-sta
model used earlier@18# for atomic capture.
3583 © 1997 The American Physical Society
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3584 56JAMES S. COHEN
with remarkable success form21H @21# andp̄1H @13# col-
lisions. But the CTMC method is generally limited to on
electron target atoms since molecules or multielectron at
are classically unstable with respect to dissociation or a
ionization. The utility of the quasiclassical approach was
tended by Kirschbaum and Wilets~KW! @23#, who intro-
duced physically motivated constraining potentials wh
stabilize all quasiclassical atoms and many molecules.
atoms the KW model displays a shell structure; the to
energies are fairly accurate~between the Thomas-Fermi an
Hartree-Fock theories! and the ionization potentials are o
useful accuracy~aside from a few shell anomalies! @24#.
These quasiclassical atoms have proved useful for calc
ing ion-atom collisions@25#, stopping powers@26#, and char-
acteristics of long-liveda p̄e2 states@27#. But the simple
molecules H2 and H2

1 are seriously overbound by the KW
model~the dissociation energies are 4–6 times, respectiv
the true values!. One can observe that this overbinding is d
to the localizationof the electron~s! at high-symmetry posi-
tions, namely at the molecular midpoint of H2

1 or the bisect-
ing plane of H2.

For atoms, a necessary condition for stability is that
electrons are not allowed to collapse to the symmetry po
i.e., to the nucleus. The effective potential enforcing t
condition is motivated by the Heisenberg uncertainty pr
ciple rp>\, wherer andp are the distance and momentu
of an electron with respect to a nucleus. For the H atom,
condition is equivalent to the de Broglie description of t
hydrogen atom@28#. In a similar way, the effective potentia
that brings about a shell structure is motivated by the P
exclusion principle, which, somewhat less rigorously,
mimicked by the conditionr i j pi j >jP\, wherer i j andpi j are
the relative distance and momentum of two electrons hav
like spin, andjP is a constant of order unity. These potentia
are of the formr 22f (rp), where f is some monotonically
decreasing function of its argument.4 In the same spirit, in
this paper we introduce a similar ansatz to exclude the e
trons from their high-symmetry points in the H2

1 and H2

molecules. A very satisfactory form of these potentials
found to beR22f (rp), which differs only in the internuclea
distanceR, instead ofr , being used in the prefactor. Herer
and p are relative to the midpoint in the case of the hom
nuclear molecule. The details are discussed in Sec. II A.

This extension of the KW model with molecular co
straints~termed KWC! is used for thep̄1H2 collision. The
five-body dynamics is solved by formulating Hamilton
equations of motion including the momentum-dependent
tentials. To our knowledge, this is the first calculation
include the molecular rotational and vibrational-dissociat
degrees of freedom duringp̄ capture. The results show tha
the previous conjecture that negative-particle capture
mainly controlled by the ionization threshold is too simpl
tic. The capture cross sections for the H2 target are presente

4The exact analytic form off seems not to be too important, bu
its argument and prefactor conjoin to satisfy a virial theor
@23,24#. We use the form off suggested by KW@23#.
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in Sec. III, along with then and l quantum numbers of the
p̄p atom formed.5

II. QUASICLASSICAL METHOD

A. Momentum-dependent potentials and the Hamiltonian

In the KW model@23#, the effective Hamiltonian is writ-
ten

KKW5H01VH1VP ~1!

where

H05T1VCoul ~2!

is the usual Hamiltonian containing the kinetic energy a
Coulomb potentials, andVH andVP are effective potentials
representing the quantum-mechanical effects of the Heis
berg uncertainty and Pauli exclusion principles, respectiv
Each contribution toVH or VP is of the form r 22f (rp),
wherer andp are the relative distance and momentum of
electron with respect to a~oppositely charged! nucleus in the
case ofVH , and are the relative distance and moment
between two electrons of the same spin in the case ofVP .

In the present model~KWC! we introduce two additiona
terms to improve the treatment of the H2

1 and H2 molecules;
the effective Hamiltonian becomes

HKWC5HKW1Vm11Vm2 ~3!

where Vm1 is a one-electron operator andVm2 is a two-
electron operator, of form similar toVH andVP except with
prefactorR22, whereR is the internuclear distance, instea
of r 22. Following KW, we use

f ~rp;j![
~j\!2

4a
expH aF12S rp

j\ D 4G J , ~4!

wherej is one of four parameters:jH , jP , jm1 , andjm2 ,
discussed below, and a constanta ([4) whose precise value
is unimportant but affects thej values. Note thatf (rp;j)→0
asj→0, thus going over to the purely classical treatmen

For later reference it is convenient to build up the Ham
tonian forp̄1H2 collisions, starting with that for the H atom
We will use the following notation: subscriptsa for the an-
tiproton,b andc for protons, 1 and 2 for electrons,o for the
midpoint of the molecule, ora, b for any pair of these; the
relative distance

rab5rb2ra ; ~5!

the relative momentum

pab5
mapb2mbpa

ma1mb
; ~6!

si5 spin of electroni ~up or down!; ~7!

5Atomic units ~a.u.!, defined bye5me5\51, are used excep
where otherwise indicated. In terms of familiar units, atomic un
are 0.529231028 cm ~distance a0!, 27.21 eV ~energy!, and
2.1883108 cm/s~velocity!.
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TABLE I. Coordinates and momenta of the minimum-energy molecular configuration witha54.0, jH50.9428, jm150.90, and
jm251.73. The minimum-energy states are planar, and the positions and momenta are given here in thex2z plane~in atomic units!.

H2 H2
1

x z px pz x z px pz

First nucleus 0 0.6955 0 0 0 1.1614 0 0
Second nucleus 0 20.6955 0 0 0 21.1614 0 0
First electron 0.8714 0.3283 1.0331 0 0.6572 0.5095 1.0362 0
Second electron 20.8714 20.3283 21.0331 0
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mab5
mamb

ma1mb
, ~8!

with

m052mp . ~9!

The Hamiltonian for the H atom~with protonb and electron
1! is6

H@H#5
1

2mp
pb

21
1

2me
p1

22
e2

r b1
1

1

mb1r b1
2 f ~r b1pb1 ;jH!.

~10!

It is from minimization of Eq.~10! that the value ofjH is
fixed to give the correct binding energy of the H atom. T
resulting minimum for the H atom occurs atr 51.0 and
p50.9428. With the addition of a second proton (c) to make
H2

1 ,

H@H2
1#5H@H#1

1

2mp
pc

21
e2

r bc
2

e2

r c1

1
1

mc1r c1
2 f ~r c1pc1 ;jH!1

1

mo1r bc
2 f ~r o1po1 ;jm1!.

~11!

The value ofjm1 is fixed such that the minimum of Eq.~11!
is the correct energy of the H2

1 molecular ion. Then, for H2,

H@H2#5H@H2
1#1

1

2me
p2

22
e2

r b2
2

e2

r c2
1

e2

r 12

1
1

mb2r b2
2 f ~r b2pb2 ;jH!1

1

mc2r c2
2 f ~r c2pc2 ;jH!

1
1

m12r 12
2 f ~r 12p12;jP!ds1 ,s2

1
1

mo2r bc
2 f ~r o2po2 ;jm1!1

1

m12r bc
2 f ~r 12p12;jm2!.

~12!

6The conventional notation here usesH for ‘‘Hamiltonian,’’ ‘‘hy-
drogen,’’ and ‘‘Heisenberg.’’ The context should make the mean
clear.
In the present work, the H2 target is taken to be in its~sin-
glet! ground state, and spin-orbit coupling is neglected,
the term injP vanishes~this term would be positive definite
for like spins!. Then the value ofjm2 is fixed such that the
minimum of Eq.~12! is the correct energy of the H2 mol-
ecule.

Finally the complete Hamiltonian for thep̄1H2 collision
is given by

H@ p̄1H2#5H@H2#1
1

2mp
pa

22
e2

r ba
2

e2

r ca
1

e2

r a1
1

e2

r a2

1
1

mbar ba
2

f ~r bapba ;jH!1
1

mcar ca
2

f ~r capca ;jH!

1
1

moar bc
2

f ~r oapoa ;jm1!. ~13!

Note that there are no new parameters in this last express
For comparison purposes, we will also do calculations

p̄1H collisions, with the Hamiltonian

H@ p̄1H#5H@H#1
1

2mp
pa

22
e2

r ba
1

e2

r a1

1
1

mbar ba
2 f ~r bapba ;jH!. ~14!

Note that the CTMC Hamiltonian is obtained in the lim
jH→0.

B. Ground-state and clamped-nuclei energies

At the minima of the KW and KWC functionals, the va
ues of all particle~electrons and nuclei! positionsr and mo-
mentap are fixed to withinindependentrigid-body rotations
when the molecular center of mass is fixed at the origin. T
energy depends on the parametersjH , jm1 , andjm2 , which
are determined as follows:jH50.9428 to give the H-atom
ground-state energy (20.5 a.u.),thenjm150.90 to give the
ground-state energy of H2

1 (20.603 a.u.),then jm251.73
to give the ground-state energy of H2 (21.174 a.u.). The
coordinates and momenta for the ground-state configurat
are given in Table I. The model is now completely define
for collisions as well as for molecular structure.

One of the great advantages of the quasiclassical me
is the ease of treating nonadiabatic behavior, i.e., the c
pling of nuclear and electronic motions. However, it is s
instructive to view the Born-Oppenheimer-like energie
both because of the availability of accurate quantu

g
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3586 56JAMES S. COHEN
mechanical Born-Oppenheimer potential curves and the
portance of Franck-Condon-like~vertical or fixedR! elec-
tronic transitions. For ionizing and/or dissociativ
transitions, the relative positions of the minimum of t
lower curve and the sigma point~where the attractive poten
tial curve crosses the asymptotic energy value! of the upper
curve can be especially important. The quasiclassical po
tial curves are obtained by conditionally minimizing Eq.~12!
with r bc[R fixed, as a function of parameterR.

The potential curves of the unmodified KW treatment~ob-
tained in the limit j1m and j2m→0! for H2 and H2

1 are
shown in Fig. 1. Both are greatly overbound. The reason
be inferred from the KW columns of Fig. 2, which shows t
positions of the electron~s! at the minima. The classical elec
trons occupy the symmetry points where the screening of
p-p Coulomb repulsion is maximized. Quantum mecha
cally, of course, an atomic or molecular electron cannot
localized at a point, and the screening is reduced. Withi
classical dynamics approach, it is still highly desirable
deal with point particles, but it is possible to effective
spread them out by repelling them from the symmetry po
This is accomplished by the potentialsV1m and V2m . The
Hamiltonian maintains the axial symmetry of the diatom
molecule, but the ground-state configuration spontaneo
breaks this symmetry as shown in the KWC columns of F
2. In effect, the one-dimensional~1D! coalescence becomes
2D surface. The resulting potential curves are shown in F
3. They are in excellent agreement with the quantu
mechanical curves in the range relevant to the present a
cation.

For completeness, though it is of little consequence in
present work, we note that atlarge distances the KWC in-
duced dipole moments are zero order,7 as can be seen in Fig
2, rather than the correct first order, and the potential cur
thus become too attractive. Of course, in real collisions
electron is not fixed, even classically, and the motion w

7Zero order means that an arbitrarily small electric field can
duce the maximum dipole moment in the static limit. In first ord
the dipole moment is proportional to the field.

FIG. 1. Unmodified KW ~dashed curve! and quantum-
mechanical~full curve! potential curves for H2 ~lower pair! and H2

1

~upper pair!. Note overbinding in the KW model.
-
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tend to wash out the zero-order contribution. At verysmall R
the KWC potential curves behave correctly asR21. The en-
ergy difference atR50.01a0 , near the united-atom limit, is
about 18 eV, which can be compared with the true ionization
potential of 24.6 eV for the He atom. The electronic binding
energy in the H2 united-atom limit is smaller than that of the
KW He atom, where the ionization potential is 28.9 eV, be-
cause of the extra constraining potentials~including double
counting ofVH!.

C. Trajectories and cross sections

The calculation of each trajectory proceeds in three step
~i! choose initial conditions~r 0 andp0 for all particles!, ~ii !

-
,

FIG. 2. Minimum-energy configurations for H2 and H2
1 in the

KW and KWC models for different ranges of fixed internuclear
distanceR. Protons are designated by1 signs and electrons by2
signs. All topologically distinguishable configurations are shown.
Boxes are drawn around the configuration in the range containin
the minimum of the potential curve, and the positions of the par
ticles at the global minimum are indicated.

FIG. 3. KWC ~dashed curve! and quantum-mechanical~full
curve! potential curves for H2 ~lower pair! and H2

1 ~upper pair!.
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56 3587MOLECULAR EFFECTS ON ANTIPROTON CAPTURE BY . . .
integrate Hamilton’s classical equations of motion, and~iii !
examine asymptotic trajectory for final state. The equati
are solved in a space-fixed system, unlike our previous w
@21,13#, where barycentric coordinate systems were e
ployed. For more than four bodies the disadvantage du
the complexity of the equations in barycentric coordina
outweighs the advantage of eliminating the equations for
center-of-mass motion. The target H2 is initially placed at the
origin with the coordinates and momenta given in Table
and independent random Euler rotations are applied to e
The projectile is started atx5210 a0 with impact parameter
b chosen by uniform sampling ofb2P@(bi 21)2,(bi)

2#. In
the first range@b0 ,b1#, b050 andb1 is taken to be such tha
a few ~typically 3–4! ranges of impact parameters will b
required to converge the cross sections withbi 115&bi .

The present space-fixed code was verified by compar
with the previous, mostly independent, barycentric code fo
variety of three- and four-body calculations.

The computer code is capable of recognizing all parti
rearrangements, including those containing bothp̄ and e2.
However, such combinedp̄-e2 atoms are generally sho
lived. Metastable states ofa p̄e2 exist, but analogous state
like pp̄e2 or ppp̄e2 are not known. More relevant is th
state ofp̄p after the electron has been ionized. In almost
cases it was possible to run the trajectory long enough
determine a definite state ofp̄p.

After accumulation of the results of the trajectories, t
cross section for a reactionR is given by

sR5(
i

sR
~ i ! ~15!

in terms of the partial cross sections

sR
~ i !5

Ni
~R!

Ni
tot p@~bi !

22~bi 21!2#, ~16!

whereNi
(R) is the number of trajectories in whichR occurred

out of the totalNi
tot trajectories run withbP@bi 21 ,bi #. In the

limit Ni
tot→`, the ratio Ni

(R)/Ni
tot becomes constant. Th

standard statistical error insR is

DsR5S (
i

~DsR
~ i !!2D 1/2

~17!

in terms of the error in each interval,

DsR
~ i !5sR

~ i !S Ni
tot2Ni

~R!

Ni
totNi

~R! D 1/2

. ~18!

For p̄1H2 calculations, 100 trajectories were run in ea
range of impact parameters withb151.5a0 , except at the
smallest collision energies~b153.0a0 was used for
Ec.m.50.1 a.u. andb155.0a0 for Ec.m.50.01 a.u.!. For p̄
1H calculations, ten times as many trajectories were run

III. RESULTS

The main focus of this work is onp̄p formation in colli-
sions ofp̄ with the H2 molecule. Features that do not occ
in atomic capture are of particular interest. The KW
s
rk
-
to
s
e

,
h.

n
a

e

l
to

method fully treats all the molecular degrees of freedom.
attempted to isolate the molecular effects by test calculati
at three levels:~i! by using the same method to dop̄1H
collisions, for which there are no molecular effects,~ii ! by
using the same method to dop̄1H2 with the diatomic target
constrained as a rigid rotor~i.e., with thep-p distance fixed,
but no other degrees of freedom restricted!, and~iii ! by using
the same method treating H2 as a rigid ‘‘nonrotor’’~i.e., with
the p-p vector having fixed magnitudeand spatial orienta-
tion!. The p̄1H calculations interest us for another reaso
they can be done with the standard CTMC method as we
the KW method. Results of these two methods will now
compared.

A. p̄1H: CTMC and KW calculations

Cross sections forp̄p formation in low-energy collisions
of p̄ with the hydrogen atom have previously been calcula
using the CTMC method@13#. That work showed that the
p̄1H capture cross section is quite similar to them21H
capture cross section. Both are monotonically decreasing
function of collision energy with a sharp decrease at a c
collision energy of 0.5 a.u., which is the IP of the targ
atom. Above 0.5 a.u. the ionized electron must carry off
excess as kinetic energy. The two reactions differ sign
cantly only in this region, where thep̄1H capture cross
section falls off even more rapidly than that ofm21H, cor-
responding to the more adiabatic behavior of the reac
with the heavier particle@13#.

The CTMC and KW results for thep̄p formation are
given in Tables II and III, respectively, and shown in Fig.
along with the corresponding total ionization cross sectio
The CTMC results are the same as in Ref.@13# except that
more trajectories were run, and consequently the error b
are smaller. The agreement between the two methods is
isfactory. The KW cross section is somewhat higher at
lowest collision energies and somewhat lower at higher
ergies. It is interesting to note that, in the case ofm21H
collisions,8 a similar small difference was found between t
classical-quantal-coupling method@20# and the CTMC
method. More applications will be required to tell wheth
KW really is a significant improvement in the quasiclassic
treatment of the one-electron case.

The distribution of quantum numbersn,l for the initially
formed p̄p atom is the next important characteristic. It pr
vides the initial conditions for the subsequent cascade, wh
also depends on the target density and temperature as w
any admixture of other species. The initial-state distribut
is actually a product of the competition between slowi
down,

p̄1H→H p̄1H11e2

p̄1H*
, ~19!

and capture,

p̄1H→ p̄p~n,l !1e2, ~20!

8For comparison of several methods used form2 capture by the H
atom, see Ref.@29#.
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TABLE II. Cross sections~s p̄p ands tot!, parameters for fits ofn distributions~n0 andg—see Appendix A!, and parameters for fits o
l distributions~b, a, and l 1—see Appendix B! for p̄p atoms formed inp̄1H collisions, calculated by the CTMC method.

Ec.m. ~a.u.! s p̄p (a0
2) s tot (a0

2) n0 g b a l1

0.01 67.4162.10 67.4162.11 29.55 0.91 23.2531022 1.3131023 30
0.10 15.9160.44 15.9160.44 32.53 1.18 25.3931023 2.0331023 34
0.20 11.4260.12 11.4260.12 37.12 1.53 2.9631023 3.6631023 39
0.30 9.9760.12 9.9760.12 44.40 2.74 23.1131023 8.2231023 47
0.40 8.9960.13 8.9960.13 57.94 6.31 21.8731023 5.9131022 60
0.50 8.2560.14 8.2560.14 97.49 25.23 22.2731024 1.6931021 74
0.55 3.2160.12 8.1260.20 112.28 41.26 1.0331022 5.1131021 76
0.60 0.5860.06 8.0160.16 108.20 70.11 7.2731022 5.0431010 78
0.70 0.0660.02 7.7360.14 a

0.80 0.0160.01 7.4160.15
1.00 &0.004 7.1360.15

aThere were not enough trajectories formingp̄p at the higher energies to allow reliable fits of the quantum-number distributions.
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since it depends on the collision energy. For example, thn
quantum-number histograms and the fits~see Appendix A!
are shown in Fig. 5 for two different collision energies.
rigorous formulation of the capture distributions has be
given in terms of the ‘‘arrival function’’Farr(E), which is a
solution of an integral equation involving the energ
dependent differential energy-loss cross section@30,21#. In
principle, this differential cross section is required at all e
ergies, ranging from that of the fast (@1 keV) free antipro-
ton down to near zero since some antiprotons are not
tured until they are essentially stationary.

In the present work, cross sections have not been ca
lated at energies higher than where capture is probable. E
so, an observation made in Ref.@21# allows the initial distri-
bution to be calculated approximately. That is, it was o
served that the mechanisms of reactions~19! and ~20! were
similar, with capture resulting when the energy loss~target
IP plus kinetic energy of the ionized electron! exceeds the
incident energy of thep̄. Hence the typical energy loss i
slowing down is comparable to the collision energy whe
capture occurs. As long as the typical energy loss is com
rable to or greater than the energies at which capture occ
the arrival functionFarr(E) is fairly flat and the capture pro
file
n

-

p-

u-
en

-

e
a-
rs,

Fcapt~E!5
scapt~E!

s tot~E!
Farr~E! ~21!

is adequately determined by just the ratio of cross section
within a normalization constant.

Thus we make the approximation

Pn5E Fn~E!Fcapt~E!dE'NnE Fn~E!
scapt~E!

s tot~E!
dE,

~22!

whereNn is a normalization constant. We also neglect t
contributions of elastic and nonionizing inelastic scatter
to slowing down, sos tot is approximated by the total ioniza
tion cross section.

Direct calculations ofFn(E), scapt(E), and s tot(E) are
made at only a few energies~those in Tables II and III!. In
carrying out the quadrature of Eq.~22!, spurious structures
can result ifFn(E) is not accurately interpolated, and th
quadrature performed with a fairly small energy step. W
found a satisfactory spline interpolation scheme~see Appen-
dix A! that depends mainly on the peakn0 and widthg of the
distribution Fn at each calculated energy. Their values a
given in Tables II and III. This procedure smoothes the s
tistical histogram as well as providing adequate, physica
f
TABLE III. Cross sections~s p̄p ands tot!, parameters for fits ofn distributions~n0 andg—see Appendix A!, and parameters for fits o
l distributions~b, a, and l 1—see Appendix B! for p̄p atoms formed inp̄1H collisions, calculated by the KW method.

Ec.m. ~a.u.! s p̄p (a0
2) s tot (a0

2) n0 g b a l1

0.01 163.2165.06 166.1965.19 29.45 0.93 22.9031022 1.8131023 31
0.10 19.0060.42 19.0060.42 32.31 1.24 6.1431023 2.3131023 34
0.20 10.6460.12 10.6460.12 36.66 1.76 1.3131022 1.1531022 38
0.30 8.0460.10 8.0460.10 43.53 2.94 1.5731022 2.4731022 42
0.40 6.5660.10 6.5660.10 56.14 6.80 1.0831022 1.83 3 1022 44
0.50 5.5160.10 5.6160.10 88.67 16.67 3.7331022 2.7931021 56
0.55 2.5660.11 5.2560.15 132.55 52.82 3.6831022 5.8631021 58
0.60 0.2160.04 5.0860.11 178.08 192.89 1.1131021 2.4531010 60
0.70 0.0160.01 4.5460.11
0.80 &0.004 4.3560.11



th
in

ig

ure
the

n
get
ar-

e

ne
e

the

e
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motivated fits. The integrated distributions, calculated in
CTMC and KW models, are shown in Fig. 6. They are
good agreement.

The distributions ofl , summed overn, and their fits~see
Appendix B! at a midrange capture energy, are shown in F

FIG. 4. Capture~full curve! and total ionization~dashed curve!
cross sections forp̄1H calculated by the KW~open circles! and
CTMC ~closed circles! methods. At collision energies below th
target ionization threshold, ionization can occur only if thep̄ is
captured.

FIG. 5. Distribution ofn quantum numbers ofp̄p resulting from
p̄ capture by the H atom, calculated by the CTMC method at e
gies ~a! Ec.m.50.30 a.u. and~b! Ec.m.50.50 a.u. The points are th
results of the Monte Carlo trajectories~;1300 contributing to each
case!, and the dashed curve is a fit~see Appendix A!.
e

.

7. The corresponding distributions, integrated over capt
energy, are shown in Fig. 8. They are similar except that
CTMC-calculated distribution extends to higher values ofl .
An interpretation given in Ref.@21# suffices to explain this
difference. It was shown there~for m2 capture! that the main
features of thel distribution are qualitatively interpretable i
terms of the overlap of the unperturbed orbital of the tar
electron with the orbital of the captured heavy negative p

r-

FIG. 6. Distribution ofn quantum numbers ofp̄p resulting from
p̄ capture by atomic H, integrated over collision energies using
KW results~full curve! and the CTMC results~dashed curve!.

FIG. 7. Distribution ofl quantum numbers forp̄ capture by the
H atom at a collision energyEc.m.50.30 a.u., calculated by the~a!
CTMC and ~b! KW methods. The points are the results of th
Monte Carlo trajectories~;1300 contributing to each case!, and the
dashed curve is a fit~see Appendix B!.
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ticle ~of reduced massm in units ofme! for largen (*A2m).
Based on this simple consideration, themaximum lpopulated
in CTMC calculations is

l max
CTMC'2AmS 12

m

n2D 1/2

~23!

corresponding to zero-angular-momentum electrons~eccen-
tricity 1.0 with classical turning point at 2.0a0!, and thepeak
in the l distribution occurs at

l peak
CTMC'A2mS 12

m

2n2D 1/2

~24!

corresponding to maximum angular-momentum (l 51.0)
electrons~eccentricity 0 with classical distance 1.0a0!. Cap-
ture orbitals nearl max

CTMC overlap only with the most eccentri
electron orbitals in the microcanonical distribution, wh
those belowl peak

CTMC overlap with all the target electron orbi
als. It can be seen in Fig. 8~dashed curve! that this is a
faithful representation; forp̄p, l max

CTMC(all n)561. The agree-
ment with formula~24! for the peak cannot be ascertain
from Fig. 8 since the distribution has been summed oven.
For this purpose it is necessary to look at capture in a s
cific n state, where our Monte Carlo statistics are not
good. As an example, CTMC results, along with a nonlin
least-squares fit~see Appendix B!, are shown forn557 in
Fig. 9~a!; the valuesl max

CTMC(57)'51 andl peak
CTMC(57)'40 from

Eqs.~23! and ~24! are close to the fit.
In the KW model,all initial electron orbits have distanc

1.0 a0 from the nucleus. The same considerations then y

l max
KW' l peak

KW 'A2mS 12
m

2n2D 1/2

. ~25!

The valuel max
KW(all n)'43 is borne out by Fig. 8~full curve!.

The peak in this figure occurs at a somewhat lower va
value because somep̄p’s are formed in lowern states and,
of course,l must be less thann. Figure 9~b! shows that the
distribution found forn557 is in good agreement with th
values l max

KW' l peak
KW '40 predicted by Eq.~25!. It should be

emphasized that the estimates of Eqs.~23!–~25! are provided
for heuristic purposes, and in no sense are rigorous bou

FIG. 8. Distribution ofl quantum numbers ofp̄p resulting from
p̄ capture by atomic H, integrated over collision energies using
KW results~full curve! and the CTMC results~dashed curve!.
e-
s
r

ld

e
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B. p̄1H2: KWC calculations

In capture ofp̄ by H2, intermediate states such asppp̄e2

or pp̄e2 are possible, but are predissociative and/or autoi
izing. For this reason we have adopted the approach of
lowing the trajectories long enough that the isolatedp̄p atom
can be characterized. The reactions distinguished are th

p̄1H2→H p̄p1H1e2 ~26a!

p̄p1H2 ~26b!

p̄p1p1e21e2. ~26c!

The total capture cross sectionss p̄p are given in Table IV
and shown in Fig. 10. Additionally, the total reactive cro
sectionss tot ~including dissociation and ionization as well a
capture! are given in Table IV.

The mechanism seen in mostp̄1H2 reactive collisions is
that one electron is ionized upon close approach of thep̄,
leaving behind an unstableppp̄e2 complex. At the higher
energies the ionization is usually prompt, but at the low
energies a five-body precursor complex often survives
several vibrational periods~occasionally even splitting into
p̄pe21H before ionization!. Theppp̄e2 complex then usu-
ally dissociates intop̄p1H after the first electron is far re
moved. In fact, the reaction products are so strongly do

e

FIG. 9. Distribution ofl quantum numbers, integrated over co
lision energies, forp̄ capture by atomic H to form ap̄p atom having
n557, calculated using the~a! CTMC and~b! KW methods. The
points are the results of the Monte Carlo trajectories~;100 con-
tributing to each case!, and the dashed curve is a fit~see
Appendix B!.
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TABLE IV. Cross sections~s p̄p ands tot!, parameters for fits ofn distributions~n0 andg—see Appendix A!, and parameters for fits o
l distributions~b, a, and l 1—see Appendix B! for p̄p atoms formed inp̄1H2 collisions, calculated by the KWC method.

Ec.m. ~a.u.! s p̄p (a0
2) s tot (a0

2) n0 g b a l1

0.01 148.32610.97 148.32610.97 24.58 1.32 27.3831023 6.8831024 21
0.10 43.426 1.67 43.426 1.67 25.15 1.56 28.8531024 1.0231022 27
0.20 28.116 0.89 28.406 0.90 25.72 3.51 24.0031023 2.3531024 30
0.40 15.616 0.57 20.146 0.88 26.20 3.71 22.6131023 1.6731023 32
0.60 11.036 0.38 17.256 0.80 27.07 4.54 21.9031023 3.9131022 50
0.80 7.986 0.40 15.836 0.84 25.88 2.05 28.3031024 9.0531022 52
1.00 6.286 0.37 14.076 0.73 26.41 1.81 24.8831024 1.3731021 55
1.20 4.386 0.36 12.586 0.76 27.92 4.42 2.9031023 1.6531010 57
1.60 2.126 0.33 11.736 0.73 31.29 8.57 3.9431023 2.2931010 59
2.00 1.346 0.28 11.036 0.70
2.40 0.856 0.23 10.746 0.71
2.80 0.286 0.14 9.976 0.64
4.00 0.076 0.07 9.476 0.67
6.00 &0.04 8.916 0.68
ss

b

m

on

ch
ib

re

b
an
ld

io
ci

io

s

l-
th
ce
-

rm

re
lly,
a-
re-
lly

a-
for
-

the
ex-
ble
es
ose

n
ra

s.
thod

n-
me
nated by Eq.~26a! that quantitative presentation of cro
sections for Eqs.~26b! and~26c! is not statistically justified.
Qualitatively speaking, Eq.~26b! was seen in up to;2% of
the trajectories at the lowest energies, though it should
noted that H2 is overbound in the KW model~by 0.063 a.u.
as compared to the experimental value of 0.028 a.u.!. Reac-
tion ~26c! was seen even more rarely,&1% of the time at
collision energies below 1 a.u., though it appears to beco
relatively more common at higher energies~where the total
p̄p formation cross section is small!.

Figure 10 shows that thep̄ capture cross section for H2 is
more than a factor of 2 larger than that of H at all collisi
energies except the very lowest~0.01 a.u.!.9 More important,
the p̄p formation with the molecular target extends to mu
higher collision energies. There are three notable poss
sources of this difference:~i! the two-center, two-electron
structure of H2 ~even though the first ionization potentials a
similar!; ~ii ! molecular vibrations and dissociation, and~iii !
molecular rotations. Note that a dissociative result is not,
itself, proof that the dissociative coordinate was import
for the p̄ capture since, in principle, predissociation cou
occur after a purely electronic excitation. In fact, dissociat
musteventually occur in the present calculations if the ex
tation energy exceeds the dissociation energy since we
not take radiative relaxation into account. If the dissociat
dynamics occurred only after the collision~i.e., after thep̄p
was far removed!, then it would not affect the capture cros
section.

In order to distinguish rotational effects from vibrationa
dissociative effects, we performed the calculation treating
H2 target as a rigid rotor—with the internuclear distan
fixed atR5R051.4 a0 but otherwise unhindered. This con
straint is imposed by addition of a Lagrange multiplier te
to the Hamiltonian~see Appendix C!. This special calcula-

9The calculations atE50.01 a.u. were done primarily to obtai
then,l distributions. The cross sections are not necessarily accu
or converged, since the starting distance of 10a0 is not really far
enough for such a slow collision.
e

e
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tion may also prove useful for comparing with futu
quantum-mechanical calculations. Quantum mechanica
the rigid-rotor approximation is a great simplification. Qu
siclassically the treatment provides insight but the effort
quired for solution of the equation of motion is basica
unchanged.

The p̄ capture cross section in the rigid-rotor approxim
tion is also shown in Fig. 10. It lies in between the results
the H atom and vibrating H2 molecule at all energies. How
ever, it is close to the H2 result at collision energies below
;0.8 a.u. and falls to zero much more rapidly than does
cross section for the unconstrained target. As might be
pected, it appears that only rotational excitation is proba
at low impact energies while vibrational excitation becom
probable at the higher energies. The dividing energy is cl

te

FIG. 10. Cross sections forp̄p formation in collisions ofp̄p
with the H2 molecule~full curve!. This calculation was done with
the quasiclassical KWC method including full five-body dynamic
The other curves, shown for comparison, use the same me
treating H2 as a rigid rotor~long-dashed curve!, treating H2 as a
rigid nonrotor~short-dashed curve!, and for the H-atom target~dot-
ted curve!. The circles show the calculated points, which are co
nected by straight-line segments. Note that the laboratory-fra
energy,Elab, is 1.5Ec.m. for p̄1H2 and 2.0Ec.m. for p̄1H.
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to the energy (Ec.m.'1.0 a.u.) where the cross sections pe
for vibrational excitation of H2 by H1 impact@31#. At ener-
gies above 2.0 a.u. thep̄ capture cross section essentia
vanishes when vibration is disabled. With the vibrational d
gree of freedom enabled, it extends to much higher ener
and falls off in a manner similar to the H11H2 vibrational
excitation cross section@31#.

In order to further investigate the effect of internal m
lecular dynamics, we also did rigid- ‘‘nonrotor’’ calculation
in which the target was constrained not to rotate or vibr
~see Appendix D!. As can be seen in Fig. 10, thep̄ capture
cross section then falls off even more rapidly then in
rigid-rotor case. As in the atomic case, the rigid-nonro
capture cross section rapidly decreases above the ioniz
potential, which is 0.605 a.u. forR fixed at 1.4a0 . However,
the rigid-nonrotor cross section is still substantially larg
than the atomic cross section, showing that the two-cen
two-electron effect is also important.

The n and l distributions of p̄p formed in p̄1H2 colli-
sions also differ significantly from those calculated forp̄
1H collisions. Analogous to Figs. 5 and 7 for capture by t

FIG. 11. Distribution ofn quantum numbers ofp̄p resulting
from p̄ capture by the H2 molecule, calculated by the KWC metho
at energyEc.m.50.20 a.u. The points are the results of the Mon
Carlo trajectories~;300 contributing!, and the dashed curve is a fi
~see Appendix A!.

FIG. 12. Distribution of l quantum numbers ofp̄p resulting
from p̄ capture by the H2 molecule, calculated by the KWC metho
at energyEc.m.50.20 a.u. The points are the results of the Mon
Carlo trajectories~;300 contributing!, and the dashed curve is a fi
~see Appendix B!.
k
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e
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H atom, typical fits~see Appendixes C and D! of then andl
distributions for capture by the molecule are shown in Fi
11 and 12. In view of the limited statistics provided by th
smaller number of trajectories, the smoothing by the anal
fit is helpful. The simple schemes for the peak and maxim
of the distributions, as found for the atomic case, are
applicable here since the quantum numbers are modified
the dynamics and dissociation of an intermediate comp
The results integrated over the energy-dependent cap
cross section@see Eq.~22!# are shown in Figs. 13 and 14 i
comparison with the results given in Sec. III A for capture
the atom. Then distribution peaks at about 25 instead
(0.5mp /me)

1/2'30, where the peak occurs in the atom
case. Some of this decrease can be ascribed to the la
ionization potential of the molecule, but it is mostly due
the dissociation dynamics. The distribution is narrowed, a
the tail is greatly diminished as compared to the atomic ca

The l distribution resulting from molecular capture
compared with the atomic case in Fig. 14. Again the dis
bution is shifted toward smaller values. The distribution
also considerably rounded and is no longer dominated by
statistical ~proportional to 2l 11! behavior evident in the
atomic case.

FIG. 13. Distribution ofn quantum numbers ofp̄p resulting
from p̄ capture by the H2 molecule, integrated over collision ene
gies using the KWC results~full curve!. For comparison the corre
sponding result for the H-atom target is shown~dashed curve!.

FIG. 14. Distribution of l quantum numbers ofp̄p resulting
from p̄ capture by the H2 molecule, integrated over collision ene
gies using the KWC results~full curve!. For comparison, the corre
sponding result for the H-atom target is shown~dashed curve!.
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IV. CONCLUSIONS

The results ofp̄ capture by the H2 molecule differ greatly
from those for capture by the H atom. The cross sections
both have been calculated using the Kirschbaum-Wilets q
siclassical method extended for accurate treatment of
molecule~this class of methods is known as fermion molec
lar dynamics!. Though such qualitative differences had n
been anticipated, they can be understood in the light of c
sections for collisions of normal H1 with H2.

The p̄ capture has been demonstrated to be affected by
two-center, two-electron molecular structure as well as
the molecular rotational and vibrational dynamics. But t
most important effect is due to the vibrational-dissociat
dynamics, which enables capture to occur at much hig
energies than in collisions with the atom. We should be a
cautious since the low-lying vibrational states of H2 are not
highly accurate in the quasiclassical treatment, owing to
large vibrational quantum. However, the energy where
effect sets in is the same as that where vibrationally inela
collisions of H1 with H2 are seen experimentally. This co
respondence lends credence to the results.

These results are in contrast to those previously found
m21H2 in a treatment that neglected the ro-vibrational d
namics. In that work@17#, the reaction cross sections for
and H2 targets were of similar magnitude and both cut
sharply above their respective ionization potentials. T
close connection with rovibrational excitation suggests t
capture by molecules may depend significantly on the m
lecular isotope and the mass of the incident negative part
In the future, we plan to use the KWC model to determine
rovibrational dynamics is also important form2 capture by
H2 and for p̄ capture by D2.

Since all existing experiments formingp̄p have used mo-
lecular targets, the differences between the atom and m
ecule are highly relevant. At the present time, there wo
seem to be no purely quantum-mechanical method cap
of doing the full five-body reactive dynamics required
solve this problem. On the other hand, the fermion molecu
dynamics developed in the present work has been stra
forward to apply without further approximations.
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APPENDIX A: FITS OF n DISTRIBUTIONS

The n quantum-number distributions were fit by th
spline form

Fn55
bebn for n,n1 ~A1a!

a exp$2@~n2n0!/g#2% for n1<n<n2 ~A1b!

c1 /~n2d!3 for E>E1 and n2,n<n3 ~A1c!

c2e2bn for E,E1 and n2,n<n3 ~A1d!

0 for n.n3, ~A1e!
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where the only independent parameters aren0 , g, b, andd.
n0 and g ~and a which is renormalized later! were deter-
mined by nonlinear least squares, whileb andd were deter-
mined byad hocformulas. The values ofn0 andg are given
in Tables II–IV. The valuesb andd were then calculated by

b5H max~1000/n0
2 ,0.1! for p̄1H ~CTMC!

max~1500/n0
2 ,0.1! for p̄1H ~KW!

max~550/n0
2 ,0.1! for p̄1H2 ~KWC!

~A2!

and

d5H 3025800~E20.5! for p̄1H ~CTMC!

3023200~E20.5! for p̄1H ~KW!

18220~E20.6! for p̄1H2 ~KWC!.

~A3!

The parametersb, n1 , c1 or c2 , andn2 are then determined
by continuity conditions~function and first derivative!. Thus

n15n02 1
2 bd2 ~A4!

and

b5a expF2S n12n0

g D 2

2bn1G . ~A5!

For E>E1 ,

c15a~n22d!3 expF2S n22n0

g D 2G ~A6!

and

n25 1
2 $n01d1@~n01d!224n0d16g2#1/2%. ~A7!

For E,E1 ,

c25a expF2S n22n0

g D 2

1bn2G ~A8!

and

n25n01 1
2 bg2. ~A9!

The long-range formn23 corresponds to a uniform en
ergy distribution. This distribution can extend ton→` only
if E.EI , the ionization potential of the target, since othe
wise the remainder of the ionization energy has to co
from binding energy of the antiproton to the proton. Thus

n35H S m

2~EI2E! D
1/2

for E,EI

` for E>EI .

~A10!

For H2, then23 form was found still to yield a better fit for
E somewhat belowEI . Thus we took

E15EI~H! ~A11!

for both H and H2.
Finally the entire fit is renormalized by a common fact

N21, usually close to unity, whereN is given by

N5Na1Nb1Nc ~A12!
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with

Na5 1
2 agApFFS n22n0

g D2FS n12n0

g D G ~A13!

~F is the error function!,

Nb5
b

b
~ebn121!, ~A14!

and

Nc5H 1

2
c@~n22d!222~n32d!22# for E>E1

c

b
~e2bn22e2bn3! for E,E1.

~A15!

Fits of then distributions at energies not calculated we
obtained by interpolating the parametersn0 andg in Tables
II–IV using a monotonically constrained cubic spline@32#,
and then obtaining the complete fit by the above method

APPENDIX B: FITS OF l DISTRIBUTIONS

The l distributions were fit by the global functional form

Fl5c~2l 11!exp~blk!expS 2
al2

~ l 12 l !2D , ~B1!

where k51 for p̄1H and k52 for p̄1H2. The fits were
done separately~1! for given E summed overn, and~2! for
given n integrated overE. In case~1!, the procedure was to
set l 15 l max11, wherel max was the largestl seen in capture
trajectories at energyE, and determinea, b, andc by non-
linear least squares. In case~2!, the procedure was to se
b50 and determinea, c, and l 1 by nonlinear least squares

Fits of the l distributions at energies not calculated we
obtained by interpolating the parametersa, b, and l 1 in
Tables II–IV using a monotonically constrained cubic spli
@32#, and then normalizing to obtain the coefficientc.

APPENDIX C: RIGID-ROTOR CONSTRAINT
FOR HAMILTON’S EQUATIONS

The rigid-body constraint is enforced by a Lagrange m
tiplier term in the Hamiltonian. To constrainr bc5R, where
R is a constant, we use

H85H2l~r bc2R! ~C1!

where, in terms of the dynamic variables,

r bc5ur c2rbu. ~C2!

The constrained Hamilton’s equations are then

ṙb5¹pb
H85¹pb

H, ~C3a!

ṙ c5¹pc
H85¹pc

H ~C3b!
-

ṗb52¹ rb
H852¹ rb

H2
l

R
~r c2rb!, ~C3c!

ṗc52¹ rc
H852¹ rc

H1
l

R
~r c2rb!, ~C3d!

]H8

]l
52~ ur c2rbu2R!50. ~C3e!

Note that the form of only the six Hamilton’s equations f
ṗb and ṗc is modified by the constraint.

In differential form, constraint~C2! becomes

~r c2rb!•~ ṙ c2 ṙb!50, ~C4!

which, with substitution of Eqs.~C3a! and ~C3b!, can be
written in terms of the dynamic variables as

~r c2rb!•~¹pc
H2¹pb

H !50. ~C5!

We now have a set of 3N11 equations forN particles in
3N11 unknowns includingl. Unfortunately, these equa
tions are not easily put into the generic formẏ5 f (y), and
would probably need to be solved by an implicit schem
However, for the present problem, there is an excellent
proximation that still allows our usual solver to work.

The simplification comes from considering the nucle
masses to be infinite,but only for the calculation of the KWC
effective potentials. Then the gradients are trivial,

¹pb
H→

1

mb
pb , ~C6a!

¹pc
H→

1

mc
pc , ~C6b!

and the corresponding Hamilton’s equations reduce to
usual ones,

ṙb5
1

mb
pb, ~C7a!

ṙ c5
1

mc
pc . ~C7b!

With this form it is easy to solve forl. We first rewrite the
differential constraints~C5!, using Eqs.~C6!, as

~r c2rb!•S 1

mc
pc2

1

mb
pbD50. ~C8!

By differentiating this equation and using Eqs.~C7!, we ob-
tain

U 1

mc
pc2

1

mb
pbU2

1~r c2rb!•S 1

mc
ṗc2

1

mb
ṗbD50.

~C9!

This relation betweenṗb and ṗc , together with Eqs.~C3c!
and ~C3d!, then yields an explicit expression forl,
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2U 1

mc
pc2

1

mb
pbU2

1~r c2rb!•S 1

mc
¹ rc

H2
1

mb
¹ rb

H D
S 1

mb
1

1

mc
DR

.

~C10!

This Lagrange multiplier has an intuitive interpretation.
we identify

2¹ rb
H[Fb5ordinary force on nucleusb,

~C11a!

1

mb
pb[vb5velocity of nucleusb, ~C11b!

2
1

mb
¹ rb

H[ab5acceleration of nucleusb due to

ordinary force, ~C11c!

~likewise for nucleusc!, and

1

mb
1

1

mc
[

1

m
~m5reduced mass ofbc!, ~C11d!

vc2vb[vrel , ~C11e!

then

vrel•R̂50 ~C12!

and

l52m@~ac2ab!•R̂1v rel
2 /R#. ~C13!

Thus we can interpretl as theconstraint forcenecessary to
balance the centrifugal force and the differential force
nuclei b andc due to forces exerted by all other particles

We have done calculations to verify that the infinit
nuclear-mass limit for evaluating the KWC potentials is
good approximation. In representative cases, the usual K
equations were solved again, using this approximation,
the results were hardly changed.
e
on

l

cs
n

C
d

APPENDIX D: RIGID-NONROTOR CONSTRAINT
FOR HAMILTON’S EQUATIONS

The rigid nonrotor is defined by the constraint

r c2rb5R, ~D1!

whereR is a constant vector. Though three Lagrange mu
pliers ~a vector! are needed to enforce this condition, th
analysis is similar to that of the rigid rotor in Appendix C
We write

H85H2l•~r c2rb2R!. ~D2!

The constrained Hamilton’s equations are then

ṙb5¹pb
H85¹pb

H, ~D3a!

ṙ c5¹pc
H85¹pc

H, ~D3b!

ṗb52¹ rb
H852¹ rb

H2l, ~D3c!

ṗc52¹ rc
H852¹ rc

H1l, ~D3d!

¹lH852~r c2rb2R!50. ~D3e!

As in Appendix C, we differentiate Eq.~D1! and use Eqs.
~D3a! and ~D3b! to write it in terms of the dynamic vari-
ables,

¹pc
H2¹pb

H50. ~D4!

With the infinite-nuclear-mass approximation in the KW
effective potentials, Eq.~D4! implies (1/mb) pb5 (1/mc) pc ,
which can be used in Eqs.~D3c! and ~D3d! to obtain an
explicit expression for the Lagrange multipliers:

l5

1

mc
¹ rc

H2
1

mb
¹ rb

H

1

mb
1

1

mc

. ~D5!
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