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Quantum manifestations of bifurcations of closed orbits in the photoabsorption spectra of atoms
in electric fields
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The methods developed in the preceding paper~paper II! are used to construct a wave function near a
bifurcation of classical orbits of an atomic electron in an electric field. A formula for the recurrence strength
near the bifurcation is derived and compared with experimental measurements.@S1050-2947~97!03206-X#

PACS number~s!: 32.80.Gc
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I. INTRODUCTION

The preceding paper~paper II! showed how to calculate
the effects of recurrences near a bifurcation of closed or
if the electron is moving in parallel electric and magne
fields, with no Coulomb attraction to a residual ion. Here
consider recurrences associated with orbits of an electro
an atom in an electric field. We no longer have a magn
field present—the electron is acted upon by the Coulo
attraction to the ionic core and by the electric field.~There is
also a short-range core potential, but that need not be
sidered.!

When trajectories are drawn in semiparabolic coordina
they have shapes that are similar to those seen in the pre
ing papers. In particular, we find bifurcations that occ
when a cusp passes through the origin~Fig. 1!. We expect,
therefore, that a similar theory can be used to describe
wave function near these cusps, and the associated re
rence strength near a bifurcation.

There is a complication in this case. Semiparabolic co
dinates are very unlike Cartesian or cylindrical coordinat
The axisu50 coincides in real space with the negativez
axis, so it is an axis of cylindrical symmetry. This tells
that the cusp is not a two-dimensional structure for which
wave function is a Pearcey function, but is more analog
to a three-dimensional cusp, for which the wave function
Fresnel-Bessel integral as described in@1#. Furthermore, the
axisv50 coincides in real space with the positivez axis, so
it is also an axis of cylindrical symmetry. Our cusp is
geometrical object with cylindrical symmetry about two d
tinct axes. The only such object that can exist in a thr
dimensional space is a sphere, but our cusp is certainly
spherical. We would need a space of four Cartesian dim
sions to properly embed this cusp. This is one manifesta
of the deep relationship between a three-dimensional C
lomb system and a four-dimensional harmonic oscillator.

For this paper, we do not need to pursue this relations
any further. Most of what we need for construction of t
wave function was given in the preceding paper. We
tained a local wave function for a cusp that is cylindrica
symmetric about one axis. We need to rewrite that lo
wave function in a manner appropriate to the present cont
561050-2947/97/56~1!/356~9!/$10.00
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join it to a global wave function~specifically, connect it to an
incoming Coulomb wave!, and then modify the result to in
corporate the second cylindrical symmetry.

The derivation is given in Secs. II and III, and then w
compare to experiments in Sec. IV. A brief report of t
results was given in@2#.

II. THE RETURNING WAVE FUNCTION
NEAR A BIFURCATION

We follow the preceding paper@1# as closely as possible
Equations of that paper are denoted, for example,~II.3.1!.

A. The Schrödinger equation in semiparabolic coordinates

In scaled semiparabolic coordinates (v,u,t)

v5Ar2zF1/4,

u5Ar1zF1/4,

dt

dt
5~u21v2!F23/4, ~2.1!

the Schro¨dinger equation is~with \̂5F1/4!

2
1

2
\̂2F ]2

]v2
1
1

v
]

]v
1

]2

]u2
1
1

u

]

]uGc2«~v21u2!c52c.

~2.2!

If the energy is near zero and (v,u) are both small, every-
thing in the effective potential can be neglected, and
equation becomes

2
1

2
\̂2F ]2

]v2
1
1

v
]

]v
1

]2

]u2
1
1

u

]

]uGc52c. ~2.3!

This separable equation has product solutions

c~v,u!5J0~pvv/\̂ !J0~puu/\̂ !, ~2.4a!

with the restriction
356 © 1997 The American Physical Society
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pv
21pu

254. ~2.4b!

Any linear superposition is also a solution, and we can c
struct any combinations satisfying the restriction~2.4b!. If
we regard pv as the free parameter, andpu(pv)
5(42pv

2)1/2.0, then the general superposition of produ
~2.4a! is

c~v,u!5E
0

2

H~pv!J0~pvv/\̂ !J0„pu~pv!u/\̂…dpv .

~2.5!

We need to construct that particular superposition such
the associated rays~trajectories! form a cusp. We will show
below that the desired superposition is given by

H~pv!5BY0„2Qp0
~pv!…K~pv!

3expF i
\̂

~2 1
2a1pv

22 1
4a3pv

4!Gpv ~2.6!

with B52p23/2ei (S0 /\̂2m ip/22p). S0 is the action of the par-
allel orbit andm i is the Maslov index before the bifurcatio
of the parallel orbit. The functionsY0(2Qp0

) andK(pv) will
be defined later. Physically, they represent the angular di
bution of the initial outgoing wave and the semiclassical a
plitude of the returning wave in mixed position-momentu
space.

The construction closely follows that given in Ref.@1#,
and proceeds in three steps.~i! If ( v,u) were ordinary Car-
tesian axes, then the cusp would be a two-dimensional ob
like that described in Sec. III of Ref.@1#, and its wave func-

FIG. 1. A family of trajectories going out from the origin at a
energy close to the 1:2 bifurcation. One half cycle ofv motion
~horizontal axis! has a period close to that of one full cycle ofu
motion ~vertical axis!. Therefore the trajectories are focused at t
origin, forming a small cusp.
-

s

at

ri-
-

ct

tion would be a Pearcey function.~ii ! However, looking
again at the Schro¨dinger equation~2.3!, the v coordinate is
like a cylindrical radius, so the cusp is better regarded a
cylindrically symmetric object, like that described in Sec.
of paper II. Its wave function should be a Fresnel-Bes
integral analogous to~II.4.13!. ~iii ! Furthermore@again look-
ing at the Schro¨dinger equation~2.3!#, the u coordinate is
also like a cylindrical radius, so plane waves lik

exp(ipzz/\̂)↔exp(ipuu/\̂) have to be converted to Bess
functions.

B. The wave function for a two-dimensional cusp

Figures 1 and 2 show the cusp in (v,u) space. If these
coordinates (v,u) were an ordinary Cartesian space, then
would have a two-dimensional cusp as described in Sec
of paper II. All of the formulas therein would hold with th
following transcriptions:

x→v, z→u, px→pv , pz→pu ,

P5A2mE5Apu21pv
252,

m51, t8→t8, u8→Q8. ~2.7!

~t8 andQ8 are local parameters of the cusp manifold@1#.!
However, certain changes of sign arise because in

present case~for the 1
2 or

3
4 bifurcation! u.0 as the particle

moves through the cusp. Thus Eqs.~II.3.1!, ~II.3.4a!,
~II.3.4b!, ~II.3.5a!, and~II.3.7d! become

H~pv ,pu ,v,u!5~pv
21pu

2!/2, ~2.8a!

S̃2~pv ,u!5Sc1~42pv
2!1/2~u2uc!1 1

4apv
4, ~2.8b!

pu~pv ,u!51A42pv
2, ~2.8c!

u~t8,Q8!52uc12t8cosQ818aQ821 • • • .
~2.8d!

A slightly different representation ofS̃ is more convenient
for us,

S̃2~pv ,u!5S̃01pu~pv!u2 1
2a1pv

22 1
4a3pv

4. ~2.9!

a1 is related to the tip of the cuspuc , a152uc /pu(pv), and
a352a. See Appendix A for evaluation of these values.

The corresponding configuration-space wave function

c2~v,u!5
1

A22p i \̂
E exp~ ipvv/\̂ !c̃2~pv ,u!dpv ,

~2.10!

where the semiclassical wave function in the mixed spac

c̃2~pv ,u!5Ã2~pv ,u!exp$ i @S̃2~pv ,u!/\̂2np/2#%.
~2.11!

The classical amplitudeÃ2(pv ,u) is related to the ratio of
the Jacobians and initial outgoing wave functio
c̃(pv0,u0),
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358 56J. GAO AND J. B. DELOS
Ã2~pv ,u!5c̃~pv0,u0!U J̃2~pv0,u0!J̃2~pv ,u!
U1/2,

J̃2~pv ,u!5
]~pv ,u!

]~t8,Q8!
. ~2.12!

c̃(pv0,u0) is the initial outgoing wave in the mixed spac

Near the cusp,c2(v,u) can be reduced to a Pearcey functi
@Eq. ~II.3.21!#.

C. The wave function for a cylindrical cusp

In this second step we continue to treatu as if it were a
Cartesian coordinate~like z!, but we consider the cylindrica
nature of thev coordinate. We may imagine sweeping t
cusp in Fig. 1 around thev50 axis. Then the associate
wave functions are focused onto that axis and are much m
intense atv50 than would be predicted by the Pearcey fun
tion.

To construct the wave function, we create two fictitio
Cartesian (x̄,ȳ) such thatv5Ax̄21 ȳ2 @3#. We can then carry
over the formulas from Sec. IV of paper II, with the tra
scriptions

t8→t8, u8→Q8, w8→F8,

r→v, z→u,

p→pv , pz→pu , P5Apu21pv
252,

x→ x̄, y→ ȳ. ~2.13!

Again certain sign changes occur. The local parametric r
resentation of the orbits is similar to Eq.~II.4.2!.

x̄~t8,Q8,F8!512t8sinQ8 cosF8,

ȳ~t8,Q8,F8!512t8sinQ8 sinF8,

u~t8,Q8!52uc12t8cosQ818aQ821 • • • ,
~2.14!

the generator of the Lagrangian manifold is similar to E
~II.4.3c! and ~II.4.3d!,

S̃~pv ,u!5S̃01pu~pv!u2 1
2a1pv

22 1
4a3pv

4, ~2.15!

and the wave function in (v,u) space is similar to Eq
~II.4.13!,

c~v,u!5
1

2 i \̂
E Ã~pv ,u!J0~pvv/\̂ !

3exp„i $@S̃01pu~pv!u2 1
2a1pv

22 1
4a3pv

4#/\̂

2np/2%…pvdpv . ~2.16!

We have included here the phase associated with the Ma
index in the mixed space,n.
re
-

p-

.

lov

As always, the amplitudeÃ(pv ,u) is equal to the wave
function on an initial surface times a ratio of Jacobians@Eq.
~II.4.10!#.

Ã~pv ,u![Ã~ p̄x ,p̄y ,u!

5c̃~ p̄x0,p̄y0,u0!uJ̃~ p̄x0,p̄y0,u0!/ J̃~ p̄x ,p̄y ,u!u1/2.

~2.17!

The initial points (p̄x0,p̄y0,u0) are functions of the final

points (p̄x ,p̄y ,u); each (p̄x0,p̄y0,u0)is the point on the initial

surface from which the trajectories that arrive at (p̄x ,p̄y ,u)
emanated. The Jacobian is@Eq. ~II.4.5a!#

J̃~ p̄x ,p̄y ,u!5
]~px̄ ,pȳ ,u!

]~t8,Q8,F8!
5pv

]~pv ,u!

]~t8,Q8!
5pvJ̃2~pv ,u!.

~2.18!

Just as in the discussion in Sec. V A of paper II, all Jacobi
can be expressed in terms of ‘‘global’’ parameters (t,Q0)
rather than local parameters (t8,Q8). Q0 is the initial angle
of the outgoing trajectory,t is the scaled time witht50 at
the beginning of the trajectory. SinceQ85Q0 and t85t
1const, ](t8,Q8)/](t,Q0)51, and J̃2(pv ,u)5](pv ,u)/
](t,Q0).

D. The wave function on the initial surface

We use the same method as in Sec. V B of paper II,
we get a different result because of the different physi
situation. In Ref.@1#, as the detached electron moves aw
from the neutral atom, its wave function is a free-partic
outgoing spherical wave~we neglectF andB close to the
atom, and there is no long-range Coulomb force!. In the
present case, the electron occupies a zero-energy outg
spherical Coulomb wave.~Of course, in both cases there
an angular modulation of the spherical wave arising from
quantum selection rules.!

In configuration space this outgoing wave is@4#

cout~r 0 ,u0!52 ip1/223/4r 0
23/4e2 i3p/4eiA8r0Y0~u0!.

~2.19!

Let us reexpress this in terms of the spherical version
scaled semiparabolic coordinates

R5Au21v25A2rF 1/4, Q5tan21~v/u!5u/2.
~2.20!

Thus

cout~r 0 ,u0!5cout~v0 ,u0!

52 ip1/223/2R0
23/2F3/8e2 i3p/4eiPR0 /\̂Y0~2Q0!.

~2.21!

Now thinking of this as a function of (v0 ,u0), we transform
to momentum space to constructc̃out(pv0,u0). For this pur-
pose we again use the two fictitious Cartesian coordina
and carry out a two-dimensional Fourier transformation
the stationary-phase method,



a
or

n

te

di

r

s-
to

s

pily

he

Eq.
a

of

’’

re

us
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c̃out~pv0,u0!5c̃out~px̄0
,pȳ0,u0!

5
1

2p i \̂
E exp@2 i ~px̄ x̄1pȳ ȳ!/\̂ #

3cout~ x̄,ȳ,u0!dx̄ dȳ

52 ip1/223/2F3/8e2 i3p/4exp@ ipu0~pv0!u0 /\̂ #

3Y0~2Qp0
!~R0

1/2P cosQp0
!21. ~2.22!

Compared to Eq.~II.5.13!, we get different constants and
different angular factor, as would be expected; the m
subtle difference is that Eq. ~2.22! contains R0
5R0(pv0 ,u0)5u0 /cosQp0

. This is another dependence o
the initial boundary which must eventually cancel.

E. The ratio of Jacobians

As always our Jacobian is initially defined in real Car
sian coordinates and real time (x,y,z,t) @4#,

J~x,y,z!5
]~x,y,z!

]~ t,u0 ,w0!
. ~2.23!

In terms of the scaled semiparabolic coordinates (v,u) and
scaled timet, it becomes

J~x,y,z!5J~v,u!5vu
]~v,u!

]~t,u0!
5
vu
2

]~v,u!

]~t,Q0!

5
vu
2

J2~v,u!. ~2.24!

The mixed-space Jacobian is obtained by again exten
v→( x̄,ȳ),

J̃~pv ,u!5J~v,u!
]~ x̄,ȳ!

]~px̄ ,pȳ !
5
pvu

2

]~pv ,u!

]~t,Q0!
. ~2.25!

Thus the ratio of Jacobians in Eq.~2.17! becomes

J̃~pv0,u0!

J̃~pv ,u!
5
pv0u0

pvu

]~pv0,u0!

]~t,Q0!
Y ]~pv ,u!

]~t,Q0!

5
pv0u0pu0

pvupu

]pv0

]pv
U

t

. ~2.26!

Implicit in Eq. ~2.26! is the fact that the local paramete
Q8, the final angle of each closed orbit, is equal toQ0 , the
initial angle for that orbit.

F. The returning wave

On combining the outgoing wave function with the cla
sical amplitude in the mixed space, we obtain the prefac
of our returning wave function in the mixed space,
e

-

ng

r

Ã~pv ,u!5CY0~2Qp0
!eipu0u0 /\̂

1

Aupu~pv!
K~pv!,

K~pv!5Upv0
pv

]pv0
]pv

U
t
U1/2,

C52 ip1/22F3/8e2 i3p/4, ~2.27!

and so, the returning wave function in the mixed space i

c̃~pv ,u!5CY0~2Qp0
!eipu0u0 /\̂K~pv!

e2 ipu~pv!u/\̂

Aupu~pv!

3exp$ i @~S̃02
1
2a1pv

22 1
4a3pv

4!/\̂2np/2#%.

~2.28!

The u0 dependence in the preexponential factor has hap
canceled.

As we gaze at Eq.~2.28!, we see that theu dependence of
c(pv ,u) can be correct only foru away from zero. Equation
~2.28! is a semiclassical returning wave, and nothing in t
argument leading to Eq.~2.28! implies that the formula will
be correct everywhere. Indeed we already know from
~2.5! that the correctu dependence must be given by
Bessel function. But Eq.~2.28! contains part of the
asymptotic expression for a Bessel function,

J0~puu/\̂ ! ——→
large u

1

A2ppuu/\̂
H expF i S puu

\̂
2

p

4 D G
1expF2 i S puu

\̂
2

p

4 D G .
~2.29!

Therefore, to make the wave function apply to all values
u, we need to replace

exp~2 ipuu/\̂ !/Apuu→A2p/\̂e2 ip/4J0~puu/\̂ !.
~2.30!

Thus

c̃~pv ,u!5CY0~2Qp0
!eipu0u0 /\̂K~pv!S 2p

\̂
D 1/2

3e2 ip/4J0S puu
\̂

D
3exp$ i @~S̃02

1
2a1pv

22 1
4a3pv

4!/\̂2np/2#%.

~2.31!

This wave function now carries the ‘‘cylindrical character
of theu coordinate.

To further simplify Eq.~2.31!, we note that as in Sec. V C
of paper II, the initial and final angles of the trajectories a
equal,Q05Q, Qp0

5Qp and forpv50, S01pu0(pv50)u0
5Si . The semiclassical theory developed by Maslov tells
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that when the momentum space indexn is properly evalu-
ated, all formulas are consistent. We find that our unifo
semiclassical results reduce to the earlier primitiv
semiclassical formulas if we takey5m i ~before
bifurcation!12.

For future reference, we will need to evaluate the pre
ponential factor at those values ofpv that correspond to tra
jectories that return exactly to the nucleus. One of them
pv50, and at this point

K~pv!5Upv0pv

]pv0
]pv

U
t
U1/2'Upv0pv

]pv0
]pv

U
uf50

U1/25U]pv0
]pv

U
uf50

5U ]v
]pv

]pv0
]v

U
uf50

5U a1J120 U, ~2.32!

whereJ12
0 , defined in@5#, is the element of the monodrom

matrix evaluated at the parallel orbit. The other is the new
created closed orbits havingpv56Aa1 /a3, and

K~pv!5Upv0pv

]pv0
]pv

U
t
U1/2'Upv0pv

]pv0
]pv

U
uf50

U1/2

5U]pv0
]pv

U
uf50

1/2

51, ~2.33!

as indicated in Ref.@5#. At the bifurcation,u]pv0 /]pvu51
should apply to both cases.~See Appendix A.!

Finally, the returning wave function in the vicinity of th
nucleus~when the cusp is near the nucleus! is obtained by
Fourier transformation ofc̃(pv ,u),

c~v,u!5
1

22p i \̂
E exp$ i @pvv cos~w2wp!#/\̂%

3c̃~pv ,u!pvdpvdw

5
1

2 i \̂
E J0~pvv/\̂ !c̃~pv ,u!pvdpv . ~2.34!

More explicitly,

c~v,u!5BE Y0~2Qp0
!K~pv!J0~pvv/\̂ !J0~puu/\̂ !

3expF i
\̂

S 2
1

2
a1pv

22
1

4
a3pv

4D Gpvdpv ,
B52p23/2ei ~S0 /\̂2m ip/22p!. ~2.35!

We have thus derived Eqs.~2.5! and ~2.6!.
-

-

is

y

III. OSCILLATOR-STRENGTH DENSITY

A. Reduction to a Fresnel-type integral

Now we are ready to derive a refined formula for t
oscillator-strength density. The initial wave function is a
sumed to be

c i5Rnl~r!Yl0~u,w! ~3.1!

and

Dc i5rRnl~r!(
l 8

bl 80
l Yl 80~u,w!. ~3.2!

Later, in comparison with experiments, 3s will be used as
the initial state, so

c i5R30~r!Y00~u,w!, Dc i5A1/3rR30~r!Y10~u,w!.
~3.3!

The oscillator-strength density is proportional to the over
of the returning wave with the ‘‘source’’̂Dc i uc&,

Df 15
22~E2Ei !

p
Im^Dc i uc&, ~3.4!

and

^Dc i uc&52pE r 2drE
0

p

sinu du~Dc ic!. ~3.5!

Substituting Eq.~2.35! and changing the order of the integr
tion, we obtain

^Dc i uc&5E G~pv!H E
0

`E
0

p

Dc iJ0„pu~pv!u/\̂…

3J0~pvv/\̂ !r 2sinu dr duJ pvdpv , ~3.6!

where

G~pv!52pBY0~2Qp0
!K~pv!

3expF i
\̂

S 2
1

2
a1pv

22
1

4
a3pv

4D G . ~3.7!

Qp0
andpv0 are functions ofpv .

The angular part of the integral is

Au5E
0

p

Yl 80~u!J0~puu/\̂ !J0~pvv/\̂ !sin u du, ~3.8!

Au54E
0

p/2

sinQ cosQYl 80~2Q!

3J0~PR cosQPcosQ/\̂ !J0~PR sinQPsinQ/\̂ !dQ.

~3.9!

In Appendix B we show that this integral is equal to
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Au54~2 ! l 8Yl 80~uP!
J2l 811~A8r !

~A8r !
. ~3.10!

Then the radial part of the integral

Ar5(
l 8

bl 80
l E

0

`

rRnl~r !Aur
2dr ~3.11!

is proportional toY0(2QP), since

Ar5(
l 8

bl 80
l 4~21! l 8Yl 80~u!E

0

`

Rnl~r !
J2l 811~A8r !

~A8r !
r 3dr

5&(
l 8

~21! l 8I ~n,l ,l 8!bl 80
l Yl 80~uP!

5&Y0~2QP! ~3.12!

in which

I ~n,l ,l 8!5E
0

`

Rnl~r !
J2l 811~A8r !

Ar
r 3dr. ~3.13!

Now we need to evaluate the integral overpv , and thus
obtain ^Dc i uc&. On combining Eqs.~3.7! and ~3.12!, Eq.
~3.6! becomes

^Dc i uc&5E G~pv!Arpvdpv

5B8E Y0~2Qp0
!Y0~2QP!K~pv!

3expF i
\̂

~2 1
2a1pv

22 1
4a3pv

4!Gpvdpv ,
~3.14!

where

B852p&B52p223ei ~S0 /\̂2m ip/22p!. ~3.15!

We now have a formula for the oscillator-strength dens
expressed in terms of an integral of Fresnel type.

B. Uniform asymptotic expansion

Defining x5pv
2, l52a3/2\̂, a5a1 /a3 we obtain

^Dc i uc&5 1
2B8I ~l,a!, ~3.16!

where

I ~l,a!5E
0

`

g~x!exp@ il~ 1
2x

21ax!#dx, ~3.17!

with

g~pv
2!5Y0~2Qp0

!Y0~2Qp!K~pv!. ~3.18!

This is now a Fresnel-type integral, like Eq.~II.4.14!. Com-
bining this with Eq.~3.4!, we obtain
y

Df 15ImB9I ~l,a!, ~3.19!

where

B95
2~E2Ei !

p
B85~E2Ei !p2

3ei ~S0 /\̂2m ip/22p!.

~3.20!

In some of our calculation we used this formula togeth
with the additional approximationg(pv

2)'g(0)51. We also
used a slightly more refined version of this approximatio
Bleistein @6# wrote down a uniform approximation for inte
grals like Eq.~3.17!.

One can also show that Eq.~3.19! reduces to the usua
semiclassical formulas for the parallel orbit and for the n
orbit in appropriate limits.

C. Reduction to semiclassical formulas and consistency check

As in Sec. V E of paper II, further approximations to th
integral formula~3.19! reduce it to previously derived sem
classical formulas. Before the bifurcation,a1,0. We use
Eqs.~II.4.15c!, ~2.32!, and~A6! to obtain

Df 1
05~E2Ei !2

9/2pF1/4Y0~0!Y0~0!
A«

usinA2«tu

3sin~nS0F
21/42m ip/22p/2!. ~3.21!

This is exactly the formula for the parallel orbit used in o
earlier work.

After the bifurcation,a1.0, and the contribution from the
parallel orbit arises from the second term Eq.~II. 4.15a!. It is
identical to Eq.~3.21!, except that the Maslov index after th
bifurcation has increased by 2. The contribution of the n
orbit arises from the first term in Eq.~II. 4.15a! together with
Eqs.~2.33!, ~A5!, and~A7!. The result is

Df 1
new5~E2Ei !p

3/2211/2Y0~u0!Y0~u0!F
1/8sin~u0/2!

3~J12
new!21/2sin~SnewF21/42mnewp/2

23p/213p/4!. ~3.22!

This agrees with Eq.~3.3! in Ref. @5#.
Finally, at the bifurcation, we use Eq.~II.4.15b! and Ref.

@6# to find

Df 15~E2Ei !p
3/223F1/8Y0~0!Y0~0!~a3!

21/2

3sin~S0F
21/42m ip/223p/4!1~E2Ei !p2

4F1/4

3g8~0!~a3!
21sin~S0F

21/42m ip/22p/2!. ~3.23!

The first term tells us that the combined recurrence stren
of parallel and new orbits at the bifurcation is again half t
semiclassical recurrence strength of the new orbit by its
The second term is a correction arising from Bleistein’s i
proved uniform approximation@6#. In one of our calcula-
tions, it turned out to be about 8% of the primary term.
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IV. RECURRENCE SPECTRA AND COMPARISON
WITH EXPERIMENTS

In this section, we compare our calculations with expe
mental measurements performed by Courtneyet al. @2#.

The experiment was performed onm50 states of lithium
for a number of scaled energies between«522.1 and
20.37. The experiment employed a lithium atomic be
which passed through holes in the center of a pair of elec
plates. Between the field plates, the atoms were excited f
the 2s state to the 3s state by a two-photon transition. A
second laser was polarized parallel to the applied field
excited the atoms to Rydberg states. Recurrence spectra
obtained by Fourier transforming the measured photoabs
tion cross sections.

The initial state is given by Eqs.~3.3!. The oscillator-
strength density can be calculated by using the hydro
model with 3s initial state, since the effect of the phase sh
caused by the quantum defect of lithium is small. The
duced recurrence spectrum can then be calculated acco
to Eqs. ~3.11!, ~4.1!, and ~4.2! of Ref. @5#. This calculated

FIG. 2. ~a! Enlarged picture of the cusp. Trajectories go out
the upper half of the figure, and return moving upward in the low
half. ~b! Lagrangian manifoldv(u,pv) near the cusp.
-

ic
m

d
ere
p-

n
t
-
ing

hydrogen spectrum should differ from the lithium spectru
only by a constant.

We show the comparison of calculated recurrence spe
with measurements in small steps of« near the12 and

3
4 bi-

furcations. The same normalization constant is used at e
energy in each figure~different normalization for the two
figures, because the experiments are not absolute!. Thick
lines are calculations and thin lines are measurements.
needles are the strength of individual orbits and their rep
tions.

In Fig. 3, near34 bifurcation, the uniform approximation is
used for the fourth recurrence, and the semiclassical appr
mation is used for all the other recurrences. Respecta
agreement is found between theory and experiment.

In Fig. 4, near12 bifurcation, the uniform approximation is

r
FIG. 3. Recurrence strength near the 3:4 bifurcation. Need

are theory, fine line is experiment. Heavy line is calculated
smoothing the needles consistent with the experimental meas
ments. One overall multiplicative constant is used to normalize
periments and theory in this figure. All peaks are calculated us
the ‘‘primitive’’-semiclassical approximation except the on
marked with the arrow. That one is the fourth recurrence of
parallel orbit and the new orbit that bifurcates from it. The co
bined recurrence strength is calculated from Eq.~3.19!.
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used for the second recurrence and its repetition. Experim
tal measurements should be most reliable for this case, s
they were made repeatedly in small steps specifically for
purpose of studying the bifurcation. Here the agreement
tween theory and experiment is very good.

As discussed elsewhere, the maximum recurre
strength does not occur right at the bifurcation~«521.12
for the 3

4 case or«520.4 for the1
2 case!, but a little after the

bifurcation, which agrees with the prediction of Eq.~3.23!.

V. CONCLUSION

A refined formula for the oscillator-strength density is d
rived by using a uniform semiclassical approximation. Th
formula is especially useful near bifurcations where t
semiclassical formulas diverge. Comparisons between the
and experiments show very good agreement both near
away from a bifurcation.
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FIG. 4. Same as Fig. 3, near 1:2 bifurcation. The peaks mar
with arrows are the second and fourth recurrences of the par
orbit and the associated bifurcated orbit.
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APPENDIX A: EVALUATION OF a1 AND a3

From Eq.~9.22b! of Ref. @4# if the initial and final bound-
ary circles are shrunk to zero,

v~t,u0!5A12cosu0 /u«usin~A2u«ut!, «,0. ~A1!

Thus

pv~t,u0!52 sin~u0/2!cos~A2u«ut!. ~A2!

To obtaina1 , we consider the function

v~pv ,u50!52
]S̃~pv ,u50!

]pv
5a1pv1a3pv

31 • • • ,

~A3!

a15
]v
]pv

U
pv50
u50

5
@]v~t,u0!/]u0#t

@]pv~t,u0!/]u0#t
5

sin~A2u«ut!

A2u«ucos~A2u«ut!
.

~A4!

~The derivative at fixedu and the derivative at fixedt are
equal atpv50.! After bifurcationa3 is related toa1 through
the newly created orbit,

pv52 sin~u0/2!'Aua1 /a3u. ~A5!

Before the bifurcation, however,a3 is obtained by extrapo-
lation.

The parametera1 is also related to an element of th
monodromy matrix of the parallel orbit. Consider the deriv
tive of v with respect to the initialpv :

J12
0 5

]v
]pv0

U
pv50
u50,

5
]v~t,u0!/]u0

]pv0~t,u0!/]u0
5
sin~A2u«ut!

A2u«u

5
a1

cos~A2u«ut!
. ~A6!

a1 is related to the element of the monodromy mat
evaluated at the new orbit,J12

new, as well. Whenever Eq.~A3!
can be truncated at the cubic level, we find

J12
new'62a1 . ~A7!

Proof:

615
]pv0
]pv

U
u50

5
]v/]pv
]v/]pv0

U
u50

. ~A8!

Evaluating the derivative of Eq.~A3! at the stationary-phas
point pv

2'2a1 /a3 , we find]v/]pv522a1 and]v/]pv0 is
the element of the monodromy matrixJ12

new.
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APPENDIX B: INTEGRAL INVOLVING
BESSEL FUNCTIONS

In this appendix, we prove the following result:

Au/45E
0

p/2

sinQ cosQYl 80~2Q!

3J0~PR cosQPcosQ/\̂ !J0~PR sinQPsinQ/\̂ !dQ

~B1!

5~21! l 8Yl 80~uP!
J2l 811~PR/\̂ !

~PR/\̂ !

5~21! l 8Yl 80~uP!
J2l 811~A8r !

A8r
, ~B2!

whereu52Q anduP52QP .
Referring to Eq. ~3.8!, the product J0„pu(pv)u/

\̂…J0(pvv/\̂) is a solution to the zero-energy Schro¨dinger
equation~2.3!, and Eq.~3.8! represents the projection of tha
solution onto the spherical harmonicYl 80(u). The projection
is a function ofr which must still satisfy the zero-energ
Schrödinger equation with angular momentuml , i.e., it must
be the same constant timesJ2l 811(A8r )/A8r . We evaluate
the constant by going to larger and using the stationary
phase approximation.

Using the asymptotic formula for the Bessel function,
largeR Eq. ~B2! becomes

~21! l 8Yl 80~2QP!
J2l 811~PR/\̂ !

~PR/\̂ !

5Yl 80~2QP!S 1

2p
D 1/2S PR

\̂
D 23/2
er

n

-
r

t

3H expF i S PR
\̂

2
3

4
p D G

1expF2 i S PR
\̂

2
3

4
p D G J . ~B3!

Likewise, the two Bessel functions become

J0~PR cosQPcosQ/\̂ !J0~PR sinQPsinQ/\̂ !

5
1

2pPR/\̂
A 1

cosQPcosQsinQPsinQ

3H expF i S PR
\̂

cos~QP2Q!2
p

2 D G
1expF2 i S PR

\̂
cos~QP2Q!2

p

2 D G
1expF i PR

\̂
cos~QP1Q!G

1expF2 i
PR

\̂
cos~QP1Q!G J . ~B4!

On plugging in Eq.~B4!, Eq. ~B1! is now separated into
four integrals with two stationary-phase pointsQ5QP and
Q5p1QP for each of the first two terms, and two mor
Q52QP andQ5p2QP for last two terms. However, only
Q5QP contributes, since the value of bothQ andQP is in
the range of (0,p/2). Using the stationary-phase approxim
tion, the sum of the first two terms reduces to Eq.~B3!.
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