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Quantum manifestations of bifurcations of closed orbits in the photoabsorption spectra of atoms
in electric fields
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The methods developed in the preceding pajpaper I) are used to construct a wave function near a
bifurcation of classical orbits of an atomic electron in an electric field. A formula for the recurrence strength
near the bifurcation is derived and compared with experimental measureff&t50-294P7)03206-X

PACS numbe(s): 32.80.Gc

[. INTRODUCTION join it to a global wave functioftspecifically, connect it to an
incoming Coulomb wave and then modify the result to in-
The preceding papegpaper 1) showed how to calculate corporate the second cylindrical symmetry.
the effects of recurrences near a bifurcation of closed orbits The derivation is given in Secs. Il and lll, and then we
if the electron is moving in parallel electric and magneticcompare to experiments in Sec. IV. A brief report of the
fields, with no Coulomb attraction to a residual ion. Here weresults was given if2].
consider recurrences associated with orbits of an electron in
an atom in an electric field. We no longer have a magnetic Il. THE RETURNING WAVE FUNCTION
field present—the electron is acted upon by the Coulomb NEAR A BIFURCATION
attraction to the ionic core and by the electric fid[@here is
also a short-range core potential, but that need not be con- We follow the preceding pap¢t] as closely as possible.
sidered) Equations of that paper are denoted, for examle3.1).
When trajectories are drawn in semiparabolic coordinates,
they have shapes that are similar to those seen in the preced-A. The Schradinger equation in semiparabolic coordinates
ing papers. In particular, we find bifurcations that occur
when a cusp passes through the oriffiig. 1). We expect,
therefore, that a similar theory can be used to describe the v=1/r—zFY%4
wave function near these cusps, and the associated recur-

In scaled semiparabolic coordinates , 7)

rence strength near a bifurcation. u=Jr+zFv4
There is a complication in this case. Semiparabolic coor- '
dinates are very unlike Cartesian or cylindrical coordinates.
: N . X ; dt
The axisu=0 coincides in real space with the negatixe — =(u?+v?)F %4 (2.1

axis, so it is an axis of cylindrical symmetry. This tells us dr

that the cusp is not a two-dimensional structure for which the .

wave function is a Pearcey function, but is more analogoughe Schidinger equation igwith 7 =F4)
to a three-dimensional cusp, for which the wave function is a

2 2
Fresnel-Bessel integral as describedlh Furthermore, the 1,00 19 o 19 2, 2
; o . . o —ch =t ——+—=+——|¢y— + =24,
axisv =0 coincides in real space with the positiwaxis, so 2 f dv® v dv Ju® udu y-e( HuT)y=24
it is also an axis of cylindrical symmetry. Our cusp is a (2.2

geometrical object with cylindrical symmetry about two dis-

tinct axes. The only such object that can exist in a threelf the energy is near zero ana ,(u) are both small, every-

dimensional space is a sphere, but our cusp is certainly ndfing in the effective potential can be neglected, and the

spherical. We would need a space of four Cartesian dimergduation becomes

sions to properly embed this cusp. This is one manifestation

of the deep relationship between a three-dimensional Cou- _ E 72

lomb system and a four-dimensional harmonic oscillator. 2
For this paper, we do not need to pursue this relationship

any further. Most of what we need for construction of the This separable equation has product solutions

wave function was given in the preceding paper. We ob- R ~

tained a local wave function for a cusp that is cylindrically P(v,u)=Jo(p,v/h)Io(pyul/t), (2.439

symmetric about one axis. We need to rewrite that local

wave function in a manner appropriate to the present contextyith the restriction

2
_t - — 4 —

# 19 &
2 ot
v v dv Jdu udu

y=2¢. (2.3
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FIG. 1. A family of trajectories going out from the origin at an
energy close to the 1:2 bifurcation. One half cyclevoimotion
(horizontal axi$ has a period close to that of one full cycle wf
motion (vertical axig. Therefore the trajectories are focused at th
origin, forming a small cusp.

e

p2+p3=4. (2.4b
Any linear superposition is also a solution, and we can con
struct any combinations satisfying the restricti¢h4b). If

we regard p, as the free parameter, ang,(p,)
=(4—p?)Y2>0, then the general superposition of products
(2.49 is

2 ~ ~
o) = fo H(Py) Jo(Pyo/H) Io(pul o)UY,
25
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tion would be a Pearcey functiorii) However, looking
again at the Schdinger equatior(2.3), thev coordinate is
like a cylindrical radius, so the cusp is better regarded as a
cylindrically symmetric object, like that described in Sec. IV
of paper Il. Its wave function should be a Fresnel-Bessel
integral analogous td1.4.13). (iii) Furthermord again look-

ing at the Schrdinger equation2.3)], the u coordinate is
also like a cylindrical radius, so plane waves like

exp@pzz/ﬁ)<—>exp6puu/i’z) have to be converted to Bessel
functions.

B. The wave function for a two-dimensional cusp

Figures 1 and 2 show the cusp in,(1) space. If these
coordinates,u) were an ordinary Cartesian space, then we
would have a two-dimensional cusp as described in Sec. lll
of paper Il. All of the formulas therein would hold with the
following transcriptions:

X—v, Z—U,

Px— Py »

P=\2mE=p3+p>=2,

!
1

Pz—Pu;

m=1, t'—r 0 —0'. 2.7

(7" and®’ are local parameters of the cusp maniffid.)
However, certain changes of sign arise because in the

present caséor the 3 or 2 bifurcation u>0 as the particle

moves through the cusp. Thus Eqfl.3.1), (I1.3.4a),

(11.3.4b), (11.3.5a), and(11.3.7d) become

H(p, ,pu,v,u)=(p2+p2)/2, (2.89

Sy(Py ) =Se+ (4= pA)YAu—uy) + tap?, (2.8

Pu(py ,U)=+\4—p3, (2.89
u(7,0")=—u,+27cod’'+8aB®'2+ . . . .
(2.89

We need to construct that particular superposition such thed slightly different representation & is more convenient

the associated ray$rajectorie$ form a cusp. We will show
below that the desired superposition is given by

H(p,) =BYo(20,(P.)K(P,)

(2.9

i
Xexr{r (—3a,p;—Fasp;) p,
A

with B= — 7232 (So/ = pyml2=m) Sy is the action of the par-
allel orbit andy, is the Maslov index before the bifurcation
of the parallel orbit. The function¥o(20 ) and(p,) will

for us,

Sy(p, U)=Sp+ Pyu(p,)u—Sa;p?—tagpl. (2.9

a, is related to the tip of the cusg., a;=—u./py(p,), and
a;=—«a. See Appendix A for evaluation of these values.

The corresponding configuration-space wave function is

1 " _
(v,u)= —F— explip,v/h) o(p, ,u)dp,,
bo(v \/Tmhf pip,v/h)o(p p
(2.10

be defined later. Physically, they represent the angular distriwhere the semiclassical wave function in the mixed space is

bution of the initial outgoing wave and the semiclassical am-
plitude of the returning wave in mixed position-momentum
space.

The construction closely follows that given in RéL],
and proceeds in three stegs. If (v,u) were ordinary Car-

tesian axes, then the cusp would be a two-dimensional objegf€ Jacobians and
lp(pvoi Uo),

like that described in Sec. Il of Ref1], and its wave func-

Ya(p, W) =Aa(p, W) expi[Sy(p, ,u)/A — var/2]}.
(2.11)

The classical amplitudaz(pv ,u) is related to the ratio of

initial outgoing wave function
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2 As always, the amplitud&(p, ,u) is equal to the wave

~ ~ 32(p001u0) . .. . . .
Ay(p, ,U)=(p, ,Ug) | = function on an initial surface times a ratio of Jacobifig.
0 Jo(p, ,U) (11.4.10)].
~ a(p, ,u AP, U)=A(Pg.py.U
T, = @iz APWTAReRW
' = lp(pxolpyO!UO)l‘](pXOlpyO!UO)/J(pX!py!u)|l/2'
w(pvo,uo) is the initial outgoing wave in the mixed space. (2.17
Near the cuspy,(v,u) can be reduced to a Pearcey function o ) _ ) ]
[Eqg. (11.3.2D)]. The initial points y ,py.,Uog) are functions of the final
points (o, py ,u); each p,,py,,Uo)is the point on the initial
C. The wave function for a cylindrical cusp surface from which the trajectories that arrive pf (p, ,u)

In this second step we continue to treass if it were a emanated. The Jacobian[Eq. (11.4.5a)]
Cartesian coordinatéike z), but we consider the cylindrical _ L a(pxs Py U) a(p, ,U) _
nature of thev coordinate. We may imagine sweeping the J(p,,py,u)=—— @,yq), =p, ,"@, =p,J2(p, ,u).
cusp in Fig. 1 around the=0 axis. Then the associated d(7,0",0") (7,07 21
wave functions are focused onto that axis and are much more (218
intense ab =0 than would be predicted by the Pearcey func-jyst as in the discussion in Sec. V A of paper 1, all Jacobians

tion. ) . .. can be expressed in terms of “global” parametetrsH,)
To construct the wave function, we create two fictitious 5ther than local parameters'(®'). 0, is the initial angle

Cartesian,y) such thav = yx“+y“[3]. We can then carry  of the outgoing trajectoryr is the scaled time witlr=0 at
over the formulas from Sec. IV of paper IlI, with the tran- ¢ beginning of the trajectory. Sind®@'=0, and 7' =7

scriptions +const, 9(,0")/a(7,04)=1, and Jo(p, ,u)=a(p, ,u)/
tl_>7_l, 0I_>®I, (P,_)(I),! (9(7',0).

p—v, Z—U, D. The wave function on the initial surface

We use the same method as in Sec. V B of paper I, but

P—Py, PPy, P=vpi+pi=2, we get a different result because of the different physical
situation. In Ref[1], as the detached electron moves away
X—X, y—Y. (2.13  from the neutral atom, its wave function is a free-particle

outgoing spherical wavéwe neglectF and B close to the
Again certain sign changes occur. The local parametric repatom, and there is no long-range Coulomb forde the

resentation of the orbits is similar to E@l.4.2). present case, the electron occupies a zero-energy outgoing
o spherical Coulomb waveOf course, in both cases there is
X(7',0",®")=+27"sin®" cosb’, an angular modulation of the spherical wave arising from the
guantum selection rules.
y(7',0",d")=+27"sin®’ sind’, In configuration space this outgoing wave4g
u(r',®")=—u,+27'co®’'+8a®'?+ . . ., Youl T o, 00) = — | w2234 5 e =137M4 B0y (4.).
(2.14 (2.19
the generator of the Lagrangian manifold is similar to Eqs.l'et uS reexpress this in tgrms of the spherical version of
(I1.4.3¢) and (11.4.3d), scaled semiparabolic coordinates
—~ ~ — 2 — 1/4 — —1 —
S(p, W)=So*Pu(P,)U—3a:1p;—agp;,  (2.19 R U+ o= J2rFY, 0 =tan =02 o
and the wave function iny(u) space is similar to Eq. Tphys
(1.4.13),
1 oul T 0+ 00) = Youlvo,Uo)
P(v,u)= _fi Alp, W) Jo(p,vlh) - 7T1/223/2Ra3/2,;3/88—iawmeipFeo/f%yO(Z(%)_
—i
(2.21
e _1 2_1 4117
X expi{[SoFpu(py)U—281P, ~ ¥25P, /7 Now thinking of this as a function ofu{y,uo), we transform
—var/2})p,dp, . (2.16  to momentum space to construgl,(p, o). For this pur-

pose we again use the two fictitious Cartesian coordinates
We have included here the phase associated with the Masl@and carry out a two-dimensional Fourier transformation by
index in the mixed space;, the stationary-phase method,
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¥ v 1u :~ X 71“ ~ i i
‘/’out(p 0 O) lpout(pxo pyo O) A(pv,u)=Cyo(2®p0)e'on“0’ﬁ

1
—IC o)
Topupy) (o)

1 A
) i qu_l(p;XerW)/h] p,. dp 1/2
2mih K(p,) = po apo ,
X thou( X, Y, Up)dx dy v vl
C=—ij 77_1/22[:3/8e—i377/4’ (227)

=—j 771/223/2F3/8e7i37r/4exnr_i puo( PUO)UO/%]
and so, the returning wave function in the mixed space is
X Vo(20,,)(Ry?P cogd, ) L. (2.22 _ .
eflpu(pv)u/ﬁ

U - 5 )elPulo/h b
Compared to Eq(ll.5.13), we get different constants and a PPy )= CIo(20 ) €T TR (p,) Jupy(p,)

different angular factor, as would be expected; the more _ R
subtle difference is that Eq.(2.22 contains R, xexpli[(So— sa1p2—azp)/h — vml2]}.
=Ro(Py0,Ug) =Uo/coB,, . This is another dependence on (2.28

the initial boundary which must eventually cancel.
The uy dependence in the preexponential factor has happily
E. The ratio of Jacobians canceled.
N i i As we gaze at Eq2.28), we see that tha dependence of
As always our Jacobian is initially defined in real Carte- #(p, ,u) can be correct only fon away from zero. Equation
sian coordinates and real time,y,z,t) [4], (2.28 is a semiclassical returning wave, and nothing in the
A(%,Y,2) argument leading to Ed2.28 implies that the formula will
—_— (2.23  be correct everywhere. Indeed we already know from Eq.
J(t,00,¢0) (2.5 that the correctu dependence must be given by a
. _ _ Bessel function. But Eq.(2.28 contains part of the
In terms of the scaled semiparabolic coordinatesi] and asymptotic expression for a Bessel function,
scaled timer, it becomes

z 1 [ PU T
d ,U) uJd ,U) J (DUU/h) — [eX[{I(T— —)
Jxy,2)=J(v,u)=vu a((:, B) > a((;j@O) ’ arge v \2rp ulh Fo4

‘J(Xayrz):

vu (P
=5 J(v.u). (2.24 +e><r{ '( PR
(2.29
Ih_?()r:\_;ged—space Jacobian is obtained by again extendmﬁ;herefore, to make the wave function apply to all values of
e u, we need to replace
~ &(X,y) pvu &(pv!u) . 7 7 A—iwld %
J(p, ,W)=Jv,u) ———=—F —. (2.2 exp(—ipyu/h)/\pu— V2m/he "™ Jo(pyult).
(P =I0 0 50000~ 2 a2 MNPy P 5 20
Thus the ratio of Jacobians in E.17) becomes Thus
_ i o\ 12
J(Py,Uo) _ Py, Yo &(pvo,uo)/ a(p, ,u) ¥(p, ,U)=Cp(20, )ePuo"K(p,) ;)
‘](puvu) pvu ‘9(7-!®0) ‘9(7-!@0)

puoquuo apvo
P UPy  Ip,

Xewﬁo( w)

(226 P

X expli[ (Sy— sa;p2— tasp!)/hi— var/2]).
Implicit in Eq. (2.26) is the fact that the local parameter RIL(So~2a1P,~38sP,) vrl2l}

0', the final angle of each closed orbit, is equalftg, the (2.31

initial angle for that orbit. . . . N
9 This wave function now carries the “cylindrical character”

_ of the u coordinate.
F. The returning wave To further simplify Eq.(2.31), we note that as in Sec. V C
On combining the outgoing wave function with the clas- ©f paper i, the initial and final angles of the trajectories are
sical amplitude in the mixed space, we obtain the prefactofdual,®,=0, @, =0, and forp,=0, Sy+py (P, =0)uo
of our returning wave function in the mixed space, =S,. The semiclassical theory developed by Maslov tells us
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that when the momentum space indexs properly evalu- Ill. OSCILLATOR-STRENGTH DENSITY
ated, all formulas are consistent. We find that our uniform
semiclassical results reduce to the earlier primitive-
semiclassical formulas if we takev=y, (before Now we are ready to derive a refined formula for the
bifurcation+2. oscillator-strength density. The initial wave function is as-
For future reference, we will need to evaluate the preexsumed to be

ponential factor at those values pf that correspond to tra-

jectories that return exactly to thé nucleus. One of them is $i=Ra(NYi0(6,¢) 3.9
p,=0, and at this point

A. Reduction to a Fresnel-type integral

and
1/2 1/2
o] P2 e [ |Peo 7Peg _| P D/ =rRn(N X bj,Yiro(6,¢). 3.2
Py Py, Py 9Py, g Iy |y —o I’
J Later, in comparison with experimentss 3vill be used as
_ v Py A (2.3  the initial state, so
~|ldp, dv NN '
v ug=0 12|

$i=Rao(N Yool 0,¢), Dihi= V1A Ra(r)Y1o( 6, (P)i )
3.3

whereJ?,, defined in[5], is the element of the monodromy _ o _

matrix evaluated at the parallel orbit. The other is the newly' e oscillator-strength density is proportional to the overlap

created closed orbits having,= + \/a, /as, and of the returning wave with the “source{D i;| ),
—2(E—E))
pvo apvo 12 puo apuo 2 DflzT Im<D¢I| ¢>1 (34)
2 o
v vl v v uf:O and
(?p 1/2
Uo -
| ap, |, 70‘1’ (2.33 <D¢i|¢>=2wf rzclrf0 sing do(D ). (3.5
=

Substituting Eq(2.35 and changing the order of the integra-

as indicated in Ref[5]. At the bifurcation,|dp, /dp,|=1 tion, we obtain

should apply to both case&See Appendix A.

Finally, the returning wave function in the vicinity of the © -
nucleus(when the cusp is near the nuclgis obtained by (Dll/i|¢>=f G(pv){ fo fo D ¢iJo(pu(p,)ulf)
Fourier transformation of(p, ,u),

X Jo(p,v/fi)r2sing dr de} p,dp,, (3.6

P(v,u)= - f expli[p,v COS(¢—¢p)]/fi}
—2mih where
X (p, ,u)p,dp,de G(p,) =27BY(20,,)K(p,)
I [ d 2.3 b1 1
— | Jo(p,o/R)Y(p, WP, dp,.  (2.34 xexpg — | —=a;p2—=agp?||. @7
—ih %, 2 v 4 v
More explicitly, ®,, andp,  are functions of, .
The angular part of the integral is
df(v,u)=Bf Vo(20 5 ) K(p,)Jo(Pv/1) Jo(puu/ ) AezfWYVO(H)Jo(puu/;i)Jo(pvv/ﬁ)sin 0do, (3.9
0
X ex ' —Ea 2—Ea 411p,d ml2
sl 1Py 8Py | POy A0=4f0 Sin® coMY,o(20)
. X Jo(PR cog pcodd /%) Jo( PR sin® psin®/4)d0O.
B= _7723/2€I(Solﬁ—,u”7r/2—7r). (235)

(3.9
We have thus derived Eq&.5) and(2.6). In Appendix B we show that this integral is equal to
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' o1+ 2(V/81)
Ag=4(—)"Y,o(0p) ————. 3.1
4 ( ) IO( P) (\/a) ( @
Then the radial part of the integral
A= b:,oferm(r)Agrzdr (3.11)
I 0
is proportional to)y(205p), since
' * oy (\/g)
A=> bl 4(-1)"Y, of Ry (r) 2227 p3g
; o4~ Yiro(0) | Ru(r) = === ridr
=v22> (= 1)"1(n,1L1")byY ol Bp)
I/
=v2)5(20p) (3.12
in which
* Jop 8
I(n,I,I’)=J’ Rm(r)Mr3dr. (3.13
0 Vr

Now we need to evaluate the integral oyer, and thus
obtain (D ¢;|#). On combining Egs(3.7) and (3.12), Eq.
(3.6) becomes

<Dl,//||l,b>:f G(pv)Arpude
:B'J Vo(20,,)V6(20p)K(p,)

i
XeXF{g (— %alpﬁ_ %a3p3) p,dp,
(3.19
where

B'=2m/2B=— 722%/(%/i-mmzm (315

We now have a formula for the oscillator-strength density

expressed in terms of an integral of Fresnel type.
B. Uniform asymptotic expansion
Defining x= pﬁ, A= —a3/2ﬁ, a=a, /a3 we obtain
(Dyil)=3B'I(\,Q), (3.16
where
I()\,a)=f gx)exdin(ix®+ax)]dx, (3.1
0
with
9(p2)=Yo(20,,)V0(20 ) K(p,). (3.18

This is now a Fresnel-type integral, like Egl.4.14). Com-
bining this with Eq.(3.4), we obtain

361
Df,=ImB"I(\,a), (3.19
where
B’ = _(E_ E') B’ :(E_ Ei)/n_23ei(80/;L—MH7T/2—7T).
an
(3.20

In some of our calculation we used this formula together
with the additional approximatiog(pi)wg(0)= 1. We also
used a slightly more refined version of this approximation:
Bleistein[6] wrote down a uniform approximation for inte-
grals like Eq.(3.17).

One can also show that E€3.19 reduces to the usual
semiclassical formulas for the parallel orbit and for the new
orbit in appropriate limits.

C. Reduction to semiclassical formulas and consistency check

As in Sec. V E of paper I, further approximations to the
integral formula(3.19 reduce it to previously derived semi-
classical formulas. Before the bifurcatioa; <0. We use
Egs.(11.4.150, (2.32, and(A6) to obtain

Ve
|siny2e 7]

X sin(nSF ~ V4= wi2— 7l2).

Df9=(E—E;)2%27FY4)5(0)),(0)

(3.21

This is exactly the formula for the parallel orbit used in our
earlier work.

After the bifurcationa; >0, and the contribution from the
parallel orbit arises from the second term B¢.4.153. It is
identical to Eq.(3.21), except that the Maslov index after the
bifurcation has increased by 2. The contribution of the new
orbit arises from the first term in E€ll. 4.153 together with
Egs.(2.33, (A5), and(A7). The result is

Df]®"=(E—E;) w¥221Y2)( 80) Vo( 6o) F Y3sin( 6,/2)
X(JTE 71/23in(snew|:71/4_ Iunewﬂ_/z

— 372+ 3m/4). (3.22

This agrees with Eq(3.3) in Ref. [5].
Finally, at the bifurcation, we use E(l.4.15b and Ref.
[6] to find

Df;=(E—E;)m*2%F8)(0))(0)(az) ~*?
X Sin(SyF ~Y4— u, w/2— 37l4) + (E— E;) w24F V4
X g'(0)(ag) " isin(SyF ~Y4— w m/2— w/2). (3.23

The first term tells us that the combined recurrence strength
of parallel and new orbits at the bifurcation is again half the
semiclassical recurrence strength of the new orbit by itself.
The second term is a correction arising from Bleistein’s im-
proved uniform approximatiofi6]. In one of our calcula-
tions, it turned out to be about 8% of the primary term.
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FIG. 2. (a) Enlarged picture of the cusp. Trajectories go out in

4 , ; FIG. 3. Recurrence strength near the 3:4 bifurcation. Needles
the upper half of the figure, and return moving upward in the Iowerare theory, fine line is experiment. Heavy line is calculated by
half. (b) Lagrangian manifold (u,p,) near the cusp.

smoothing the needles consistent with the experimental measure-

ments. One overall multiplicative constant is used to normalize ex-

IV. RECURRENCE SPECTRA AND COMPARISON periments and theory in this figure. All peaks are calculated using
WITH EXPERIMENTS the “primitive”-semiclassical approximation except the one

. . ) . . marked with the arrow. That one is the fourth recurrence of the
In this section, we compare our calculations with experi-parallel orbit and the new orbit that bifurcates from it. The com-

mental measurements performed by Courtaegl. [2]. bined recurrence strength is calculated from &q19.
The experiment was performed am=0 states of lithium
for a number of scaled energies betweesr —2.1 and hydrogen spectrum should differ from the lithium spectrum
—0.37. The experiment employed a lithium atomic beamonly by a constant.
which passed through holes in the center of a pair of electric We show the comparison of calculated recurrence spectra
plates. Between the field plates, the atoms were excited fromith measurements in small steps sohear the; and 2 bi-
the 2s state to the 8 state by a two-photon transition. A furcations. The same normalization constant is used at every
second laser was polarized parallel to the applied field andnergy in each figurédifferent normalization for the two
excited the atoms to Rydberg states. Recurrence spectra wefigures, because the experiments are not absolditeick
obtained by Fourier transforming the measured photoabsorpines are calculations and thin lines are measurements. The
tion cross sections. needles are the strength of individual orbits and their repeti-
The initial state is given by Eqg3.3). The oscillator- tions.
strength density can be calculated by using the hydrogen In Fig. 3, near bifurcation, the uniform approximation is
model with 3 initial state, since the effect of the phase shift used for the fourth recurrence, and the semiclassical approxi-
caused by the quantum defect of lithium is small. The remation is used for all the other recurrences. Respectable
duced recurrence spectrum can then be calculated accordisgreement is found between theory and experiment.
to Egs. (3.1, (4.1), and (4.2 of Ref. [5]. This calculated In Fig. 4, near bifurcation, the uniform approximation is
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APPENDIX A: EVALUATION OF a; AND a3
00411 e=-05 / / 1 From Eq.(9.22b of Ref.[4] if the initial and final bound-
ary circles are shrunk to zero,
0.02 .
/\ v(T1,00)=+1—coshy/|e|sin(\2|e|7), e<0. (A1)
P I
0.00 AN Thus
004 ——0. 4
Bn043 / D, (7, 00) =2 SN 65/2)cog \2[e] 7). (A2)
2 /
il /N 1 To obtaina,, we consider the function
L
3 PR A A A JS(p, ,u=0
£ 0.00 ' v(pv,u=0)=——(p;p ):alpv+a3p3+' T
=1
8 | v
-l o P (A3)
]
=
(3]
% 0.02 ‘/ b a = dv _ [60(7!00)/‘900]7 _ SIn( V2|8|T)
= A\ / tap, u=0, [P, (7,00)/ 3601, \[2]e[cog\2|e|7)
0.00 —ta A /N . l ° (A4)
0041 £-0.37 ] (The derivative at fixedi and the derivative at fixea are
equal atp,=0.) After bifurcationa; is related toa,; through
the newly created orbit,
0.02 - b
/N j\ /\/ l p, =2 sin(6y/2)~ \|a; /ag]. (A5)
0.00 LT T T . I T
0.0 1.0 2.0 3.0

scaled action Before the bifurcation, howevea; is obtained by extrapo-

lation.
FIG. 4. Same as Flg 3, near 1:2 bifurcation. The peaks marked The parameteal |S also related to an element of the

with arrows are the second and fourth recurrences of the para”%onodromy matrix of the parallel orbit. Consider the deriva-
orbit and the associated bifurcated orbit. tive of v with respect to the initiap, :
-

used for the second recurrence and its repetition. Experimen-

tal measurements should be most reliable for this case, since 0 _ % | _ dv(7.60)/d6p _ sin(y2|e|7)
they were made repeatedly in small steps specifically for the 12 Pyl u_o IPuy(T,00)/ 6o V2le|
purpose of studying the bifurcation. Here the agreement be- p,=0
tween theory and experiment is very good.

As discussed elsewhere, the maximum recurrence _ ap (A6)
strength does not occur right at the bifurcati@n= —1.12 cog2[e|7)

for the 2 case o= — 0.4 for the} case, but a little after the

bifurcation, which agrees with the prediction of E§.23). a, is related to the element of the monodromy matrix

evaluated at the new orbity5", as well. Whenever EqA3)

V. CONCLUSION can be truncated at the cubic level, we find

A refined formula for the oscillator-strength density is de-
rived by using a uniform semiclassical approximation. This Ji"~*2a;. (A7)
formula is especially useful near bifurcations where the
semiclassical formulas diverge. Comparisons between theolyyqof:
and experiments show very good agreement both near and
away from a bifurcation.

L 9Py vl ap, |
ACKNOWLEDGMENTS Py |u:o dvldp,,

(A8)
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APPENDIX B: INTEGRAL INVOLVING PR 3
BESSEL FUNCTIONS X [ ex;{ i ( —_— = ’77)
;4
In this appendix, we prove the following result: h
w2 PR 3
A0/4=f sSin® coPY,/(20) +exg —i T—Z T . (B3)
0
f
X Jo(PR co® pcodd /1) Jo( PR Sin® psin®/%)dO Likewise, the two Bessel functions become
(B1) - .
Jo(PR co® pcod /%) Io( PR sin® psin®/#)
, Jor 1 1(PRIA)
=(-1) Y|'0(9P)+—A 1 1
(PR/A) =

2nPR/A ¥ COW pcoPsin® psin®

, Jp42(VBI)
=(—1)"Y,o(0p) AT B2
(—=1) Yio(6p) Jor (B2) x[ex{i(ﬁcos{(ap—(a)—g”

where =20 and 6,=20. h
Referring to Eq. (3.8, the product Jy(p,(p,)u/ _
ﬁ)Jo(pvv//%) is a solution to the zero-energy Sctioger +expg —i ﬂqcos(@lj_@)_f
equation(2.3), and Eq.(3.8) represents the projection of that A 2
solution onto the spherical harmon¥¢ o( #). The projection

is a function ofr which must still satisfy the zero-energy PR
Schralinger equation with angular momentumi.e., it must +expgi — cog0p+0)
be the same constant timés;. . ;(1/8r)/\/8r. We evaluate | A

the constant by going to large and using the stationary-
phase approximation. PR

Using the asymptotic formula for the Bessel function, at +exg —i — cog0Op+0)
largeR Eq. (B2) becomes h

] . (B4)

32|'+1(PR/’Ai) Or_1 plugging _in Eq.(B4), _Eq. (B1) is now separated into
(—=1)"Y115(20p) - four integrals with two stationary-phase poirtls=0, and
(PRI%) O =7+ 0, for each of the first two terms, and two more
0®=—-0p and® =7— 0 for last two terms. However, only
( 1 )1/2 PR\ % 0 =0, contributes, since the value of bothand @ is in
=Y,o(20p) — — the range of (G7/2). Using the stationary-phase approxima-
™ ( h ) tion, the sum of the first two terms reduces to E8g).
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