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Hyperspherical hierarchy of three-electron radial excitations

Toru Morishita,* Oleg I. Tolstikhin,† Shinichi Watanabe, and Michio Matsuzawa
Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1 Chofu-ga-oka, Chofu-shi, Tokyo 182

~Received 1 May 1997!

We investigate hierarchical representation of three-electron radial excitations, relying on the replacement of
a sequence of ordered individual electron radial coordinates by a hierarchical sequence of hyperspherical radial
variables. In the spirit of the hyperspherical method we argue that the latter variables allow adiabatic qua-
siseparability of the three-electron wave function. We examine this by approximately evaluating hyperspherical
adiabatic potential curves and channel functions for the Li(s3) configuration. The hierarchical representation
permits one to display manifold aspects of the triply excited states with a pair of radial quantum numbers.
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PACS number~s!: 31.10.1z, 31.15.Ja, 31.25.Jf
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I. INTRODUCTION

Despite the success of the hyperspherical method for
three-body Coulomb problem@1–7#, its extension to system
with a larger number of particles is still in its infancy. Eve
the problem of three-electron atoms under the assumptio
an infinitely heavy nucleus has not been solved to a satis
tory level yet. The nontriviality in such a generalization
the method rests on its unique perspective toward ma
body effects. Indeed, while various more conventional
proaches in the field of atomic calculations use the individ
electron coordinates as a basic set of independent varia
allowing the many-body effects to enter only through t
choice of basis functions and the way of constructing th
proper linear combinations, the hyperspherical method inc
porates part of the interelectron correlations from the ou
by adopting a coordinate system consisting of collect
variables. While use of the individual electron coordina
effectively reduces calculation of the Hamiltonian matrix
ements to one-dimensional integrations, the hypersphe
method usually requires evaluating integrals of a higher
mensionality, which becomes a technical bottleneck of
problem. The three-electron atom problem is where this te
nical difference manifests itself whereas the difference
marginal for two-electron atoms. Imposing permutation sy
metry on the total wave function is another problem, for t
commonly considered hyperspherical angular variables
not invariant under the permutations of the identical partic
again with the exception of two-electron atoms. It is th
undeniable that at the present stage of its developmen
hyperspherical method faces a few technical problems
make its extension to genuinely many-electron atoms p
hibitively difficult. In fact such attempts have been restrict
so far to only a few qualitative discussions~see, e.g.,@8#!.
Yet, there are features in the hyperspherical method
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strongly attractive that continued efforts are being made
elevate this method to a level of practical applicability. F
instance, the hyperspherical method correctly singles out
hyperradius, a variable that plays a special role for syste
with Coulomb interactions. The hyperspherical coordina
are usually close to the normal mode coordinates of the
tem to such an extent that the hyperspherical quantum n
bers approximately represent excitation of internal collect
degrees of freedom. At last, but not the least, the hyp
spherical potential curves provide, simply by sight, valua
information about the system’s energetics.

A brief history and the current situation in applications
the hyperspherical method to three-electron atoms are as
lows. A first attempt was made by Clark and Greene in 19
@9# who used the hyperspherical harmonics as a basis se
expanding the adiabatic channel functions. They noted so
general features concerning the grouping of hyperspher
channels into those separately supporting doubly and tr
excited states as well as sharply avoided crossings am
different groups of curves that suggested a dramatic dif
ence in normal mode patterns between the different grou
The convergence, however, was so poor on account of
use of the hyperspherical harmonics that even the asymp
thresholds did not come out correctly. This convergen
problem was resolved by Watanabeet al. @10# by the use of
Slater-type orbitals transcribed for the hyperspherical co
dinates. The resonance positions of He2 were evaluated for
states of4So, 4Po @10#, and 2Po @11# symmetries, achieving
a reasonable precision even within the adiabatic approxi
tion. A similar basis was later used by Greene and Clark
analysis of2Po states of Li@12#. Later, a more flexible ap-
proach for solving the adiabatic eigenvalue problem by e
ploying direct numerical schemes such as theB-spline
method was pursued by Yanget al. @13#. The hyperspherica
adiabatic channel functions so-obtained have been anal
by way of their graphical display in the case of the Li(s3)
configuration@13#. In the wake of the recent experiment
reports on the hollow lithium atom@14,15# ~hollow or vacant
with respect to the two 1s orbitals but the 2s orbital remain-
ing occupied!, Yang et al. @16# extended their study to
Li( 2Po) states. Besides these hyperspherical calculations
recent experiments prompted a number of theoretical stu
by different methods. The configuration interaction resu
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3560 56MORISHITA, TOLSTIKHIN, WATANABE, AND MATSUZAWA
FIG. 1. ~a! Three-dimensional image ofD. r 1, r 2, andr 3 are individual electron radii,a1 anda2 are angular variables, which are simila
to standard spherical polar angles but over a restricted domain of one octant of a sphere, used for the present parametrizationD. ~b!
Division of thea1-a2 plane into six domains according to the relative magnitudes of the radial variables. An interchange of any pai
three electrons is equivalent to interchanging a pair of neighboring domains. Our attention focuses on the upper right domainr 1

,r 2,r 3, referred to asD1/6. ~c! A contour plot for a typical adiabatic channel function~for doublet symmetry! demonstrating quasisepa
rability in the two upper domains.
l

ab

ll
o
st
ie
ys
lig
es
e
g

in
ec
o

ee
o

on
ria
d

ro
f

he

-
he

th
-
bi
th

for
ce
con-

ap-

ig-
ief

pa-

n in

ree
on-
a-
in

n of
ns
so-
of

-
re

o a
will

ur
dii.
the
by Chung and Gou@17# as well as the multiconfigurationa
Dirac-Fock calculations of Koike and co-workers@15# seem
to identify the measured resonance positions reason
well. From a numerical view point, the recentR-matrix work
@18# seems largely capable of providing spectroscopica
valuable information. However, regarding some details
the experimental features and their explanations there
remains room for interpretation and thus for further stud
by alternative methods. In particular, a normal mode anal
by the hyperspherical method is expected to cast some
on the observed triply excited spectra, as it did so succ
fully for doubly excited ones. It is in this spirit that th
present article begins, but its aim will be restricted to brin
ing attention to some fundamental construction aris
within the context of the hyperspherical method whose r
ognition might help one to understand manifold aspects
three-electron correlations.

Specifically, we study adiabatic quasiseparability of thr
electron wave functions with respect to a certain hierarchy
hyperspherical radial variables. Our original motivati
stems from a simple observation of the graphical mate
presented in@13#. Let us make the point explicit with the ai
of Fig. 1. Here, as in@13#, we restrict ourselves to thes3

configuration. Using the parametrization of@9#, the configu-
ration space of the hyperspherical adiabatic eigenvalue p
lem can be conveniently represented by one-eighth o
sphere in three-dimensional space@see also Fig. 1~a!#, which
we shall callD. We observe that the nodal structure of t
adiabatic channel functions displayed in@13# indicatesadia-
batic quasiseparability with respect toa1 regarded as a
‘‘fast’’ and a2 as a ‘‘slow’’ variable for the present param
etrization ofD in each of the two domains adjacent to t
upper corner in Fig. 1~a! @see Fig. 1~c!#. There are totally six
such domains; each constitutes one sixth ofD. All six do-
mains are, of course, physically equivalent. However,
present parametrization ofD introduces an essential differ
ence between them in the sense that the quasisepara
emerges as due only to the two upper domains. Note
these upper domains are not where the authors of@13# fo-
ly
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cused their primary attention. As a preliminary attempt
qualitative support of the quasiseparability, we introdu
here an approximate treatment based on restricting the
figuration space of the problem from the entireD to the
upper right domainr 1,r 2,r 3, which we shall denote as
D1/6. Such treatment is achievable by assuming suitable
proximate boundary conditions on the boundaries ofD1/6.
We examine the quality of this approximation against a r
orous diagonalization of the adiabatic Hamiltonian. A br
account of this work was presented earlier@19#. It is possible
to represent the configuration space using an alternative
rametrization such as that suggested in Ref.@20#. We con-
tinue to concentrate on the hyperspherical parametrizatio
this paper.

II. FORMULATION OF THE PROBLEM

The hyperspherical method roughly consists of th
stages in its actual implementation. The first one is the c
struction of adiabatic channel functions with which this p
per is concerned, hence this point will be amply described
this section. The second stage is the adiabatic expansio
the total wave function using the adiabatic channel functio
as a basis set. A most strongly recommended method of
lution for the second stage is currently the combination
the slow/smooth variable discretization~SVD! method @4#
and theR-matrix propagation technique@21#. The third stage
is to extract theS matrix or its equivalent from the propa
gated solution@5,6#. Both the second and the third stages a
independent of the first one, and are thus applicable t
broader range of problems. Such being the case, here we
focus on the first stage only.

A. Hierarchical approximation: General idea

In order to convey the gist of our theme, we begin o
discussion with the definition of a sequence of hyperra
Let us consider a somewhat general context to render
meaning of ‘‘hierarchy’’ explicit. LetC be a total wave
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56 3561HYPERSPHERICAL HIERARCHY OF THREE-ELECTRON . . .
function of anN-electron atom, and letr i5(r i ,u i ,f i) be the
position vectors of the individual electrons. Let us disreg
for the moment the spin variables, assuming thatC has only
one spatial component. Due to the permutation symmetr
C, it is sufficient to consider the sector wherer 1<r 2<•••

<r N . We replace the individual radiir i by a sequence o
hyperradial variables R15r 1 ,R25AR1

21r 2
2, . . . ,RN

5ARN21
2 1r N

2 . All the individual angles (u i ,f i) will be col-
lectively denoted asv. Note the importance of the orderin
r 1<r 2<•••<r N and the corresponding definition of the h
perradii. The key idea of the hyperspherical method lies
the assumption of approximateadiabaticseparability of the
motion inRN from those in all the other variables. There a
two consequences following from this assumption:~1! The
total wave function can be approximated byC
5F (N)(RN)F (N)(R1 , . . . ,RN21 ,v;RN), where the radial
factor F (N)(RN) represents the major dependence ofC on
RN , while the adiabatic channel functionF (N) depends on
RN only parametrically. ~2! The channel functionF (N)

evolvessmoothlywith respect toRN , preserving its noda
structure, except for localized regions where the adiab
potential energies to be discussed later encounter qua
generacies, namely, avoided crossings as well as whereRN is
so small that the orderingr 1<r 2<•••<r N is insignificant.
Thus the approximation forF (N) that is valid asymptotically
asRN→` should qualitatively hold for all the values ofRN .
Note that within the sectorr 1<r 2<•••<r N , the limit
RN→` actually meansr N→`. In this limit, F (N)(RN) coin-
cides with the radial wave function of the outermost electr
Meanwhile the parent atom is characterized by its own
perradiusRN21, and using the argument of adiabatic sepa
bility again leads to the further decomposition

F~N!5F ~N21!~RN21 ;RN!

3F~N21!~R1 , . . . ,RN22 ,v;RN21 ,RN!.

A recursive use of this argument provides a picture of h
archy of the adiabatic separation with respect to the hyp
radial variablesRi such that the total wave function in th
sectorr 1<r 2<•••<r N can be approximated by

C5FnN

~N!~RN!FnN21

~N21!~RN21 ;RN!•••

3Fn1

~1!~R1 ;R2 , . . . ,RN!Ya
LM~v!. ~1!

Here the factorYa
LM(v) represents the total dependence

C on v, whereLM and a stand for the total and all the
intermediate angular momentum quantum numbers, res
tively. Let us call this formula the ‘‘hierarchical represent
tion.’’ Each radial factorFni

( i ) in Eq. ~1!, labeled by its num-

ber of zerosni with respect toRi , depends parametrically o
all the ‘‘senior’’ hyperradiiRj . i . The functionsFni

( i ) should

also bear dependence on all the ‘‘junior’’ indicesnj , i which,
however, we do not show explicitly for simplicity. This par
metric dependence, however, does not affectni , thus within
the hierarchical representation, Eq.~1!, the set of indicesni
together witha and LM define a complete set of quantu
numbers specifying a given state.
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Formula ~1! applies within the sectorr 1<r 2<•••<r N .
Using the permutation symmetry of the total wave functio
one should be able to extend this formula to the whole c
figuration space. This implies that the function~1! must sat-
isfy certain conditions on the boundaries between differ
sectors where two of the individual radiir i coincide. For
example, a totally antisymmetric wave function should va
ish on each boundary of the sectorr 1<r 2<•••<r N . In
principle, such boundary conditions can be formulated a
for a general case when the total wave functionC, including
its dependence on the spin variables, has more than one
tial components. In reality, the boundary surface of the se
cannot be made separable with respect to the hierarch
variablesRi . As mentioned in the Introduction, this is
common problem for the hyperspherical method. Though
do not know a consistent and, at the same time, practic
applicable solution to this boundary condition problem, so
ad hocprocedure for three-electron atoms will be describ
in Sec. II C below. In spite of this lack of rigor, we hop
formula ~1! is transparent enough to convey our basic ide

B. Rigorous numerical treatment

From here on, let us return to the problem of a thre
electron atom. In investigating the plausibility of the hiera
chy of radial correlations, we restrict ourselves to consid
ing thes3 configuration in much the same way as the auth
of @9# and@13#. Following @9#, we employ the most straight
forward parametrization ofD by means of the two anglesa1
anda2 as illustrated in Fig. 1~a!:

r 15Rsina2cosa1 , r 25Rsina2sina1 , r 35Rcosa2 .
~2!

Here R5Ar 1
21r 2

21r 3
2 is the global hyperradius as com

monly defined, which coincides withR3 using the hierarchi-
cal notation of the previous section. The Schro¨dinger equa-
tion for the rescaled wave functionc5Rr1r 2r 3C then reads

S 2
1

2

]2

]R2
1

Had~a1 ,a2 ;R!

R2
2ED c50, ~3!

where the adiabatic HamiltonianHad(a1 ,a2 ;R) is an opera-
tor in a1 anda2 that depends parametrically onR, namely,

Had~a1 ,a2 ;R!52
1

2S 1

sina2

]

]a2
sina2

]

]a2
1

1

sin2a2

]2

]a1
2D

1RC~a1 ,a2! ~4!

andC(a1 ,a2) is the effective charge representing the Co
lomb potential energy averaged over thes3 configuration:

C~a1 ,a2!5RS 2
Z

r 1
2

Z

r 2
2

Z

r 3
1

1

~r 12!.
1

1

~r 23!.

1
1

~r 31!.
D . ~5!

Here (r i j ). means the greater ofr i and r j , and Z is the
Coulomb charge of the nucleus.
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Following the prescriptions of the hyperspherical meth
@22# we assume the total wave function of the system fo
state with total spinS to be in the form

cS5(
n

Fn~R!S (
S12

Fn
S,S12~a1 ,a2 ;R!xS12

S D . ~6!

In this formulaFn(R) is the radial function, which does no
concern us in this article,Fn

S,S12 is the adiabatic channe
function on which we will focus in the following, andxS12

S is

the spin function defined, as usual, as

xS12

S 5†@x~1!x~2!#S12x~3!‡S, ~7!

whereS12 is the total spin of the electrons having indices
and 2.

The adiabatic channel functionFn
S,S12 and its associated

potential energyUn
S,S12(R) are defined as solutions of th

hyperspherical adiabatic eigenvalue problem

@Had~a1 ,a2 ;R!2Un~R!#Fn~a1 ,a2 ;R!50. ~8!

All the basis functionsFn
S,S12 of Eq. ~6! are among solutions

to this equation. However, not all the solutions of Eq.~8!
satisfy the Pauli principle because the sum overS12 must
result in a totally antisymmetric wave function. Indeed, f
the quartet symmetryS5 3

2, the sum overS12 in Eq. ~6! con-
tains only one spatial componentFn

3/2,1 corresponding to a
triplet parent, whose wave function is antisymmetric w
respect to a permutation of any two electrons. For the d
blet symmetryS5 1

2, there are two spatial componentsFn
1/2,0

andFn
1/2,1 which multiply the singlet and triplet parent sp

functions, respectively. These functions form a basis fo
two-dimensional representation of the permutation groupS3

and they have degenerate eigenvaluesUn
1/2,0(R)5Un

1/2,1(R)
for all the values ofR. Besides, Eq.~8! has also totally sym-
metric solutions, which, however, do not satisfy the Pa
principle and must be omitted.

We solve the two-dimensional eigenvalue problem~8! nu-
merically using a variational procedure with the direct pro
uct of two sets of discrete variable representation~DVR! @23#
basis functions, constructed from appropriately shifted a
renormalized Jacobi polynomials ina1 and a2. This tech-
nique is a two-dimensional generalization of the numeri
method@24#, which has been used for calculating the ad
batic channel functions in our previous studies on the thr
body Coulomb problem@3,4# and two-electron atoms@5,6#.
The method is characterized by features common to o
DVR schemes, namely, fast convergence with respect to
increase of the number of quadrature points, high accur
stability, and relative ease of implementation. By selectin
particular set of Jacobi polynomials this method is eas
extendable to an arbitrary (l 1 ,l 2 ,l 3) angular configuration.

This numerical procedure yields a variational approxim
tion to all low-lying solutions of Eq.~8!, disregarding their
symmetry properties. To sort out appropriate solutions
well as to eliminate totally symmetric ones we apply t
projection operator

P5E1~123!1~132!2~12!2~23!2~13!. ~9!
d
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Namely, for each numerically obtained solutionFn of Eq.
~8! we calculate the matrix element^FnxS12

S uPuFnxS12

S &. The

matrix elements of each component ofP with respect to the
spin functions are very well known. The action of the pr
jection operator on the spatial partFn is carried out numeri-
cally by acting the permutation operators directly on the c
figuration space defined by thea1 anda2 variables@25#. In
this manner, we sort out a quartet and two proper com
nents of the doublet eigenfunctions, which provide accur
numerical information to be used further for comparis
with the hierarchical approximation.

C. Hierarchical approximation for three-electron atoms

HyperradiiRi can be expressed by

R15Rsina2cosa1 , ~10!

R25Rsina2 , ~11!

R35R. ~12!

According to the discussion of Sec. II A, we focus on t
sectorr 1,r 2,r 3. First of all we should fix the value ofR3,
which is regarded as ‘‘slowest’’ variable. BecauseR3 coin-
cides withR, this step is in agreement with the usual strate
of the hyperspherical method. The adiabatic separability oR
leads to the standard adiabatic expansion~6! and this vari-
able is not our concern here. The section of the sector 1
,r 2,r 3 with the hypersphereR5const coincides with wha
we have defined as theD1/6 domain. From here on, we wil
focus on this domain only. Next, we fix the value ofR2.
According to Eq.~11!, this amounts to fixing thea2 variable.
After that, there remains only one variableR1, which is re-
garded as ‘‘fastest’’ and which is now in one-to-one cor
spondence witha1 ; see Eq.~10!. Thus, we consider Eq.~8!
in the domainD1/6 assuming adiabatic separability betwe
a1 anda2. To this end we rewrite the adiabatic Hamiltonia
~4! as follows:

Had~a1 ,a2 ;R!52
1

2

1

sina2

]

]a2
sina2

]

]a2

1
had~a1 ;a2 ,R!

sin2a2

, ~13!

where we introduce the ‘‘junior’’ adiabatic Hamiltonian

had~a1 ;a2 ,R!52
1

2

]2

]a1
2

1Rsin2a2C~a1 ,a2!, ~14!

which is an operator ina1 and depends ona2 and R only
parametrically. Now we define the ‘‘junior’’ adiabatic eigen
value problem

@had~a1 ;a2 ,R!2un1
~a2 ,R!#gn1

~a1 ;a2 ,R!50, ~15!

where n1 represents the number of nodes of the solut
gn1

(a1 ;a2 ,R) as a function ofa1. Hierarchical approxima-
tion to Eq.~8! amounts to substituting in Eq.~13! the opera-
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tor had(a1 ;a2 ,R) by its eigenvalueun1
(a2 ,R) obtained

from solution of Eq.~15!. By doing so, Eq.~8! reduces to

F2
1

2

1

sina2

]

]a2
sina2

]

]a2
1

un1
~a2 ,R!

sin2a2

2Ũn1n2
~R!G f n1n2

~a2 ;R!50, ~16!

wheren2 represents the number of nodes off n1n2
(a2) as a

function of a2. In this approximation, the indexn labeling
different solutions of Eq.~8! is specified by the pair of inte
gers (n1 ,n2), while the hyperspherical adiabatic potentia
Un and channel functionsFn are defined by

Un~R!.Ũn1n2
~R!, ~17!

Fn~a1 ,a2 ;R!. f n1n2
~a2 ;R!gn1

~a1 ;a2 ,R!. ~18!

Let us first list the exact boundary conditions:
~1! The regularity condition atr 15r 250 ~i.e., a250),

Fn
S,S12ua25050, ~19!

and atr 150 ~i.e., a15p/2),

Fn
S,S12ua15p/250. ~20!

This applies to all combinations ofS andS12.
~2! The permutation symmetry under the (12) operato

~12!Fn
3/2,152Fn

3/2,1→Fn
3/2,1ua15p/450, ~21!

~12!Fn
1/2,152Fn

1/2,1→Fn
1/2,1ua15p/450, ~22!

~12!Fn
1/2,051Fn

1/2,0→
]Fn

1/2,0

]a1
ua15p/450. ~23!

~3! The permutation symmetry under the (13) operato

~13!Fn
3/2,152Fn

3/2,1→Fn
3/2,1ub50, ~24!

~13!Fn
1/2,15

1

2
Fn

1/2,11
A3

2
Fn

1/2,0→
1

2
Fn

1/2,1U
b

52
A3

2
Fn

1/2,0U
b

, ~25!

~13!Fn
1/2,05

A3

2
Fn

1/2,12
1

2
Fn

1/2,0→
A3

2

]Fn
1/2,1

]n
U

b

5
1

2

]Fn
1/2,0

]n
U

b

. ~26!

where the symbol]/]n represents the normal derivative wi
respect to the boundaryb, a line that is defined byr 25r 3 or
by an implicit equation sina2sina15cosa2.
In view of the fact that the domainD1/6 is nearly rectan-
gular, our first approximation is to replaceD1/6 by the rect-
angle whose vertices are located at (a1 ,a2)
5(p/4,0),(p/2,0),(p/2,tan21A2),(p/4,tan21A2). The
boundaryb should then be replaced byb̃ , the straight line
that joins (p/4,tan21A2) and (p/2,tan21A2).

One obvious approximate boundary condition is

F3/2,1u b̃50 ~27!

for quartet. Also it is evident that nonphysical solutions th
pertain to totally symmetric wave functions would have va
ishing normal derivatives atb̃ and a15p/4 in the present
approximation. It stands to reason that we consider a reg
extended by reflectingD1/6 with respect to the approximat
boundary lineb̃ as well asa15p/4 so that the solutions
would automatically satisfy the reflection symmetry with r
spect toa15p/4 and b̃ . Both the totally symmetric and
totally antisymmetric solutions have approximate parity d
manded by reflection. But there follow naturally two oth
types of solutions, one of which is symmetric with respect
a15p/4 but antisymmetric with respect tob̃ . Likewise, the
other one is antisymmetric with respect toa15p/4 but sym-
metric with respect tob̃ . It is natural to associate them wit
doublet states, presuming a unique association is possibl
all the four types of solutions, namely,

F1/2,0u b̃50 ~ for singlet parent!, ~28!

]F1/2,1

]n U
b̃

50 ~ for triplet parent!. ~29!

The former is symmetric with respect toa15p/4, and the
latter antisymmetric. In the next section, this assumption
unique association will be exploited without further notice

III. AN ILLUSTRATIVE EXAMPLE AND DISCUSSIONS

Let us illustrate the idea of ‘‘hierarchy’’ on the examp
of Li. First, we would like to point out that the three-electro
hyperspherical adiabatic Hamiltonian consists of the tw
electron hyperspherical Hamiltonian and the residue, the
jor role of the latter being to represent the outermost el
tron. With the introduction of a new variabler5Ar 1

21r 2
2

5Rsina2<A2
3 R, it follows that asR→`, then r 3→` in

such a way that

had~a1 ;a2 ,R!5Had
~2!~a1 ;r!2

Z22

R F12S r

RD 2G21/2

r2,

~30!

whereHad
(2)(a1 ;r) is the Hamiltonian of a two-electron sub

system,

Had
~2!~a1 ;r!52

1

2

]2

]a1
2

1rS 2
Z

sina1
2

Z

cosa1

1
1

max~cosa1 ,sina1! D . ~31!
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FIG. 2. Adiabatic potential energies ofhad(a1 ;a2 ,R) ~solid curves! are compared to those of the two-electron adiabatic Hamilton
~dashed curves!. They coincide for large values ofR.
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Except for the screened Coulomb potential and a small
titious quadrupolelike correction term,had coincides with the
two-electron HamiltonianHad

(2) . The asymptotic target state
are thus represented by the two-electron hypersphe
Hamiltonian. However, whenR is finite, the two-electron
Hamiltonian becomes confined in a bounded region of sp
The adiabatic eigenvalue problem of the two-electron s

system is thus defined under the restriction ofr<A2
3 R, and

yields approximate adiabatic potential energies of the tw
electron subsystem. This point is illustrated in Fig. 2, wh
shows eigenvalues ofhad(a1 ;a2 ,R) as a function ofr to-
gether with the adiabatic potential curves calculated us
our two-electron adiabatic code@2# as a function ofRN52

5Ar 1
21r 2

2. As R becomes large, adiabatic eigenstates of
subsystem approach those of thes2 configuration of Li1 and
the variation ofa2 becomes equivalent to that ofr, thus the
target state energies emerge. WhenR is of moderate size, the
residual difference, namely, the last term in Eq.~30!, tends to
be appreciable.

As regards the character of three-electron adiabatic po
tial curves, we show lower ones for both doublet and qua
symmetries in Fig. 3 in atomic units against the hyperrad
R. These curves are obtained by the rigorous numerical
cedure. The general appearance of the adiabatic pote
curves do not differ markedly from those of two-electr
atoms such as He in that for each curve there is the typ
small-R region where the dominance of the kinetic ener
leads to the repulsive mock-centrifugal potential. In the
termediate region, the potential curve reaches the minim
with a basin where resonances can be formed due to
screened Coulomb attraction of the nucleus. A trivial b
noticeable difference between quartet and doublet sym
tries is the absence of singlet parent states in the qu
symmetry leading to the absence of a curve that would c
verge to the 1s2 1S state of Li1 asymptotically. Now there
-
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are curves that converge to the singly excited states of1

that support doubly excited resonances of Li of ty
1snsn8s. In principle, there are infinitely many potentia
curves so that the method can represent the two-electron
tinuum states of type 1sese8s. Then there are also infinitely
many curves that converge to the 2sns states of Li1 1,3S
that can support triply excited states of type 2snsn8s as well
as represent the two-electron continuum states of t
2sese8s. The argument may be repeated. The method
represent, in principle, triply excited states of typensn8sn9s
and even the three-electron continuum states within
single framework. For convenience, let us use the term
gly excited curves to indicate those that converge to thes2

FIG. 3. Rigorous adiabatic potential energy curves of Li(s3).
See text for the description of general features.
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state asymptotically, the term doubly excited curves for th
that converge to the 1sns (n>2) states, the term the lowes
group of triply excited curves for those that converge
2sns (n>2), and so forth.

Returning to Fig. 3, we observe that at least the dou
excited curves and the lowest group of triply excited curv
have very sharply avoided crossings. These suggest
course, that those states possessing different inner core o
als tend to be mutually orthogonal, and that dominant c
plings are expected to prevail firstly among channels belo
ing to the same group of adiabatic states through the
called T-branch avoided crossings@27# or the two-electron
ridge states@29#. Indeed, the recently observed symmet
double ionization yield caused by the decay of the low
triply excited state into double continuum@26# is thought to
be a support to the weak coupling between different grou

Let us compare the rigorous numerical potential curv
side by side, with the approximate hierarchical ones in F
4. It can be seen that the general features of potential cu
noted in the previous paragraph are not altered by the h
archical approximation. For instance, it holds that t
asymptotic target state energies are the same for both
cause the approximation pertains merely to the bound
condition so that the Hamiltonian remains unmodified a
because the channel functions tend to concentrate in th
gion of configuration space away from the boundaryb as
R→`. The behavior of each potential curve in the small a
intermediate regions are similar. Importantly, curves belo
ing to different groups now cross, the pair (n1 ,n2) being
good quantum numbers in this approximation. The feature
these crossings, despite the approximation, resembles clo
that of sharply avoided crossings in the rigorous numer
treatment. Stated differently, the region near the boundab
does not play a dominant role in nonadiabatic transitio
between different groups of curves although as stated ea
the breaking of wave fronts in this region is potentially im
portant for channels of the same group. The approxim
potential curves do differ from the rigorous ones in deta
The location of crossings~avoided or exact!, for instance,
could be appreciably different. It is certainly questionable
the approximation applies to accurate evaluations of re

FIG. 4. Comparison of hierarchical and rigorous potential
ergy curves for Li(s3). Note close resemblance of the general fe
tures noted in reference to Fig. 3 above.
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nance positions and widths, which require accurate poten
energy curves as well as nonadiabatic couplings. Howe
qualitative information could be unassailably gained from
approximate Hamiltonian matrix that is capable of yieldi
relative level positions of the resonances. What is of imp
tance here is that the approximate boundary condition p
down the character of each adiabatic state in terms of
numbers of nodes with respect toa1 anda2.

Let us now move on to check the qualitative features
some low-lying channel functions. We label the chann
functions by a pair of integers (n1 ,n2), which represent the
above-mentioned numbers of nodes. We show in Fig.
series of contour plots pertaining to the low-lying quar
channel functions evaluated nearR510. In each frame, the
upper panel shows the density of an approximate chan
function and the lower one the corresponding rigorous res
For the ~0,0! channel,R510 is already asymptotic as th
density recedes from the boundary. For the others, this is
necessarily the case. Nevertheless, the general featur
each channel function is represented properly except for
tails. The region near the boundaryb is certainly a source of
errors for the present approximation, which is the reason
approximate potential curves tend to fail at moderate val
of R. To see this, let us present in Table I the projection
each approximate channel function onto the correspond
rigorous one, namely,u^FhierarchicaluF rigor&u, as a function of
R for some representative radial distances. One general
dency is that the further the distanceR is, the closer it is to
unity. And another feature is that at a given value ofR the
higher the channel lies in energy, the poorer the project
Nonetheless, in what is shown the difference does not exc
one-half so that the hierarchical approximation with t
modified boundary condition is not grossly in error.

The discrepancy at moderate radial distances where
channel function has a moderate amplitude near the bou
ary b is actually in agreement with the fact that the thre
electron correlations are strong enough to modify o
independent-particle picture based on the pair of quan
numbers (n1 ,n2). Indeed, molecule-type normal modes a
envisaged to emerge as discussed in Ref.@28#. Such normal
modes are expected to center in the region wherer 15r 2
5r 3, namely, the tip where all the six regions meet~see Fig.
1!. One of the remaining tasks is to understand the conn
tion between the present hierarchical picture and the mole
lar normal mode analysis of Watanabe and Lin@28# in an-
ticipation, however, of realistic level calculations by th
hyperspherical method.

IV. CONCLUSIONS

Through this work, we have pointed out the relevance
focusing on a particular domain of the three-electron c
figuration space on the hypersphere where we observed
occurrence of quasiseparability of the adiabatic hypersph
cal Hamiltonian. The quasi-separability prevails, however
the asymptotic region such that the amplitude of the chan
function is rather small near the border of a neighbor
one-sixth of the configuration space. An approximate bou
ary condition that takes advantage of this circumstance le
to a set of adiabatic potential curves and channel functi
whose features are shown to agree with those calculated

-
-
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FIG. 5. Comparison of hierarchical and rigorous adiabatic channel functions. Contour plots of probability density are sho
representative channels identified by (n1 ,n2) at R.10 a.u. A slight shift ofR is effected to stay away from avoided crossings. Here ag
the general features show reasonable resemblance though details near the boundaries indicate breakdown of the approximatio
panel, the upper row pertains to the hierarchical approximation and the lower one to the rigorous treatment.
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rigorous numerical method. We have noted, however,
the region where the three-electron correlations play a cen
role is where the three electrons come close, that is in
neighborhood of the pointr 15r 25r 3. The employed ap-
proximate boundary condition is expected to fail there. T
poses a question as to the practicality of applying the pre
at
ral
e

s
nt

somewhat naive approximate boundary condition to suc
circumstance. Nonetheless, the perspective gained from
present work as well as the choice of a particular domain
the hypersphere for identifying a hierarchical set of hyper
dii, and hence eventually a hierarchical set of quantum nu
bers may become of value when the hyperspherical met
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TABLE I. The projectionu^FhierarchyuF rigor&u as a function of the hyperradiusR. The pair of integers
(n1 ,n2) pertain to the numbers of nodes ofFhierarchywith respect toa1 anda2, respectively.

R ~a.u.!

(n1 ,n2) 0.1 1 5 10

~0,0! 0.9779 0.9809 0.9948 0.9996
Quartet symmetry: ~0,1! 0.7589 0.7741 0.9239 0.9931

~1,0! 0.8736 0.9071 0.9819 0.9949
~1,1! 0.4683 0.5239 0.7520 0.8948

R ~a.u.!

(n1 ,n2) 0.1 1 5 9.6 10

~0,0! 0.9524 0.9693 0.9989 0.9988
Doublet symmetry: ~0,1! 0.8092 0.8089 0.8838 0.9973
Singlet parent ~1,0! 0.6799 0.7770 0.9723 0.9870

~1,1! 0.4169 0.5032 0.7585 0.8489

R ~a.u.!

(n1 ,n2) 0.1 1 5 9.6 10

~0,0! 0.8000 0.8255 0.9096 0.9992
Doublet symmetry: ~0,1! 0.6649 0.6740 0.7921 0.8967
Triplet parent ~1,0! 0.6911 0.7331 0.8389 0.8937

~1,1! 0.5343 0.5662 0.6660 0.7576
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is extended to take account of more than three electron
excited states.

Finally, let us supplement the argumentation for qu
siseparability as mentioned toward the end of the Introd
tion. From the SVD viewpoint developed in Ref.@4#, slow
dependence onR is not always required for the hierarchic
representation to be valid. It is rather asmoothdependence
on R that would allow the system to evolve without stron
mixing. Indeed, the smooth dependence of the wave func
on the relative distance between particles or between ag
gates of particles appear to hold quite generally in Coulo
problems.
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