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Hyperspherical hierarchy of three-electron radial excitations
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We investigate hierarchical representation of three-electron radial excitations, relying on the replacement of
a sequence of ordered individual electron radial coordinates by a hierarchical sequence of hyperspherical radial
variables. In the spirit of the hyperspherical method we argue that the latter variables allow adiabatic qua-
siseparability of the three-electron wave function. We examine this by approximately evaluating hyperspherical
adiabatic potential curves and channel functions for the3)iconfiguration. The hierarchical representation
permits one to display manifold aspects of the triply excited states with a pair of radial quantum numbers.
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PACS numbgs): 31.10+z, 31.15.Ja, 31.25.Jf

I. INTRODUCTION strongly attractive that continued efforts are being made to
elevate this method to a level of practical applicability. For
Despite the success of the hyperspherical method for thestance, the hyperspherical method correctly singles out the
three-body Coulomb problef—7], its extension to systems hyperradius, a variable that plays a special role for systems
with a larger number of particles is still in its infancy. Even with Coulomb interactions. The hyperspherical coordinates
the problem of three-electron atoms under the assumption @fre usually close to the normal mode coordinates of the sys-
an infinitely heavy nucleus has not been solved to a satisfadem to such an extent that the hyperspherical quantum num-
tory level yet. The nontriviality in such a generalization of bers approximately represent excitation of internal collective
the method rests on its unique perspective toward manydegrees of freedom. At last, but not the least, the hyper-
body effects. Indeed, while various more conventional apspherical potential curves provide, simply by sight, valuable
proaches in the field of atomic calculations use the individuainformation about the system’s energetics.
electron coordinates as a basic set of independent variables, A brief history and the current situation in applications of
allowing the many-body effects to enter only through thethe hyperspherical method to three-electron atoms are as fol-
choice of basis functions and the way of constructing theidows. A first attempt was made by Clark and Greene in 1980
proper linear combinations, the hyperspherical method incort9] who used the hyperspherical harmonics as a basis set for
porates part of the interelectron correlations from the outsegxpanding the adiabatic channel functions. They noted some
by adopting a coordinate system consisting of collectivegeneral features concerning the grouping of hyperspherical
variables. While use of the individual electron coordinateschannels into those separately supporting doubly and triply
effectively reduces calculation of the Hamiltonian matrix el- excited states as well as sharply avoided crossings among
ements to one-dimensional integrations, the hypersphericalifferent groups of curves that suggested a dramatic differ-
method usually requires evaluating integrals of a higher dience in normal mode patterns between the different groups.
mensionality, which becomes a technical bottleneck of thelhe convergence, however, was so poor on account of the
problem. The three-electron atom problem is where this techuse of the hyperspherical harmonics that even the asymptotic
nical difference manifests itself whereas the difference ighresholds did not come out correctly. This convergence
marginal for two-electron atoms. Imposing permutation sym-{problem was resolved by Watanabteal. [10] by the use of
metry on the total wave function is another problem, for theSlater-type orbitals transcribed for the hyperspherical coor-
commonly considered hyperspherical angular variables ardinates. The resonance positions of Heere evaluated for
not invariant under the permutations of the identical particlestates of*S°, *P° [10], and ?P° [11] symmetries, achieving
again with the exception of two-electron atoms. It is thusa reasonable precision even within the adiabatic approxima-
undeniable that at the present stage of its development thn. A similar basis was later used by Greene and Clark for
hyperspherical method faces a few technical problems thatnalysis of?P° states of Li[12]. Later, a more flexible ap-
make its extension to genuinely many-electron atoms proproach for solving the adiabatic eigenvalue problem by em-
hibitively difficult. In fact such attempts have been restrictedploying direct numerical schemes such as tRespline
so far to only a few qualitative discussiofsee, e.g.[8]). method was pursued by Yamyg al.[13]. The hyperspherical
Yet, there are features in the hyperspherical method sadiabatic channel functions so-obtained have been analyzed
by way of their graphical display in the case of the £3
configuration[13]. In the wake of the recent experimental
*Present address: Department of Physics, Kansas State Univeieports on the hollow lithium atorfl4,15 (hollow or vacant
sity, Manhattan, Kansas 66506-2601. with respect to the two 4 orbitals but the 2 orbital remain-
TPresent address: Institute for Molecular Science, Myodaiji, Okaing occupied, Yang et al. [16] extended their study to
zaki 444, Japan. Permanent address: P. N. Lebedev Physical Insti( 2P°) states. Besides these hyperspherical calculations, the
tute, Russian Academy of Sciences, Leninsky Prospect 53, 11792#ecent experiments prompted a number of theoretical studies
Moscow, Russia. by different methods. The configuration interaction results
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FIG. 1. (a) Three-dimensional image &f. r4, r,, andr 3 are individual electron radiig; and«, are angular variables, which are similar
to standard spherical polar angles but over a restricted domain of one octant of a sphere, used for the present paramefrizéijon of
Division of the a1-a, plane into six domains according to the relative magnitudes of the radial variables. An interchange of any pair of the
three electrons is equivalent to interchanging a pair of neighboring domains. Our attention focuses on the upper right domajn where
<r,<rg, referred to a . (c) A contour plot for a typical adiabatic channel functifor doublet symmetrydemonstrating quasisepa-
rability in the two upper domains.

by Chung and Goli17] as well as the multiconfigurational cused their primary attention. As a preliminary attempt for
Dirac-Fock calculations of Koike and co-workdrkss] seem  qualitative support of the quasiseparability, we introduce
to identify the measured resonance positions reasonablyere an approximate treatment based on restricting the con-
well. From a numerical view point, the recdRimatrix work  figuration space of the problem from the entibeto the

[18] seems largely capable of providing spectroscopicallyupper right domainr;<r,<r;, which we shall denote as
valuable information. However, regarding some details ofD,,5. Such treatment is achievable by assuming suitable ap-
the experimental features and their explanations there stijfroximate boundary conditions on the boundarie<Dgf;.
remains room for interpretation and thus for further studieshVe examine the quality of this approximation against a rig-
by alternative methods. In particular, a normal mode analysisrous diagonalization of the adiabatic Hamiltonian. A brief
by the hyperspherical method is expected to cast some ligl#ccount of this work was presented ear]ig®)]. It is possible

on the observed triply excited spectra, as it did so successe represent the configuration space using an alternative pa-
fully for doubly excited ones. It is in this spirit that the rametrization such as that suggested in R26]. We con-
present article begins, but its aim will be restricted to bring-tinue to concentrate on the hyperspherical parametrization in
ing attention to some fundamental construction arisinghis paper.

within the context of the hyperspherical method whose rec-
ognition might help one to understand manifold aspects of
three-electron correlations.

Specifically, we study adiabatic quasiseparability of three-  The hyperspherical method roughly consists of three
electron wave functions with respect to a certain hierarchy oktages in its actual implementation. The first one is the con-
hyperspherical radial variables. Our original motivationstryction of adiabatic channel functions with which this pa-
stems from a simple observation of the graphical materiaper is concerned, hence this point will be amply described in
presented ih13]. Let us make the point explicit with the aid thjs section. The second stage is the adiabatic expansion of
of Fig. 1. Here, as iff13], we restrict ourselves to th&  the total wave function using the adiabatic channel functions
configuration. Using the parametrization|[8f, the configu-  as a basis set. A most strongly recommended method of so-
ration space of the hyperspherical adiabatic eigenvalue prolgtion for the second stage is currently the combination of
lem can be conveniently represented by one-eighth of ge slow/smooth variable discretizatidg8VD) method[4]
sphere in three-dimensional spdsee also Fig. B], which  and theR-matrix propagation techniquy€1]. The third stage
we shall callD. We observe that the nodal structure of theis to extract theS matrix or its equiva|ent from the propa-
adiabatic channel functions displayed[i8] indicatesadia-  gated solutiof5,6]. Both the second and the third stages are
batic quasiseparability with respect ta; regarded as a independent of the first one, and are thus applicable to a

“fast” and «, as a “slow” variable for the present param- proader range of problems. Such being the case, here we will
etrization of D in each of the two domains adjacent to the focus on the first stage only.

upper corner in Fig. () [see Fig. 1c)]. There are totally six
such domains; each constitutes one sixtrDofAll six do-
mains are, of course, physically equivalent. However, the
present parametrization @ introduces an essential differ- In order to convey the gist of our theme, we begin our
ence between them in the sense that the quasiseparabilitiscussion with the definition of a sequence of hyperradii.
emerges as due only to the two upper domains. Note thdtet us consider a somewhat general context to render the
these upper domains are not where the authorisl8f fo- meaning of “hierarchy” explicit. Let¥ be a total wave

II. FORMULATION OF THE PROBLEM

A. Hierarchical approximation: General idea
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function of anN-electron atom, and let=(r;,6; ,¢;) be the Formula(1) applies within the sector;<r,<---<ry.

position vectors of the individual electrons. Let us disregard/Sing the permutation symmetry of the total wave function,
for the moment the spin variables, assuming tatas only ~ ©ne should be able to extend this formula to the whole con-

one spatial component. Due to the permutation symmetry diguration space. This implies that the functiti) must sat-

W, it is sufficient to consider the sector wharg<r,<- - - isfy certain conditions on the boundaries between different
<ry. We replace the individual radii, by a sequence of Sectors where two of the individual radij coincide. For
hyperradial variables R,=r;,Ry= \/m Ry example, a totally antisymmetric wave function should van-

ish on each boundary of the sectoy<r,=<-.--<ry. In

. i . rinciple, such boundary conditions can be formulated also
lectively denoted a. Note the importance of the ordering princip " ! y " y

AR dth ding definiti fthe h for a general case when the total wave functibnincluding
Fisrp=---=ryand the corresponading definition ot thé Ny- o yanandence on the spin variables, has more than one spa-

{)herradu. Th(:‘. key fldea of _the ;ypgrs{phencal g?le.tthocfj tlr|]es Mial components. In reality, the boundary surface of the sector
et_ass_un:?p |]?n 0 tﬁpprqx'mﬁth 1a t";‘]'csep?‘r; “XI'(; € cannot be made separable with respect to the hierarchical
motion INRy from those in all the othervarales. |here arevariablesRi. As mentioned in the Introduction, this is a

two consequences _followmg from this ass_umpu()l): The common problem for the hyperspherical method. Though we
tf)ta(lN) wave (N)functlon can b.e approximated bW do not know a consistent and, at the same time, practically
=F (3“))q> (R, ... ’RNfl’“”RN)’ where the radial applicable solution to this boundary condition problem, some
factor F*(Ry) represents the major c_iep(eNr)1dence\Iofon ad hocprocedure for three-electron atoms will be described
Ry, while the adiabatic channel functich dependsNon in Sec. Il C below. In spite of this lack of rigor, we hope
Ry only parametrically.(2) The channel fL_‘”C“_O”q’( ) formula (1) is transparent enough to convey our basic idea.
evolvessmoothlywith respect toRy, preserving its nodal
structure, except for localized regions where the adiabatic
potential energies to be discussed later encounter quaside-
generacies, namely, avoided crossings as well as whgis From here on, let us return to the problem of a three-
so small that the ordering;<r,=<---<r is insignificant.  electron atom. In investigating the plausibility of the hierar-
Thus the approximation fob(") that is valid asymptotically ~chy of radial correlations, we restrict ourselves to consider-
asRy— should qualitatively hold for all the values BY. ing thes® configuration in much the same way as the authors
Note that within the sector;<r,<-..<ry, the limit of [9] and[13]. Following[9], we employ the most straight-
Ry— o actually meansy—c. In this limit, FN)(R,) coin- ~ forward parametrization dd by means of the two angles,
cides with the radial wave function of the outermost electronand a; as illustrated in Fig. (&):

Meanwhile the parent atom is characterized by its own hy-
perradiusRky_ ¢, and using the argument of adiabatic separa-

= \/RZN,1+r2N. All the individual angles ¢, , ¢;) will be col-

B. Rigorous numerical treatment

ri=Rsina,cosx;, r,=Rsina,sSine;, rz=Rcosy,.

bility again leads to the further decomposition 2
ON=FN-D(R, :Ry) Here R:\/r214—r22+r32 is the global hyperradius as com-
monly defined, which coincides witR; using the hierarchi-
XPN"D(Ry, ... Ry_2,@;Ry_1,Ry). cal notation of the previous section. The Sclinger equa-

tion for the rescaled wave functiofi= Rrr,r ;¥ then reads

A recursive use of this argument provides a picture of hier-
archy of the adiabatic separation with respect to the hyper- 1 & Hadei,azR)
radial variablesR; such that the total wave function in the oo’ B

E
, 2 jR? R?
sectorr;<r,<.--=<ry can be approximated by

=0, ()

where the adiabatic Hamiltonidt,( a4 ,a5;R) is an opera-

\P:Fng)(RN)Fg:ji)(RN—l;RN)' . tor in ; and a, that depends parametrically &) namely,
XF(R1iR, - R (w). I oo Y 2o a1 F
ade1.a2iR)= =3 sina, 5“28ma2¢9a2 sirfa, da?

Here the factoryg""(w) represents the total dependence of
¥ on w, whereLM and a stand for the total and all the

intermediate angular momentum quantum numbers, respec- dc is the effecti h tina the C
tively. Let us call this formula the “hierarchical representa- andC(ay,ay) is the effective charge representing the Cou-

tion.” Each radial factorFﬂi) in Eq. (1), labeled by its num- lomb potential energy averaged over steconfiguration:

+RC(CY1,C¥2) (4)

ber of zerom,; with respect taR;, depends parametrically on ( zZ 7z Z 1 1
“ 1) = H (I) C , = R ______ 4+t
all the “senior” hyperradiiR;-; . The .func.tlor.15Fni sh(?uld (ay,a) f fy Ta (F)=  (Faa)e
also bear dependence on all the “junior” indiags.; which,
however, we do not show explicitly for simplicity. This para- n 1 )
metric dependence, however, does not affgctthus within (ra)s)’

the hierarchical representation, Ed), the set of indices;
together witha and LM define a complete set of quantum Here (;;)~ means the greater of andr;, andZ is the
numbers specifying a given state. Coulomb charge of the nucleus.
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Following the prescriptions of the hyperspherical methodNamely, for each numerically obtained solutidn, of Eg.
[22] we assume the total wave function of the system for a8) we calculate the matrix e|eme(ﬂ>VX§12|P|®VX§12>- The

state with total spir§ to be in the form matrix elements of each component®iwith respect to the
spin functions are very well known. The action of the pro-
{/,SZE F.(R) 2 ¢§'812(a1,a2}R)X§12 ] (6)  jection operator on the spat.ial pabt, is carri_ed out numeri-
v S12 cally by acting the permutation operators directly on the con-
) ) . _ . figuration space defined by the, and a, variables[25]. In
In this formulaF ,(R) is the radial function, which does not inis manner. we sort out a quartet and two proper compo-
. . . S,Sio - . . ! . . . .
concern us in this article¢"™*? is the adiabatic channel nents of the doublet eigenfunctions, which provide accurate
function on which we will focus in the following, an);lglz is  numerical information to be used further for comparison

the spin function defined, as usual, as with the hierarchical approximation.

X§12= [x(D)x(2)1%2x(3) T, (7) C. Hierarchical approximation for three-electron atoms

HyperradiiR; can be expressed b
whereS,, is the total spin of the electrons having indices 1 yp Wi P y

and 2. cs R;=Rsina,cosy,, (10
The adiabatic channel functio® "™ and its associated
potential energyu>>(R) are defined as solutions of the Ro=Rsina;, (11

hyperspherical adiabatic eigenvalue problem
ypersp g p Ry=R. (12)
[Had@1,02;R) = U (R)]® (@7,@5;R)=0. (8) , . _
According to the discussion of Sec. Il A, we focus on the

All the basis functionsbf’Slz of Eq. (6) are among solutions SECtOIT ;<r,<r. First of all we should fix the value d®,,
to this equation. However, not all the solutions of Eg  Which is regarded as “slowest” variable. BecalRg coin-
satisfy the Pauli principle because the sum oSgs must  cides withR, this step is in agreement with the usual strategy
result in a totally antisymmetric wave function. Indeed, for ©f the hyperspherical method. The adiabatic separabilify of
the quartet symmetr$= 2, the sum oveS,, in Eq. (6) con-  leads to the standard adiabatic expang@®nand this vari-
tains only one spatial componed®2! corresponding to a @ble is not our concern here. The section of the secfor
triplet parent, whose wave function is antisymmetric with <T2<Ts With the hyperspher&=const coincides with what
respect to a permutation of any two electrons. For the douV¢ have defined as th,; domain. From here on, we will
blet symmetryS= 1, there are two spatial componel\ibé/z’o focus on this domain only. Next, we fix the value B§.
andq)i/zl which multiply the singlet and triplet parent spin According to Eq(11), this amounts to fixing the, variable.

functions, respectively. These functions form a basis for éAfter that, there remains only one varialfig, which is re-

L ; . ; garded as “fastest” and which is now in one-to-one corre-
two-dimensional representatlpn of the pgrmu_tauzr;ygrﬁyp spondence with, ; see Eq(10). Thus, we consider Eq8)
and they have degenerate e|genvalué§' (R)=U;, “(R) in the domainD 1,5 assuming adiabatic separability between
for all the values oR. Besides, Eq(8) has also totally sym- 1/6 9 P y

, . ) . .aq anda,. To this end we rewrite the adiabatic Hamiltonian
metric solutions, which, however, do not satisfy the Paul|(4) as follows:

principle and must be omitted.

We solve the two-dimensional eigenvalue probl@&nnu- 1 1 9 9
merically using a variational procedure with the direct prod- Hod ap,00;R)=— = — —sina,—
uct of two sets of discrete variable representa(D¥R) [23] 2 sina; da; da

basis functions, constructed from appropriately shifted and h o R
renormalized Jacobi polynomials i@, and a,. This tech- n Nad @s;a2,R)
nigue is a two-dimensional generalization of the numerical sirfa,
method[24], which has been used for calculating the adia-

batic channel functions in our previous studies on the threewhere we introduce the “junior” adiabatic Hamiltonian
body Coulomb probleni3,4] and two-electron atomisb,6].

: (13

The method is characterized by features common to other 1 92 )
DVR schemes, namely, fast convergence with respect to the ~ had@1;22,R)=— 2 a2 +Rsifa,C(ay,ay), (14)
increase of the number of quadrature points, high accuracy, %1

stability, and relative ease of implementation. By selectinga , . , . .

g ) . ; : > ‘Which is an operator inv; and depends oma, andR only

particular set of Jacobi polynomials this method is easily arametrically. Now we define the “iunior” adiabatic eigen-
extendable to an arbitrary(,1,,l3) angular configuration. P y: J 9

. : ! o . _value problem

This numerical procedure yields a variational approxima-
tion to all low-lying solutions of Eq.(8), disregarding their

symmetry properties. To sort out appropriate solutions as

well as to eliminate totally symmetric ones we apply the

projection operator

[had @1;@2,R) —Up (@2,R)]gn, (a1;a2,R)=0, (15

where n; represents the number of nodes of the solution
gnl(al;az,R) as a function ofe,. Hierarchical approxima-

P=E+ (123 +(132—(12)—(23)—(13). 9 tion to Eq.(8) amounts to substituting in EQL3) the opera-
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tor hyfa;;a,,R) by its eigenvalueunl(az,R) obtained In view of the fact that the domaib /¢ is nearly rectan-

from solution of Eq.(15). By doing so, Eq(8) reduces to gular, our first approximation is to replaé®; s by the rect-
angle whose vertices are located ataq(ay)

11 4 4 UfaR =(w/4,0),(w/2,0), (w2,tan *\2), (w4 tan *\2). ~ The
~>@n a—smaza—Jr —_— boundaryb should then be replaced Hy, the straight line
*¥2 02 @ sifa, that joins (r/4,tan *\/2) and @r/2,tar 1\/2).
One obvious approximate boundary condition is
_Gnlnz( R)] fnlnz(QZ;R)zor (16) @3/2,1“5:0 (27)

for quartet. Also it is evident that nonphysical solutions that
pertain to totally symmetric wave functions would have van-

ishing normal derivatives a and a,= /4 in the present
approximation. It stands to reason that we consider a region
extended by reflectin@® 5 with respect to the approximate
boundary lineb as well asa;=m/4 so that the solutions
UV(R)ZUnan(R), (17)  Would automatically seigisfy the reflection symmetry with re-
spect toa;=m/4 and b. Both the totally symmetric and
@, (ar,a5;R)=f,  (as;R)Y, (aq;a,,R). (18  totally antisymmetric solutions have approximate parity de-
12 ! manded by reflection. But there follow naturally two other

wheren, represents the number of nodesfq{nz(az) as a

function of a,. In this approximation, the index labeling
different solutions of Eq(8) is specified by the pair of inte-
gers f4,n,), while the hyperspherical adiabatic potentials
U, and channel function®, are defined by

Let us first list the exact boundary conditions: types of solutions, one of which is symmgtric with respect to
(1) The regularity condition at;=r,=0 (i.e., a,=0), aq= /4 but antisymmetric with respect to. Likewise, the
cs other one is antisymmetric with respectd@= /4 but sym-
D7 ,,=0=0, (19 metric with respect td. It is natural to associate them with
doublet states, presuming a unique association is possible for
and atr,=0 (i.e., a;=7/2), all the four types of solutions, namely,
<I>f’512|al=ﬁ,2= 0. (20) ®Y29t=0 (for singlet parent, (28)
. . . . 1/2,1
This applies to all combinations & andS,,. 0 e .
(2) The permutation symmetry under the (12) operator an B_O (for triplet paren}. (29
3/2,1__ 3/2,1 3/2,1 _ . . .
(1P, "=—-d, " =} |a1:w/4— 0, (2D The former is symmetric with respect te,= 7/4, and the
latter antisymmetric. In the next section, this assumption of
(12)0;%= - o> — o}, _ =0, (220 unique association will be exploited without further notice.
P20 lIl. AN ILLUSTRATIVE EXAMPLE AND DISCUSSIONS

14

0"“1 |a1=11'/4:0- (23)

(12)®H20= 4 pL20_,
! ! Let us illustrate the idea of “hierarchy” on the example
) of Li. First, we would like to point out that the three-electron
(3) The permutation symmetry under the (13) operator hynerspherical adiabatic Hamiltonian consists of the two-
electron hyperspherical Hamiltonian and the residue, the ma-
jor role of the latter being to represent the outermost elec-

tron. With the introduction of a new variable= \/r21+ r22

(13)q)§/2,1: _ (I)ilz,l_)q)i/zll =0, (24

1 3 1 ) . .
(13)(1)1’2’125 Ql21ly gqﬁ’z'o—? P21 =Rsma2s\/§R, it follows that asR—, thenrz—o in
b such a way that

\/§ 21-1/2
__ V25120 Z—2 p

2 v, . (25 had @102, R)=HZ (a1;p) - T[l_(ﬁ) p,

(30
/3 1 J3 apL21
(13)(1332'0:7‘1332’1_ > @20 > “n whereHZ)(a; ;p) is the Hamiltonian of a two-electron sub-
b system,
1 997>
=5 o | - (26) H2) o) 1 4 . z Z
b ad (@13p) = 2 ja? P\ ™ Sina;  cosa,

where the symbab/dn represents the normal derivative with 1
respect to the boundaty, a line that is defined by,=r3 or + . ) (31)
by an implicit equation sia,Sina;=cos,. max cosxy,Siney)
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FIG. 2. Adiabatic potential energies bf{a;;@,,R) (solid curves are compared to those of the two-electron adiabatic Hamiltonian
(dashed curvesThey coincide for large values &.

Except for the screened Coulomb potential and a small ficare curves that converge to the singly excited states of Li
titious quadrupolelike correction term,y coincides with the that support doubly excited resonances of Li of type
two-electron HamiltoniaH(2) . The asymptotic target states 1snsris. In principle, there are infinitely many potential
are thus represented by the two-electron hypersphericglurves so that the method can represent the two-electron con-
Hamiltonian. However, wherR is finite, the two-electron tinuum states of typedese’s. Then there are also infinitely
Hamiltonian becomes confined in a bounded region of spacenany curves that converge to thergs states of Li" 135

The adiabatic eigenvalue problem of the two-electron subthat can support triply excited states of typenaris as well
system is thus defined under the restrictiorp@‘\/gR, and @as represent the two-electron continuum states of type
yields approximate adiabatic potential energies of the two2S€S€'S- The argument may be repeated. The method can

electron subsystem. This point is illustrated in Fig. 2, which'€Present, in principle, triply excned.states of typen sp’§
shows eigenvalues df,{a;;a,,R) as a function ofp to- and even the three-electron continuum states within the
al 1 L]

gether with the adiabatic potential curves calculated usin ingle f_ramework. FOT convenience, let us use the term sin-
our two-electron adiabatic cod@] as a function ofRy-, ly excited curves to indicate those that converge to tife 1

=r?+r2. As R becomes large, adiabatic eigenstates of the
subsystem approach those of #feconfiguration of Li" and

2
the variation ofa, becomes equivalent to that pf thus the 0 3
target state energies emerge. WIis of moderate size, the - 28382 15
residual difference, namely, the last term in E20), tends to g 2 —(28)"'S
be appreciable. R s
As regards the character of three-electron adiabatic poten- 6 —1s2s°S

'
o0

tial curves, we show lower ones for both doublet and quartet = ——1—(15)*!8
symmetries in Fig. 3 in atomic units against the hyperradius &

R. These curves are obtained by the rigorous numerical pro- 2| 60 § ¢ o s 10

cedure. The general appearance of the adiabatic potential Z|~

curves do not differ markedly from those of two-electron P 4

atoms such as He in that for each curve there is the typical 5 2

smallR region where the dominance of the kinetic energy 5 0

leads to the repulsive mock-centrifugal potential. In the in- 8 2 —— 2535 3S
termediate region, the potential curve reaches the minimum -

with a basin where resonances can be formed due to the “ — 128 %S
screened Coulomb attraction of the nucleus. A trivial but % B 2 3 3 10
noticeable difference between quartet and doublet symme- R (a.u.)

tries is the absence of singlet parent states in the quartet
symmetry leading to the absence of a curve that would con- FIG. 3. Rigorous adiabatic potential energy curves ofst)i(
verge to the $ S state of Li* asymptotically. Now there See text for the description of general features.
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Doublet nance positions and widths, which require accurate potential
T TR energy curves as well as nonadiabatic couplings. However,
| \\ \\\\ \
AT

L : qualitative information could be unassailably gained from an
i ‘\ —— approximate Hamiltonian matrix that is capable of yielding

Hierarchial
L ~ < ™~ - Q

= \\ \ N == relative level positions of the resonances. What is of impor-
s A e tance here is that the approximate boundary condition pins
3 L/_, down the character of each adiabatic state in terms of its
3 e numbers of nodes with respect &q and a».
< 6 \ : - Let us now move on to check the qualitative features of
2 1 My 2 mm—_. : :
5 4 some low-lying channel functions. We label the channel
2 \ o1 \ . ying . . .
£ g o | 1 N = functions by a pair of integersng,n,), which represent the
=z B \ 2 \ . . .
< E o | - . \ g above-mentioned numbers of nodes. We show in Fig. 5 a
& 2 N 6 — series of contour plots pertaining to the low-lying quartet
4 i —— | channel functions evaluated ndar10. In each frame, the
-8 . .
S e ] S St upper panel shows the density of an approximate channel

R (au) R (au) function and the lower one the corresponding rigorous result.
FIG. 4. Comparison of hierarchical and rigorous potential en-FOr the (0,0) channel,R=10 is already asymptotic as the
ergy curves for Lig%). Note close resemblance of the general fea-density recedes from the boundary. For the others, this is not
tures noted in reference to Fig. 3 above. necessarily the case. Nevertheless, the general feature of
each channel function is represented properly except for de-

state asymptotically, the term doubly excited curves for thosé2ils. The region near the boundabyis certainly a source of
that converge to thesins(n=2) states, the term the lowest €T0rs f_or the prese_nt approximation, Whlch is the reason the
group of triply excited curves for those that converge to@Pproximate po_tentlal curves ten_d to fail at moderate _values
2sns(n=2), and so forth. of R. To see.th|s, let us present in Table | the projection pf
Returning to Fig. 3, we observe that at least the doubl)ﬁ_aCh approximate channel function onto the Corre'spondmg
excited curves and the lowest group of triply excited curvedigorous one, namely{ ®pierarchicd P rigon) |, s @ function of
have very sharply avoided crossings. These suggest, & for some representative radial distances. One general ten-
course, that those states possessing different inner core orbfency is that the further the distanBeis, the closer it is to
als tend to be mutually orthogonal, and that dominant coulnity. And another feature is that at a given valueFothe
plings are expected to prevail firstly among channels belongbigher the channel lies in energy, the poorer the projection.
ing to the same group of adiabatic states through the sd¥onetheless, in what is shown the difference does not exceed
called T-branch avoided crossindg&7] or the two-electron One-half so that the hierarchical approximation with the
ridge stateg29]. Indeed, the recently observed symmetric modified boundary condition is not grossly in error.
double ionization yield caused by the decay of the lowest The discrepancy at moderate radial distances where the
triply excited state into double continuuf@6] is thought to ~ channel function has a moderate amplitude near the bound-
be a Support to the weak Coup"ng between different group@.ry b is actua”y in agreement with the fact that the three-
Let us compare the rigorous numerical potential curves€lectron correlations are strong enough to modify our
side by side, with the approximate hierarchical ones in Figindependent-particle picture based on the pair of quantum
4. It can be seen that the general features of potential curvédimbers fi;,n,). Indeed, molecule-type normal modes are
noted in the previous paragraph are not altered by the hiegnvisaged to emerge as discussed in R&§]. Such normal
archical approximation. For instance, it holds that themodes are expected to center in the region whgrer,
asymptotic target state energies are the same for both b&rs, namely, the tip where all the six regions méste Fig.
cause the approximation pertains merely to the boundary). One of the remaining tasks is to understand the connec-
condition so that the Hamiltonian remains unmodified andtion between the present hierarchical picture and the molecu-
because the channel functions tend to concentrate in the réar normal mode analysis of Watanabe and [28] in an-
gion of configuration space away from the boundanas ticipation, however, of realistic level calculations by the
R— . The behavior of each potential curve in the small andhyperspherical method.
intermediate regions are similar. Importantly, curves belong-
ing to different groups now cross, the pain;(n,) being
good quantum numbers in this approximation. The feature of
these crossings, despite the approximation, resembles closely Through this work, we have pointed out the relevance of
that of sharply avoided crossings in the rigorous numericafocusing on a particular domain of the three-electron con-
treatment. Stated differently, the region near the bounbary figuration space on the hypersphere where we observed the
does not play a dominant role in nonadiabatic transition®ccurrence of quasiseparability of the adiabatic hyperspheri-
between different groups of curves although as stated earlieal Hamiltonian. The quasi-separability prevails, however, in
the breaking of wave fronts in this region is potentially im- the asymptotic region such that the amplitude of the channel
portant for channels of the same group. The approximatéunction is rather small near the border of a neighboring
potential curves do differ from the rigorous ones in detail.one-sixth of the configuration space. An approximate bound-
The location of crossingsavoided or exagt for instance, ary condition that takes advantage of this circumstance leads
could be appreciably different. It is certainly questionable ifto a set of adiabatic potential curves and channel functions
the approximation applies to accurate evaluations of resowhose features are shown to agree with those calculated by a

IV. CONCLUSIONS
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Quartet

0,0) .1 (1,0) (1,1

Doublet (Singlet Parent)

(0,0) (0,1 (1,0) (1,1)

0,0) oD (1,00 (1,1)

FIG. 5. Comparison of hierarchical and rigorous adiabatic channel functions. Contour plots of probability density are shown for
representative channels identified by, (n,) at R=10 a.u. A slight shift ofR is effected to stay away from avoided crossings. Here again
the general features show reasonable resemblance though details near the boundaries indicate breakdown of the approximation. For eacl
panel, the upper row pertains to the hierarchical approximation and the lower one to the rigorous treatment.

rigorous numerical method. We have noted, however, thasomewhat naive approximate boundary condition to such a
the region where the three-electron correlations play a centraircumstance. Nonetheless, the perspective gained from the
role is where the three electrons come close, that is in thpresent work as well as the choice of a particular domain on
neighborhood of the point;=r,=r;. The employed ap- the hypersphere for identifying a hierarchical set of hyperra-
proximate boundary condition is expected to fail there. Thisdii, and hence eventually a hierarchical set of quantum num-
poses a question as to the practicality of applying the preseiiers may become of value when the hyperspherical method
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TABLE |. The projection|{®pierarcn}Prigor)| @s a function of the hyperradiuB. The pair of integers
(n1,ny) pertain to the numbers of nodes ®fearchy With respect tow; and a,, respectively.

R (a.u)
(nq,ny) 0.1 1 5 10
(0,0 0.9779 0.9809 0.9948 0.9996
Quartet symmetry: (0,2 0.7589 0.7741 0.9239 0.9931
1,0 0.8736 0.9071 0.9819 0.9949
1,1 0.4683 0.5239 0.7520 0.8948
R (a.u)
(nq,ny) 0.1 1 5 9.6 10
0,0 0.9524 0.9693 0.9989 0.9988
Doublet symmetry: 0,9 0.8092 0.8089 0.8838 0.9973
Singlet parent (1,0 0.6799 0.7770 0.9723 0.9870
(1,2 0.4169 0.5032 0.7585 0.8489
R (a.u)
(ny,n,) 0.1 1 5 9.6 10
(0,0 0.8000 0.8255 0.9096 0.9992
Doublet symmetry: (0, 0.6649 0.6740 0.7921 0.8967
Triplet parent (1,0 0.6911 0.7331 0.8389 0.8937
1,9 0.5343 0.5662 0.6660 0.7576
is extended to take account of more than three electrons in ACKNOWLEDGMENTS
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