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Nearly collisionless sub-Doppler spectroscopy of molecular jets

A. I. Burshtein
Weizmann Institute of Science, 76100 Rehovot, Israel

~Received 30 January 1997!

The theory of sub-Doppler spectra of molecules subjected to rotational and translational relaxation in the
supersonic jet is developed in a weak collision approximation. The broad background of unknown origin~‘‘the
pedestal’’! emerging beneath the resolved spectrum is attributed to a biline structure of all hyperfine compo-
nents whose broad lines overlap. Such a composite structure is shown to appear neither at stationary nor at
nonstationary saturation regimes, but only in the case of nearly collisionless molecular transit through the laser
beam of finite width. The theory accounting for a single collision during transit explains the rise of the pedestal
at shorter distances from the nozzle and higher backing pressure.@S1050-2947~97!09610-8#

PACS number~s!: 33.70.Jg, 42.50.2p, 47.27.Wg
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I. INTRODUCTION

Supersonic jets of I2 in He or Ar carrier gases were use
to measure high-resolution molecular spectra by mean
sub-Doppler spectroscopy@1–3#. The molecular jet was
crossed by two counterpropagating cw laser beams that s
rate the resonant spectral components. The total fluoresc
from the excited electronic state was measured as a func
of the laser frequency. The well-resolved hyperfine struct
of a few rovibrational lines was obtained in this way wh
the interaction region is far from the nozzle. However,
closer distances a broad pedestal appears underneath th
row hyperfine features of a single rotational line@3# ~Fig. 1!.
This may be nothing but the envelope of the unresolved
perfine structure provided that all hyperfine components c
sist of two lines, one narrow and the other broad, with
width larger than the hyperfine splitting.

An important observation concerning the pedestal w
made in Ref.@3#. The effect is more pronounced the shor
the distancex from the nozzle to the intersection region. At
short distance (x;2 mm) from the nozzle of diameterD
50.25 mm the pedestal develops with increasing back
pressure and totally dominates the spectrum at press
higher than 300 torr~Fig. 2!. However, for a slightly larger
distance from the nozzle a more complex, nonmonoto
pressure dependence of the relative intensity of the nar
resonances to the intensity of the pedestal was found.
aim of this work is to understand the origin of the broad lin
composing the pedestal and to explain the distance and p
sure dependence of the phenomenon.

For this goal we first have to extend the theory of su
Doppler spectroscopy made for atoms in a bulk~Sec. II! to
molecules in a supersonic jet. As the rotational relaxation
molecules dominates over the decay of the excited state
must account for the rotational relaxation time within t
simplest solvable model~Sec. III!, which determines the
shape of the sub-Doppler spectral components when na
decay is negligible.

The particles crossing the laser beam in a bulk of
undergo many collisions that, being weak, constitute a c
tinuous diffusion in the velocity~spectral! space. The station
ary broadening of sub-Doppler lines is attributed to a dif
sional extension of a hole burned in the velocity distributi
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along the light beam@4#. The light from a single-mode ring
dye laser saturates the molecular transition whose frequen
is properly Doppler shifted into resonance. The saturatio
spreads from the resonant to closely detuned frequencies
spectral diffusion induced by the velocity changing colli-
sions. The width of the dip determines the pressure broade

FIG. 1. Hyperfine line shapes of127I2, R15 rotation, for several
distancesX from the nozzle related to its diameterD. The spectra
have been taken at the same He pressure, of 150 torr, and a
represented at the same scale.
3543 © 1997 The American Physical Society
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3544 56A. I. BURSHTEIN
ing and thus restricts the spectral resolution of the su
Doppler spectroscopy. It was commonly accepted that
number of collisions during transit time is sufficiently larg
that the stationary profile of the dip has shaped almost
mediately.

The situation is essentially different if the transit of mo
ecules through the laser beam is limited in time and t
particle density is rather low. In a molecular jet the dens
of a gas decreases with distance from the nozzle as we
the frequency of collisions and related diffusion coefficien
As a result the stationary regime of saturation may be un
tainable during too short a transit timet. Then the saturation
is nonstationary andt determines the final width of the hole
expanding during transit~Sec. IV!. Since this width is
smaller than the stationary one, the spectrum is better
solved, but each of its components is still a single line, no
composite one, which is necessary to explain the origin o
pedestal.

The best resolution in jets is achieved for the largest d
tances where one may expect a collisionless transit of
molecules through a laser beam. As long as collisions
excluded, the pedestal may not emerge and the line broa
ing should be determined by the width of the laser lig
employed in a sub-Doppler technique. However, the situ
tion is more complex for shorter distances and higher pr
sure. The pedestal arises at the bottom of the multicom
nent spectrum, making the resolution of the method worse
the pedestal is actually an envelope of unresolved bro
components of hyperfine lines they are not of a diffusion
nature. On the other hand, the diffusional description of v

FIG. 2. Recorded hf line shapes ofR15 rotation of 127I2 ex-
panded in various stagnation pressures of He, probed at a red
distance,X/D58. The recording sensitivity for the top spectrum
was twice as small.
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locity relaxation is not universal and cannot be extended
times less than or comparable to the free path time. To t
this limit into consideration we used the linearized Bolt
mann equation, which describes the ‘‘spectral diffusion’’
a random walk in the velocity space due to collisions. On
then the shape of the spectral component was found to
comprised of two lines~Sec. V!. One is the narrow Lorent-
zian corresponding to molecules that pass the light be
without collisions, while the other one is much broader a
its intensity is proportional to the probability of collisio
during transit.

With these results we were able to explain some of
above-mentioned peculiarities of the effect. The ratio of
line intensities~broad to narrow! decreases with the distanc
from the nozzle and depends on the density of the car
atoms determined by the backing pressure~Sec. VI!. This
dependence is different for short and longer distances
cause the average velocity of particles in a jet increases
adiabatic gas expansion and affects significantly the tra
time ~Sec. VII!.

II. LIGHT-INDUCED TRANSITION RATE

If the light is a linearly polarized monochromatic wave

Ex5E0cos~vt !,

then the transition rate according to the quantum mechan
golden rule is

W5
puD01u2E0

2

2\2 d~v2v0!, ~2.1!

whereD01 is the matrix element of the dipole operatorD̂x of
the optical transition with a frequencyv0 . Since the latter is
close to v only the resonant component of the lig
(E0/2)exp(ivt) is taken into account in Eq.~2.1!. The density
of the electromagnetic energy is connected with a pho
currentI : cE0

2/4p5\vI . Taking this into account one ma
rewrite Eq.~2.1! as follows:

W5BId~v2v0!, ~2.2!

whereB52p2uD01u2\v/c is the Einstein coefficient.
Taking into account the finite width of the resonance, E

~2.2! may be replaced by the following:

W5BIg~v2v0!5BIE
2`

`

K~ t !e2 i ~v2v0!t
dt. ~2.3!

In the simplest case of homogeneous broadeningK(t)
5exp(2Gutu) and

g~v2v0!5
1

p

G

G21~v2v0!2 . ~2.4!

If this broadening is light induced thenG is actually the
width of the laser spectrum.

When there are two counterpropagating waves of
same frequency the total field is

ced
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56 3545NEARLY COLLISIONLESS SUB-DOPPLER . . .
E5
E1

2
ei ~vt2kr2v0t1a!1

E2

2
ei ~vt1kr2v0t1a8!. ~2.5!

During the free pathr 5vt and the molecule moving with a
fixed velocityv is exposed to the simultaneous action of tw
light beams, Doppler shifted at frequenciesv6kv. If their
phases are uncorrelated and random the stationary rate
light-induced transitions are additive:

W5B@ I 1g~D2kv !1I 2g~D1kv !#, ~2.6!

whereI 1 and I 2 are light intensities andD5v2v0 .
A few different techniques may be used for sub-Dopp

spectroscopy provided that the homogeneous broadenin
much smaller than the Doppler one:

G<DD5kv̄, ~2.7!

where v̄5A2kT/m is the average velocity of the particl
with a massm. In one method@4# only one wave is actually
strong while the other served as a weak probe field. In
case the narrow hole aroundD50 is recovered from the
Doppler contour if one uses to measure the difference
tween the absorption coefficients of the probe wave with
without a strong field. However, this scenario is not possi
if the total fluorescence intensity is measured as a functio
D. When only one wave saturates the resonant transition
total luminescence spectrum has always the Doppler sh
The detection of the sub-Doppler resolution spectra can
achieved when two laser beams in a counterpropagating
figuration are used. The intermodulated fluorescence s
Doppler technique@5# has been considered throughout th
work.

III. ROTATIONAL RELAXATION

An important distinction between atomic and molecu
sub-Doppler spectroscopy lies in the fact that the rotatio
energy reservoir participates in optical saturation of m
ecules. The pumping light is resonant only to one of
rovibrational transitions: between sublevelj 0 of the ground
state andj 1 of the excited state. Changing their populatio
the light switches on the collisional relaxation that tends
restore the equilibrium in the rotational reservoir. In gene
this is a very complicated process described by the se
kinetic equations for the populations of rotational subleve
nj :

ṅi52
ni

t i i
1(

j Þ i

nj

t j i
, ~3.1!

where 1/t j i are the rates of collision-induced rotational tra
sitions.

We will denote the populations of the radiatively coupl
sublevels byn0 and n1 . All the rotational sublevels of the
excited state were empty before pumping and all of th
~except for one! remain almost empty during and after sat
ration due to a fast decay with the rateg. Therefore the
relaxation of the peculiar sublevel 1 can be described by
very simple equation
of
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ṅ152
n1

t11
2gn15

n1

T
. ~3.2!

In the case of the ground state the situation is similar. All
sublevels of the ground state were initially populated w
the equilibrium statistical weightgi @that is, ni(0)5giN,
whereN is the total number of particles# and distributed over
v with equilibrium density

w~v !5
exp~2v2/ v̄2!

Ap v̄
5k

exp~2v2/DD
2 !

ApDD

5kw~v!,

~3.3!

wherev5kv. The pumping changes significantly only th
population of the resonant subleveln0 while keeping the
population of all other sublevels almost unchanged. If so,
restoration of the equilibrium in a lower optical state is a
proximately described by the equation

ṅ052
n0

t00
1(

j Þ0

gjNw~v !

t j 0
. ~3.4!

Taking into account the detailed balance relation@6#

2
gi

t i i
1(

j Þ i

gj

t j i
50,

Eq. ~3.4! can be expressed as

ṅ052
n0

t00
1

g0Nw~v !

t00
. ~3.5!

The optical transition occurs between rotational statesj and
j 61 whose relaxation times may not differ significantl
Hence we may suppose for simplicity thatt005t115tE ,
wheretE is the relaxation time of the rotational reservoir
a whole@6#. The latter is only a rough estimation of the re
relaxation times and should be better considered as a fit
parameter of the model.

With these simplifications the saturation kinetics is d
scribed by the following equations

ṅ152W~n12n0!2S g1
1

tE
Dn11L̂n1 , ~3.6a!

ṅ05W~n12n0!2
n0

tE
1

g0Nw~v !

tE
1L̂n0 , ~3.6b!

where L̂ is an operator of the random walk in the veloci
space induced by the velocity changing instantaneous c
sions. For further simplicity we assume here thatL̂ is the
same for both excited and ground states. In the weak c
sion approximation~caseA in Ref. @4#! the velocity migra-
tion may be considered as a continuous diffusion in the
locity space governed by the operator

L̂5n
]

]v S v1
v̄2

2

]

v D . ~3.7!
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This approximation implies that the mean velocity displa
ment due to a single collisiond is smaller than the charac
teristic width ofW in the velocity space@7,8#:

d<G/k. ~3.8!

In the weak collision approximation the velocity relaxatio
rate n is always smaller than the frequency of collisio
1/t0 , but in view of Eq.~3.8! this inequality is even stronge
@9–11#:

n5
1

t0
S 2d2

v̄2 D<
1

t0
S 2G2

DD
2 D ,

1

t0
.

In the alternative, strong collision approximation~caseB
in Ref. @4#! the equilibrium is restored in each collision, s
thatn51/t0 andL̂ becomes a more simple hopping opera
that makes analytically tractable a large range of comp
nonlinear problems@12,13#. However, this is the only advan
tage of this approximation, which is less reliable as a mo
of velocity relaxation@14,15# and will not be considered
here; nor will we consider the combination of casesA andB
which may not be justified microscopically.

Equation~3.6a! may be integrated overv to obtain

nG 15E W~v !y~v,t !dv2
1

T
n̄1 ,

where n̄5*n(v,t)dv, 1/T5g11/tE , and y5n12n0 . The
first term in the right-hand side~rhs! of this equation is the
rate of pumping of the upper state. The total number of m
ecules excited at timet during transit through the laser ligh
beam is

Q5E
0

t

dtE
2`

1`

W~v !y~v,t !dv. ~3.9!

Neglecting the intersystem conversion and vibrational rel
ation we conclude that each of them emits a photon fr
either this or other rotational states populated in the cours
collision redistribution. All the emitted photons are assum
to be detected although they have slightly different frequ
cies. Hence, the relevant parameter that is measured an
to be calculated isQ.

At moderate pressures,g!1/tE and the set of equation
~3.6! may be reduced to a single one:

ẏ522Wy1L̂y2
1

tE
y1

g0

tE
Nw. ~3.10!

Equations~3.9! and ~3.10! with W defined in Eq.~2.6! pro-
vide the exhaustive mathematical formulation of the pro
lem. Rotational relaxation plays here a role similar to t
natural decay of the excited state in atomic spectroscopy

Following the approach in Ref.@7# let us introduce a vari-
ablen defined by the relationship

y~v,t !5Ng0Fn~v,t !e2t/tE1
1

tE
E

0

t

n~v,t8!e2t8/tEdt8G .
~3.11!
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To find y we have to solve now a much simpler equation
n:

ṅ522W~v !n1L̂n, ~3.12!

with the initial conditionn(v,0)5w(v). It is remarkable that
this equation is widely used in the theory of irreversible ele
tron transfer from the parabolic energy level. The case
interest (D'0) corresponds to the so-called activationle
reaction first considered in Ref.@16# and later on@17–19#. In
Ref. @16# the problem was solved for the Lorentzian shape
W(v) similar to Eq.~2.4!, though it may be essentially sim
plified by substitution ofd(v2v0) for W(v) @20,21#. The
same equation governs the energy diffusion accompanie
the nonadiabatic reaction above level crossing, but the sh
of W(E) is essentially different@22–24#.

IV. SPECTRAL DIFFUSION

The general solution of Eq.~3.12! is

n~v,t !5w~v !22E
0

t

dt8E G~v,v8,t2t8!

3W~v8!n~v8,t8!dv8, ~4.1!

where G(v,v8,t2t8) is the Green function that obeys th
equation

Ġ5L̂G, ~4.2!

with the initial conditionG(v,v8,0)5d(v2v8).
In the vicinity of D50, L̂ may be simplified to a one

dimensional free space diffusional operator

L̂5D
]2

]v2 , where D5n
v̄2

2
~4.3!

is a diffusion coefficient in velocity space. Such a simpli
cation is valid if the maximum~stationary! width of a dip in
velocity space,v r5ADtE! v̄ @4,5,11#. Then the well-known
expression for the Green function is obtained:

G5
1

A4pD~ t2t8!
e2~v2v8!2/4D~ t2t8!,

which is valid for

t>t0 , ~4.4!

when the diffusional description of the velocity~spectral!
exchange is appropriate.

Further simplifications are possible if the rate

W~v !5B@ I 1d~D/k2v !1I 2d~D/k1v !#/k ~4.5!

is used instead of that defined in Eq.~2.6!. This is possible
from the time when the increasing width of the dip excee
the homogeneous width of the resonance:A2Dt@G. Due to
the inequality~3.8! this condition is actually stronger tha
Eq. ~4.4!:
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t>
G2

nDD
2 5

t0

2 S G

kd D 2

. ~4.6!

Inserting Eq.~4.5! into Eq. ~4.1! we obtain

n~v,t !5w~v !22BE
0

t

dt8@ I 1G~v2D/k!n~D/k!

1I 2G~v1D/k!n~2D/k!#/k. ~4.7!

The zero-order approximation with respect toI 6 is n
(6D/k)5w(D/k). Making an iteration one can find from
Eq. ~4.7!,

n~v,t !5w~v !22Bw~D/k!@ I 1J~v2D/k!/k

1I 2J~v1D/k!/k#, ~4.8!

where

J~v !5E
0

t

G~v,t8!dt85
uvu

4ApD
E

v2/4Dt

` e2x

x3/2 dx. ~4.9!

Insertingn from Eq.~4.8! into Eq.~3.11! one can easily find
y(v,t), which is all that we need to obtain the nonstationa
fluorescence spectrum from Eqs.~3.9! and ~4.5!:

Q5BF I 1E
0

t

y~D,t !dt1I 2E
0

t

y~2D,t !dtG , ~4.10!

wherey(v)5ky(v), if v5kv.
Let us first consider the stationary solution similar

those discussed everywhere@4,5#. It is clear from Eq.~3.11!
that for sufficiently longt@tE y(v,t) approaches the station
ary value

ys~v !5
Ng0

tE
ñ~v,1/tE!, ~4.11!

where

ñ~v,p!5E
0

`

n~v,t8!e2pt8dt8.

Taking the Laplace transform of Eq.~4.8! we obtain

ñ~v,1/tE!5tE$w~v !22Bw~D/k!@ I 1G̃~v2D/k!

1I 2G̃~v1D/k!#/k%, ~4.12!

where

G̃~v !5E
0

` e2~ t/tE1v2/4Dt !

A4pDt
dt.

Performing integration by the saddle-point method we obt

G̃~v !5
tEe2uvu/ADtE

2ADtE

5tEkE~v!, ~4.13!

where
y

n

E~v2v8!5
exp~2uv2v8u/v r !

2v r
5kE~v2v8!.

Inserting Eq.~4.13! into Eq. ~4.12! we find

ñ~v,1/tE!5ktE$w~v!22Bw~D!tE@ I 1E~v2D!

1I 2E~v1D!#%. ~4.14!

Substitution of this expression into Eq.~4.11! transforms it to
the following:

ys~v!5g0Nw~D!$122BtE@ I 1E~v2D!1I 2E~v1D!#%.
~4.15!

To estimate the stationary luminescence spectraQs we
should start from a definition that follows from Eqs.~3.9!
and ~4.5!:

Qs5tE W~v!ys~v!dv

5BtE dv@ I 1d~D2v!1I 2d~D1v!#ys~v!. ~4.16!

Inserting here Eqs.~4.15! and ~3.3! we obtain

Qs~D!5g0NBt
exp~2D2/DD

2 !

ApDD
F I 11I 22BtE

I 1
2 1I 2

2

D0

22BtEI 1I 2

e22uDu/D0

D0
G . ~4.17!

Only the last interference term in this expression isD depen-
dent and therefore presents the sub-Doppler structure, w
has an exponential shape ofE(2D).

Using the simplification~4.3! we actually assumed tha
the laser band is narrower than a dip that in its turn is n
rower than the Doppler contour@11#:

G<kv r5D0<DD . ~4.18!

According to these inequalities the exponential structure
the last term in Eq.~4.17! is much narrower than the Gaus
ian background with a widthDD . The latter is of no interes
for us because it coincides with the Doppler contour. The
fore we consider this structure as a single line of exponen
shape with a widthD05kADtE. This width is determined
by the mean square displacement of the frequency in
course of spectral diffusion during timetE .

The main restriction of the above results is the condit
imposed by Eq.~4.6!, which requires a small resonanc
width G and can be rewritten as

ntE@
2G2

DD
2 . ~4.19!

Even being less than 1, due to a weak collision approxim
tion, the parameterntE may be still greater than the rati
2G2/DD

2 as Eq.~4.19! requires. This condition does not de
pend on the particle density or on the form of the su
Doppler resonance in Eq.~4.17!, which is not a composite
but a single line of exponential shape. Such a resonance
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3548 56A. I. BURSHTEIN
tributes nothing into the pedestal whose appearance at s
distances and at high pressure may not be consequently
tified with stationary theory. Therefore we must analyze
nonstationary saturation regimes.

It is quite clear that the stationary results are valid if

t@tE . ~4.20!

In this case the integrands in Eq.~4.10! reach their stationary
values at the very beginning of the transit. Owing to con
tion ~4.20! all these results starting from Eq.~4.16! were
linear int. The fluorescence becomes essentially nonstat
ary when the inequality~4.20! is reversed.

For t!tE it follows from Eq. ~3.11! that

y~v,t !'Ng0n~v,t !. ~4.21!

Substituting this result into Eq.~4.10! we find

Q5Ng0BF I 1E
0

t

n~D/k,t !dt/k1I 2E
0

t

n~2D/k,t !dt/kG .
~4.22!

Using here Eq. ~4.8! and taking into account tha
J(2D/k,t)5J(22D/k,t) we obtain

Q5Ng0Bw~D!F ~ I 11I 2!t22Bw~D!~ I 1
2 1I 2

2 !E
0

t

J~0,t !dt

24Bw~D!I 1I 2E
0

t

J~2D,t !dtG . ~4.23!

where

J~v,t !5E
0

t e2v2/2nDD
2 t8

A2pnDD
2 t8

dt8.

Performing the integration overt in Eq. ~4.23! we finally
obtain

Q5Ng0Bw~D!F ~ I 11I 2!t22Bw~D!~ I 1
2 1I 2

2 !
2&t3/2

3ApnDD
2

24Bw~D!I 1I 2

uDu

nDD
2 Ap

E
0

t

dtE
2D2/nDD

2 t

` e2x

x3/2 dxG .

~4.24!

Here the last term represents the shape of the hyperfine s
tral component above the Doppler pedestal. Once again
is not a composite but a single line, which is not suitable
explanation of the pedestal origin. The width of the line
creases roughly asDDAnt, being much less than the statio
ary one,D05DDAntE/2. Since the rotational relaxation tim
is longer than the transit time the latter terminates the di
sional extension of the dip burned in the velocity distributi
during the transit of molecules across the laser beam.
result ~4.24! does not depend ontE and therefore remain
valid for any particular model of rotational relaxation.

A different situation is obtained with the velocity relax
ation, which is still considered as diffusional. What actua
happens is that the number of collisions during the molec
ort
us-
e

-

n-

ec-
is
r
-

-

he

le

transit through the laser beam is limited. This number sho
be large to make possible the diffusional description of
velocity relaxation, stationary or nonstationary. In the lat
case the necessary validity conditions of the diffusional
proximation are

t0<t<tE . ~4.25!

If t is less thant0 there are almost no collisions during th
transit time and therefore no diffusion. This limit has to
considered separately as an alternative to the diffusional
proach.

V. NEAR COLLISIONLESS TRANSIT

For transit times comparable to or less thant0 one has to
use a more general, nondiffusional approach to the velo
relaxation. The latter should be considered as a random w
in the velocity space characterized by the total frequency
the jumps 1/t0 and the velocity distribution overv, f (v,v8),
which arises after jump if the velocity preceding the jum
wasv8. This distribution satisfies the detailed balance pr
ciple @25#:

w~v !5E f ~v,v8!w~v8!dv8. ~5.1!

For strong collision modelf (v,v8)5w(v) does not depend
on v8 while in case of weak collisions this is a narrow di
tribution nearv8 closely approximatingd(v2v8). There are
several ways to specify a particular shape and width
f (v,v8), that is, to derive it theoretically from some type
interaction potential ~hard sphere, 1/r 6, Lennard-Jones!
@26,27#, to deduce it from experimental data@28#, or to
choose the phenomenological form@29,30#. The most fa-
mous phenomenological model of such a distribution, p
posed by Keilson and Storer@31#, contains only one numeri
cal parameterg, which is a measure of the collision strengt

f ~v,v8!5 f ~v2gv8!.

At g'1 collisions are weak and the velocity~spectral! ex-
change may be considered as a diffusional process. It foll
from Eq. ~5.1! that for the Maxwellianw(v) defined in Eq.
~3.3! the distribution has a Gaussian form@10#:

f ~v,v8!5
e2~v2gv8!2/~12g2! v̄ 2

Ap~12g2!v̄2
. ~5.2!

The important simplification of our problem comes fro
the fact that we are interested only in the narrow dip aris
nearv'0, where

w~v !'w~0! and f ~v,v8!' f ~v2v8!. ~5.3!

This is exactly the same simplification that allowed us to u
the operator Eq.~4.1! instead of the general one defined b
Eq. ~3.7!. Due to this simplification the random walk in th
velocity space is described by the integral operatorL̂ @25#

L̂n52
1

t1
Fn2E dv8 f ~v2v8!n~v8,t !G . ~5.4!
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In a weak collision limit wheng→1, n5(12g)/t0 , the
velocity migration is actually diffusional and the kernel
the operator~5.4! takes the form

f ~v2v8!5
e2~v2v8!2/2d2

A2pd2
, ~5.5!

where

d25E ~v2v8!2f ~v2v8!dv5~12g!v̄2/2 ~5.6!

is the mean square velocity jump per collision that det
mines the diffusion coefficient in the velocity space used
Eq. ~4.1!:

D5
n v̄2

2
5

d2

t0
.

However, the differential operator~4.1! may be employed in
Eq. ~3.12! for either stationary saturation or nonstationa
saturation, but for times greater thant0 as was mentioned in
Eq. ~4.4!. To extend the theory for shorter times we shou
use the general operator of the frequency migration~5.4! that
leads to a more complex, integral equation similar to t
considered in Ref.@32#:

ṅ522Wn2
1

t0
Fn2E dv8 f ~v2v8!n~v8,t !G . ~5.7!

Generally speaking, not the simplified expression~4.5! but
the original form ofW(v), Eq. ~2.6! should be used in this
equation as well as in Eq.~3.9!.

One may use an iteration procedure to solve Eq.~5.7! for
short times. In the zero-order approximationn(0)5w(0)
while the next iteration corresponds to an absolutely f
transit when the collisional term in Eq.~5.7! should be omit-
ted:
-
n

t

e

ṅ~1!522Ww~0!, n~1!5w~0!@122Wt#. ~5.8!

Using this result in Eq.~5.7! for the next iteration, we first
obtain the correction sensitive to collisions:

n~2!5w~0!F122Wt12W2t22
t2

t0
E f ~v2v8!W~v8!dv8G .

~5.9!

Inserting Eq.~5.9! into Eq. ~4.21! we obtain

y5Ng0w~0!F122Wt2
t2

t0
E f ~v2v8!W~v8!dv8G ,

~5.10!

where only the first-order terms with respect toW were left.
Substituting Eq.~5.10! into Eq.~3.9! we obtain after integra-
tion over t:

Q5
Ng0t

ApDD
E W~v!F12W~v!t2

t2

3t0
E

3 f ~v2v8!W~v8!dv8Gdv, ~5.11!

where f (v2v8) is normalized to 1 in the frequency spac
The first terms in the brackets correspond to the free tra
through the light beam, whereas the last term accounts
the single collision that may occur during the transit tim
Inserting Eq.~2.6! in Eq. ~5.11! and assuming contrary to Eq
~3.8!

d>G/k, ~5.12!

one can simply find
e

Q5
Ng0Bt

ApDD
H I 11I 22~ I 1

2 1I 2
2 !BtE g2~D2v!dv22BI1I 2tE g~D2v!g~D1v!dv

2
Bt2

3t0
@ I 1

2 f ~0!1I 2
2 f ~0!12I 1I 2 f ~2D!#J . ~5.13!

For the linewidth of 2 MHz, a rather small value of 230 cm/s was obtained forG/k @3#. With an average velocity of 105 cm/s
the inequality~5.12! is easy to satisfy in this case ifg used in Eq.~5.6! is in the range 1@12g@0.003. This is a reasonabl
and very soft requirement for weak collisions.

Insertingg from Eq. ~2.4! we obtain after integration

Q5
Ng0Bt

ApDD
H I 11I 22~ I 1

2 1I 2
2 !BtF 1

2pG
1

t

3t0
f ~0!G2BtI 1I 2F 1

p

G

G21D2 1
2t

3t0
f ~2D!G J . ~5.14!
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The last term in this expression represents the sub-Dop
resonance in the fluorescence spectrum, which has the m
mum intensity atI 15I 2 . The resonant component consis
of two lines centered atD50. One of them is the narrow
Lorentzian line, which accounts for the molecules pas
through the laser beam without collisions. The other te
corresponds to a molecule that experienced a single colli
during the transit. This term is much broader and its sh
reproduces the velocity distribution after collision,f (v),
which may have either Gaussian shape~5.5! or slightly dif-
ferent and more realistic form derived in Ref.@33#. The in-
tegral intensity of this term relates to the Lorentzian one
t/3t0!1.

This is what we actually searched for: the composite re
nance is actually a sum of two lines of different widths. Th
structure of hyperfine components allows one to explain
emergence of a pedestal in the multicomponent sub-Dop
spectra.

VI. THE AVERAGING OVER TRANSIT TIME

Let us consider further the case of almost collisionle
transit when

t<t0 ~6.1!

for the majority of the molecules. Crossing the laser be
without collisions but with different velocitiesw, the mol-
ecules spend different times for transit,t5d/w, whered is
the width of the beam. The averaging over transit times,^ &,
is actually an averaging over the velocity distribution alo
the beam,Fx(w). The latter depends strongly on the di
tancex from the nozzle to the intersection of the molecu
and laser beams.

Thus, the problem is reduced to the calculation of

^Q&5E
0

`

Q~w!Fx~w!dw. ~6.2!

Only the last term in Eq.~5.14! represents the frequency
dependent resonant part of the signal that is of interest.
substituting only this term in Eq.~6.2! one can find the shap
of a single sub-Doppler component:

^DQ&5
Ng0B2I 1I 2^t2&

ApDD
F 1

p

G

G21D2 1J2 f ~2D!G ,
~6.3!

where the intensity of the broad pedestal relative to the
tensity of the narrow Lorentzian line is

J~x!5
ad

3t0w̄
5

ads0

3

r v̄
w̄

. ~6.4!
ler
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Here w̄5^w&, r is the density of atoms in the beam,s0 is
the total cross section of their collisions with molecules, a

a~x!5
^w23&^w&

^w22&
~6.5!

is a numerical factor.
Although not much is known about the transformation

Fx(w) alongx, it may not essentially affecta. For instance,
a(0)53p/4 near the nozzle whereFx(w) is expected to be
a well-known equilibrium distribution in a flux@34#

F0~w!52b2e2bw2
w3, where b5m/2kT. ~6.6!

On the other hand, far away from the nozzlea'1, because
after significant translational cooling of the gas due to exp
sion one may expect that

F`~w!'d~w2V̄!.

Thereforea may be excluded from further consideration.

FIG. 3. A few hyperfine transitions of127I2, P10 rotation, ex-
panded in various pressures of Ar, showing the behavior of
background pedestal with pressure. The spectra have been
sured atX/D512 and are represented at the same scale.
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The slipping effect is more important@35#. Since iodine
molecules are rather heavy their average velocityw̄(x) is
initially much less than that of light He atoms,V̄. However,
the difference should disappear with time due to the velo
changing collisions:

wG 5w̃
dw̃

dx
5sr v̄~V̄2w̄!, ~6.7!

wheres is their effective cross section. Bothr and v̄;T1/2

decrease withx, but the average velocity of atomsV̄(x)
increases during expansion according to the thermodyna
of free jets@36#. SinceV̄.w̄ the molecules in the superson
jet are accelerated. Correspondingly the average transit
decreases with the distance to the intersection region
with the carrier pressure.

The influence of the heavier carriers~the active-to-
perturber mass ratio! was actually tested experimentally in
few runs, by using Ar gas instead of He~mass ratio of abou
ten! @3#. A few hyperfine lines of the iodine, P10 transitio
expanded in different backing pressures of Ar and measu
X/D512, are depicted in Fig. 3. They show the qualitati
behavior of the background development with the car
pressure, which is consistent with the expectations follow
from Eq. ~6.4! after w̄ approachesV̄. Since the latter is
smaller for argon than for helium@35# the related value ofJ
is higher and the pedestal is more pronounced at the s
backing pressure and distance~see Fig. 2 for comparison!.

VII. DISCUSSION

We have come to important conclusions giving us insi
into understanding the phenomenon under study:
Is
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~i! Since the productr v̄ decreases whilew̄ increases with
distance the pedestal intensity given by Eq.~6.4! is dimin-
ished and the spectral resolution improves with the dista
downstream of the nozzle.

~ii ! Close to the nozzle where w̄5A9p/16b
5A9pkBT/8m depends only on the equilibrium temperatur
the pedestal intensity increases proportionally to the gas d
sity r, so that the increase in the backing pressure dete
rates the spectral resolution.

~iii ! At larger distances not onlyr but alsow̄ increases
with the pressure and their competition may result in
nonmonotonic rise ofJ, that is the pedestal decreases
intermediate pressure to a certain extent.

The conclusions we have made explain qualitatively so
features of the phenomenon mentioned in the Introduct
For the quantitative description of sub-Doppler spectra
tained from supersonic jet one needs to know more about
space and pressure dependence ofw̄(x,r).

Fortunately, there is a simpler way to check whether it
precisely the transit time that restricts the spectral resolu
at low w̄ and high densities. This may be done by reduc
the laser beam widthd. It is quite clear from Eq.~6.4! that
by focusing the light at the intersection region one can
duced and suppress the pedestal.
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