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Nearly collisionless sub-Doppler spectroscopy of molecular jets
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Weizmann Institute of Science, 76100 Rehovot, Israel
(Received 30 January 1997

The theory of sub-Doppler spectra of molecules subjected to rotational and translational relaxation in the
supersonic jet is developed in a weak collision approximation. The broad background of unknowif‘thigin
pedestal’) emerging beneath the resolved spectrum is attributed to a biline structure of all hyperfine compo-
nents whose broad lines overlap. Such a composite structure is shown to appear neither at stationary nor at
nonstationary saturation regimes, but only in the case of nearly collisionless molecular transit through the laser
beam of finite width. The theory accounting for a single collision during transit explains the rise of the pedestal
at shorter distances from the nozzle and higher backing pre$8i@50-294{@7)09610-§

PACS numbds): 33.70.Jg, 42.56-p, 47.27.Wg

[. INTRODUCTION along the light beani4]. The light from a single-mode ring
dye laser saturates the molecular transition whose frequency
Supersonic jets of,lin He or Ar carrier gases were used is properly Doppler shifted into resonance. The saturation
to measure high-resolution molecular spectra by means @preads from the resonant to closely detuned frequencies by
sub-Doppler spectroscopjl—3]. The molecular jet was spectral diffusion induced by the velocity changing colli-
crossed by two counterpropagating cw laser beams that satgions. The width of the dip determines the pressure broaden-
rate the resonant spectral components. The total fluorescence
from the excited electronic state was measured as a functic
of the laser frequency. The well-resolved hyperfine structure
of a few rovibrational lines was obtained in this way when ]
the interaction region is far from the nozzle. However, at 1
closer distances a broad pedestal appears underneath the r ] WN\;‘
row hyperfine features of a single rotational I{t8 (Fig. 1).
This may be nothing but the envelope of the unresolved hy
perfine structure provided that all hyperfine components con ] Mot
sist of two lines, one narrow and the other broad, with a ) 4
width larger than the hyperfine splitting.

An important observation concerning the pedestal wa: 1
made in Ref[3]. The effect is more pronounced the shorter ] X/D=12
the distancex from the nozzle to the intersection region. Ata 5 1 ML w‘, A

short distance X~2 mm) from the nozzle of diametdd
=0.25 mm the pedestal develops with increasing backing
pressure and totally dominates the spectrum at pressur
higher than 300 torfFig. 2). However, for a slightly larger
distance from the nozzle a more complex, nonmonotoni

pressure dependence of the relative intensity of the narro ] D20
resonances to the intensity of the pedestal was found. Th ] : i h
] y
i'\‘AML MI

X/D=8

SIGNAL (arb. units)
Decreasing distance

aim of this work is to understand the origin of the broad lines
composing the pedestal and to explain the distance and pre
sure dependence of the phenomenon.

For this goal we first have to extend the theory of sub-

Doppler spectroscopy made for atoms in a b{8lec. I) to
molecules in a supersonic jet. As the rotational relaxation o ] X/D=28
»Ml LA -l AUt

molecules dominates over the decay of the excited state, w 4, \%

must account for the rotational relaxation time within the
simplest solvable mode{Sec. Ill), which determines the
Shape Of the SUb-DOppler SpeCtraI Components When natur 0 150 '250'3(;0’4{)0'5(;0’6(‘)0’750‘5(;0 lQOID I10‘00l11‘00‘12‘00.13‘00‘1«;00
decay is negligible. FREQUENCY (MHz)

The particles crossing the laser beam in a bulk of gas
undergo many collisions that, being weak, constitute a con- F|G. 1. Hyperfine line shapes 6f'l,, R15 rotation, for several
tinuous diffusion in the velocityspectral space. The station- distancesx from the nozzle related to its diameter The spectra
ary broadening of sub-Doppler lines is attributed to a diffu-have been taken at the same He pressure, of 150 torr, and are
sional extension of a hole burned in the velocity distributionrepresented at the same scale.
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locity relaxation is not universal and cannot be extended to
times less than or comparable to the free path time. To take
this limit into consideration we used the linearized Boltz-
mann equation, which describes the “spectral diffusion” as
a random walk in the velocity space due to collisions. Only
A then the shape of the spectral component was found to be
comprised of two linegSec. \J. One is the narrow Lorent-
zian corresponding to molecules that pass the light beam
without collisions, while the other one is much broader and
its intensity is proportional to the probability of collision
L during transit.
Iy ' With these results we were able to explain some of the
i \ﬁ 750Tom gboye—men?ioned peculiarities of the effect.. The rat.io of the
| | line intensitiesbroad to narrowdecreases with the distance
“ from the nozzle and depends on the density of the carrier
atoms determined by the backing press(®ec. V). This

% dependence is different for short and longer distances be-
W cause the average velocity of particles in a jet increases with

SIGNAL (arb. units)
Increasing pressure

adiabatic gas expansion and affects significantly the transit
25.0 Torr time (Sec. VI).

Il. LIGHT-INDUCED TRANSITION RATE

A

If the light is a linearly polarized monochromatic wave,
o 200 400 600 800 1000 1206 1400

FREQUENGY (MHz) E,=E cog wt)
X 1

FIG. 2. Recorded hf line shapes Bfl5 rotation of *?/l, ex-  then the transition rate according to the quantum mechanical
panded in various stagnation pressures of He, probed at a reducgd)lden rule is
distance, X/D=8. The recording sensitivity for the top spectrum
was twice as small. 7T|D01|2E§

= S(w—wy), 2.1
ing and thus restricts the spectral resolution of the sub- 2h* ( o @

Doppler spectroscopy. It was commonly accepted that the .
number of collisions during transit time is sufficiently large whereD, is the matrix element of the dipole operafdy of
that the stationary profile of the dip has shaped almost imthe optical transition with a frequeney,. Since the latter is
mediately. close to w only the resonant component of the light

The situation is essentially different if the transit of mol- (Ey/2)exp{wt) is taken into account in E@2.1). The density
ecules through the laser beam is limited in time and theof the electromagnetic energy is connected with a photon
particle density is rather low. In a molecular jet the densitycurrentl: cES/4w:hwl. Taking this into account one may
of a gas decreases with distance from the nozzle as well agwrite Eq.(2.1) as follows:
the frequency of collisions and related diffusion coefficient.
As a result the stationary regime of saturation may be unat- W=BI8(w— wg), (2.2
tainable during too short a transit timeThen the saturation
is nonstationary and determines the final width of the hole \whereB=27?|D %4 w/c is the Einstein coefficient.
expanding during transi(Sec. IV). Since this width is Taking into account the finite width of the resonance, Eq.
smaller than the stationary one, the spectrum is better rq2.2) may be replaced by the following:
solved, but each of its components is still a single line, not a
composite one, which is necessary to explain the origin of a P A .
pedestal. W=Blg(w—w0)=Blj K(t)e (e @dt. (2.3

The best resolution in jets is achieved for the largest dis- -
tances where one may expect a collisionless transit of the
molecules through a laser beam. As long as collisions arlh
excluded, the pedestal may not emerge and the line broaden-
ing should be determined by the width of the laser light
employed in a sub-Doppler technique. However, the situa- N i I
S . ' g(w—wo) 2 2
tion is more complex for shorter distances and higher pres- 7 '+ (0—wg)
sure. The pedestal arises at the bottom of the multicompo-
nent spectrum, making the resolution of the method worse. Iff this broadening is light induced theh is actually the
the pedestal is actually an envelope of unresolved broadidth of the laser spectrum.
components of hyperfine lines they are not of a diffusional When there are two counterpropagating waves of the
nature. On the other hand, the diffusional description of vesame frequency the total field is

the simplest case of homogeneous broadenk(d)
exp(—Tt)) and

(2.9
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E, . E_ . , . n n
E= % el(wtfkr7w0t+a)+ 7 el(wt+kr7w0t+a ). (25) ng=— _1_ 'yn]_:_l- (32)

During the free pathr=vt and the molecule moving with a In the case of the ground state the situation is similar. All the
fixed velocityv is exposed to the simultaneous action of twosublevels of the ground state were initially populated with
light beams, Doppler shifted at frequencies kv. If their  the equilibrium statistical weighg; [that is, n;(0)=g;N,
phases are uncorrelated and random the stationary rates whereN is the total number of particlésand distributed over

light-induced transitions are additive: v with equilibrium density
W=B[I.g(A—kv)+1_g(A+kv)], (2.6) exp—v2v?)  exp—w?A3)
e(v)= —— =k =ko(w),
e NI

wherel , andl _ are light intensities and = w— w,.

A few different techniques may be used for sub-Doppler
spectroscopy provided that the homogeneous broadening \iﬁherew:kv.
much smaller than the Doppler one:

(3.3

The pumping changes significantly only the
population of the resonant sublevie} while keeping the
population of all other sublevels almost unchanged. If so, the
restoration of the equilibrium in a lower optical state is ap-

_ proximately described by the equation
wherev=+2kT/m is the average velocity of the particle

with a masam. In one method4] only one wave is actually ) No s giNe(v)
+ _— .

strong while the other served as a weak probe field. In this No=——71
Too j#0 Tjo

(3.9
case the narrow hole arountl=0 is recovered from the
Doppler contour if one uses to measure the difference be=_, . . :

tween the absorption coefficients of the probe wave with aneJakmg into account the detailed balance relafigh
without a strong field. However, this scenario is not possible _ _

if the total fluorescence intensity is measured as a function of _9 + 2 &:0,

A. When only one wave saturates the resonant transition the Ti jF T

total luminescence spectrum has always the Doppler shape.

The detection of the sub-Doppler resolution spectra can b&d. (3.4 can be expressed as

achieved when two laser beams in a counterpropagating con-

figuration are used. The intermodulated fluorescence sub- . No . JoNe(v)

Doppler techniqud5] has been considered throughout this No=— "+ '

work.

(3.5

700 700

The optical transition occurs between rotational stataad
. ROTATIONAL RELAXATION j*=1 whose relaxation times may not differ significantly.
) o ) Hence we may suppose for simplicity thag,= 711= 7¢,

An important distinction between atomic and molecularyhere r.. is the relaxation time of the rotational reservoir as
sub-Doppler spectroscopy lies in the fact that the rotationah whole[6]. The latter is only a rough estimation of the real
energy reservoir participates in optical saturation of mol-g|axation times and should be better considered as a fitting
ecules. The pumping light is resonant only to one of theparameter of the model.
rovibrational transitions: between subleyglof the ground With these simplifications the saturation kinetics is de-
state and ; of the excited state. Changing their population, scribed by the following equations
the light switches on the collisional relaxation that tends to

restore the equilibrium in the rotational reservoir. In general, _ 1 R
this is a very complicated process described by the set of n,=-—W(n;—ng)—|( y+—|ny;+Lny, (3.63
kinetic equations for the populations of rotational sublevels, E
n:
i
. n Ne(v) -
ho=W(ny—ng)— 204 INeW) b0 o ah
= > (3.1 o
o F o '

whereL is an operator of the random walk in the velocity

P ; space induced by the velocity changing instantaneous colli-
where 1f;; are the rates of collision-induced rotational tran- p y T y ging ~
sitions. sions. For further simplicity we assume here thats the

We will denote the populations of the radiatively coupled Same for both excited and ground states. In the weak colli-
sublevels byn, andn;. All the rotational sublevels of the SiON approximatior(caseA in Ref. [4]) the velocity migra-
excited state were empty before pumping and all of thenfion may be considered as a continuous diffusion in the ve-
(except for ongremain almost empty during and after satu-0City space governed by the operator
ration due to a fast decay with the rate Therefore the —
relaxation of the peculiar sublevel 1 can be described by the (=, J ( 4 v (9) 3.7)

very simple equation w\ "2
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This approximation implies that the mean velocity displace-To findy we have to solve now a much simpler equation for
ment due to a single collisiod is smaller than the charac- n:

teristic width of W in the velocity spacé7,8]: R

n=—2W(v)n+Ln, (3.12
S<T'/k. (3.9
with the initial conditionn(v,0)= ¢(v). It is remarkable that

In the weak collision approximation the velocity relaxation this equation is widely used in the theory of irreversible elec-
rate v is always smaller than the frequency of collisionstron transfer from the parabolic energy level. The case of
1/7y, but in view of Eq.(3.8) this inequality is even stronger interest A~0) corresponds to the so-called activationless

[9-11]: reaction first considered in RdfL6] and later orj17—19. In
Ref.[16] the problem was solved for the Lorentzian shape of
1 (284 1 (2r?) 1 W(v) similar to Eq.(2.4), though it may be essentially sim-
e R g v plified by substitution ofs(v—v,) for W(v) [20,21. The

same equation governs the energy diffusion accompanied by

In the alternative, strong collision approximatitcaseB the nonadiabatic reaction above level crossing, but the shape
in Ref. [4]) the equilibrium is restored in each collision, so of W(E) is essentially differenf22—-24.
thatv=1/7 andL becomes a more simple hopping operator
that makes analytically tractable a large range of complex IV. SPECTRAL DIFFUSION
nonlinear problem§g12,13. However, this is the only advan-
tage of this approximation, which is less reliable as a model
of velocity relaxation[14,15 and will not be considered t
here; nor will we consider the combination of cageandB n(v,t)=qo(v)—2f dt’f G(v,v' t—t")
which may not be justified microscopically. 0

Equation(3.63g may be integrated over to obtain

The general solution of Eq3.12) is

XW(v')n(v',t")dv’, 4.2
ﬁlzf W(v)y(v,t)dv—ln_l, where_G(v,v’,t—t’) is the Green function that obeys the
T equation
wheren=[n(v,t)dv, UT=y+1/rg, andy=n;—ny. The G=LG, 4.2

first term in the right-hand sidéhs) of this equation is the
rate of pumping of the upper state. The total number of molyith the initial conditionG(v,v’,0)= (v —v").

ecules excited at time during transit through the laser light In the vicinity of A=0, L may be simplified to a one-

beam is dimensional free space diffusional operator
(T [T . 7 v?
Q= Odt . W(v)y(v,t)dv. (3.9 L=D gl where D=v7 4.3

Neglecting the intersystem conversion and vibrational relaxis a diffusion coefficient in velocity space. Such a simplifi-
ation we conclude that each of them emits a photon fromtation is valid if the maximuntstationary width of a dip in

either this or other rotational states populated in the course Gfe|ocity spacey, = D re<v [4,5,11. Then the well-known
collision redistribution. All the emitted photons are assumedsypression for the Green function is obtained:

to be detected although they have slightly different frequen-

cies. Hence, the relevant parameter that is measured and has 1 )
to be calculated €. G=— e (w-v)MD(-t")
At moderate pressurey<1/rz and the set of equations VAmD(t—t")

(3.6) may be reduced to a single one: o )
which is valid for

. ~ 1
y=—2Wy+Ly—T—Ey+(‘:—ZNcp. (3.10 t=1,, (4.4

. . ) . hen the diffusional d ipti f th loci t
Equations(3.9) and (3.10 with W defined in Eq(2.6) pro- \évxcehnang(z isl aL;)SF;?On;iat:SCHp lon of the velocitgpectral

vide the e>_<haust|ve mgthemaUcaI formulation 'of'the prob- Further simplifications are possible if the rate
lem. Rotational relaxation plays here a role similar to the

natural decay of the excited state in atomic spectroscopy. W(v)=B[l, 8(Alk—v)+1_6(Alk+v)]/k (4.5
Following the approach in Reff7] let us introduce a vari- -
ablen defined by the relationship is used instead of that defined in E.6). This is possible
1 from the time when the increasing width of the dip exceeds
)=Ngo n(v,t)e Vet — J n(v.t" e t'7edt’ | the homogeneous width of the resonan¢g2Dt>T". Due to
Y(0.t)=Ngo/ n(v.t) Te Jo @.t') the inequality(3.8) this condition is actually stronger than

(3.11 Eq. (4.4):



FZ To F 2 46
> = — | —
t vAZ 2 \ks| - .9
Inserting Eq.(4.5) into Eq. (4.1) we obtain
t
n(v,t)=<p(v)—28f dt'[1.G(v—A/K)n(A/K)

0

+1_G(v+A/k)n(—A/k)]/k. 4.7

The zero-order approximation with respect ta is n
(£A/K)=¢(A/k). Making an iteration one can find from
n(v,t)=¢(v)—2Be(A/K)[1,J(v—A/k)/k
+1_J(v+A/k)/K], (4.8
where

0 —X

J(v)=fotG(v,t’)dt’ —p dx. (4.9

\/—DJ

Insertingn from Eq.(4.8) into Eq.(3.11) one can easily find

2/4Dt

y(v,t), which is all that we need to obtain the nonstationary

fluorescence spectrum from Ed8.9) and(4.5):

Q=B

|+foy(A,t)dt+|_fo y(—A,t)dt}, (4.10

wherey(v) =ky(w), if o=Kkuv.

Let us first consider the stationary solution similar to
those discussed everywhdeg5). It is clear from Eq.(3.11)
that for sufficiently long> ¢ y(v,t) approaches the station-
ary value

Ngo .
T—EO n(v,l/7e),

(4.11

ys(v)

where
'ﬁ(v,p)zf n(v,t’)e Pt'dt’.
0

Taking the Laplace transform of E(4.8) we obtain
N(v,Ure)=1e{e(v)—2Bp(A/K)[I +é(v —A/k)
+1_G(v+A/K)]/KY, (4.12

where

e (t/TE+v2/4Dt)
G(v) f ——dt
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E(v—v')= eX[X—|;U—U o0 =kE(w—w").
Inserting Eq.(4.13 into Eq. (4.12 we find
N(v,lre)=kre{ () —2Bo(A) 7e[| {E(w—A)
+1_E(w+A)]}. (4.19

Substitution of this expression into E@..11) transforms it to
the following:
Ys(@)=goNe(A){1-2B7e[l . E(w—A)+1_E(w+A)]}.
(4.19
To estimate the stationary luminescence speQawe

should start from a definition that follows from Eg8.9)
and(4.5):

Qs= Tf W(w)ys(w)dw

IBTJ do[l 1 S(A—w)+1_6(A+ w)]ys(w). (4.16
Inserting here Eq94.15 and(3.3) we obtain
(4)=goNB exp(—A%/A2) g 12 +12
= _— + _—
Qs goNBT \/;AD I+ TE A,
e 2lAl/4,
—2Brel |- — (4.17
Ao

Only the last interference term in this expression idepen-
dent and therefore presents the sub-Doppler structure, which
has an exponential shape Bf2A).

Using the simplification(4.3) we actually assumed that
the laser band is narrower than a dip that in its turn is nar-
rower than the Doppler contofit 1]:

I'skv,=Ag<Ap. (4.18
According to these inequalities the exponential structure of
the last term in Eq(4.17) is much narrower than the Gauss-
ian background with a widtlh . The latter is of no interest
for us because it coincides with the Doppler contour. There-
fore we consider this structure as a single line of exponential
shape with a widthAy=k+/D 7. This width is determined
by the mean square displacement of the frequency in the
course of spectral diffusion during time: .

The main restriction of the above results is the condition
imposed by Eq.(4.6), which requires a small resonance
width I" and can be rewritten as

. 2I?
VTE> —— .
E A2

(4.19

Performing integration by the saddle-point method we obtairg,an being less than 1, due to a weak collision approxima-

TEe—\v\/\DTE

2D

G(v)= rekE(w), (4.13

where

tion, the parameteprrz may be still greater than the ratio
2T'?/A3 as Eq.(4.19 requires. This condition does not de-
pend on the particle density or on the form of the sub-
Doppler resonance in Edq4.17), which is not a composite
but a single line of exponential shape. Such a resonance con-
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tributes nothing into the pedestal whose appearance at shdransit through the laser beam is limited. This number should
distances and at high pressure may not be consequently juse large to make possible the diffusional description of the
tified with stationary theory. Therefore we must analyze thevelocity relaxation, stationary or nonstationary. In the latter

nonstationary saturation regimes.
It is quite clear that the stationary results are valid if

case the necessary validity conditions of the diffusional ap-
proximation are

(4.20 (4.29

In this case the integrands in Eg.10 reach their stationary If 7 is less thanry there are almost no collisions during the
values at the very beginning of the transit. Owing to condi-transit time and therefore no diffusion. This limit has to be
tion (4.20 all these results starting from E@4.16 were  considered separately as an alternative to the diffusional ap-
linear in 7. The fluorescence becomes essentially nonstatiorproach.
ary when the inequality4.20 is reversed.

For r<7¢ it follows from Eq.(3.11) that

T=TE. TOSTSTE.

V. NEAR COLLISIONLESS TRANSIT
y(v,1)=Ngon(v,1). (4.2

Substituting this result into Eq4.10 we find

For transit times comparable to or less thgmone has to
use a more general, nondiffusional approach to the velocity
relaxation. The latter should be considered as a random walk
in the velocity space characterized by the total frequency of
the jumps 14, and the velocity distribution over, f(v,v’),
which arises after jump if the velocity preceding the jump
wasv’. This distribution satisfies the detailed balance prin-
ciple [25]:

Q:NgoB{l+j07n(A/k,t)dt/k+lfoTn(—A/k,t)dt/k}
4.22

Using here Eq. (4.8 and taking into account that
J(2A/k,t)=J(—2A/k,t) we obtain

(p(v)=j f(v,v")e(v')dv'. (5.1

Q=NgyBo(A)| (I, +1 _)T—zsqo(A)(|2++|2_)fTJ(o,t)dt
0

For strong collision modef(v,v")=¢(v) does not depend
onv’ while in case of weak collisions this is a narrow dis-
tribution near’ closely approximating(v —v'). There are
several ways to specify a particular shape and width of
f(v,v'), that is, to derive it theoretically from some type of

—4B<p(A)I+I,jTJ(2A,t)dt . 4.23
0

where
;@ wiavAlt

—dt’.
0 \/ZWVA?DI’

Performing the integration overin Eg. (4.23 we finally
obtain

J(w,t)=

2V2 3/2
Q=NgoBe(A)| (I, +1)7—2Bp(A)(12 +12) ———
3VmrAg
4Bo(A) 1 2 detf e
_ . x|.
¢ T A Jo 2A2/1;A§,tX_3lz

(4.29

interaction potential (hard sphere, tf, Lennard-Jones
[26,27, to deduce it from experimental daf28], or to
choose the phenomenological forf29,3(. The most fa-
mous phenomenological model of such a distribution, pro-
posed by Keilson and Storg81], contains only one numeri-
cal parametety, which is a measure of the collision strength:

f(v,o)=f(v—yv').

At y=1 collisions are weak and the velocigpectral ex-
change may be considered as a diffusional process. It follows
from Eq. (5.1) that for the Maxwelliang(v) defined in Eq.
(3.3) the distribution has a Gaussian fof0]:

e*(v*“yv')z/(l*“yz)f2

V(1= y?)v?

f(v,0)= (5.2

Here the last term represents the shape of the hyperfine spec-
tral component above the Doppler pedestal. Once again this The important simplification of our problem comes from
is not a composite but a single line, which is not suitable forthe fact that we are interested only in the narrow dip arising
explanation of the pedestal origin. The width of the line in-nearv~0, where
creases roughly asp+\/vr, being much less than the station-
ary one,Ay=Apv7e/2. Since the rotational relaxation time ¢(v)=¢(0)

This is exactly the same simplification that allowed us to use

is longer than the transit time the latter terminates the diffu-
sional extension of the dip burned in the velocity distribution e operator Eq(4.1) instead of the general one defined by
g. (3.7). Due to this simplification the random walk in the

during the transit of molecules across the laser beam. Th
velocity space is described by the integral operd;tQQS]

and f(v,v")=f(v—0v'). (5.3

result (4.24) does not depend ofz and therefore remains
valid for any particular model of rotational relaxation.

A different situation is obtained with the velocity relax-
ation, which is still considered as diffusional. What actually
happens is that the number of collisions during the molecule

1
Ln=——
71

n—J’ dv'f(v—v')n(v’,t)|. (5.9
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In a weak collision limit wheny—1, v=(1—1vy)/7y, the nM=—-2We(0), nP=¢(0)[1-2WHt]. (5.8
velocity migration is actually diffusional and the kernel of
the operatox5.4) takes the form Using this result in Eq(5.7) for the next iteration, we first

obtain the correction sensitive to collisions:

e~ (v—v")%25
f(v—v’)zw, (5.9 t?

T n(2>:¢(0)[1—2Wt+2W2t2—T— J' f(v—v')W(v')dv'}.
0

where (5.9

52:f (=020 —v)dv=(1—y)0%2 (5.6 Inserting Eq.(5.9) into Eq. (4.21) we obtain

is the mean square velocity jump per collision that deter- t2
mines the diffusion coefficient in the velocity space used in  y= Ngogo(O){l—ZWt— _ J f(v—v’)W(v’)dv’},
Eq. (4.1): o (5.10

where only the first-order terms with respectibwere left.
Substituting Eq(5.10 into Eq.(3.9) we obtain after integra-
tion overt:

D:

w? 8
2 _TO

However, the differential operatd4.1) may be employed in

Eqg. (3.12 for either stationary saturation or nonstationary

saturation, but for times greater thagpas was mentioned in N

Eq. (4.4). To extend the theory for shorter times we should Q= Yo7 f W(o)
use the general operator of the frequency migratfod) that \/;AD

leads to a more complex, integral equation similar to that

2
1—W(w)7-—3—7_0f

considered in Ref.32]: Xf(o— o )W(o')do' |do, (5.11)
n=—2W,— 1 n_J dv'f(v—v’)n(v’,t)|. (5.7 Wheref(wo—w’') is normalized to 1 in the frequency space.
To The first terms in the brackets correspond to the free transit

through the light beam, whereas the last term accounts for
Generally speaking, not the simplified expressidrb) but  the single collision that may occur during the transit time.
the original form ofW(v), Eq. (2.6) should be used in this Inserting Eq(2.6) in Eq.(5.11) and assuming contrary to Eq.
equation as well as in E¢3.9). (3.9
One may use an iteration procedure to solve (Bd7) for
short times. In the zero-order approximation® = ¢(0)

while the next iteration corresponds to an absolutely free o=T/k, (5.12
transit when the collisional term in E¢6.7) should be omit-
ted: one can simply find

NgoBT 2 2 2

Q= lL+1_—(l +-I-I,)BTJ g°(A—w)dw—2BI,| ,TJ J(A—w)g(A+w)dw
VAp
B2 2 2
—3—7_0 [1£f(0)+I12f(0)+21 1 _f(2A)];. (5.13

For the linewidth of 2 MHz, a rather small value of 230 cm/s was obtainedf fior{3]. With an average velocity of 2cm/s
the inequality(5.12) is easy to satisfy in this casejfused in Eq(5.6) is in the range #1— y>0.003. This is a reasonable
and very soft requirement for weak collisions.

Insertingg from Eq.(2.4) we obtain after integration

_ NgoBT

VmAp

1 T }
—=+t=—f(0)|—-B7l I_

12 2
L= (13 +1%)B7 5 = 3

L s 5.1
7 TZA2 T3, (2R 19



3550 A. I. BURSHTEIN 56

The last term in this expression represents the sub-Dopplédere w=(wy), p is the density of atoms in the beam, is
resonance in the fluorescence spectrum, which has the masxhe total cross section of their collisions with molecules, and

mum intensity al , =1 _. The resonant component consists

of two lines centered aA =0. One of them is the narrow

Lorentzian line, which accounts for the molecules passed (w3 (w)

through the laser beam without collisions. The other term a(X)=—F—— (6.5
corresponds to a molecule that experienced a single collision (w™5)

during the transit. This term is much broader and its shape
reproduces the velocity distribution after collision(w), is a numerical factor.
which may have either Gaussian shdpeb) or slightly dif- Although not much is known about the transformation of
ferent and more realistic form derived in R€B3]. The in-  ®,(w) alongx, it may not essentially affeat. For instance,
tegral intensity of this term relates to the Lorentzian one asy(0)=3x/4 near the nozzle whei®,(w) is expected to be
71379k 1. a well-known equilibrium distribution in a fluk34]

This is what we actually searched for: the composite reso-
nance is actually a sum of two lines of different widths. This
structure of hyperfine components allows one to explain the

_ 2
emergence of a pedestal in the multicomponent sub-Doppler Do(w)=2B% PV'W®,  where S=m/2kT. (6.6

spectra.
On the other hand, far away from the nozzle-1, because
after significant translational cooling of the gas due to expan-
VI. THE AVERAGING OVER TRANSIT TIME sion one may expect that

Let us consider further the case of almost collisionless

transit when —
D (W)=d(w—V).

<1, (6.1)  Thereforea may be excluded from further consideration.

for the majority of the molecules. Crossing the laser beam .
without collisions but with different velocitiess, the mol- .
ecules spend different times for transit- d/w, whered is 1
the width of the beam. The averaging over transit tindes, ]
is actually an averaging over the velocity distribution along ]
the beam,®,(w). The latter depends strongly on the dis- 1
tancex from the nozzle to the intersection of the molecular .
and laser beams. ]
Thus, the problem is reduced to the calculation of
] MHANW ’!hlmm

200 400 600 800 1000 1200 1400

250.0 Torr

(Q)= f:Q<w><1>x<w>dw. 6.2

SIGNAL (arbitrary units)
o

Only the last term in Eq(5.14 represents the frequency-
dependent resonant part of the signal that is of interest. By ]
substituting only this term in Eq6.2) one can find the shape ]

of a single sub-Doppler component: . 50.0 Torr

_ NgB?l, 1 () [1 T ] .
(AQ)= Ve — ezt J2f(28)], o W
(6.3)

0 200 400 600 800 1000 1200 1400
where the intensity of the broad pedestal relative to the in- FREQUENCY (MHz)

tensity of the narrow Lorentzian line is

FIG. 3. A few hyperfine transitions of*l,, P10 rotation, ex-
— panded in various pressures of Ar, showing the behavior of the
T(x) = ad—_ adoyg i 6.4) background pedestal with pressure. The spectra have been mea-
3ToW 3w sured atX/D=12 and are represented at the same scale.
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The slipping effect is more importaf85]. Since iodine (i) Since the produgbyv decreases whiles increases with
molecules are rather heavy their average veloeifx) is  distance the pedestal intensity given by E8.4) is dimin-
initially much less than that of light He atom¢, However, ished and the spectral resolution improves with the distance
the difference should disappear with time due to the velocitydownstream of the nozzle.

changing collisions: (i) Close to the nozzle wherew=97/168
dw o =+/97kgT/8m depends only on the equilibrium temperature,
W=w v apv(V—W), (6.7  the pedestal intensity increases proportionally to the gas den-
X

sity p, so that the increase in the backing pressure deterio-
_ _ _ _ — 1 rates the spectral resolution. o
whereo is their effective cross section. Boghandv~T (ii) At larger distances not only but alsow increases
decrease withx, but the average velocity of atomé(x)  with the pressure and their competition may result in the
increases during expansion according to the thermodynamiggonmonotonic rise of7, that is the pedestal decreases at
of free jets[36]. SinceV>w the molecules in the supersonic intermediate pressure to a certain extent.
jet are accelerated. Correspondingly the average transit time The conclusions we have made explain qualitatively some
decreases with the distance to the intersection region anfdatures of the phenomenon mentioned in the Introduction.
with the.carner pressure. _ _ . For the guantitative description of sub-Doppler spectra ob-
The influence of the heavier carriershe active-to- tained from supersonic jet one needs to know more about the
perturber mass ratjovas actually tested experimentally in a space and pressure dependencevt, p).
few runs, by using Ar gas instead of Himass ratio of about Fortunately, there is a simpler way to check whether it is
ten [3]. A few hyperfine lines of the iodine, P10 transition, yrecisely the transit time that restricts the spectral resolution
expanded in dn‘fergnt baCkm.g pressures of Ar and measure ¢ loww and high densities. This may be done by reducing
X/D=_12, are depicted in Fig. 3. They show t_he Olualltat'\.'ethe laser beam widtd. It is quite clear from Eq(6.4) that
behavior of the background development with the carrier . . . . .
C : . . .~ by focusing the light at the intersection region one can re-
pressure, which is consistent with the expectations foIIowmqj
— — ) uced and suppress the pedestal.
from Eq. (6.4) after w approachesV. Since the latter is
smaller for argon than for heliufi85] the related value off
is higher and the pedestal is more pronounced at the same

backing pressure and distan@ee Fig. 2 for comparison ACKNOWLEDGMENTS
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