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A one-dimensional quantum gas wigfunction interaction is known to be integrable for any finite number
of particles. We show that in the thermodynamic limit invariants of motion are destroyed in conjunction with
a class of singular density matrices that appear commonly in both equilibrium and nonequilibrium statistical
mechanics. The system becomes nonintegrable, due to Pomesarences. However, the eigenvalue problem
of the Liouville—von Neumann operattr; may be solved in an extended functional space that contains the
singular density matrices. We may in this way describe the approach to equilibrium. This is a simple example
of the Liouville space extension of quantum mechanics, due to Prigogine and his co-workers. The fundamental
quantity in this formulation is the probabilittand not the wave functionWe obtain indeed an irreducible
complex spectral representationlof . Irreducible means that the eigenstate& gfcannot be implemented by
wave functions, and complex means that the eigenvalues are complex numbers, whose imaginary parts deter-
mine relaxation times of the system. The dynamical evolution is described by a semigroup. Due to dissipative
effects the real part of the eigenvalues is no more a difference of energy levels, as is the case in standard
guantum mechanic$S1050-294P7)07311-3

PACS numbgs): 03.65.Bz, 05.30-d, 05.70.Ln

[. INTRODUCTION the system becomewmt integrablein the sense of Poincare
and that we can apply our method to describe the approach to
Quantum theory started with the study of blackbody ra-equilibrium in the extended functional space. Our description
diation by Planck, corresponding to thernegjuilibriumbe-  is in terms of probabilities associated to the Liouville—von
tween matter and radiation. Then came Bohr’s theory of atNeumann equation and no more in terms of wave functions
oms, which explained in a successful way the spectroscophl]. Eigenvalues of the Liouville operatdry are complex,
data on emission and absorption spectra. A most importar@nd they are no longer differences of eigenvalues of the
fact, often associated to the “Ritz-Rydberg principle,” is Hamiltonian. The Ritz-Rydberg principle is therefore vio-
that each spectroscopic frequency is the difference of twdated as the result of time-symmetry breaking.
energy levels. As is well known, this was the starting point We begin by describing the Liouvillian formulation in
of quantum mechanics. Quantum mechanics has been highec. Il. We briefly review Poincareintegrable systems. We
successful both for equilibrium thermodynamics and forthen present the one-dimensioriaD) gas as an example in
spectroscopy. But what about the approach to equilibrium®ec. Ill. We summarize the known results for the discrete
Here we encounter a difficulty, since, as is well known,spectrum case, then discuss the continuous limit and con-
through the eigenstates of the Hamiltonian one can construétruct invariants of motion. In Sec. IV we show that in the
invariants of motion. In this sense we may say that the usudhermodynamic limit the invariants are destroyed, i.e., their
framework of quantum mechanics corresponds to integrabléxpectation values diverge in conjunction with the singular
systems. But such systems cannot approach equilibrium. Weéensity matrices mentioned above. The system may therefore
have now showri1] that this problem can be solved by an approach equilibrium. In Sec. V we give a review of the
extension of quantum mechanics to a larger functional space€omplex spectral representationlof in the extended func-
This space contains the class of singular density matriceonal space. Then in Sec. VI we apply this spectral repre-
obtained[2,3] by a generalization of the usual equilibrium sentation to a near-equilibrium situation in the 1D gas and
distributions to nonequilibrium states. obtain eigenvalues dfy, that determine rates of approach to
In this paper we apply our method to a one-dimensionakquilibrium. In Sec. VIl we consider a simple example of a
gas ofN particles in a box of sizé, interacting through a far-from-equilibrium situation. The solutions for this situa-
&function repulsive potential. Since the basic work of Liebtion are used to demonstrate the violation of the Ritz-
and Liniger[4], who found the eigenstates for a boson sys-Rydberg principle.
tem, using Bethe’s ansaftg], and Yand 6], who generalized
fth_is result for particleslwith arbitrary permutation symmetry, Il LIOUVILLIAN FORMULATION
itis V\_/eII known that this system is integrable for bdNIr_and AND POINCARE 'S INTEGRABILITY
L finite (see[7,8] for reviews. But what happens in the
thermodynamic limit? Again on this system both the energy We consider nonrelativistic quantum system Nfpar-
spectrum[4,9] and thermodynamic equilibrium properties ticles. The Hamiltonian is given bfwe shall use a unit sys-
[10,11 are known. We show that in the thermodynamic limit tem with/=1)
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N2 N Here the “Liouvillian” Ly is the commutator with the
H=Hg+A\V=—2 ——+x> v(|Xa—xp|), Hamiltonian:
a=1 2mMy 9X;  b>a
(2.1 _

Lup=Hp—pH. (2.9
where Hy is the unperturbed Hamiltonian associated with
free motion,v(x) is a repulsive, short-range two-body inter- The formal solution of the Liouville equation is given by
action, and\ is a positive coupling constant. We shall con-
sider the simple case of a 1D system. The following argu-

— a—ilpyt
ment for the integrability conditions can be easily extended py=e "p(0). (210
for n-dimensional systems. We shall consider the case of ) o ) .
distinguishable particlegunless otherwise stateds an ex- We may consider situations where the density matrices
ample of our arguments. are localized in configuration space. An example is a pure
We denote the eigenstates|gf by |p), statep=|¥)(¥|, which consists of a localized wave packet
in a few-body system. This is the case where the usual
Holp)=w,|p), (2.2 Smatrix theory applies. Interactions ateansient As the

wave functionV is localized in configuration space, it has a
where p is an N-component momentum vectop  well-defined norm,

=(pP1.P2,...,Pn), and
N

1/2
2 _ N 2
s P 23 1w Ud X W(x)[2| #0 and |¥|<o.

a=1 2mg’ (2.11

N
waaZl @pa”

The system is enclosed in a large box of volumdmposing

the usual periodic boundary conditions for theperturbed

eigenstates, the spectrum of the unperturbed momenia-is
creteand is given by(for Ap=2#/L and integem,)

For this situation, the Liouville—von Neumann equation does
not introduce any new features to the Salinger equation.
If we can integrate Schdinger equation, we can solve the
Liouville—von Neumann equation and vice versa.
Pa=nN.APp. (2.4) To deal with density matrices, usually one equips the
“Liouville space” with a Hilbert space structure. In this
We have a complete set of normalized eigenstatddofor ~ Space a scalar product of the linear operafoendB acting

Eqg. (2.2, on wave functions is defined as a Schmidt inner product,
> IpXpl= 2 IpXpl=1, ((A[B))=Tr(A"B) (212
p P1s--- N
N and the Hilbert norm by

N=5(p—p')= M (pa— o) (2.5
(plp=o(p=p"=I1 o(pa=p A= CATAY, 219

Kr H ) P
where5™'(p,) is Kronecker’s delta. By convention, we shall where A* is the Hermitian conjugate operator Afin the

use the words “wave-function space” for the space that is ve-function space. We have introduced Dirac’s “bra” and
spanned by the set of these eigenstates, in case it is necess\é{< pace.

to distinguish this space from the Liouville space introduced t notatlons_analogous o the wave-function space. For
below. example, the Hilbert norm for the above example of the den-

The number of particledl may be finite or infinite. We sity matrix associated with the wave packet is given by
shall be particularly interested in thieermodynamic limijt

N—o, andL— with c=N/L=finite. (2.6) ||P\|:deX|‘I’(X)|2¢O and [lpf<e. (214

In the limit of large volumed. — o0, we obtain acontinuous

spectrum. In this limit we have In the Liouville space one can introduce operators acting

on density matrices. We call these operators “superopera-

2 L tors” in case it is necessary to emphasize the difference from

T E Hf dp,, pye K (pa)— 8(Pa), (2.7 operators in the wave-function space. We can then introduce
Pa the adjoint superoperato@’ of the superoperata® through

where §(p,) is Dirac’s & function. the relation

The statistical description in quantum mechanics is ex- + e
pressed by the Liouville—von Neumann equation for the den- (AJQTAL)Y =((ALIQIA,))CS, (2.19
sity matriceq 2,3,12,
where c.c. denotes the complex conjugation §Ad} is a
complete orthogonal basis of the Liouville spdsee Eg.

. d
: at PO=Lup(D). (2.8 (2.24) for an example of the bagiHere, we have introduced
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the notation “t” and distinguished the adjoint operation de-

noted by “+,” such as in Eq.(2.12 in the wave-function
space. We have, as usual,

(IAX(BNT=1B)){(Al. (2.16

We can then define Hermitian superoperators that satisfy
Q'=0Q, as well as unitary superoperators. The Liouvillian

L, is a Hermitian superoperator and gxfiL4t] is unitary in
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<<p, p/|LV| pn; pm>>:Vpp”5Kr( pm_ p/)_ 5Kr(p_ p")Vpr' .
(2.26

The time evolution of the expectation value of an observable

M (whereM*=M) is given by

(M(1)=TIM p(t)]=((M[e"""H[p(0))). (2.27)

The observableM is an invariant of motion if(M(t))

the Liouville space. This means that, as long as we remain i&(M (0)), i.e.,

the Hilbert space, the eigenvaluesof L, are real and the
eigenvalues eXp-iwt] of ex —iLt] are of modulo one. In

((M[Lulp(0)))=0. (2.28

short, the density matrix oscillates in time and there is no

place for irreversible processes. To obtain irreversible pro-

cesses associated to complex eigenvaluds,ofve need to
go out of the Hilbert spacéhis is a necessary conditipn

Invariants of motion may be constructed through the
eigenstates of the total Hamiltonian, if these exist. Indeed, let
us assume that we know the eigenstates of the Hamiltonian,

Among superoperators, we have factorizable superopera-

tors AX B defined by
(AXB)p=ApB, (2.17

where A and B are linear operators in the wave-function
space. With the aid of Eq2.15 we have

(AXB)'=ATXB™. (2.18
The Liouvillian is then
Ly=HX1-1XH, (2.19

<¢n|H|q)a>:Qa<‘/’n|q)a>1 (2.29

where (| is a test state, which has a well-defined inner

product with the eigenstates. Then the dyadic operators de-
fined by

|q)aB>>E|q)alq)ﬁ>>:|cba><q)ﬁ| (230)

are eigenstates of the Liouvillian,

<<(Da/3|LH|p(0)>>:(Qa_QB)<<®aﬁ|p(o)>>

which is indeed a Hermitian superoperator. Corresponding t6or p(0)=ZX,|#n)pn(#n|. The operator(®,,| is then an
Eg. (2.1), we can decompose the Liouvillian into a unper-invariant of motion, for the class of density matrices that

turbed parto=Ly and an interactiot.,,,

LH:L0+}\L\/. (22@

We denote dyadic operatoip)(p’| generated by the
eigenstate$p) of Hy by

Ip;p" ) =Ip)Xp’|. (2.21)

They are eigenstates bf,

Lolp;p’))=[Holp){p'|=P){P'[Ho]=Wyp|pP;p"}),
(2.22

where
(2.23

They form a complete orthonormal set for the Liouville
space,

prrE a)p— wpr .

% 2 Ip:p’>><<p:p’|=% 2 |pXpIx [P Xp' =1,
p p

{(p;p'|p";p")y=8(p—p") 8 (p"—p’). (2.29

In this representation we have a simple expression for the

matrix elements of an operatér acting on wave functions:

App=(pIAlp")=((p;p'|A)). (2.25

satisfy

(P ool p(0))) =(Plp(0)[ ) <o (2.31)

We note that the solution of the eigenvalue problem of the
Liouvillian (or the Hamiltoniain depends on the type of test
states. As has been shown [iB], in statistical mechanics
these states contaiéifunction singularitiesin the momen-
tum representation, and new solutions of the eigenvalue
problem ofL,, emerge in the thermodynamic linfit]. We
shall come back to this point later.

In classical mechanics, the existence of invariants of mo-
tion that are analytic at =0 plays an essential role, as this
leads to the concept of Poincaréntegrability of the system.

As shown in Ref[13] this concept can be extended to quan-
tum mechanics through the construction of a complete set of
eigenstates of the total Hamiltonian. We shall present here
the integrability condition in a form convenient for our dis-
cussion. Let us assume that we know the completédsgt

in a domainD of « that satisfies

2 0@ =1, (2.323

(D|Pg)=8"(a—p). (2.32
Note that the first equatiofi.e., the completeness relatjas
a condition among the invariants of motion. With the aid of
the completeness relation for the invariants, we icéegrate

The matrix element of the perturbed Liouvillian is then giventhe equation of motioii2.8) for the class of density matrices

by

that satisfies Eq2.3D), i.e.,
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A be smaller than the domain of the unperturbed momenta. In
lp())= 2 e @ 2D (D ,[p(0)|Dp)(Dg. other words, some of the invariants of motion are destroyed
“peb (2.33 by the interaction, but many invariants still remain analytic
atA=0. Moreover, these analytic invariants span a complete
We have a sufficient number of invariants of motion to inte-Set, so one caimtegratethe equation of motion using these
grate the equation of motion. Systems that satisfy (g2 analytiq invariants of motion. We call this class of systems
with the condition(2.32) we call “integrable systems in the Poincarés integrable systems in the “weak sense,” in order
general sense.” In this definition there is no restriction on theto distinguish it from the integrable systems in the general
analyticity of the set of invariants of motion at=0 with ~ sense, as well as from the integrable systems in the sense of
respect to the coupling constant. Poincareintroduced above. An example of integrable system

In the above discussion we have introduced the concept dh the weak sense is the Friedrichs model, which is a model
integrability based on the integration of Sctinger's equa- Of an unstable dynamical system where a particle in a dis-
tion (or the Liouville equation We can also formulate inte- crete state is coupled to a field with a continuous spectrum
grability in the context of Heisenberg’s equation of motion.[14,15. In this model, the exact solution of the eigenvalue
To see this, let us introduce a setNfindependent general- problem is known. Each eigenstate and eigenvalue of the
ized momentum operators defined by total Hamiltonian isanalytic at A =0. But the domairD of

the indices of the eigenstates is not the same as the domain
S~ of the unperturbed eigenstates, becabseonsists only of
<<Ka|—a§D fala, M) (P ool the continuous spectrum, and the discrete state disappears
due to the coupling between the particle and the field.

The system we shall discuss here has an interesting prop-
erty: it is a Poincaréntegrable system in the weak sense in
conjunction with regular density matrices that have a well-
wheref,(a,\) is a real function, which keeps the general- defined Hilbert norn{2.14), while it is not integrable in con-
ized momentum operators Hermitian. An example is a funcjunction with singular density matricgshat lie outside the
tion that reduces to the unperturbed momentiamnfor A Hilbert spacg which are typical in equilibrium and non-

=QED fala, )P NP, (1<a<N), (2.39

=0. We assumécf. Eq. (2.31)] equilibrium statistical mechanics. It is important to notice
. that the integrability of a dynamical system depends not only
((Kalp(0)))<oo. (2.39  on the form of Hamiltonian, but also on the class of density

- matricescf. Eq. (2.39].
The operatorK , satisfy theinvolution relation that is, they
commute with each other and with the total Hamiltonian lIl. EXAMPLE OF AN INTEGRABLE SYSTEM

because 0f2.32h. By a straightforward extension of Liou-

ville’s theory on the involution relations in classical mechan- A system ofN particles in a 1D box of sizk, interacting

ics to quantum mechanics, one can integrate Heisenberg@a d&-function repulsive potentials, is a well-known inte-
equation of motion using the generalized momentum operagrable system for botN andL finite. Here we shall present
tors and their canonical conjugates, the generalized coord® summary of the solution of the eigenvalue problem of the

nate operators. Hamiltonian(for details the reader should consult the origi-
In addition to the condition2.32, let us assume the nal paperg4,6]). We shall consider the limit — later.
eigenstates®d,) and the eigenvaluef, are analytic at We consider the Hamiltonia¢2.1) with my=1/2 and the

=0, so that we can expand them in a perturbation séries. two-body interaction
this case the unperturbed momentlintan be used as the
index « of the eigenstates, and the dom&irof « coincides
with the domain of the unperturbed momenta. Then the in
variants({®y,| are also analytic ak =0. We call systems
that satisfy Eq(2.32 and that are analytic at=0 integrable
systems “in the sense of Poincdresince this is a direct 2 N

extension of Poincare well-known integrability condition Vi ={|V|I")= T > MUt lp=1L=11)
for classical systems to quantum systg@43]. b>a

v(|Xa=Xp|) = 28(Xa=Xp). 3.0

The matrix elements of the potential in the momentum rep-
resentation are given by

There is also another class of integrable systems that to N
some extent is a generalization of Poincsuiategrable sys- x 11 S(Ie—10). (3.2
tems. In this class, analyticity is not related directly to the c#ab

form of the eigenstates, but to the domairof the complete-
ness relation2.323. In this domain, the eigenstates and the
eigenvalues are analytic at=0. Therefore the unperturbed Hb=(X) = wrd=

momentak can be used as the index just as for Poincate Pi(X) = 0k hi(X), .3
integrable systems, fdce D. However, the domaild may

The eigenvalue equation in therepresentation is

wherex=(xq,...,Xy) are the positions, anll=(kq,... ky)

are the perturbed momenta of the particle® use tildes to

distinguish perturbed momenta from unperturbed momenta
Yt there is degeneracy, we assume analyticity is recovered after The eigenvalue equation has been solved by Lieb and

removing the degeneracy. Liniger [4] for bosons and generalized by Yaf]j for par-
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ticles with other exchange symmetries. Since the potential is N
zero except wher,=x;, the solution may be written fax wR= 2 2 (3.5
finite (Bethe's ansat5]) in the following form: a=1

N ) N ~ The eigenvalue equatiof3.3) can be satisfied if the first
d(x)=L ; AsrEX 'a; Xs,Kr, derivatives of the eigenstates have appropriate discontinui-
ties at the pointx,=x,, so that their second derivatives
for Xs =xs, = "=Xs, (3.4  cancel the terms proportional to th&function potentials.

This condition, together with the condition of continuity of
where L2 is a normalization factorS=(S;,...,Sy) and the eigenstates are sufficient to determine the constayis
R=(Ry,...,Ry) are permutations of (1,N), and the sum- As an example, consider the simplest cd$e;2. There are
mation is taken over all permutatios Then the eigenval- only two permutations, the identity permutatibs (1,2) and
ues ofH are J=(2,1). Then we hav§6]

L-Y(A, lei(Elx1+E2x2)+Al Jei('ﬁleﬁ(lxz)) for x,>x,

Px(x)= L-1(A, Iei(El><2+ kax) 4 A Jei(szz+E1xl>) for x,>x,, (3.6
|
where (with arbitrary coefficients; andc,) we have eigenstates vanish if any two of the momenta are efytial
On the other hand, the free eigenstdimstained by putting
A =c1, Ay =cCy, (3.7 \=0) do not vanish ak,=k,. Hence there is a nonanalyt-
_ _ icity of the eigenstates at=0. Nevertheless, as explained
AC;—iCokyg ANCy—iC Ky below, the eigenstates are analyticNnin the reduced do-
A= H—'k- 3,0= H—E (3.8 main where the pointk, =k are excluded. We denote this
K21 K21 domain by
with Ezlziz—’ﬁl. The constantg; and c, determine the D={k|k,#ky, for all a#b}. (3.10

symmetry of the eigenstates. For example, for distinguish-

able particles we have,=1 andc,=0, whereas for bosons Boundary conditions imposed on tirgeracting particles

we havec;=c,=1. For fermions ¢;=—c,=1) the con- introduce a discretization on the momenta that is different

stants(3.8) become independent af and the wave functions from the free-particle discretization in E@.4). In Appendix

are simple antisymmetrized free stafé$ A we show an example of interacting bosons with periodic
For N particles the solution for the coefficientss g in boundary conditions. For this case the perturbed momentum

Eq. (3.9 is the following[6]: arrange the constanfssg in - k, may be written as a function of the free momehta b

an N!XN! matrix and denote its columns byAg =1,... N, by solving a transcendental equati¢s,6],

=(Asr.As r.Ag r,...)", WhereT denotes transpose. De- which is obtained by imposing boundary conditions on the

fine the operatoX,, that exchanges thath andbth ele- eigenstates of thetal Hamiltonian. It is also shown that the

ments of a permutation and lef, pAsr=Ax_sr and  perturbed momente, and the free momentg, can be put in

RabAsr=Asx R Then the column vectors are generateda one-to-one correspondence, and they are analytic=dl

through for ke D. This result can be generalized to particles with
other permutation symmetrig§], or with other boundary
)\—i(thR _”k‘R )Saai1 conditions. This allows us to label the perturbed eigenstate
Raas1AR= — A _Ag. (3.9 by the unperturbed indek for ke D,

Nt+i(kg —kg)

(Kewa ™, HI D) = Qi D), (3.1
By repeated use of Eq3.9) and starting with a giverd,
[wherel=(1,2,...N) is the identity permutatiojy the rest of
the column vectorg\g can be determined. As for tHé=2 |DY=|47) and Q=wi (3.12
case in Eq(3.7), the components of the vectéy determine

the permutation symmetry of the eigenstates. For examplexnd (x| )= ¢5(x) in Eq. (3.3). The system is then Poin-

As, =1 for all S corresponds to bosons. For a system ofcareintegrable in the weak sense fiorandN finite, since we
distinguishable particles we havks,=1 for S=1 and 0 paye

otherwise. Other exchange symmetri@sonfermionic or
bosonig are possible, and they arise, for example, if spin
wave functions are taken into considerat{@&j. _
_We note that forA #0 the eigenstate3.6) vanish atk,
=k,, no matter how smalk is. Similarly, theN-particle  and the eigenstates are analytidat 0 in the domairD.

where

k;) | DN D=1, (Dy|Dy)=6(k—k') (3.13
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Let us recall that the usual criteria of Poincarimtegra-  of the denominator @,— w,) in Eq. (3.20 is of order 1L
bility conditions are stated in conjunction with a problem of [see Eq(2.4)]. This leads to an ill-defined expression for Eq.
resonancdi.e., a small divisor[2]. One can make the ap- (3.20 in the continuous limiL —o, when the summation is
pearance of the divisor explicit in the eigenstalds) in replaced by an integral. One can avoid this difficulty by the
terms of the Brillouin-Wigner equation defined in §.14), usual regularization of the propagator, by adding a small
so that one can see the relation |df,) to the resonance imaginary number in the denominatat,i e with e>0. Let
problem [see also the discussion below E®.20]. This us then define
equation relates a perturbed eigenstabg) to an unper-
turbed eigenstate dfl; with the same indek as

| D (L, xi€e))=Ng |k>+2| /Q o ||>Trk+(Q|f)>

1 L tie—
|P) =[K)Ni+ Q O —H, AV[Dy), (3.19 (3.21)
where for finite L ande, whereTk (Q)=TK(QF =€), andQy
Q=1 |K)(K| 315 =t T(Q).  The normalization — constant Ni

=(k|®\(L,*i€)) is chosen to satisfy the condition
and N, =(k|®,) is a normalization constant given below.
Multiplying both sides of Eq(3.14 by (Q,—H;) one can
easily verify Eq.(3.11). It is convenient to write the eigen- > [ Pw(L, xie)P=1. (3.22
states in terms of th&* operator, !

Tk (3.16 Addition of the small imaginary number for the discrete
z—H, QT(2). ' spectrum case leads to a small error in the eigenvalue equa-
tion, which we shall carefully estimate later in E§.32). In
In terms of this operator the Brillouin-Wigner states arethe continuous limit we use the notation
given by

TK(Z)=AV+AVQy

| Y= lim |y (L, *ie)). (3.23
THQYIKY . (3.17) Lo

| @) =Ni| [k)+Qy O Hq
In this limit the denominator in Eq3.21) can be understood

The eigenvalues can be written as S
as a distribution:

Q= o+ (K TQ k) (3.19
d th Mt = (K|®,) can be determinedip t ! © el iinae) (324
and the componenti,=(k|®,) can be determinetlp to a =T ——P—Fimdw) (3.
phase from the normalization conditiors|(I|®)[?=1, wxle otet wte @
which leads to

(where P stands for the principal parif there are enough

TE(Q)) 2)1 discrete states around the peak of the Lorentzééfe?

O —w

(.19  +42). Therefore we should take the continuous limik
=2m/L—0 ande— 0+ with the condition[16]

|Nk|2=(1+2 ’

whereTE (Q,)=(I|T¥(Q,)|k) and the prime in the summa-
tion sign denotes that the sum is taken with the condition |dw/dklAk 1
" = o, (3.25

€ 7L
For any normalizable statg/| )< we have

1 wheren= e/ (2m|dw/dk|)— 0+ is infinitesimal with dimen-
(¢|®k>=Nk<(¢| Ky+ >, q- (¢||>Tl‘k(ﬂk)). sion of momentum. That is, takirfirst the limit L— and
! k™ @I 32 thenthe limit e—~0+ we obtain the well-known expression
(3.20 of a Cauchy integral in Eq(3.21), with two branches of

In this form the divisor (2, — w|) appears explicitly. Because analytic continuation of®,) in the complex planéa].

the perturbed momenta cannot be equal to the unperturbed 1hacker[17] has obtained an expression for the momen-
momenta forn#0 andL finite [see, e.g., Eq(A4)], the tum representation of the regularized states for a system of

denominator cannot vanish, and this expression is well dg20S0ns, by solving the Lippmann-Schwinger equation using

fined. Feynman diagrams. Generalizing his result to the Brillouin-
So far we have considered the integrability of the systenYVigner equation for particles with arbitrary symmetry we

for finite L andN. We next consider the case Nffinite but  0Ptairf for L—ee

L—oo. In this limit the spectrum becomes continuous. We

shall see that the system is still Poincaméegrable in the

weak sense, as in the discrete spectrum case. However, carérhe volume factor can be absorved by using #fenction nor-

has to be taken in the limlt— o, since the minimum value malization[see Eq.(2.7)].
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we have|N, |2—1 (see Appendix B Therefore, with the

(P )= % > Agr(N,K) 8 (kr—11) restrictions(3.25 and (3.30 we have consistent eigenstates
L RS of H with a well-defined normalization constaN{ in the
N-1 i continuous limit for finite number of particleés in conjunc-
<[] — , (3.26  tion with localized test states. An example {#|=(x|,
a=1 Z (IZ Ce)—i which leads to Eq(3.4).
=y RIS T We note that the introduction of the small parametein
Eq. (3.2 leads to a drastic change of the physical meaning
where of the statd®,). Indeed, for finiteL, Eq.(3.17) is an exact

eigenstate oH for any time scale. In other words, the state
(3.17 contains the information of processes where the par-
lr= 2 la (827 ficles reach the boundaries an arbitrary number of times. On
the other hand, Ed3.21) gives a good approximation of the
and(l|®, )= (I|®, ). Thex representation of the states is €igenstate only for the time scale restricted by E430.
given by That is, the use of Eq3.2]) is restricted to processes where
the majority of the particles do not reach the boundaries, so

N - that one can ignore the boundary conditions.
(X|®y=L"N2Y Asze"’("SN_Xsl)eXp<i2 XsakRa) Since Eq.(3.21) are eigenstates of the Hamiltonian to-
R a=1 gether with localized statdss in Eq.(3.31)], we can define
for Xg =Xg =-"-=Xg, (3.29 the set of N generalized momentum operatorgfor a
N NT1 ! =1,...N)
which can be seen by taking the Fourier transform of Eq.
(3.28, - -
Ka=2 [Py )ka(®Pic], (3.32

L2 ) keD
f dNx(x|®, Ye ™ =(1|®, )+ O(e” ™)
—L/2

e which are invariants of motion. Indeed, because of Eq.
exd —i(kj—1j)L/2] (3.3, the time derivative of the expectation value of the
ki—lj—in ' invariants—i((K; |Ly|p)) is zero for any localized density
(3.29 matrix p that belongs to the Hilbert spa¢see Eq.(2.28].
Moreover Eq.(3.32 reduces to the unperturbed invariants of
With the conditionzL>1 we may drop the second term. motion (in the limit A — 0):
With an integration ovek and/orl with a suitable test func-
tion the third term vanishes in the continuous limit. If we
restrict the use of Eq.3.28 within a region|x,— x| <1/7 ki= >, |K)ka(K|. (3.33
for all a,b then Eq.(3.28 reduces to the eigenstaig.4). keD
The regularization introduces a cutoff in space. The cutoff
in space introduces a limitation in the time scales. For 3owever, they araot the unperturbed momenta, because of
typical momentump, of the particles the use of the states ihe restriction in the summation ovérin the domainD.
(3.21) is_valid (in conjunction with localized test functions This shows that in the continuous limit the systér) with
for the time scale Eq. (3.1) is Poincareintegrable in the weak sense for any
finite N, with respect to local density matrices.

1
t<—<tp, 3.3
7/Pol B (330

. . . . IV. DESTRUCTION OF THE INVARIANTS OF MOTION
wheretg=L/py is the crossing time of the particles from one

side of the box to the other side. One can also see this fact in We now show that in the thermodynamic limit the invari-
the eigenvalue equation. Indeed, multiplying both sides ofints of motion(3.32 are destroyed due to Poincareso-

Eq. (3.21) by Qf +ie—H, we have nances in conjunction with a class of singular density matri-
ces corresponding to nonequilibrium states. This class is
(HID(L, €)= D (Y[ D(L, *i€)) obtained by a generalization of equilibrium density matrices
) ) to nonequilibrium situations. A characteristic feature of this
*ie[(y|D(L, xie)) class of density matrices is that they hasunction singu-

(3.31) larities in the momentum representation and hence do not
' belong to the Hilbert space. The general form of these den-
sity matrices is given byhere we introduce the variables

—(UION].

The last term vanishes in the continuous limit ane 0+
with the condition(3.25 for any state(y| localized in space.
Furthermore, because the potentfglis O(1/L) in Eq. (3.2
we haveTk~O(1/L). Hence we have), — w for L— 3For the boson case we may define the operatés
with N finite [see Eq.(3.18 and also Eq(A5)]. Moreover =3, _p|d:)kX®¢|, forn=1, ... N.
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| .= pa+tKka/2 andl}=p,—k,/2 for the moment# [1-3]

N
1
Po(P)I(K)+ = 2 p, 1o (P) O (Kt ki) S35(K)

2 \N
(B p))=((p+ k/2:p—k/2|p>>=<T)

1
T2 20 Phy e k(P (Katky ko) 05l oK) + -

>b>c 2’

N N
1 1
+= 2 pr (PO + 2 2 pr (PSR + -] (4.0
L < a LeaSh fa®

where e BH

— 80—
PP T Tr(e PRy 44
N N
wherekg is Boltzmann's constant antl the temperature. In
Kr oy — K| Kr _ Ki B
Sa (k)_rga 5™ (Kn), ‘Sfaub(k)_mllb 5"(kn) (4.2 the equilibrium state all inhomogeneous components vanish.
Through the iterative use of the integral equation

B
and so on. The factor @@/L)N in front gives a correct nor- eBHzeBHO( 1—)\f d,BleﬁlHOVeﬁlH) (4.5

malization ofp as a probability in the thermodynamic limit, 0

we obtain
27 \N _ NI2p—Bo
Ti(p) =3 <<|;||p>>=({) > po(1)+O(11L) p3tp)=(Blm) e Pr[1+OMN], (469
| |
_ _ 20 SINN(BP,K,)
eq = (B )2 Bep| — )\ e~ BG4
Hf dNlpo(1)=1. (4.3 Py ko (P)=(BIm) e p[ ® Paka

+0(\?) |, (4.6b

We assume thai, Pk, k... andp,’(a’kb,__ do not depend on

the volumeL in the thermodynamic limit. In Eq4.1) we  and so on. _

have decomposed the density matrix according to the num- In the expansiori4.1) we see the appearance of volume
ber of nonvanishing elements, in the set of wave vectors factorsL™", which lead to different. dependence for differ-
k=(Kkq,....ky), that is, the number of particles that have ent components. With a combination of these volume factors
off-diagonal elements in momentum representation. Tha&vith the Kronecker deltag®'(k), 5',(K), ..., we see the ap-
componentspy_, .. are associated with the “homoge- pearance of the>function singularitiesin the momentum
neous” components of the distribution function of the par-Variables in the thermodynamic limlisee Eq.(2.7)]. These
ticles in space(i.e., the components where the total wave Singularities correspond to a nonlocal distribution of the en-
vector vanishes, i.ek; +k,+ -+ + ky=0), while the coeffi- semblﬁ In tbhe co;ﬁgurau%n.spaﬁiﬂ. I A
cients py, . ... are associated with the “inhomogeneous” As has been discussed in RE2] (see also Ref3]) the

) decomposition op by pg,px «.,-... isdirectly related to the
components(with k;+k,+---+ky#0). We note that the L arb . . . .
value of the total wave vectok.+k.+--- is conserved cluster expansion in terms of spatial correlation functions in

1 2

throughout the time evolution because of the assumption o tatistical mechan|c§. Tr,',e compo‘rllq_n; is related _to th”e
binary interactions. As a result, the homogeneous compo-/acuum of correlations,”py i, to “binary correlations,
nents evolve independently from the inhomogeneous compa, .k, k. 0 “ternary correlations,” and so on. For the case
nents. of nondistinguishable particles care is necessary in the de-
As mentioned, the density matricék1) are a generaliza- composition(4.1) since some of the higher correlation com-
tion of the equilibrium states. For example, the canonicaponents may reduce to the lower-order ones due to the non-
equilibrium distribution is given bywith 8~ 1=kgT) distinguishability of the particles. To incorporate quantum
statistics, we need to improve the decompositiéri). This
can be achieved by introducing the concept of “contraction”
“In Ref. [1] the momentum states have been normalized in ao.f the density matri>(.see[_3]). Then we obtain an expansion
slightly different way, in order to have a correspondence with cIas-SImllar to Eq.(4.2) with d_lfferent vaIues_ of the components
sical mechanics. As a consequence thef&ctors in Eq.(4.1) ap-  P0:Pky ky-+- - However, in order to avoid unnecessary com-
pear differently from the ones in the corresponding expression irplication, here we shall restrict ourselves to distinguishable

[1]. particles.
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The sfunction singularities in the density matrix have striking consequences in the dynamics. Because of these singularities
the density matrix does not belong to the Hilbert space, as its Hilbert norm vanishes in the thermodynamic limit,

2
<<p|p>>=( L”) [2 poP)I?+ 2 E E 11 (P20 (ot ) S5 + -+ | 0. @7

As a result, the Liouvillian may have complex eigenvalues Hereafter we denote the statds (L, *ie€)) in Eq.(3.21) by
The simplest example of a singular nonequilibrium density|®, ) to avoid too heavy notatiofiSince we shall not refer
matrix is obtained by setting aﬂka,kb,_,_=0 except for the to Eq.(3.23 in the following discussion, there is no conflict
vacuum of correlation in Eqé4.1), with this new definition] The continuous limit should be
taken at the appropriate stage where the explicit volume de-
27\ N pendencies are evaluated. Inserting 2326 in Eq. (4.10
(I ey =15 ’|Po>>E(T) S(1=1")po(1), we obtain a product of infinitely many absolute values
(4.8  squared of the denomlnatdisq —lg —i 7|~ 2. Each of them
is ill defined as a dlstr|but|on and leads to the diverging

i.e., the distribution of the particles is uniform in space at thefactor 14. As shown in Appendix C we havebo(k)
|n|t|al time. To demonstrate the destruction of the invariants— N(c/ n)N"1 -, The invariants diverge in the thermody-

of motion due to Poincate resonances, we shall use this namic limit. The origin of the divergence is twofold: one is
example in the following discussion. The extension to morén N, and the other i/ . The factorN comes from the fact

general situations is straightforward. . that ¢o(k) depends on all particles. As we show below, the
Let us consider the expectation value of the invarkpt  reduction by the summation ovérin Eq. (4.9 suppresses
over the ensembl&t.9), the factorN, while the divergence/» remains. In order to

show the role of the reduction more clearly, let us look closer

at the origin of the divergence in the series expansioR.in
(Ky Yoo (K lpo))= ( ) g; Kigo(k), (4.9 The essential part of the following discussion also holds in

terms of the so-called “binary expansion,” using the two-
where body T matrix. Hence\ does not have to be small.

We first note that we have chosen the normalization con-

K) = Nt =3 41 stant N, such that Eq.(3.22 holds independently of the

Po(k) 2 po(DKII®i)] (410 choice of the class of density matrices. Then we have

- 20\N L~ ~ —~
K2y )3, Tl o3 1010 o) o0 @12
In terms of TX operator we havsee Eqs(3.19 and(3.21)]

(Qk_l )

pk(Qk _|€)
Qp—ie—w

po(K)+ y
€— (I)p

s

To lowest order i\ we haveT*=AV+0O(\?) andQ, = w,+O(\). Plugging this into Eq(4.12 we obtain

(K1 )py= ( ) >k

1+ '
p

[po(l)— Po(k)]} (4.12

2

,\ 7\
(K1 )= ( ) E k1<Po E Vi 278w — @) [po(1) = po(k)] | + O(N®), (4.13

where w8 (w)= el (w?+ €%). Following a calculation parallel to the one presented in Appendix B, this ledde¢oEq(B7)]

. 2 NE )\2% lka— Ky|
(K1)py= ( ) ke| po(k)+ - W{[Xba 11po(k)+0O(n)}

b>a

+0O(\%), (4.14

where the operatoX,,, exchangek, andk, in pg(K)=po(ky,Kz,...,Ky), and 7z is an infinitesimal value given by= 7|k,
—ky| [see(3.25]. Taking the continuous limit in the variablés and assuming thaty(k) is a continuous function, we obtain



3516 T. PETROSKY AND G. ORDONEZ 56

N
2 [kp—Kal

. A
(K1 )po= f dekl( po(K)+ - bzz (ko= kp) 2+ 72 {[Xb1—11po(k) +O(7)} | +O(N®). (4.19

Note that all processes that adésconnectedo particle 1 system, we do not see this type of cancellation and there
through the interaction have been canceled undektile-  appearN(N—1)/2 terms through the combination of all bi-
gral. As a result, the summation in EGt.15 containsN nary interactions. This leads to a trivial divergence in the
—1 terms. In the thermodynamic limit the? term inside thermodynamic limit. Because density matrices wave
parentheses is then proportionalNé(eL)=c/e, which di- functiong depend on infinitely many variables, it is unavoid-

verges in the limite— 0+ . Therefore, in the thermodynamic able to work withreducedquantities depending only on a
limit the system is not integrable in the sense of Poindare finite number of degrees of freedom, in order to obtain mean-

conjunction with the class of density matrice@sl). The 1  Ingful results in the thermodynamic limit. Note that the re-

divergence occurs at the resonangg= w,, since we have duction has a meaning only W'th dens_lty matricos proq-

5( 0 w))— () for e—0+ Tha{t is. Poincars ucts of wave functionsand not with a single wave function.
e\Wk— W k™ @i . '

: . . .This is why we discuss the meaning of integrability on the
resonances destroy the invariants of motion, exactly as ovel of density matrices, and not on the level of wave func-
classical mechaniddl6]. '

tions.
We note that the estimation of the divergencedg{k) R . . L
obtained with the exact solutiai3.26), discussed below Eq. Let us note that iK, is an invariant of motion, it should

41 s that th ¢ ; tint bl ) thcommute with the Hamiltonian. However, a calculation simi-
(4.10, suggests that the system is not integrable even in far to the estimation in Eq4.13 shows that the expectation

general Sense. prever, to prove this we have to show the, e of the commutator of the generalized momentum op-
cancellation of disconnected processes without the use Qfi5tors with the Hamiltonian also leadsdtc/€)" divergen-
perturbation(or binary expansion. We hope to come back to ¢jes in then expansion, in conjunction with singular density

this problem elsewhere. _ . matrices. For example, we haygee Appendix D
If we consider higher-order terms in thie matrix, new
divergencies proportional toc(e)" appear, where is an ((RI|LH|p0))=Tr([H,k[]Tpo)~C(C/e)”. (4.16

arbitrary integer. These divergencies are related to a physical

process, i.e., the recollisions of the particles, and are called In the above argument, divergences in both @gl5 and
the rescattering anomali¢$8,19,2Q. Recollisions occur for  Eq. (4.16) appear through an ill-defined product of the dis-
systems of three or more interacting particles. Successiveibutions of typelw—ie| 2. We note that it is also possible
collisions can be separated by arbitrarily long intervals ofto consider other invariants that are Hermitian operdt2t$
time, and they cause divergencies in the transition rate, origisuch as
nated by poles in th& matrix.

We note that if the functiomg(k) is symmetric under
exchanges of the particlgg.g., for bosonswe have[ X,
—1]po(k)=0 in Eq. (4.19 and we obtain a finite contribu-
tion to order\?, because th€®(7) term together with the Because the denominators are regularized \&s- i(e) 2
1/e factor in front givesn/e~1. However, it is easily seen +c.c. in Eq.(4.17), the expectation value d€} is finite in
that higher-order divergencies/)" with n>1 originated  the thermodynamic limit, even in conjunction with singular
by rescattering anomalies still lead to the divergence of Edgdensity matrices. However, this does not solve the problem
(4.15 in higher-order terms of th& expansior?. Therefore,  of the integrability. Indeed, we cannot use these new invari-
Eg. (4.19 diverges, regardless of the symmetry of the par-ants to integrate the equation of motion, because they do not
ticles. commute with each other, so that they do not satisfy the

The cancellation ofdisconnectedprocesses mentioned inyolution relation. We shall come back to these invariants at
just below Eq.(4.15 is one of the crucial points in our the end of Sec. V.
argument. We have investigated the existence of the expec- | et us also note that E@4.13 has a suggestive structure
tation value of an observable that depends dinite number  rejated to irreversible processes. Indeed, replacing i/

of particles(in this case, of a single partigleinstead, if we  front of the second term in this expression by we obtain
use some quantity associated wal the particles of the (for e—~0+)

K=t 2 K| (@ [+ N(@]]. (417

~27tN2D, V|2 8(wk— o 1= po(k)]. 4.1
5This can also be seen using the formal expression for the exact 2| | |k| (e lpo(h)=pok)] (4.18

solution(3.26). Substituting this in Eq(4.11) we find the dominant . . _
(divergen} contributions come from the poles lag = kg *i7. For This _cor(esponds to the onvest—order term in the series ex-

(4.11) is then proportional ton, since we have, e.g.po(k; In previous paperEl,22], we have already shown for poten-
+im,...)=po(Ky,...)=i ndpo(Ky,...)Idk,+O(5?). Because of the tial scattering that the destruction of the invariants of motion

factorsy " coming from the absolute value squared of the denomi-due to Poincare resonances leads to a broken time symme-
nators in Eq.3.26), we still have divergence in E¢4.11). try in the evolution, which is governed by the Pauli master
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equation. For the 1D gas with th&function interactions pectation value of the momentum operator with an
(3.1, the destruction of invariants of motion indicates alsoequilibrium statef (H),
the existence of irreversible processes, such as approach to
equilibrium. R _

At equilibrium we havep,(l) = po(w;), which gives us UKITEH)Y= D kY (1@ WD [F(H)[,
S(wi—w)[po(®) — po(w)]=0. The divergence in Eq. ke 1
(4.18 then disappears in the second-order approximation in
\. Actually the equilibrium states, being functions of the
total HamiltonianH, are exceptional states where the reso-is well defined in the thermodynamic limit. To prove this we
nance singularities do not play any rdfeote that the reso- use thatH|®, )=(Q, —i€Q,)|®, ) [see Eq.3.3D]. Then
nance denominator breaks time symmgtindeed the ex- we have

(4.19

(R H) = 2 ka2 (1K@ +ieQull= 2 Kaf (O [P0 +ie X Kaf (202 (1195)

X(®, |Qyll)+O(€?), (4.20

where we have expanddd(), +ieQ,) in a Taylor series, to lowest order & Using the normalization conditiof8.22 we
obtain

<<F<;|f<H>>>=kED 'Elfm:)ﬂekED ke (Q0)[1—[Ng |21+ 0(€?). (4.21)

Each term in the right-hand side is well defined in the therparameters characterizing the eigenstates. We consider the
modynamic limit(the normalization constant goes to zero; class of eigenfunctions that have the fotl).

see Appendix B Since we havee— 0+ we may drop the We have previously formulated the eigenvalue problem
last two terms. The expectation value ﬁg is thus well  for this class of functions for the general case of systems
defined in this limit. This implies that the solution of the With binary interactiong1]. There, we have shown that the
eigenvalue problem of the Hamiltonian obtained in Rps.  Liouvillian can have complex eigenvalues w0, and the
6,17] can be used at equilibrium. The main result of thisevolution splits into two semigroups; one is oriented toward
section is that the statg®, ) lead to divergenciesut of  our futuret>0 with Im ZY<0 (equilibrium is approached
equilibrium in the thermodynamic limit, in spite of the fact for t—o), while the other is oriented toward our past0

that they give finite contributions at equilibrium. In order to with Im Z”>0. Because the singular eigenstates do not be-
obtain a consistent description of approach to equilibriumjong to the Hilbert space, it is not surprising to obtain com-
we need to reconsider the eigenvalue problem of the Liouplex eigenvalues for the Hermitian operakgy. All irrevers-

villian, which is the subject of the next section. ible processes have the same time orientation. To be self-
consistent we choose the semigroup oriented towards our
V. COMPLEX SPECTRAL REPRESENTATION OF L future. In the following part of this section, we shall briefly

i i . _summarize the formal solution of the eigenvalue problem
In Sec. IV we have shown that the invariants of motion g 4y A detailed formulation can be found in Réfl] (see
are destroyed due to Poincareesonances in the thermody- also[16] for classical mechanigs

namic limit. In conjunction with singular density matrices,  gecayse of the-function singularities in the eigenstates,
|®, ) are no .Ionger th.e eigenstates of the_ Hamlltomgn. Nhe decomposition dF{"}) into the components of the vari-
order to obtain a consistent picture of the time evolution ofOus correlations justaas in Eq4.1), has a well-defined
the system, we have tc_) reformulate the e|genva!ue pr.ObIerH]eaning. We then introduce the projection operators that ex-
of the generator of motion. Because we are dealing with th‘?ract each correlation component:
class of the singular density matrices1), we have to for- '

mulate the eigenvalue problem on the level of the Liouvil-
lian, P“”E% [pip)){(pspl,

(MILW[FE) =2 (MIFL)), (5.9)

(ka) kr . .
wherez{") is an eigenvalue anfF{")) is a right eigenstate Pa :% S5 (K)[p+ki2;p—k/2)){(p+ki2;p—ki2|
of Ly, andM is an observable depending on a redu@esd, (5.2
finite) number of particles. We need this reduction to avoid
diverging contributions through the disconnected processeand so on. To avoid too heavy notation, herafter we label the
discussed in Sec. IV. The indices (together withv) are  projection operators a8(*). Then we have
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Using Eq.(5.10, the right eigenstates df,, can be ob-

EV: p=1. (53 tained from the right eigenstates #f"(z{") as
, VW 1P+ (2| y»)
We also define the complements: [Fe ) =[P+ C™(z,)]uy”)). (5.14
M1 _ p Because the eigenvalues are complex, the left eigenstates of
QW=1-pP", (5.9 - ; !
L, are generally not the Hermitian conjugates of the right
The operator® and Q™ satisfy eigenstates. With a construction parallel to the one above, we

have the left eigenstates af; with the same eigenvalues
P pr) = 5# Vp(V), p(V)Q(V):Q(V)p(V):O (5.5 Z(») ’

and[see Eq(2.20] (F=(@ VI[P +DM(2M)], (5.15
PWLy=LoP™, PWL,PM=0. (5.6)  where the “destruction-of-correlations” operatéthe de-

struction operator in shorts defined by
For A#0, the eigenstatéF{"(\))) consists of components

with various v. To specify the eigenstates, we impose the V) — B(¥) ) 1
boundary condition D™(z)=P"ALVQ™ — QL,Q™ (5.16
lim[F(N))y=PY[FY(A=0))). (5.7 and{((@ V|=(FY|P™ are the left eigenstates of the col-
A0 lision operator
From Eq.(5.1) we have (o (av)|'r//(")(2(v)):<<3 (V>|Z§1V>_ (5.17
PULL(PY+QM)[FI))y =20 PMIF)), (5.8 Note that the eigenvalue problem of the collision operator

) () - - is a nonlinear problem, for the collision operator itself de-
QVLK(PM+QMFN)=2"QIF")). (5.9  pends on the eigenvaltg” . Because of this((z )| is
generally not biorthogonal teu(”)). Assuming, however,
bicompleteness of these states in eBEH subspace, we may

y v v | truct sets of statggu |} and{|v{"))} bior-
QUIFMY)=C (M) POIEM)Y), (5.10  @lways construct sets o statggu ,,’|} and{|v,’))} bior
“ “ “ thogonal tof|u{”))} and{((v (|}, respectively,

Solving Eq.(5.8) for the Q") component we obtain

where the ‘“creation-of-correlations” operatgthe creation
operator in shojtis defined by (T (av>|u<ﬂu>>>: 8,48 Ea: luW(@ ] =p»)

! 5.1
=007 QUALP™. (5.1 (5.18
" and similar relations fofv{")) and((v {|. Then, with a
Care has to be taken in the analytic continuationzafo suitable normalization we obtain the spectral decomposition
obtain a consistent description of the semigroup oriented tc@f the evolution operator in terms of the bicomplete set of

Cc(z)=

ward the future[1]. eigenstates,
Substituting this into Eq(5.8) we obtain —i
¢ 59 (MIp(1))=((M]e ] p(0)))
(2 Uy = 2|y 5.1

R R =3 e YMIF)NED ()
where|u{?))=P®|F(")) and we have introduced thml- e
lision operators (5.19

P (2 =PWILPW + PONL,C (2P, with the biorthogonal relation
(5.13

(FLIFE) = 81,005 (5.20
This shows that the eigenvalue problem of the Liouville op- ) ) )
erator is reduced to the eigenvalue problem of the collisioflOreover, we can mtroduti? theonunitary transformation
operators. The collision operators are dissipative operator@PeratorA and its inverse\ = -,
(i.e., non-Hermitian operatorsand are the central object in
nonequilibrium statistical mechanics. The collision operator A=, |u£YV))>(<E(a”)|«/N(;>,
associated with the vacuum of correlatioss O reduces to v,a
the well-known Pauli collision operator for weakly coupled
systemg 1]. Equation(5.12 shows that the eigenvalues of —1_ NN/ /=) -1
the Liouvillian are identical to the eigenvalues of the dissi- A ;1 [P VNG (5.2
pative collision operators. This implies that the eigenvalues
of L are generally complex numbers for the class of eigenwhere N&”)= 1+ 0O(\?) is a normalization constant, the ex-
states(4.1) that do not belong to the Hilbert space. plicit form of which is not important in the following discus-
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sion (see Ref[1]). The nonunitary transformation leads to a consider a near-equilibrium situation, where one particle un-
similitude relation between the Liouvillian and the total col- dergoes Brownian motion, while all the other particles are in

lision operator® as equilibrium. A similar problem has been studied for anhar-
. monic lattices in Ref[2].
ALyA™ =0, (5.22 The collision operator in the=0 subspace is given by

where

P O(2)=N\3)(2)+O(NS) + -+ 6.0

O=3 W u)NE=Z 2N where[see Eq(5.13]
(5.23
1

This is a direct way to see that the Liouvillian shares the ¥)(2)=POL,Q® L, QOLP©@ (6.2

same eigenvalues with the collision operator.

For the density matrices that belong to the domain of
(i.e., p=Ap<>), we obtain a kinetic equation oriented to
the future from the Liouville equatiofisee Eqs(2.8) and

(5.22],

and the denominator is evaluated as an analytically contin-
ued function from the upper half plane of With a suitable
test statd(M| the eigenvalue equation is given tyereafter
u,=u® andz,=7z)

L0 - -
H 51 PLO=0p(1). (5.24 (M2 (+ie)|u))+ O =2,((M|u,)), (6.3

As we show in Appendix E, we hav&K;— for the  where we have expanded”)(z,) aroundz,= +ie and kept
invariant of motion defined in Eq4.17). Therefore, the ex-  the lowest-order term, a, is of ordern? [see Eq(6.17)].
istence of the invariariK, does not prevent the approach to One can write, for each component,
equilibrium for the class of density matrices belonging to the

domain ofA.

In this derivation ample use has been made of projection N2 (1D (+ie) [k k) (kK ug))
operators. Traditionally projection operators were used to de- K
rive the formal (non-Markovian master equation§2,23]. =z, ((I;l|uy))+ O(A3). (6.4)

Their use to obtain the spectral decomposition of the Liou-

villian in extended function spaces was first introduced bYrne matrix elements of the collision operator for tide
Petrosky and Prigogine in RgR4]. Our method is valid for  ¢,nction potential(3.2) are given by

both classical and quantum systefisge, for instance, the

example of the classical and quantum Lorentz gas discussed, .,., ,0), | : )

in Refs.[1,16]).° It avoids the use of an external heat bath or(?gl Ly (+ielkik))

of the influence of environmental effects that introduce as- a2z N
sumptions going beyond dynamics. Also over the past, trun- =—7i —) — > N (1—k)
cation of the BBGKY hierarchy has been used to obtain time L) 2mg=a
symmetry breaking. However, as time goes on, higher and =1
higher correlations appear and no truncation is possible X2 18Kl — k) S5 (1y—Kp)
[25,26]. (la=lp)*+ 7
=8 (1,—kp) (I, = ka) ], (6.5

VI. EIGENVALUE PROBLEM OF THE COLLISION
OPERATOR #(© where we have replace®® by 1 in Eq. (6.2, since
. . . (0) (0) =
In this section and the following we shall present two P LvP 0, and used formuléB4). Then Eq.(6.4) leads

examples of approximate solutions of the eigenvalue prob'EO
lem of the collision operators for the distinguishable particle

case. 2N . [la=1| 1-x |
In our first example we shall study the solution in the L &2 (Ia—1p)?+ 792 [ ab]Ua(l)
=0 (i.e., vacuum of correlationssubspace for a weakly 3
coupled system. This subspace describes the evolution of =Z,Uq(1) +O(N), (6.6

distribution functions, which are homogeneous in space. We
whereu,(1)=((1;1|uy)).
Let us choose the observaliNe= M ; associated with par-

ticle 1, defined b
SHowever, for the classical case the number of spatial dimension y

has to be considered. Indeed, for a 1D gas of hard, pointlike par-

ticles with the same mass, particles only exchange velocities Myl 1,1, )y =My (1), 6.7
through each collision. To see the approach to equilibrium in a

classical gas, the system should have more than one dimension, where for convenience we have used the abbreviated nota-
well as a finite size of the particles. tion
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[P P 0 Tt [ DO PR TN PO PRI P Nonequilibrium eigenstates may be obtained assuming
’ that only one of the particle8rownian particlg is disturbed
=[l,05,. {105, 0n]. (6.8 out of equilibrium. This corresponds to the distribution func-

tion
The eigenvalue equation then becomes

N
u(Il,...,IN)=u1(I1)£[2 Ued(la), (6.15

2 Myl 2 (e IO i olug)
whereu,(l,) is a nonequilibrium(one-particle distribution
function. We assuma;(l,) is a continuous function df; in

the thermodynamic limit. Inserting E¢6.15) into the eigen-
value equatior(6.11) we obtain

=Za|§: ,vll(ll)I El <<|11"'1|N|ua>>' (69)

ao 1)e B2—u,(l,)e A1
fﬁdeZ ui(ly)e ui(lo)e —yuy(ly), (6.1

PRt PY

where we have droppeg in the denominator, because the

(6.10

limit 1,—1, is well defined. Herey is related to the eigen-
value of the collision operatdiand ofL,,) by

. B
= — 2 —_
z 2iN C\/;y.

(6.19
202 N (e
L LA m[l_xlb]u“(l) Writing
us(ly) =uedl)w(ly) (6.19
:Zalzgle Hall) (613 the integral equatiof6.16 reduces to
give & nonvanishing contrbation. The Iefthand side now [“ae Sy, a9

contains onlyN—1 terms, and together with thellfactor

this will give finite eigenvalues proportional to the concen-We shall solve this integral equation by a perturbation analy-

tration ¢ in the thermodynamic limit. sis, with the condition that the temperature is high relative to
We note that any function(l,,...,Iy) that is symmetric the kinetic energy of particle 1, i.e.,

under exchanges of the momenhia... | is an eigenstate of

the collision operator with eigenvalue zero. An example is

the unperturbed canonical equilibrium distributidiEq.

Bl2<1. (6.20

In Appendix F we describe an alternative approach in which

(4.4], we replace the Gaussian expgl?) by a step function. With
N this substitution Eq(6.16 can be solved exactly27].
UO(Ila---le):H Uedla), (6.12 Coming back to _the perturbation analysis, we expand
a=1 w(l) as a power series,
with W(l 1) =0+l +aoli+-- . (6.21)
ﬂ 3 2 . . .
WRE \/; e A2 6.13 The integral equatiof6.19 is now
o n-—1 ©
which is normalized as 21 20 d|2efﬁlgsg"(|1—|2)Qn|r117m71|?:720 dnl1-
n=1m= — n=
fw (6.22
dluel)=1. 6.1
i a eq( a) ( 4) We haVe
I2
fldx e AxM=D2 " for m even
o0 0
Im(ll!B)EJ’ d|zefﬂlgsgr(|l—|2)|21= (6239

—fzdx e Px(M=D2 for m odd,
Il

where we have decomposed the integration in two regigms|, andl,<I; and then made the change of variabkeslg.
Expanding the exponential as a power series, we obtain
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Jn(11,8) for m even
= m+1 .
Im(lllﬁ) Jm(ll,ﬁ)—ﬁ_(m+1)/2F(T) fOr m Odd' (6 24)
wherel'(x) is the gamma function and
Il B =it 2 2 g2 (B2 = — (B2 (6.25
mii U \me1 mr3 P 2rmes PO g m7 (Bl :

With the assumptiori6.20, higher-order terms give smaller This may be understood by taking explicitly the limit of the

corrections.
In terms ofl,, the integral equatio6.22 reads

Qulo+ Aallalo+11)+as(1Zlg+ 14l 1+ 1)+

= Y(Uo+qul 1+l 3+ sl 3+ ), (6.26
which gives us
q1<2| 2ﬁ|1+ +0, 2?B|‘1‘+---—%+|§
—§I‘{+ ol 213+ =S 1+ 13+ +§I'j‘
oo [ = (Aot Ail t Aol T+ gl 3+ 0). (6.27)

We can then find solutions for the constagtssuccessively,
by approximating the expansidi$.21) by a finite sum for
Eq. (6.20,

wr<ll>zn§0 anl] (6.29

and comparing the coefficients of the same degreg ,irn
both sides of Eq(6.27). Forr=0 we havewy(l,)=q, and
v0=0. This is the equilibrium solutiori6.18), with g,= 1.
We display the first five solutions

wo(l))=1, =0, (6.293
wi(l)=li, 11=2, (6.29h
wy(l)=1-381%, v,=3, (6.299
ws(l)=1,(1-281%), y;=4, (6.299
wy (I)=11(1+BI2/3), 3 =5/3,  (6.299

boundary of the integration in Eq6.19. Indeed we have
[see Eq(6.290]

K W (1) —w,(l
lim Iimf dlge- a3 M2l T wall2)
B—0 K—wJ =K ||1_|2|
= lim yowy(l4)=y,#0, (6.31
B—0
while
W(| w
lim |imf dl,e ZM—O, (6.32

which corresponds to the equilibrium solutian(l,). The
two limiting procedures are not commutative.

We also note that, in contrast to the eigenstésesd), the
solutions(6.12 and (6.19 admit the pointd;=I;. The ei-
genvalue problem oiz/(o) leads to an analytlc solution at
these points near equilibrium. In the next section we shall
construct a class of solutions for a situation far from equilib-
rium. There, we shall see that singularities similar to the ones
in the eigenstate3.14 of H remain.

VII. VIOLATION OF THE RITZ-RYDBERG PRINCIPLE

In the previous example we have considered the eigen-
value problem of the collision operator for the=0 sub-
space near equilibrium. Here we shall construct a solution for
a situation far from equilibrium where the system behaves
like the quantum Lorentz gdd,28]. The problem will be
then extended to a=1 subspace, which describes states
with inhomogeneities in the spatial distribution of one of the
particles. The main goal is to show that there are eigenvalues
of the Liouville operator that violate the “Ritz-Rydberg prin-
ciple.” Here, we use the term “Ritz-Rydberg principle” for
the principle that an eigenvalue of the Liouvillian is given by
a difference of two energidggigenvalues oH). This concept
is a generalization of the original Ritz-Rydberg combination
principle that indicates the experimental fact that the fre-

where the third-order polynomial has two solutions, obtainediuencies of photons emitted by atoms are always written as a

by solving the eigenvalue equation of &2 matrix (simi-
larly, higher-order polynomials have multiple solutipns

We note that there is an interesting discontinuity Gat
=0 in these solutions. For example, we have

lim wa(1) =wo(1)=1,
B—0

lim ’}’27& Yo~ 0.
B—0

(6.30

difference of two terms. This principle has led to the very
basis of quantum mechanics, which asserts that the underly-
ing dynamics of the probability represented by the density
matrix has a substructure that is described by the product of
probability amplitudes. The violation of the Ritz-Rydberg
principle, therefore, indicates that the irreversible processes
described by the complex spectral representation cannot be
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reduced to the level of wave amplitudes. The most basievhere
description is in terms of density matrices, and no more in

terms of wave functions. 222¢
The solution of the eigenvalue problem for potential scat- =—, (7.9
tering has been constructed in RER2]. This solution is [P1= P2l

easily applied to our case, féd=2 (two-body scattering As for the N=2 case there are two solutions, a symmetric

The collision operatqr involves the exchange op_eratgg _one, i.e.a,=b,=1, with z, =0, which corresponds to
[see Eq.(6.6)]. The eigenstates are then symmetric or anti-_ _~. ; : e -
: . equilibrium, and an antisymmetric one, i.a,=—b_=1,
symmetric functions under exchanges of momenta, such as : s . X
with z_=—2i ¢, which corresponds to a decaying mode.
The decay rate is now finite in the thermodynamic limit.
N 1 So far we considered the eigenvalue problem of the col-
lup))= v (Ip1,P2)) = P2,P1))), (7.1 \ision operator in the/=0 subspace, that is, the subspace of
density matrices that are diagonal in the momentum repre-
with the conditionp; # p, (here we recall that we are con- sentation. Now we consider the subspace of density matrices
sidering distinguishable particles: the eigenstates are symm#at are diagonal for particles 2.. N, but off diagonal for
trized on the level of density matrices, not wave functjons particle 1, i.e., density matrices made up of superpositions of
The eigenvalues are, =0 and z, = —4i\%/(L|p;—p,l), states of the form
which can be easily verified in Eq6.6). The symmetric
solution (with eigenvalue zenocorresponds to an equilib- 1P P I N PO P O S (7.7
rium state, while the antisymmetric solution is a decaying . . _
mode[22]. The decay ratéz, , however, vanishes aslL1in We shall consider the case where the off-diagonality

the limit L—oo and there is no approach to equilibrium for

N=2. We note that the solution is singular@t=p-. k=l,—1] (7.9
We can extend this solution for arbitrary number of par-
ticlesN. As we shall see the decay rate then becomes finités small, of the order
in the thermodynamic limit. Let us put
k~0O(\?). (7.9

|ua,p>>:aa|pllp21p2!p2!"'>>+ba|p2!plip11pl!"'>>' i . . . .
(7.2 This corresponds to large scale inhomogeneities in space dis-

tributions, since the off-diagonality in the momentum is
wherep; #p,. Then we have small. We denote the projection operator associated to this
subspace aP{* [see Eq.(5.2)]. Assuming weak coupling,
N the collision operator corresponding to this subspace is
Ug p(1)=2,8(1;—py) ]_[2 (1 —P2) given, to lowest order in, by [see Eq(5.13]
e

LyPY7+O(N3).
(7.10

Sincex is small we approximate=0 in the second term
in the right-hand side of Eq7.10). Then, the second term in

N
b, =p) [T (p=py). (7.3 #(+ia=P{Lo+A?PYLy ¢
n=2 0

Inserting this into Eq(6.11) we obtain

iy 2 _
AN NEL Ky — s — Eq. (7.10 has the same operator form &§ (i), but now
L ——{a,[0"(I1—p1) (I1—p2)] ) i () :
|p1— P2l acting on the states in thHe}’ subspace, i.e.,
+b [ 811 —p2) = (I —py) 1} _ . o
P(+ie)=k0+ NP (+ie)+O\%), (7.1)
:Za[aa(SKr(ll_pl)+ba5Kr(|l_p2)]' (74)

where
In the thermodynamic limit this leads to the eigenvalue equa-

tion of a 2X 2 matrix,

l’}E’I\l+’|\1:2’I\1+’|\1_’I\1:2’|\1_K, (712
(‘_ig _'f ‘Sa —z, Za , (7.5 fl being a momentum superoperator defined T@U;I))
g —ig/ib, a =1,]1;1)). Because of Eq(7.9), we neglect the last term of

Eq. (7.12 in Eq. (7.1).
We note that the ternxo in the collision operator Eq.
A more general extension is obtained by setting,)) (7.1D corresponds to a difference of energieg: 13 In
=3¢Cqlps, Ps, - - - Ps,)), Where the sum is taken over all the addition we have thalissipativeterm )\ztp(zo)(ie). As we
permutations §;, . .. ,Sy) of the numbers (1 .. N), and theCg  shall see, it is this dissipative term that causes the violation
are constant coefficients. The result will be reported elsewj2®le  of the Ritz-Rydberg principle.
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To find the eigenvalues of(**)(+ie€) we use again the Qoiepp— Lo o
trial solution (7.2), but with different values o, andb,, . v tra
Then the eigenvalue equatiéi.5) is modified as follows: J k> 9°
=k — +=—0 +---
gpy  PrP2rP2 2 api P1:P2s-+P2
2kp—ié i& .| _ (a4 (7.13
. 2 . b =Z, b . 9
|§ Kp2 |§ a a =K 2pl+)\£91,p+o()\2)>
Equation(7.13 leads to the eigenvalues ) ' )
K J
. +—|2+N —= Q|+
z.=—i&+k(py+Po) = [py—pol Vi~ ki, (7.14 2 A gp " LP
with =2kp;+O(\%), (7.18
¢ where we have used Ed7.9). Similarly for the states
K= To—pdl ~0O(\?). (719 @y yup,...p, aNdP, o the difference of the real parts

Note that the eigenvalug§.14) are complex numbers and
there is a critical point ak = . This result is quite parallel
to the one obtained for the quantum Lorentz®das28]. The
Lorentz gas consists of one light particle being scattered b
many(randomly distributeflheavy particles. Here we have a
similar situation where one particle with momentuym is
scattered by all the other particles that have the same mo- _ _ A 2, 2
mentump, (indeed, in the frame wittp,+p,=0, the two RE(z.) = k(p1+P2) * [Py = Pal k1wl (7.20
models can be shown to be equivalent by a coordinate trangzxpanding the square root we detg., forp;<p,)
formation, under reduction with observables depending only
on particle }. For the Lorentz gas the coefficiersts andb,, Kg
have been calculated in Refd.,28]. RE(Z,) ¢, = 2KP2+ k(P2—P1) 22T

If we consider the Hamiltonian associated to a Hilbert
space, the violation of the Ritz-Rydberg principle is trivial, 2
since then the eigenvalues idfare real, while the eigenval- Rez_), > =2kp;— k(P2—P1) —C2+ - (7.20)
ues of Ly we found above are complex. To make a fair ¢ 2k

comparison of the eigenvalues we should assume the Hamikyyie that the corrections to the first terms on the right-hand
tonian has been extended beyond the Hilbert space. In Ref§'rde of these equations are of ordék [see Eqs(7.9 and

[14,15,30,3] this has been done for a certain class of un- 7.15]. Compari

S 15]. paring Eq(7.21) to Eq.(7.18 or Eq.(7.19, we
stable Hamiltonian systems. Let us then assume that we haye) . je that eigenvalues bf, are not differences otom-
plex) eigenvalues of, even if its complex eigenvalues ex-
ist. For k<k. we obtain the same conclusion, because the

. . . real part of the eigenvalues is now
However, this extension does not give any effects on the

following discussion on the real part of the eigenvalues, be- RE(Z-+) o< = k(P11 P2), (7.22
cause the imaginary part does not have any influence in the ©
real part. Indeed, to lowest orders we have for the real part ofyhich is again not the same as E.18 or Eq. (7.19.
the eigenvalue, Therefore, the Ritz-Rydberg principle is violated in the ex-
. 5 ) tended functional space. As a result, the corresponding
Qp=pi+ps+---+pytAQp+ON9).  (7.17  eigenstates cannot be written as a product of wave functions.

—_ 3
Pyt K.Py .-y pl_sz,p1 ..... p1_2Kp2+o()\ ). (7.19

Now we can compare this to the real parts of the eigen-
Y/alues(7.14) of L. Let us first consider the case> ..
Then we have

2

H| D)= (Qp+i&,)| D). (7.16

Correspondin_g to the sta_(é.Z) in the Liouvil_le space, there VIIl. CONCLUDING REMARKS

are two possible states in the wave-function space we may

consider, namely® ) and|® ). Let Traditionally guantum mechanics was formulated in terms
’ " PP Po Py P2.P1.:P1 -+ P/

us consider the first possibility. Using a Taylor expansion inOf wave amplitudes in the Hilbert space. The need to go

the parametek, the difference of the real parts of the eigen- o_ut5|de the Hilbert space in quantum mechanics for a con-
| £ th ~ d1d tinuous spectrum was recognized already some years ago by
values of the stateby .p, p,....p,) and|

M P1.P2 Dy - 0) various physicists and mathematicid3i—33. The exten-
is given by sion of the Hilbert space was based on the fundamental work
of Schwartz[34] and Gelfand 35]. The physical motivation
was to include decaying states in the spectrum of the Hamil-
®The eigenvalues of the collision operator in the quantum Lorentdonian (hence the name “Gamov vectors” used by Bo

gas do not have the terr(p;+p,). This is because in this model and Gadella[31]). . )
the collisions are observed in the center-of-mass reference frame, However, in our formulation the basic elements are now

wherep; +p,=0. density matrices, not wave amplitudds22,24. The density
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matrices belong to more general functional spaces as dis-_ i N 1 N

cussed in Sec. IV. The nature of the functional space is quitek,=k,+ T > Ingpa(N)=ka— T > [bpa(N)+27mn,],
different from that used in the theory of Gamov vectors. Our b#a b#a

approach leads to a semigroup description of the time evo- (A1)
lution. In this functional space new solutions of the eigen-,nare

value problem of the Liouville operator appear. The eigen-

values are complex and the eigenstates are no longer . Eb_E Tin
products of wave functions. As a consequence, the eigenval- Epa(N)=eldpaN=2 2
ues ofL, are no longer differences of eigenvalues tof Kp—Ka—iX
This is what we have called the “violation of the Ritz-
Rydberg principle.”

For the 1D system considered here Poinsairtegrabil-
ity is destroyed in the thermodynamic limit in conjunction
with the distribution functions that have to be used in non-3nq integem, that specifies the Riemann sheet of the ana-
equilibrium statistical mechanics. This is consistent with thyiic continuation of Irg,4(\). We note that
existence of irreversible phenomena, as integrable systems
cannot approach equilibrium. While nonintegrable on the Ppa(N)#0  for A#0 (A4)
level of a Hamiltonian, they are integrable on the level of the
Liouville operator. This complex spectral representation ofwhile ¢,,(\)=0 for A=0 and the free-particle discretiza-
Ly has been applied to the 1D system studied in this papetion is recovered in EQAL). Although individual momenta
We have presented approximate solutions of the eigenvalugre not multiple integers of 2/L, due to the translational
problem ofL,, and obtained in this way rates of approach toinvariance of the system, the total momentum is an integer
equilibrium. multiple of 27r/L even for\ #0.

The main characteristic of our approach is the formulation By fixing the Riemann sheet of &g, there is a one-to-
of dynamics in terms of ensembles. This is in common withone correspondence between the perturbed momektum
classical deterministic chaos. However, there are basic difand the unperturbed org . The simplest correspondence is
ferences. Deterministic chaos deals with trajectories that besbtained by fixing the right-hand-side of E@1) to its prin-
come noncomputable. In quantum theory we deal with waveipal value(we setn,=0.) Note, however, that the points
functions and the concept of quantum chaos is still a subjeck, =k, are excluded in Eq/A3). Excluding these points Eq.
of controversy. More important even is the fact that in clas-(A1) has an expansion ik analytic atx =0.
sical chaos trajectories remain meaningfab a stochastic e note that the sum in the second term in the right-hand

I’ealizatior) while in the thermodynamic limit tl’ajectoriffm side of Eq(Al) containsN— 1 terms. IfNis finite' this term
classical mechanig®r wave functiongin quantum mechan-  then vanishes in the continuous linhit— o,

ics) are destroyed by diffusion procesgés16).

In conclusion, we believe that our extension of quantum |imEa=ka for N finite (A5)
mechanics bridges the two domains where quantum mechan- Lo
ics has been quite successful, i.e., spectroscopy and thermal _
equilibrium. This leads to a unification of dynamics and non-But in the thermodynamic limit we have,#K, .
equilibrium physics, as it includes the quantum theory of
approach to equilibrium. APPENDIX B: NORMALIZATION CONSTANT

(A2)

with real ¢,,(N) that satisfies

—T<¢pa(N) <7 (A3)

Here we shall calculate the normalization constant of the
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APPENDIX A: PERTURBED MOMENTA FOR BOSONS

Filpol= lim limA2Y, I (1)+0(\%)
For a boson system, periodic boundary conditions im- kLPo 0t Lo T ok~ wEie Po '

posed on the interacting particles give the following equation (B2)
for the perturbed momenfd] (we take the logarithm of Eq.
(2.19 in Ref. [4)): The potential3.2) may be written as




56 LIOUVILLE EXTENSION OF QUANTUM MECHANICS: ... 3525

2 N
Vie=p 2 Aapll =), (B3)

whereA, p(1 — K)=6"(I+—ky) égfb(l —k). Combining the Kroeneckef's in the potential with the denominator in E@2)
we have(assumingk,# kp)

Agp(l—k)
lo—ie—w|? 2ie an(l=k) wk—w|—i6_c'c'

1
=——A |-k - - —C.C.
27e Sl )(2[|a—ka+|77 sgn(ka—Kp) I[1a—Kp—i7 sgnka—kp)]
e A=K i[5, (la—ky) + [ka™ ksl B4
= 5i¢ Aan(l =K) 7[5, (1a=kp) + 8, (la— a)]ﬁ%—nz (B4)
where78,(K)=7/(k’+ 5?) and e= 5|k,—Ky|. Then we have in E¢B2)
’ Vlk 2
EI m p0(|1,|2,...,|a,...,|b,...|N)
277% |k_|2lk L= k) Ipo(KeoKpreod oo Kot ko— 1o, Kk
& Kok 2+ 7212 a[5,7( a—Kp) T 0,(la—ka) Ipo(Ky Ko, la,e o KatKp—lg,.. ky),  (BY)

where we have used the relatipw,|2=2L ~ 1V, for this model[see Eq(B3)], since we havé+k in the summation in the
left-hand side. Note that all the summations over the moméntaith b#a have been performed trivially due to the
Kroenekcerd's of the potential.

Taking now the limitL — oo we replace the summation ovigrby an integratiorisee Eq(2.7)]. In this limit we may drop
the restrictionl ,#k,, since it leads to a negligible point contribution of ordel it the integration. We obtain

N

2% 7 [Ka—Kp| .
Flpol= 1= ;agb Kok 2 2 27 fd|a[5 (la=kp) + 6, (la=Ka) Ipo(Ky Kz, .. lay o Kot Kp—la,... k) + O(N7).
(B6)
Taking then the limite—0 we have
S
Filbol= o0 2, Geigzs 72 Xart DIpo(k)+0(7)]+0() (B7)

where we have used, (k) — d(k) [see Eq.(3.24]. The operatoiX,, exchangek, andk; in p(k).

The summation contalr@(Nz) terms. Because of the condition relatiagndL [see Eq(3.25], Eq.(B7) goes to zero if
N is finite. Similarly, higher-order terms can be droppedNofinite. The normalization constant, therefore, goes to 1 for finite
N in the continuous limit.

In the thermodynamic limit th&l factors compensate thefactors and the right-hand side of E&7) diverges fore— 0+
andN—o. The normalization constant then goes to zero in the thermodynamic limit.

APPENDIX C: DIVERGENCE OF INVARIANTS OF MOTION

Here we estimate the order of divergence df(k) in Eq. (4.10, using the momentum representati®26 of the
eigenstates of the Hamiltonian in the continuous limit. We have

N-1 —i 2

$o() =2 po(h)| - 12 AsrNK) 8P (k=1 [T =— : (C1)
2 (kr,~ls,)—i7

The absolute value squared of the denominators is giveﬂ;bly—lsb—i n|*2=wn*15,7(nl<~Rb—Isb). In the limit L— and
17— 0+ with the condition(3.29, we haveéﬁ('lsz—ISD)—>5('IZRb—ISb), and the most divergent terms(@1) are proportional

to (1/7)N~1. With the Kroeneckers of total momentum conservation we can eliminate the summation over one of the
variabled, . In the continuous limit we replace the rest of the summations by intelg@ésEq(2.7)]. This leads to an overall
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volume factor of (1L)N~2. Finally, noting that each permutatid®is repeatedN! times (because of the summation ov@r
permutationy we obtain arN! ~NN factor. The most divergent terms in E@1) are then proportional to

1 N c N—-1
GovtNlg) N €2

in the thermodynamic limit.

APPENDIX D: COMMUTATOR OF MOMENTUM OPERATOR AND THE HAMILTONIAN

Here we calculate the left-hand side of £4.16) to lowest order il\.. We have

<<K ILulpo))=i §t<K1>p0 2 kl( ) E (@ 5@ Lyl 1)) po(). (D1)
From the definition of Brillouin-Wigner statd8.31) we obtain
(@ ;P [Ly=(2i e+ Qy = Q)| Py (P [T €(| P YN (K[+[KINy (P ) (D2)
[whereQ,. = (Q,)*]. This leads to

~ 2 N ~
(i Lo = 27) S K3 1021t 0 -0 1052 2ielNg 250 - ol ©03)

Using theT* operator(3.16 the expression inside brackets becomes

QTN —ie)|k)|?
|Nk|2((9;—9k)5'<f(|—k)+ QT ~ie)] ) (Q —Qp +2ie) |. (D4)
Qk —w|—I€ ‘
To lowest order we havékeeping all the terms of up to second ordenin
2
((K3|Lulpo))= zm( ) 2 ka2 owi—=w)|VidLpo(h) — po(K) ]+ O(N?). (D5)

This expression is the time derivative of the generalized momentum. This justifies the replaterh&nin Eq. (4.18).

Equation(D5) is similar to thex? term in Eq.(4.13 (except for thee ! facton. It is then proportional to the concentration
c [see the discussion below E@.15]. Higher orders in\ involve divergent terms proportional t(c/€)", wheren is an
integer.

APPENDIX E: EVALUATION OF AK}

Here we show that the invarianks, defined in Eq(4.17) do not belong to the domain of the superoperatdsy showing
that the expectation valug po|A|K})) is divergent in the thermodynamic limit. As an example we use the same density
matrix | po)) =P(®|py)) considered in Sec. I{¥see Eq.(4.8)]. Writing A to first order in\ we have[see Eq(5.21)]

((polA[K))= 1+ALy

) Zpol)«l I|AIK )= ( ) Epo<|)<<l I Q<°>)|K>>+ . (ED

where we have used the orthogonality of the projecRIfd. Introducing a complete set of statgsp’)) we obtain

(ol AlKa))= (PP [Ka) | + (E2)

I—W

) E Po(')(<<| [Ka)+ A E ((BHLylpsp")) ———

The first term inside the parentheses is well defined in the thermodynamiddieeitthe discussion below E@.17)]. Using
Egs.(2.26 and(4.17) the second term, denotéd, becomes

PS> kzDE(

P S

T Ll ol e Ll 0 ) el €3

To lowest order il\ we have in Eq(3.2]) [with yr(k)zl—ﬁm(k)]
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—\ _ oKr Kr Vpk 2
(Pl )=38""(p—k)+ 8 (p—k)\ —+0(\?),
Wkp_|6

Vi

(D Y=81—-K) + (1 —Kk)\ Wo—ie

+0O(\?). (E4)

Inserting this in Eq(E3) we obtain

A2 T Vip Kr Vol Kr Vi
|2—7% ng Ka ey (5 (p—k) wooiet? (1-k) T
% Y% Y%
- (5Kf(|—k)¢.+a*<f(p—k)#m.c.) +0(\3), (E5)
|E_W|p W|p_|6 Wp|_|6
which leads to
2
| =)‘—2 > Kol Vil (1= k)= 8(p—K)] 2. + 1. + | +O(\3). (E6)
R [Wip—i€l® (Wy—ie)®  (Wp+ie)?

In the thermodynamic limit the first term inside the paren-There are exact polynomial solutions of this equation. In-
theses leads to exactly the same divergence as itdELf.  deed, puttingv(l,) =w,(11)==[_,0,!; in Eq. (F4) we ob-
We remark that this calculation shows that each componentin Eq.(6.27), where the expansion now stopd at andl

| WP | or @)D, | in Eqg.(4.17) diverges separately. in Eq. (6.24) is replaced by

APPENDIX F: SOLUTION OF INTEGRAL EQUATION ° 2 I™1 for m even
, _ _ m+1 1
Here we show an exact solution of the integral equation | _(1,,8)= )

|m+l_ 2 B~ (M2 for m odd.

PSR |
» () E () —ui(l) Eg(ly) m+1 m+1
R e e B! (75
o [1=15]
Comparing the coefficients of the highest degreé;irfor
where example, the third degree in E@.27)] we obtain the eigen-
value
_ 1 for plI?<1
E60=10 for gIz>1" (F2) 0 forr=0
_ o . _ Y= N 1y (F6)
This solution gives an estimation of some of the eigenvalues 2121 1/j for r>0.

of Ly for any temperature, while the solution presented in

Sec. VI is valid only for high temperatures. The integral . - . .
equation is obtained by approximating the Gaussiaremparing the coefficients of lower degrees, it is straightfor-
exp(= A1) in Eq. (6.16 by Z4(1). We present only a sum- ward to obtain all the constants . Here we display the first
mary of the results. The complete description of the spectraﬂour solutions

properties of the integral operat@¥1) in L,(R) is presented

in [27]. = =
ertlng WO(Il) 11 Yo 0! (F7a)
us(ly)=Eg(lyw(ly) (F3 wi(lp) =1y, »=2, (F70b
the integral equation becomgsee Eq.(6.19] Wy(l)=1-381%  y,=3 (F70
[ "z M . R Wyl =L(1-58133), %,=113.  (FTd
—® 1 2

Forr <3 the eigenstates and eigenvalues are identical to the
ones obtained in Sec. VI. For higher orders, some discrepan-
®This result has been obtained by Melniki@7]. cies appear. The solutions discussed in Sec. VI have multiple
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branches, while the solutions shown here have always only,(l,,8) in Eq. (6.24 contains powersn+1 and higher in

one branch. For example, for=3 in Sec. VI there are two
branches, Eqg6.299 and(6.299, while the solution shown

I1, while I ,(I1,8) only contains the i+ 1)th power. This
allows for more solutions of the integral equation considered

here has only one, EqF7d. This is because the integral in Sec. VI.
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