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Liouville extension of quantum mechanics: One-dimensional gas withd-function interaction
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A one-dimensional quantum gas withd-function interaction is known to be integrable for any finite number
of particles. We show that in the thermodynamic limit invariants of motion are destroyed in conjunction with
a class of singular density matrices that appear commonly in both equilibrium and nonequilibrium statistical
mechanics. The system becomes nonintegrable, due to Poincare´ resonances. However, the eigenvalue problem
of the Liouville–von Neumann operatorLH may be solved in an extended functional space that contains the
singular density matrices. We may in this way describe the approach to equilibrium. This is a simple example
of the Liouville space extension of quantum mechanics, due to Prigogine and his co-workers. The fundamental
quantity in this formulation is the probability~and not the wave function!. We obtain indeed an irreducible
complex spectral representation ofLH . Irreducible means that the eigenstates ofLH cannot be implemented by
wave functions, and complex means that the eigenvalues are complex numbers, whose imaginary parts deter-
mine relaxation times of the system. The dynamical evolution is described by a semigroup. Due to dissipative
effects the real part of the eigenvalues is no more a difference of energy levels, as is the case in standard
quantum mechanics.@S1050-2947~97!07311-3#

PACS number~s!: 03.65.Bz, 05.30.2d, 05.70.Ln
ra

a
o
ta
is
tw
in
ig
fo
m
n

tru
u
b
W
n

ac
ic
m

na

eb
ys

ry

rg
s
it

h to
ion
on
ons

the
o-

n

ete
on-
e
eir
lar
fore
e

re-
nd

to
a
-

tz-

-

I. INTRODUCTION

Quantum theory started with the study of blackbody
diation by Planck, corresponding to thermalequilibrium be-
tween matter and radiation. Then came Bohr’s theory of
oms, which explained in a successful way the spectrosc
data on emission and absorption spectra. A most impor
fact, often associated to the ‘‘Ritz-Rydberg principle,’’
that each spectroscopic frequency is the difference of
energy levels. As is well known, this was the starting po
of quantum mechanics. Quantum mechanics has been h
successful both for equilibrium thermodynamics and
spectroscopy. But what about the approach to equilibriu
Here we encounter a difficulty, since, as is well know
through the eigenstates of the Hamiltonian one can cons
invariants of motion. In this sense we may say that the us
framework of quantum mechanics corresponds to integra
systems. But such systems cannot approach equilibrium.
have now shown@1# that this problem can be solved by a
extension of quantum mechanics to a larger functional sp
This space contains the class of singular density matr
obtained@2,3# by a generalization of the usual equilibriu
distributions to nonequilibrium states.

In this paper we apply our method to a one-dimensio
gas ofN particles in a box of sizeL, interacting through a
d-function repulsive potential. Since the basic work of Li
and Liniger@4#, who found the eigenstates for a boson s
tem, using Bethe’s ansatz@5#, and Yang@6#, who generalized
this result for particles with arbitrary permutation symmet
it is well known that this system is integrable for bothN and
L finite ~see @7,8# for reviews!. But what happens in the
thermodynamic limit? Again on this system both the ene
spectrum@4,9# and thermodynamic equilibrium propertie
@10,11# are known. We show that in the thermodynamic lim
561050-2947/97/56~5!/3507~22!/$10.00
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the system becomesnot integrablein the sense of Poincare´,
and that we can apply our method to describe the approac
equilibrium in the extended functional space. Our descript
is in terms of probabilities associated to the Liouville–v
Neumann equation and no more in terms of wave functi
@1#. Eigenvalues of the Liouville operatorLH are complex,
and they are no longer differences of eigenvalues of
Hamiltonian. The Ritz-Rydberg principle is therefore vi
lated as the result of time-symmetry breaking.

We begin by describing the Liouvillian formulation i
Sec. II. We briefly review Poincare´’s integrable systems. We
then present the one-dimensional~1D! gas as an example in
Sec. III. We summarize the known results for the discr
spectrum case, then discuss the continuous limit and c
struct invariants of motion. In Sec. IV we show that in th
thermodynamic limit the invariants are destroyed, i.e., th
expectation values diverge in conjunction with the singu
density matrices mentioned above. The system may there
approach equilibrium. In Sec. V we give a review of th
complex spectral representation ofLH in the extended func-
tional space. Then in Sec. VI we apply this spectral rep
sentation to a near-equilibrium situation in the 1D gas a
obtain eigenvalues ofLH that determine rates of approach
equilibrium. In Sec. VII we consider a simple example of
far-from-equilibrium situation. The solutions for this situa
tion are used to demonstrate the violation of the Ri
Rydberg principle.

II. LIOUVILLIAN FORMULATION
AND POINCARÉ ’S INTEGRABILITY

We consider nonrelativistic quantum system ofN par-
ticles. The Hamiltonian is given by~we shall use a unit sys
tem with \51!
3507 © 1997 The American Physical Society
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H5H01lV52 (
a51

N
1

2ma

]2

]xa
2 1l (

b.a

N

v~ uxa2xbu!,

~2.1!

where H0 is the unperturbed Hamiltonian associated w
free motion,v(x) is a repulsive, short-range two-body inte
action, andl is a positive coupling constant. We shall co
sider the simple case of a 1D system. The following ar
ment for the integrability conditions can be easily extend
for n-dimensional systems. We shall consider the case
distinguishable particles~unless otherwise stated! as an ex-
ample of our arguments.

We denote the eigenstates ofH0 by up&,

H0up&5vpup&, ~2.2!

where p is an N-component momentum vectorp
5(p1 ,p2 ,...,pN), and

vp[ (
a51

N

vpa
5 (

a51

N pa
2

2ma
. ~2.3!

The system is enclosed in a large box of volumeL. Imposing
the usual periodic boundary conditions for theunperturbed
eigenstates, the spectrum of the unperturbed momenta isdis-
creteand is given by~for Dp[2p/L and integerna!

pa5naDp. ~2.4!

We have a complete set of normalized eigenstates ofH0 for
Eq. ~2.2!,

(
p

up&^pu[ (
p1 ,...,pN

up&^pu51,

^pup8&5dKr~p2p8![ )
a51

N

dKr~pa2pa8!, ~2.5!

wheredKr(pa) is Kronecker’s delta. By convention, we sha
use the words ‘‘wave-function space’’ for the space tha
spanned by the set of these eigenstates, in case it is nece
to distinguish this space from the Liouville space introduc
below.

The number of particlesN may be finite or infinite. We
shall be particularly interested in thethermodynamic limit,

N→`, and L→` with c5N/L5finite. ~2.6!

In the limit of large volumesL→`, we obtain acontinuous
spectrum. In this limit we have

2p

L (
pa

→E dpa ,
L

2p
dKr~pa!→d~pa!, ~2.7!

whered(pa) is Dirac’s d function.
The statistical description in quantum mechanics is

pressed by the Liouville–von Neumann equation for the d
sity matrices@2,3,12#,

i
]

]t
r~ t !5LHr~ t !. ~2.8!
-
d
of

s
sary
d

-
-

Here the ‘‘Liouvillian’’ LH is the commutator with the
Hamiltonian:

LHr5Hr2rH. ~2.9!

The formal solution of the Liouville equation is given by

r~ t !5e2 iL Htr~0!. ~2.10!

We may consider situations where the density matri
are localized in configuration space. An example is a p
stater5uC&^Cu, which consists of a localized wave pack
in a few-body system. This is the case where the us
S-matrix theory applies. Interactions aretransient. As the
wave functionC is localized in configuration space, it has
well-defined norm,

iCi5S E dNxuC~x!u2D 1/2

Þ0 and iCi,`.

~2.11!

For this situation, the Liouville–von Neumann equation do
not introduce any new features to the Schro¨dinger equation.
If we can integrate Schro¨dinger equation, we can solve th
Liouville–von Neumann equation and vice versa.

To deal with density matrices, usually one equips t
‘‘Liouville space’’ with a Hilbert space structure. In thi
space a scalar product of the linear operatorsA andB acting
on wave functions is defined as a Schmidt inner product

^^AuB&&[Tr~A1B! ~2.12!

and the Hilbert norm by

iAi[A^^AuA&&, ~2.13!

whereA1 is the Hermitian conjugate operator ofA in the
wave-function space. We have introduced Dirac’s ‘‘bra’’ a
‘‘ket’’ notations analogous to the wave-function space. F
example, the Hilbert norm for the above example of the d
sity matrix associated with the wave packet is given by

iri5E dNxuC~x!u2Þ0 and iri,`. ~2.14!

In the Liouville space one can introduce operators act
on density matrices. We call these operators ‘‘superope
tors’’ in case it is necessary to emphasize the difference fr
operators in the wave-function space. We can then introd
theadjoint superoperatorQ† of the superoperatorQ through
the relation

^^AnuQ†uAm&&5^^AmuQuAn&&
c.c., ~2.15!

where c.c. denotes the complex conjugation and$An% is a
complete orthogonal basis of the Liouville space@see Eq.
~2.24! for an example of the basis#. Here, we have introduced
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56 3509LIOUVILLE EXTENSION OF QUANTUM MECHANICS: . . .
the notation ‘‘†’’ and distinguished the adjoint operation d
noted by ‘‘1,’’ such as in Eq.~2.12! in the wave-function
space. We have, as usual,

~ uA&&^^Bu!†5uB&&^^Au. ~2.16!

We can then define Hermitian superoperators that sa
Q†5Q, as well as unitary superoperators. The Liouvilli
LH is a Hermitian superoperator and exp@2iLHt# is unitary in
the Liouville space. This means that, as long as we remai
the Hilbert space, the eigenvaluesw of LH are real and the
eigenvalues exp@2iwt# of exp@2iLHt# are of modulo one. In
short, the density matrix oscillates in time and there is
place for irreversible processes. To obtain irreversible p
cesses associated to complex eigenvalues ofLH we need to
go out of the Hilbert space~this is a necessary condition!.

Among superoperators, we have factorizable superop
tors A3B defined by

~A3B!r5ArB, ~2.17!

where A and B are linear operators in the wave-functio
space. With the aid of Eq.~2.15! we have

~A3B!†5A13B1. ~2.18!

The Liouvillian is then

LH5H31213H, ~2.19!

which is indeed a Hermitian superoperator. Correspondin
Eq. ~2.1!, we can decompose the Liouvillian into a unpe
turbed partL0[LH0

and an interactionLV ,

LH5L01lLV . ~2.20!

We denote dyadic operatorsup&^p8u generated by the
eigenstatesup& of H0 by

up;p8&&[up&^p8u. ~2.21!

They are eigenstates ofL0 ,

L0up;p8&&5@H0up&^p8u2up&^p8uH0#5wpp8up;p8&&,
~2.22!

where

wpp8[vp2vp8 . ~2.23!

They form a complete orthonormal set for the Liouvil
space,

(
p

(
p8

up;p8&&^^p;p8u5(
p

(
p8

up&^pu3up8&^p8u51,

^^p;p8up9;p-&&5dKr~p2p9!dKr~p-2p8!. ~2.24!

In this representation we have a simple expression for
matrix elements of an operatorA acting on wave functions:

App85^puAup8&5^^p;p8uA&&. ~2.25!

The matrix element of the perturbed Liouvillian is then giv
by
-

fy

in

o
-

a-

to

e

^^p;p8uLVup9;p-&&5Vpp9d
Kr~p-2p8!2dKr~p2p9!Vp-p8 .

~2.26!

The time evolution of the expectation value of an observa
M ~whereM 15M ! is given by

^M ~ t !&5Tr@M 1r~ t !#5^^M ue2 iL Htur~0!&&. ~2.27!

The observableM is an invariant of motion if^M (t)&
5^M (0)&, i.e.,

^^M uLHur~0!&&50. ~2.28!

Invariants of motion may be constructed through t
eigenstates of the total Hamiltonian, if these exist. Indeed
us assume that we know the eigenstates of the Hamilton

^cnuHuFa&5Va^cnuFa&, ~2.29!

where ^cnu is a test state, which has a well-defined inn
product with the eigenstates. Then the dyadic operators
fined by

uFab&&[uFa ;Fb&&5uFa&^Fbu ~2.30!

are eigenstates of the Liouvillian,

^^FabuLHur~0!&&5~Va2Vb!^^Fabur~0!&&

for r(0)5(nucn&rn^cnu. The operator̂ ^Faau is then an
invariant of motion, for the class of density matrices th
satisfy

^^Faaur~0!&&5^Faur~0!uFa&,`. ~2.31!

We note that the solution of the eigenvalue problem of
Liouvillian ~or the Hamiltonian! depends on the type of tes
states. As has been shown in@2#, in statistical mechanics
these states containd-function singularitiesin the momen-
tum representation, and new solutions of the eigenva
problem ofLH emerge in the thermodynamic limit@1#. We
shall come back to this point later.

In classical mechanics, the existence of invariants of m
tion that are analytic atl50 plays an essential role, as th
leads to the concept of Poincare´’s integrability of the system.
As shown in Ref.@13# this concept can be extended to qua
tum mechanics through the construction of a complete se
eigenstates of the total Hamiltonian. We shall present h
the integrability condition in a form convenient for our di
cussion. Let us assume that we know the complete setuFa&
in a domainD of a that satisfies

(
aPD

uFa&^Fau51, ~2.32a!

^FauFb&5dKr~a2b!. ~2.32b!

Note that the first equation~i.e., the completeness relation! is
a condition among the invariants of motion. With the aid
the completeness relation for the invariants, we canintegrate
the equation of motion~2.8! for the class of density matrice
that satisfies Eq.~2.31!, i.e.,
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3510 56T. PETROSKY AND G. ORDONEZ
ur~ t !&&5 (
a,bPD

e2 i ~Va2Vb!tuFa&^Faur~0!uFb&^Fbu.

~2.33!

We have a sufficient number of invariants of motion to in
grate the equation of motion. Systems that satisfy Eq.~2.32!
with the condition~2.31! we call ‘‘integrable systems in the
general sense.’’ In this definition there is no restriction on
analyticity of the set of invariants of motion atl50 with
respect to the coupling constant.

In the above discussion we have introduced the concep
integrability based on the integration of Schro¨dinger’s equa-
tion ~or the Liouville equation!. We can also formulate inte
grability in the context of Heisenberg’s equation of motio
To see this, let us introduce a set ofN independent general
ized momentum operators defined by

^^K̂au5 (
aPD

f a~a,l!^^Faau

5 (
aPD

f a~a,l!uFa&^Fau ~1<a<N!, ~2.34!

where f a(a,l) is a real function, which keeps the genera
ized momentum operators Hermitian. An example is a fu
tion that reduces to the unperturbed momentumka for l
50. We assume@cf. Eq. ~2.31!#

^^K̂aur~0!&&,`. ~2.35!

The operatorsK̂a satisfy theinvolution relation, that is, they
commute with each other and with the total Hamiltoni
because of~2.32b!. By a straightforward extension of Liou
ville’s theory on the involution relations in classical mecha
ics to quantum mechanics, one can integrate Heisenbe
equation of motion using the generalized momentum op
tors and their canonical conjugates, the generalized coo
nate operators.

In addition to the condition~2.32!, let us assume the
eigenstatesuFa& and the eigenvaluesVa are analytic atl
50, so that we can expand them in a perturbation series1 In
this case the unperturbed momentumk can be used as th
index a of the eigenstates, and the domainD of a coincides
with the domain of the unperturbed momenta. Then the
variants^^Fkku are also analytic atl50. We call systems
that satisfy Eq.~2.32! and that are analytic atl50 integrable
systems ‘‘in the sense of Poincare´,’’ since this is a direct
extension of Poincare´’s well-known integrability condition
for classical systems to quantum systems@2,13#.

There is also another class of integrable systems tha
some extent is a generalization of Poincare´’s integrable sys-
tems. In this class, analyticity is not related directly to t
form of the eigenstates, but to the domainD of the complete-
ness relation~2.32a!. In this domain, the eigenstates and t
eigenvalues are analytic atl50. Therefore the unperturbe
momentak can be used as the indexa, just as for Poincare´’s
integrable systems, forkPD. However, the domainD may

1If there is degeneracy, we assume analyticity is recovered a
removing the degeneracy.
-

e

of

.

-

-
’s

a-
i-

-

to

be smaller than the domain of the unperturbed momenta
other words, some of the invariants of motion are destro
by the interaction, but many invariants still remain analy
at l50. Moreover, these analytic invariants span a comp
set, so one canintegratethe equation of motion using thes
analytic invariants of motion. We call this class of system
Poincare´’s integrable systems in the ‘‘weak sense,’’ in ord
to distinguish it from the integrable systems in the gene
sense, as well as from the integrable systems in the sen
Poincare´ introduced above. An example of integrable syste
in the weak sense is the Friedrichs model, which is a mo
of an unstable dynamical system where a particle in a
crete state is coupled to a field with a continuous spectr
@14,15#. In this model, the exact solution of the eigenval
problem is known. Each eigenstate and eigenvalue of
total Hamiltonian isanalytic at l50. But the domainD of
the indices of the eigenstates is not the same as the do
of the unperturbed eigenstates, becauseD consists only of
the continuous spectrum, and the discrete state disapp
due to the coupling between the particle and the field.

The system we shall discuss here has an interesting p
erty: it is a Poincare´ integrable system in the weak sense
conjunction with regular density matrices that have a we
defined Hilbert norm~2.14!, while it is not integrable in con-
junction with singular density matrices~that lie outside the
Hilbert space!, which are typical in equilibrium and non
equilibrium statistical mechanics. It is important to noti
that the integrability of a dynamical system depends not o
on the form of Hamiltonian, but also on the class of dens
matrices@cf. Eq. ~2.35!#.

III. EXAMPLE OF AN INTEGRABLE SYSTEM

A system ofN particles in a 1D box of sizeL, interacting
via d-function repulsive potentials, is a well-known inte
grable system for bothN andL finite. Here we shall presen
a summary of the solution of the eigenvalue problem of
Hamiltonian~for details the reader should consult the orig
nal papers@4,6#!. We shall consider the limitL→` later.

We consider the Hamiltonian~2.1! with ma51/2 and the
two-body interaction

v~ uxa2xbu!52d~xa2xb!. ~3.1!

The matrix elements of the potential in the momentum r
resentation are given by

Vll 85^ l uVu l 8&5
2

L (
b.a

N

dKr~ l a1 l b2 l a82 l b8!

3 )
cÞa,b

N

dKr~ l c2 l c8!. ~3.2!

The eigenvalue equation in thex representation is

Hf k̃~x!5v k̃f k̃~x!, ~3.3!

wherex[(x1 ,...,xN) are the positions, andk̃[( k̃1 ,...,k̃N)
are the perturbed momenta of the particles~we use tildes to
distinguish perturbed momenta from unperturbed momen!.

The eigenvalue equation has been solved by Lieb
Liniger @4# for bosons and generalized by Yang@6# for par-

er
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ticles with other exchange symmetries. Since the potentia
zero except whenxa5xb , the solution may be written forN
finite ~Bethe’s ansatz@5#! in the following form:

f k̃~x!5L2N/2(
R

AS,RexpS i (
a51

N

xSa
k̃RaD

for xSN
>xSN21

>•••>xS1
, ~3.4!

where L2N/2 is a normalization factor,S[(S1 ,...,SN) and
R[(R1 ,...,RN) are permutations of (1,...,N), and the sum-
mation is taken over all permutationsR. Then the eigenval-
ues ofH are
ish
s

-

ed

p
o

in
is
v k̃5 (

a51

N

k̃a
2. ~3.5!

The eigenvalue equation~3.3! can be satisfied if the firs
derivatives of the eigenstates have appropriate disconti
ties at the pointsxa5xb , so that their second derivative
cancel the terms proportional to thed-function potentials.
This condition, together with the condition of continuity o
the eigenstates are sufficient to determine the constantsAS,R .
As an example, consider the simplest case,N52. There are
only two permutations, the identity permutationI[(1,2) and
J[(2,1). Then we have@6#
f k̃~x!5H L21~AI ,Ie
i ~ k̃1x11 k̃2x2!1AI ,Je

i ~ k̃2x11 k̃1x2!! for x2.x1

L21~AJ,Ie
i ~ k̃1x21 k̃2x1!1AJ,Je

i ~ k̃2x21 k̃1x1!! for x1.x2 ,
~3.6!
t-
d

s

ent

dic
tum

he
e

ith

tate

-

where~with arbitrary coefficientsc1 andc2! we have

AI ,I5c1 , AJ,I5c2 , ~3.7!

AI ,J52
lc12 ic2k̃21

l1 i k̃21

, AJ,J52
lc22 ic1k̃21

l1 i k̃21

, ~3.8!

with k̃21[ k̃22 k̃1 . The constantsc1 and c2 determine the
symmetry of the eigenstates. For example, for distingu
able particles we havec151 andc250, whereas for boson
we havec15c251. For fermions (c152c251) the con-
stants~3.8! become independent ofl, and the wave functions
are simple antisymmetrized free states@6#.

For N particles the solution for the coefficientsAS,R in
Eq. ~3.4! is the following @6#: arrange the constantsAS,R in
an N! 3N! matrix and denote its columns byAR
[(AS,R ,AS8,R ,AS9,R ,...)T, whereT denotes transpose. De
fine the operatorXab that exchanges theath and bth ele-
ments of a permutation and letSa,bAS,R5AXabS,R and

Ra,bAS,R5AS,XabR . Then the column vectors are generat
through

Ra,a11AR52
l2 i ~ k̃Ra11

2 k̃Ra
!Sa,a11

l1 i ~ k̃Ra11
2 k̃Ra

!
AR . ~3.9!

By repeated use of Eq.~3.9! and starting with a givenAI
@whereI[(1,2,...,N) is the identity permutation#, the rest of
the column vectorsAR can be determined. As for theN52
case in Eq.~3.7!, the components of the vectorAI determine
the permutation symmetry of the eigenstates. For exam
AS,I51 for all S corresponds to bosons. For a system
distinguishable particles we haveAS,I51 for S5I and 0
otherwise. Other exchange symmetries~nonfermionic or
bosonic! are possible, and they arise, for example, if sp
wave functions are taken into consideration@6#.

We note that forlÞ0 the eigenstates~3.6! vanish atk̃1

5 k̃2 , no matter how smalll is. Similarly, theN-particle
-

le,
f

eigenstates vanish if any two of the momenta are equal@4#.
On the other hand, the free eigenstates~obtained by putting
l50! do not vanish atka5kb . Hence there is a nonanaly
icity of the eigenstates atl50. Nevertheless, as explaine
below, the eigenstates are analytic inl in the reduced do-
main where the pointska5kb are excluded. We denote thi
domain by

D5$kukaÞkb for all aÞb%. ~3.10!

Boundary conditions imposed on theinteractingparticles
introduce a discretization on the momenta that is differ
from the free-particle discretization in Eq.~2.4!. In Appendix
A we show an example of interacting bosons with perio
boundary conditions. For this case the perturbed momen
k̃a may be written as a function of the free momentakb , b
51, . . . ,N, by solving a transcendental equation@4,6#,
which is obtained by imposing boundary conditions on t
eigenstates of thetotal Hamiltonian. It is also shown that th
perturbed momentak̃a and the free momentaka can be put in
a one-to-one correspondence, and they are analytic atl50
for kPD. This result can be generalized to particles w
other permutation symmetries@6#, or with other boundary
conditions. This allows us to label the perturbed eigens
by the unperturbed indexk for kPD,

HuFk&5VkuFk&, ~3.11!

where

uFk&[uf k̃& and Vk[v k̃ ~3.12!

and ^xuf k̃&5f k̃(x) in Eq. ~3.3!. The system is then Poin
caréintegrable in the weak sense forL andN finite, since we
have

(
kPD

uFk&^Fku51, ^FkuFk8&5dKr~k2k8! ~3.13!

and the eigenstates are analytic atl50 in the domainD.
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3512 56T. PETROSKY AND G. ORDONEZ
Let us recall that the usual criteria of Poincare´’s integra-
bility conditions are stated in conjunction with a problem
resonance~i.e., a small divisor! @2#. One can make the ap
pearance of the divisor explicit in the eigenstatesuFk& in
terms of the Brillouin-Wigner equation defined in Eq.~3.14!,
so that one can see the relation ofuFk& to the resonance
problem @see also the discussion below Eq.~3.20!#. This
equation relates a perturbed eigenstateuFk& to an unper-
turbed eigenstate ofH0 with the same indexk as

uFk&5uk&Nk1Qk

1

Vk2H0
lVuFk&, ~3.14!

where

Qk[12uk&^ku ~3.15!

and Nk[^kuFk& is a normalization constant given below
Multiplying both sides of Eq.~3.14! by (Vk2H0) one can
easily verify Eq.~3.11!. It is convenient to write the eigen
states in terms of theTk operator,

Tk~z!5lV1lVQk

1

z2H0
QkT

k~z!. ~3.16!

In terms of this operator the Brillouin-Wigner states a
given by

uFk&5NkS uk&1Qk

1

Vk2H0
Tk~Vk!uk& D . ~3.17!

The eigenvalues can be written as

Vk5vk1^kuTk~Vk!uk& ~3.18!

and the componentNk5^kuFk& can be determined~up to a
phase! from the normalization conditionS l z^ l uFk& z251,
which leads to

uNku25S 11(
l

8UTlk
k ~Vk!

Vk2v l
U2D 21

, ~3.19!

whereTlk
k (Vk)[^ l uTk(Vk)uk& and the prime in the summa

tion sign denotes that the sum is taken with the conditiol
Þk.

For any normalizable statêcuc&,` we have

^cuFk&5NkS ^cuk&1(
l

8
1

Vk2v l
^cu l &Tlk

k ~Vk! D .

~3.20!

In this form the divisor (Vk2v l) appears explicitly. Becaus
the perturbed momenta cannot be equal to the unpertu
momenta forlÞ0 and L finite @see, e.g., Eq.~A4!#, the
denominator cannot vanish, and this expression is well
fined.

So far we have considered the integrability of the syst
for finite L andN. We next consider the case ofN finite but
L→`. In this limit the spectrum becomes continuous. W
shall see that the system is still Poincare´ integrable in the
weak sense, as in the discrete spectrum case. However,
has to be taken in the limitL→`, since the minimum value
ed

e-

are

of the denominator (Vk2v l) in Eq. ~3.20! is of order 1/L
@see Eq.~2.4!#. This leads to an ill-defined expression for E
~3.20! in the continuous limitL→`, when the summation is
replaced by an integral. One can avoid this difficulty by t
usual regularization of the propagator, by adding a sm
imaginary number in the denominator,6 i e with e.0. Let
us then define

uFk~L,6 i e!&[Nk
6S uk&1(

l
8

1

Vk
66 i e2v l

u l &Tlk
k6

~Vk
6! D

~3.21!

for finite L ande, whereTlk
k6

(Vk
6)[Tlk

k (Vk
66 i e), andVk

6

5vk1Tkk
k6

(Vk
6). The normalization constant Nk

6

[^kuFk(L,6 i e)& is chosen to satisfy the condition

(
l

z^ l uFk~L,6 i e!& z251. ~3.22!

Addition of the small imaginary number for the discre
spectrum case leads to a small error in the eigenvalue e
tion, which we shall carefully estimate later in Eq.~3.31!. In
the continuous limit we use the notation

uFk
6&5 lim

L→`

uFk~L,6 i e!&. ~3.23!

In this limit the denominator in Eq.~3.21! can be understood
as a distribution:

1

v6 i e
5

v

v21e2 7
i e

v21e2→P
1

v
7 ipd~v! ~3.24!

~where P stands for the principal part!, if there are enough
discrete states around the peak of the Lorentziane/(e2

1v2). Therefore we should take the continuous limitDk
52p/L→0 ande→01 with the condition@16#

udv/dkuDk

e
5

1

hL
→0, ~3.25!

whereh5e/(2pudv/dku)→01 is infinitesimal with dimen-
sion of momentum. That is, takingfirst the limit L→` and
then the limit e→01 we obtain the well-known expressio
of a Cauchy integral in Eq.~3.21!, with two branches of
analytic continuation ofuFk& in the complex plane@3#.

Thacker@17# has obtained an expression for the mome
tum representation of the regularized states for a system
bosons, by solving the Lippmann-Schwinger equation us
Feynman diagrams. Generalizing his result to the Brillou
Wigner equation for particles with arbitrary symmetry w
obtain2 for L→`

2The volume factor can be absorved by using thed-function nor-
malization@see Eq.~2.7!#.
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^ l uFk
2&5

1

LN21 (
R,S

AS,R~l,k̃!dKr~ k̃T2 l T!

3 )
a51

N21
2 i

(
b51

a

~ k̃Rb
2 l Sb

!2 ih

, ~3.26!

where

l T[ (
a51

N

l a ~3.27!

and^ l uFk
1&5^ l uFk

2&c.c.. Thex representation of the states
given by

^xuFk
2&5L2N/2(

R
AS,Re2h~xSN

2xS1
!expS i (

a51

N

xSa
k̃RaD

for xSN
>xSN21

>•••>xS1
, ~3.28!

which can be seen by taking the Fourier transform of E
~3.28!,

E
2L/2

L/2

dNx^xuFk
2&e2 i lx5^ l uFk

2&1O~e2hL!

1OS exp@2 i ~ k̃ j2 l j !L/2#

k̃ j2 l j2 ih
D .

~3.29!

With the conditionhL@1 we may drop the second term
With an integration overk and/orl with a suitable test func-
tion the third term vanishes in the continuous limit. If w
restrict the use of Eq.~3.28! within a regionuxa2xbu!1/h
for all a,b then Eq.~3.28! reduces to the eigenstate~3.4!.

The regularization introduces a cutoff in space. The cu
in space introduces a limitation in the time scales. Fo
typical momentump0 of the particles the use of the stat
~3.21! is valid ~in conjunction with localized test functions!
for the time scale

t!
1

hup0u
!tB , ~3.30!

wheretB[L/p0 is the crossing time of the particles from on
side of the box to the other side. One can also see this fa
the eigenvalue equation. Indeed, multiplying both sides
Eq. ~3.21! by Vk

66 i e2H0 we have

^cuHuFk~L,6 i e!&5Vk
6^cuFk~L,6 i e!&

6 i e@^cuFk~L,6 i e!&

2^cuk&Nk
6#. ~3.31!

The last term vanishes in the continuous limit ande→01
with the condition~3.25! for any statêcu localized in space.
Furthermore, because the potentialVk is O(1/L) in Eq. ~3.2!
we haveTk;O(1/L). Hence we haveVk

6→vk for L→`
with N finite @see Eq.~3.18! and also Eq.~A5!#. Moreover
.

ff
a

in
f

we haveuNk
6u2→1 ~see Appendix B!. Therefore, with the

restrictions~3.25! and ~3.30! we have consistent eigenstat
of H with a well-defined normalization constantNk

6 in the
continuous limit for finite number of particlesN in conjunc-
tion with localized test states. An example is^cu5^xu,
which leads to Eq.~3.4!.

We note that the introduction of the small parameteri e in
Eq. ~3.21! leads to a drastic change of the physical mean
of the stateuFk&. Indeed, for finiteL, Eq. ~3.17! is an exact
eigenstate ofH for any time scale. In other words, the sta
~3.17! contains the information of processes where the p
ticles reach the boundaries an arbitrary number of times.
the other hand, Eq.~3.21! gives a good approximation of th
eigenstate only for the time scale restricted by Eq.~3.30!.
That is, the use of Eq.~3.21! is restricted to processes whe
the majority of the particles do not reach the boundaries
that one can ignore the boundary conditions.

Since Eq.~3.21! are eigenstates of the Hamiltonian t
gether with localized states@as in Eq.~3.31!#, we can define
the set of N generalized momentum operators3 ~for a
51, . . . ,N!

K̂a
6[ (

kPD
uFk

6&k̃a^Fk
6u, ~3.32!

which are invariants of motion. Indeed, because of E
~3.31!, the time derivative of the expectation value of th
invariants2 i ^^K̂a

6uLHur&& is zero for any localized density
matrix r that belongs to the Hilbert space@see Eq.~2.28!#.
Moreover Eq.~3.32! reduces to the unperturbed invariants
motion ~in the limit l→0!:

ka8[ (
kPD

uk&ka^ku. ~3.33!

However, they arenot the unperturbed momenta, because
the restriction in the summation overk in the domainD.
This shows that in the continuous limit the system~2.1! with
Eq. ~3.1! is Poincare´ integrable in the weak sense for an
finite N, with respect to local density matrices.

IV. DESTRUCTION OF THE INVARIANTS OF MOTION

We now show that in the thermodynamic limit the inva
ants of motion~3.32! are destroyed due to Poincare´ reso-
nances in conjunction with a class of singular density ma
ces corresponding to nonequilibrium states. This class
obtained by a generalization of equilibrium density matric
to nonequilibrium situations. A characteristic feature of th
class of density matrices is that they haved-function singu-
larities in the momentum representation and hence do
belong to the Hilbert space. The general form of these d
sity matrices is given by~here we introduce the variable

3For the boson case we may define the operatorsK̂n
6

[(kPDuFk
6&k̃1

n^Fk
6u, for n51, . . . ,N.
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l a5pa1ka/2 andl a85pa2ka/2 for the momenta!4 @1–3#

^^ l ; l 8ur&&5^^p1k/2;p2k/2ur&&5S 2p

L D NFr0~p!dKr~k!1
1

L (
a.b

N

rka ,kb
~p!dKr~ka1kb!da,b

Kr ~k!

1
1

L2 (
a.b.c

N

rka ,kb ,kc
~p!dKr~ka1kb1kc!da,b,c

Kr ~k!1•••

1
1

L (
a

N

rka
8 ~p!da

Kr~k!1
1

L2 (
a.b

N

rka ,kb
8 ~p!da,b

Kr ~k!1•••G , ~4.1!
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where

da
Kr~k!5 )

nÞa

N

dKr~kn!, da,b
Kr ~k!5 )

nÞa,b

N

dKr~kn! ~4.2!

and so on. The factor (2p/L)N in front gives a correct nor-
malization ofr as a probability in the thermodynamic limi

Tr~r!5(
l

^^ l ; l ur&&5S 2p

L D N

(
l

r0~ l !1O~1/L !

→E dNlr0~ l !51. ~4.3!

We assume thatr0 , rka ,kb ,... andrka ,kb ,...8 do not depend on

the volumeL in the thermodynamic limit. In Eq.~4.1! we
have decomposed the density matrix according to the n
ber of nonvanishing elementska in the set of wave vectors
k5(k1 ,...,kN), that is, the number of particles that ha
off-diagonal elements in momentum representation. T
componentsrka ,kb ,... are associated with the ‘‘homoge
neous’’ components of the distribution function of the pa
ticles in space~i.e., the components where the total wa
vector vanishes, i.e.,k11k21•••1kN50!, while the coeffi-
cients rka ,kb ,...8 are associated with the ‘‘inhomogeneous

components~with k11k21•••1kNÞ0!. We note that the
value of the total wave vectork11k21••• is conserved
throughout the time evolution because of the assumption
binary interactions. As a result, the homogeneous com
nents evolve independently from the inhomogeneous com
nents.

As mentioned, the density matrices~4.1! are a generaliza
tion of the equilibrium states. For example, the canoni
equilibrium distribution is given by~with b21[kBT!

4In Ref. @1# the momentum states have been normalized i
slightly different way, in order to have a correspondence with cl
sical mechanics. As a consequence the 2p factors in Eq.~4.1! ap-
pear differently from the ones in the corresponding expressio
@1#.
-

e

-

of
o-
o-

l

r5req5
e2bH

Tr~e2bH!
, ~4.4!

wherekB is Boltzmann’s constant andT the temperature. In
the equilibrium state all inhomogeneous components van
Through the iterative use of the integral equation

e2bH5e2bH0S 12lE
0

b

db1eb1H0Ve2b1HD ~4.5!

we obtain

r0
eq~p!5~b/p!N/2e2bvp@11O~l!#, ~4.6a!

rka ,2ka

eq ~p!5~b/p!N/2e2bvpF2le2bka
2/4

sinh~bpaka!

paka

1O~l2!G , ~4.6b!

and so on.
In the expansion~4.1! we see the appearance of volum

factorsL2n, which lead to differentL dependence for differ-
ent components. With a combination of these volume fact
with the Kronecker deltasdKr(k),da,b

Kr (k),..., we see the ap
pearance of thed-function singularitiesin the momentum
variables in the thermodynamic limit@see Eq.~2.7!#. These
singularities correspond to a nonlocal distribution of the e
semble in the configuration space@2#.

As has been discussed in Ref.@2# ~see also Ref.@3#! the
decomposition ofr by r0 ,rka ,kb

,... is directly related to the
cluster expansion in terms of spatial correlation functions
statistical mechanics. The componentr0 is related to the
‘‘vacuum of correlations,’’rka ,kb

to ‘‘binary correlations,’’

rka ,kb ,kc
to ‘‘ternary correlations,’’ and so on. For the cas

of nondistinguishable particles care is necessary in the
composition~4.1! since some of the higher correlation com
ponents may reduce to the lower-order ones due to the n
distinguishability of the particles. To incorporate quantu
statistics, we need to improve the decomposition~4.1!. This
can be achieved by introducing the concept of ‘‘contractio
of the density matrix~see@3#!. Then we obtain an expansio
similar to Eq.~4.1! with different values of the component
r0 ,rka ,kb

,... . However, in order to avoid unnecessary com
plication, here we shall restrict ourselves to distinguisha
particles.

a
-

in
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Thed-function singularities in the density matrix have striking consequences in the dynamics. Because of these sing
the density matrix does not belong to the Hilbert space, as its Hilbert norm vanishes in the thermodynamic limit,

^^rur&&5S 2p

L D 2NF(
p

ur0~p!u21
1

L2 (
k,p

(
a.b

N

urka ,kb
~p!u2dKr~ka1kb!da,b

Kr ~k!1•••G→0. ~4.7!
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As a result, the Liouvillian may have complex eigenvalu
The simplest example of a singular nonequilibrium dens
matrix is obtained by setting allrka ,kb ,...50 except for the
vacuum of correlation in Eq.~4.1!,

^^ l ; l 8ur&&5^^ l ; l 8ur0&&[S 2p

L D N

dKr~ l 2 l 8!r0~ l !,

~4.8!

i.e., the distribution of the particles is uniform in space at
initial time. To demonstrate the destruction of the invaria
of motion due to Poincare´’s resonances, we shall use th
example in the following discussion. The extension to m
general situations is straightforward.

Let us consider the expectation value of the invariantK̂1
2

over the ensemble~4.8!,

^K̂1
2&r0

5^^K̂1
2ur0&&5S 2p

L D N

(
kPD

k̃1f0~k!, ~4.9!

where

f0~k![(
l

r0~ l !z^ l uFk
2& z2. ~4.10!
.
y

e
s

e

Hereafter we denote the statesuFk(L,6 i e)& in Eq. ~3.21! by
uFk

6& to avoid too heavy notation.@Since we shall not refer
to Eq. ~3.23! in the following discussion, there is no conflic
with this new definition.# The continuous limit should be
taken at the appropriate stage where the explicit volume
pendencies are evaluated. Inserting Eq.~3.26! in Eq. ~4.10!
we obtain a product of infinitely many absolute valu
squared of the denominatorsuk̃Rb

2 l Sb
2 ihu22. Each of them

is ill defined as a distribution and leads to the divergi
factor 1/h. As shown in Appendix C we havef0(k)
;N(c/h)N21→`. The invariants diverge in the thermody
namic limit. The origin of the divergence is twofold: one
in N, and the other inc/h. The factorN comes from the fact
that f0(k) depends on all particles. As we show below, t
reduction by the summation overk in Eq. ~4.9! suppresses
the factorN, while the divergencec/h remains. In order to
show the role of the reduction more clearly, let us look clo
at the origin of the divergence in the series expansion inl.
The essential part of the following discussion also holds
terms of the so-called ‘‘binary expansion,’’ using the tw
body T matrix. Hencel does not have to be small.

We first note that we have chosen the normalization c
stant Nk

6 such that Eq.~3.22! holds independently of the
choice of the class of density matrices. Then we have
n

^K̂1
2&r0

5S 2p

L D N

(
kPD

k̃1S r~ k̃!1(
l

u^ l uFk
2&u2@r0~ l !2r~ k̃!# D . ~4.11!

In terms ofTk operator we have@see Eqs.~3.19! and ~3.21!#

^K̂1
2&r0

5S 2p

L D N

(
kPD

k̃1Fr0~ k̃!1S 11(
p

8UTpk
k ~Vk

22 i e!

Vk
22 i e2vp

U2D 21

(
l

8UTlk
k ~Vk

22 i e!

Vk
22 i e2v l

U2

@r0~ l !2r0~ k̃!#G . ~4.12!

To lowest order inl we haveTk5lV1O(l2) andVk
25vk1O(l). Plugging this into Eq.~4.12! we obtain

^K̂1
2&r0

5S 2p

L D N

(
kPD

k1S r0~k!1
l2

e (
l

8uVlku2pde~vk2v l !@r0~ l !2r0~k!# D 1O~l3!, ~4.13!

wherepde(v)[e/(v21e2). Following a calculation parallel to the one presented in Appendix B, this leads to@see Eq.~B7!#

^K̂1
2&r0

5S 2p

L D N

(
kPD

k1S r0~k!1
l2

eL (
b.a

N uka2kbu
~ka2kb!21h2 $@Xba21#r0~k!1O~h!% D 1O~l3!, ~4.14!

where the operatorXba exchangeska andkb in r0(k)5r0(k1 ,k2 ,...,kN), andh is an infinitesimal value given bye5huka
2kbu @see~3.25!#. Taking the continuous limit in the variablesk, and assuming thatr0(k) is a continuous function, we obtai
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^K̂1
2&r0

5E dNkk1S r0~k!1
l2

eL (
b52

N ukb2k1u
~kb2k1!21h2 $@Xb121#r0~k!1O~h!% D 1O~l3!. ~4.15!
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Note that all processes that aredisconnectedto particle 1
through the interaction have been canceled under thek inte-
gral. As a result, the summation in Eq.~4.15! containsN
21 terms. In the thermodynamic limit thel2 term inside
parentheses is then proportional toN/(eL)5c/e, which di-
verges in the limite→01. Therefore, in the thermodynami
limit the system is not integrable in the sense of Poincare´, in
conjunction with the class of density matrices~4.1!. The 1/e
divergence occurs at the resonancevk5v l , since we have
de(vk2v l)→d(vk2v l) for e→01. That is, Poincare´’s
resonances destroy the invariants of motion, exactly a
classical mechanics@16#.

We note that the estimation of the divergence off0(k)
obtained with the exact solution~3.26!, discussed below Eq
~4.10!, suggests that the system is not integrable even in
general sense. However, to prove this we have to show
cancellation of disconnected processes without the us
perturbation~or binary! expansion. We hope to come back
this problem elsewhere.

If we consider higher-order terms in theT matrix, new
divergencies proportional to (c/e)n appear, wheren is an
arbitrary integer. These divergencies are related to a phys
process, i.e., the recollisions of the particles, and are ca
the rescattering anomalies@18,19,20#. Recollisions occur for
systems of three or more interacting particles. Succes
collisions can be separated by arbitrarily long intervals
time, and they cause divergencies in the transition rate, o
nated by poles in theT matrix.

We note that if the functionr0(k) is symmetric under
exchanges of the particles~e.g., for bosons! we have@Xba
21]r0(k)50 in Eq. ~4.15! and we obtain a finite contribu
tion to orderl2, because theO(h) term together with the
1/e factor in front givesh/e;1. However, it is easily seen
that higher-order divergencies (c/e)n with n.1 originated
by rescattering anomalies still lead to the divergence of
~4.15! in higher-order terms of thel expansion.5 Therefore,
Eq. ~4.15! diverges, regardless of the symmetry of the p
ticles.

The cancellation ofdisconnectedprocesses mentione
just below Eq.~4.15! is one of the crucial points in ou
argument. We have investigated the existence of the ex
tation value of an observable that depends on afinite number
of particles~in this case, of a single particle!. Instead, if we
use some quantity associated withall the particles of the

5This can also be seen using the formal expression for the e
solution~3.26!. Substituting this in Eq.~4.11! we find the dominant
~divergent! contributions come from the poles atl Sb

5 k̃Rb
6 ih. For

a symmetricr0(k) the second term inside the parentheses in
~4.11! is then proportional toh, since we have, e.g.,r0(k1

1 ih,...)2r0(k1 ,...)5 ih]r0(k1 ,...)/]k11O(h2). Because of the
factorsh2n coming from the absolute value squared of the deno
nators in Eq.~3.26!, we still have divergence in Eq.~4.11!.
in
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-

c-

system, we do not see this type of cancellation and th
appearN(N21)/2 terms through the combination of all b
nary interactions. This leads to a trivial divergence in t
thermodynamic limit. Because density matrices~or wave
functions! depend on infinitely many variables, it is unavoi
able to work withreducedquantities depending only on
finite number of degrees of freedom, in order to obtain me
ingful results in the thermodynamic limit. Note that the r
duction has a meaning only with density matrices~or prod-
ucts of wave functions! and not with a single wave function
This is why we discuss the meaning of integrability on t
level of density matrices, and not on the level of wave fun
tions.

Let us note that ifK̂1 is an invariant of motion, it should
commute with the Hamiltonian. However, a calculation sim
lar to the estimation in Eq.~4.13! shows that the expectatio
value of the commutator of the generalized momentum
erators with the Hamiltonian also leads toc(c/e)n divergen-
cies in thel expansion, in conjunction with singular densi
matrices. For example, we have~see Appendix D!

^^K̂1
2uLHur0&&5Tr~@H,K̂1

2#†r0!;c~c/e!n. ~4.16!

In the above argument, divergences in both Eq.~4.15! and
Eq. ~4.16! appear through an ill-defined product of the d
tributions of typeuw2 i eu22. We note that it is also possibl
to consider other invariants that are Hermitian operators@21#,
such as

K̂a8[
1
2 (

k
k̃a@ uFk

2&^Fk
1u1uFk

1&^Fk
2u#. ~4.17!

Because the denominators are regularized as (w2 i e)22

1c.c. in Eq.~4.17!, the expectation value ofK̂a8 is finite in
the thermodynamic limit, even in conjunction with singul
density matrices. However, this does not solve the prob
of the integrability. Indeed, we cannot use these new inv
ants to integrate the equation of motion, because they do
commute with each other, so that they do not satisfy
involution relation. We shall come back to these invariants
the end of Sec. V.

Let us also note that Eq.~4.13! has a suggestive structur
related to irreversible processes. Indeed, replacing 1/e in
front of the second term in this expression by;t we obtain
~for e→01!

;2ptl2(
l

8uVlku2d~vk2v l !@r0~ l !2r0~k!#. ~4.18!

This corresponds to the lowest-order term in the series
pansion in time of the solution of the Pauli master equati
In previous papers@1,22#, we have already shown for poten
tial scattering that the destruction of the invariants of mot
due to Poincare´’s resonances leads to a broken time symm
try in the evolution, which is governed by the Pauli mas

ct
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equation. For the 1D gas with thed-function interactions
~3.1!, the destruction of invariants of motion indicates al
the existence of irreversible processes, such as approa
equilibrium.

At equilibrium we haver0( l )5r0(v l), which gives us
d(vk2v l)@r0(v l)2r0(vk)#50. The divergence in Eq
~4.18! then disappears in the second-order approximatio
l. Actually the equilibrium states, being functions of th
total HamiltonianH, are exceptional states where the res
nance singularities do not play any role~note that the reso
nance denominator breaks time symmetry!. Indeed the ex-
er
o

e

is

t
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pectation value of the momentum operator with
equilibrium statef (H),

^^K̂1
2u f ~H !&&5 (

kPD
k̃1(

l
^ l uFk

2&^Fk
2u f ~H !u l &,

~4.19!

is well defined in the thermodynamic limit. To prove this w
use thatHuFk

2&5(Vk
22 i eQk)uFk

2& @see Eq.~3.31!#. Then
we have
^^K̂1
2u f ~H !&&5 (

kPD
k̃1(

l
^ l uFk

2&^Fk
2u f ~Vk

11 i eQk!u l &5 (
kPD

k̃1f ~Vk
1!(

l
u^ l uFk

2&u21 i e (
kPD

k̃1f 8~Vk
1!(

l
^ l uFk

2&

3^Fk
2uQku l &1O~e2!, ~4.20!

where we have expandedf (Vk
11 i eQk) in a Taylor series, to lowest order ine. Using the normalization condition~3.22! we

obtain

^^K̂1
2u f ~H !&&5 (

kPD
k̃1f ~Vk

1!1 i e (
kPD

k̃1f 8~Vk
1!@12uNk

2u2#1O~e2!. ~4.21!
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Each term in the right-hand side is well defined in the th
modynamic limit ~the normalization constant goes to zer
see Appendix B!. Since we havee→01 we may drop the
last two terms. The expectation value ofK̂1

2 is thus well
defined in this limit. This implies that the solution of th
eigenvalue problem of the Hamiltonian obtained in Refs.@4,
6,17# can be used at equilibrium. The main result of th
section is that the statesuFk

2& lead to divergenciesout of
equilibrium in the thermodynamic limit, in spite of the fac
that they give finite contributions at equilibrium. In order
obtain a consistent description of approach to equilibriu
we need to reconsider the eigenvalue problem of the Li
villian, which is the subject of the next section.

V. COMPLEX SPECTRAL REPRESENTATION OF L H

In Sec. IV we have shown that the invariants of moti
are destroyed due to Poincare´’s resonances in the thermody
namic limit. In conjunction with singular density matrice
uFk

6& are no longer the eigenstates of the Hamiltonian.
order to obtain a consistent picture of the time evolution
the system, we have to reformulate the eigenvalue prob
of the generator of motion. Because we are dealing with
class of the singular density matrices~4.1!, we have to for-
mulate the eigenvalue problem on the level of the Liouv
lian,

^^M uLHuFa
~n!&&5za

~n!^^M uFa
~n!&&, ~5.1!

whereza
(n) is an eigenvalue anduFa

(n)&& is a right eigenstate
of LH , andM is an observable depending on a reduced~i.e.,
finite! number of particles. We need this reduction to avo
diverging contributions through the disconnected proces
discussed in Sec. IV. The indicesa ~together withn! are
-
;

,
-

n
f
m
e

-

es

parameters characterizing the eigenstates. We conside
class of eigenfunctions that have the form~4.1!.

We have previously formulated the eigenvalue probl
for this class of functions for the general case of syste
with binary interactions@1#. There, we have shown that th
Liouvillian can have complex eigenvalues Imza

(n)Þ0, and the
evolution splits into two semigroups; one is oriented towa
our future t.0 with Im za

(n),0 ~equilibrium is approached
for t→`!, while the other is oriented toward our pastt,0
with Im za

(n).0. Because the singular eigenstates do not
long to the Hilbert space, it is not surprising to obtain co
plex eigenvalues for the Hermitian operatorLH . All irrevers-
ible processes have the same time orientation. To be s
consistent we choose the semigroup oriented towards
future. In the following part of this section, we shall briefl
summarize the formal solution of the eigenvalue probl
~5.1!. A detailed formulation can be found in Ref.@1# ~see
also @16# for classical mechanics!.

Because of thed-function singularities in the eigenstate
the decomposition ofuFa

(n)&& into the components of the vari
ous correlations, just as in Eq.~4.1!, has a well-defined
meaning. We then introduce the projection operators that
tract each correlation component:

P~0![(
p

up;p&&^^p;pu,

Pa
~ka!

[(
p

da
kr~k!up1k/2;p2k/2&&^^p1k/2;p2k/2u

~5.2!

and so on. To avoid too heavy notation, herafter we label
projection operators asP(n). Then we have
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(
n

P~n!51. ~5.3!

We also define the complements:

Q~n![12P~n!. ~5.4!

The operatorsP(n) andQ(n) satisfy

P~n!P~m!5dm,nP~n!, P~n!Q~n!5Q~n!P~n!50 ~5.5!

and @see Eq.~2.20!#

P~n!L05L0P~n!, P~n!LVP~n!50. ~5.6!

For lÞ0, the eigenstateuFa
(n)(l)&& consists of component

with various n. To specify the eigenstates, we impose t
boundary condition

lim
l→0

uFa
~n!~l!&&5P~n!uFa

~n!~l50!&&. ~5.7!

From Eq.~5.1! we have

P~n!LH~P~n!1Q~n!!uFa
~n!&&5za

~n!P~n!uFa
~n!&&, ~5.8!

Q~n!LH~P~n!1Q~n!!uFa
~n!&&5za

~n!Q~n!uFa
~n!&&. ~5.9!

Solving Eq.~5.8! for the Q(n) component we obtain

Q~n!uFa
~n!&&5C~n!~za

~n!!P~n!uFa
~n!&&, ~5.10!

where the ‘‘creation-of-correlations’’ operator~the creation
operator in short! is defined by

C~n!~z![
1

z2Q~n!LHQ~n! Q~n!lLVP~n!. ~5.11!

Care has to be taken in the analytic continuation ofz to
obtain a consistent description of the semigroup oriented
ward the future@1#.

Substituting this into Eq.~5.8! we obtain

c~n!~za
~n!!uua

~n!&&5za
~n!uua

~n!&&, ~5.12!

whereuua
(n)&&[P(n)uFa

(n)&& and we have introduced thecol-
lision operators

c~n!~za
~n!![P~n!L0P~n!1P~n!lLVC~n!~za

~n!!P~n!.
~5.13!

This shows that the eigenvalue problem of the Liouville o
erator is reduced to the eigenvalue problem of the collis
operators. The collision operators are dissipative opera
~i.e., non-Hermitian operators!, and are the central object i
nonequilibrium statistical mechanics. The collision opera
associated with the vacuum of correlationsn50 reduces to
the well-known Pauli collision operator for weakly couple
systems@1#. Equation~5.12! shows that the eigenvalues o
the Liouvillian are identical to the eigenvalues of the dis
pative collision operators. This implies that the eigenvalu
of LH are generally complex numbers for the class of eig
states~4.1! that do not belong to the Hilbert space.
o-

-
n
rs

r

-
s
-

Using Eq.~5.10!, the right eigenstates ofLH can be ob-
tained from the right eigenstates ofc (n)(za

(n)) as

uFa
~n!&&5@P~n!1C~n!~za

~n!!#uua
~n!&&. ~5.14!

Because the eigenvalues are complex, the left eigenstat
LH are generally not the Hermitian conjugates of the rig
eigenstates. With a construction parallel to the one above
have the left eigenstates ofLH with the same eigenvalue
za

(n) ,

^^F̃a
~n!u5^^ṽ a

~n!u@P~n!1D ~n!~za
~n!!#, ~5.15!

where the ‘‘destruction-of-correlations’’ operator~the de-
struction operator in short! is defined by

D ~n!~z![P~n!lLVQ~n!
1

z2Q~n!LHQ~n! ~5.16!

and ^^ṽ a
(n)u[^^F̃a

(n)uP(n) are the left eigenstates of the co
lision operator

^^ṽ a
~n!uc~n!~za

~n!!5^^ṽ a
~n!uza

~n! . ~5.17!

Note that the eigenvalue problem of the collision opera
is a nonlinear problem, for the collision operator itself d
pends on the eigenvalueza

(n) . Because of this,̂ ^ṽ a
(n)u is

generally not biorthogonal touua
(n)&&. Assuming, however,

bicompleteness of these states in eachP(n) subspace, we may
always construct sets of states$^^ũ a

(n)u% and $uva
(n)&&% bior-

thogonal to$uua
(n)&&% and$^^ṽ a

(n)u%, respectively,

^^ũ a
~n!uub

~m!&&5dn,mda,b , (
a

uua
~n!&&^^ũ a

~n!u5P~n!

~5.18!

and similar relations foruva
(n)&& and ^^ṽ a

(n)u. Then, with a
suitable normalization we obtain the spectral decomposi
of the evolution operator in terms of the bicomplete set
eigenstates,

^^M ur~ t !&&5^^M ue2 iL Htur~0!&&

5(
n,a

e2 iza
~n!t^^M uFa

~n!&&^^F̃a
~n!ur~0!&&

~5.19!

with the biorthogonal relation

^^F̃a
~n!uFb

~m!&&5dn,mda,b . ~5.20!

Moreover, we can introduce thenonunitary transformation
operatorL and its inverseL21,

L5(
n,a

uua
~n!&&^^F̃a

~n!uANa
~n!,

L215(
n,a

uFa
~n!&&^^ũa

~n!uANa
~n!21, ~5.21!

whereNa
(n)511O(l2) is a normalization constant, the ex

plicit form of which is not important in the following discus
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sion ~see Ref.@1#!. The nonunitary transformation leads to
similitude relation between the Liouvillian and the total co
lision operatorQ as

LLHL215Q, ~5.22!

where

Q[(
n,a

c~za
~n!!uua

~n!&&^^ũa
~n!u5(

n,a
za

~n!uua
~n!&&^^ũ a

~n!u.

~5.23!

This is a direct way to see that the Liouvillian shares
same eigenvalues with the collision operator.

For the density matricesr that belong to the domain ofL
~i.e., r̃[Lr,`!, we obtain a kinetic equation oriented
the future from the Liouville equation@see Eqs.~2.8! and
~5.22!#,

i
]

]t
r̃~ t !5Qr̃~ t !. ~5.24!

As we show in Appendix E, we haveLKa8→` for the
invariant of motion defined in Eq.~4.17!. Therefore, the ex-
istence of the invariantKa8 does not prevent the approach
equilibrium for the class of density matrices belonging to
domain ofL.

In this derivation ample use has been made of projec
operators. Traditionally projection operators were used to
rive the formal ~non-Markovian! master equations@2,23#.
Their use to obtain the spectral decomposition of the Li
villian in extended function spaces was first introduced
Petrosky and Prigogine in Ref.@24#. Our method is valid for
both classical and quantum systems~see, for instance, the
example of the classical and quantum Lorentz gas discu
in Refs.@1,16#!.6 It avoids the use of an external heat bath
of the influence of environmental effects that introduce
sumptions going beyond dynamics. Also over the past, tr
cation of the BBGKY hierarchy has been used to obtain ti
symmetry breaking. However, as time goes on, higher
higher correlations appear and no truncation is poss
@25,26#.

VI. EIGENVALUE PROBLEM OF THE COLLISION
OPERATOR c „0…

In this section and the following we shall present tw
examples of approximate solutions of the eigenvalue pr
lem of the collision operators for the distinguishable parti
case.

In our first example we shall study the solution in then
50 ~i.e., vacuum of correlations! subspace for a weakly
coupled system. This subspace describes the evolutio
distribution functions, which are homogeneous in space.

6However, for the classical case the number of spatial dimen
has to be considered. Indeed, for a 1D gas of hard, pointlike
ticles with the same mass, particles only exchange veloc
through each collision. To see the approach to equilibrium i
classical gas, the system should have more than one dimensio
well as a finite size of the particles.
e
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consider a near-equilibrium situation, where one particle
dergoes Brownian motion, while all the other particles are
equilibrium. A similar problem has been studied for anh
monic lattices in Ref.@2#.

The collision operator in then50 subspace is given by

c~0!~z!5l2c2
~0!~z!1O~l3!1••• , ~6.1!

where@see Eq.~5.13!#

c2
~0!~z!5P~0!LVQ~0!

1

z2L0
Q~0!LVP~0! ~6.2!

and the denominator is evaluated as an analytically con
ued function from the upper half plane ofz. With a suitable
test statê ^M u the eigenvalue equation is given by~hereafter
ua[ua

(0) andza[za
(0)!

^^M uc2
~0!~1 i e!uua&&1O~l3!5za^^M uua&&, ~6.3!

where we have expandedc2
(0)(za) aroundza51 i e and kept

the lowest-order term, asza is of orderl2 @see Eq.~6.17!#.
One can write, for each component,

l2(
k

^^ l ; l uc2
~0!~1 i e!uk;k&&^^k;kuua&&

5za^^ l ; l uua&&1O~l3!. ~6.4!

The matrix elements of the collision operator for thed-
function potential~3.2! are given by

^^ l ; l ;uc2
~0!~1 i e!uk;k&&

52p i S 2l

L D 2 L

2p (
b.a

N

da,b
Kr ~ l 2k!

3
u l a2 l bu

~ l a2 l b!21h2 @dKr~ l a2ka!dKr~ l b2kb!

2dKr~ l a2kb!dKr~ l b2ka!#, ~6.5!

where we have replacedQ(0) by 1 in Eq. ~6.2!, since
P(0)LVP(0)50, and used formula~B4!. Then Eq.~6.4! leads
to

2
2il2

L (
b.a

N u l a2 l bu
~ l a2 l b!21h2 @12Xab#ua~ l !

5zaua~ l !1O~l3!, ~6.6!

whereua( l )[^^ l ; l uua&&.
Let us choose the observableM5M1 associated with par-

ticle 1, defined by

^^M1u l 1 ,l 2 ,...,l N&&5M1~ l 1!, ~6.7!

where for convenience we have used the abbreviated n
tion

n
r-
s
a
, as
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u l 1 ,l 2 ,...,l N&&[u l 1 ,l 2 ,...,l N ; l 1 ,l 2 ,...,l N&&

5u l 1 ,l 2 ,...,l N&^ l 1 ,l 2 ,...,l Nu. ~6.8!

The eigenvalue equation then becomes

(
l 1

M1~ l 1! (
l 2 ...l N

^^ l 1 ,...,l Nuc~0!~1 i e!uua&&

5za(
l 1

M1~ l 1! (
l 2 ,...,l N

^^ l 1 ,...,l Nuua&&. ~6.9!

SinceM1( l 1) is an arbitrary function we obtain

(
l 2 ,...,l N

^^ l 1 ,...,l Nuc~0!~1 i e!uua&&

5za (
l 2 ,...,l N

^^ l 1 ,...,l Nuua&&, ~6.10!

which gives us

2
2il2

L (
l 2 ,...,l N

(
b52

N u l 12 l bu
~ l 12 l b!21h2 @12X1b#ua~ l !

5za (
l 2 ,...,l N

ua~ l !. ~6.11!

Only terms connected to particle 1 through the interact
give a nonvanishing contribution. The left-hand side n
contains onlyN21 terms, and together with the 1/L factor
this will give finite eigenvalues proportional to the conce
tration c in the thermodynamic limit.

We note that any functionu( l 1 ,...,l N) that is symmetric
under exchanges of the momental 1 ,...,l N is an eigenstate o
the collision operator with eigenvalue zero. An example
the unperturbed canonical equilibrium distribution@Eq.
~4.4!#,

u0~ l 1 ,...,l N!5 )
a51

N

ueq~ l a!, ~6.12!

with

ueq~ l a!5Ab

p
e2b l a

2
, ~6.13!

which is normalized as

E
2`

`

dlaueq~ l a!51. ~6.14!
n

-

s

Nonequilibrium eigenstates may be obtained assum
that only one of the particles~Brownian particle! is disturbed
out of equilibrium. This corresponds to the distribution fun
tion

u~ l 1 ,...,l N!5u1~ l 1!)
a52

N

ueq~ l a!, ~6.15!

whereu1( l 1) is a nonequilibrium~one-particle! distribution
function. We assumeu1( l 1) is a continuous function ofl 1 in
the thermodynamic limit. Inserting Eq.~6.15! into the eigen-
value equation~6.11! we obtain

E
2`

`

dl2
u1~ l 1!e2b l 2

2
2u1~ l 2!e2b l 1

2

u l 12 l 2u
5gu1~ l 1!, ~6.16!

where we have droppedh in the denominator, because th
limit l 2→ l 1 is well defined. Here,g is related to the eigen
value of the collision operator~and ofLH! by

z522il2cAb

p
g. ~6.17!

Writing

u1~ l 1!5ueq~ l 1!w~ l 1! ~6.18!

the integral equation~6.16! reduces to

E
2`

`

dl2e2b l 2
2 w~ l 1!2w~ l 2!

u l 12 l 2u
5gw~ l 1!. ~6.19!

We shall solve this integral equation by a perturbation ana
sis, with the condition that the temperature is high relative
the kinetic energy of particle 1, i.e.,

b l 1
2!1. ~6.20!

In Appendix F we describe an alternative approach in wh
we replace the Gaussian exp(2bl2) by a step function. With
this substitution Eq.~6.16! can be solved exactly@27#.

Coming back to the perturbation analysis, we expa
w( l ) as a power series,

w~ l 1!5q01q1l 11q2l 1
21••• . ~6.21!

The integral equation~6.19! is now

(
n51

`

(
m50

n21 E
2`

`

dl2e2b l 2
2
sgn~ l 12 l 2!qnl 1

n2m21l 2
m5g (

n50

`

qnl 1
n .

~6.22!

We have
I m~ l 1 ,b![E
2`

`

dl2e2b l 2
2
sgn~ l 12 l 2!l 2

m55 E
0

l 1
2

dx e2bxx~m21!/2 for m even

2E
l 1
2

`

dx e2bxx~m21!/2 for m odd,

~6.23!

where we have decomposed the integration in two regions,l 1. l 2 and l 2, l 1 and then made the change of variablesx5 l 2
2.

Expanding the exponential as a power series, we obtain
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I m~ l 1 ,b!5H Jm~ l 1 ,b! for m even

Jm~ l 1 ,b!2b2~m11!/2GS m11

2 D for m odd,
~6.24!

whereG(x) is the gamma function and

Jm~ l 1 ,b![ l 1
m11S 2

m11
2

2

m13
b l 1

21
1

2!

2

m15
~b l 1

2!22
1

3!

2

m17
~b l 1

2!31••• D . ~6.25!
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With the assumption~6.20!, higher-order terms give smalle
corrections.

In terms ofI m , the integral equation~6.22! reads

q1I 01q2~ l 1I 01I 1!1q3~ l 1
2I 01 l 1I 11I 2!1•••

5g~q01q1l 11q2l 1
21q3l 1

31••• !, ~6.26!

which gives us

q1S 2l 12
2b

3
l 1
31••• D1q2S 2l 1

22
2b

3
l 1
41•••2

1

b
1 l 1

2

2
b

2
l 1
41••• D1q3S 2l 1

31•••2
1

b
l 11 l 1

31•••1
2

3
l 1
3

1••• D1•••5g~q01q1l 11q2l 1
21q3l 1

31••• !. ~6.27!

We can then find solutions for the constantsqn successively,
by approximating the expansion~6.21! by a finite sum for
Eq. ~6.20!,

wr~ l 1![ (
n50

r

qnl 1
n ~6.28!

and comparing the coefficients of the same degree inl 1 , in
both sides of Eq.~6.27!. For r 50 we havew0( l 1)5q0 and
g050. This is the equilibrium solution~6.18!, with q051.
We display the first five solutions

w0~ l 1!51, g050, ~6.29a!

w1~ l 1!5 l 1 , g152, ~6.29b!

w2~ l 1!5123b l 1
2, g253, ~6.29c!

w3~ l 1!5 l 1~122b l 1
2!, g354, ~6.29d!

w38~ l 1!5 l 1~11b l 1
2/3!, g3855/3, ~6.29e!

where the third-order polynomial has two solutions, obtain
by solving the eigenvalue equation of a 232 matrix ~simi-
larly, higher-order polynomials have multiple solutions!.

We note that there is an interesting discontinuity atb
50 in these solutions. For example, we have

lim
b→0

w2~ l !5w0~ l !51, lim
b→0

g2Þg050. ~6.30!
d

This may be understood by taking explicitly the limit of th
boundary of the integration in Eq.~6.19!. Indeed we have
@see Eq.~6.29c!#

lim
b→0

lim
K→`

E
2K

K

dl2e2b l 2
2 w2~ l 1!2w2~ l 2!

u l 12 l 2u

5 lim
b→0

g2w2~ l 1!5g2Þ0, ~6.31!

while

lim
K→`

lim
b→0

E
2K

K

dl2e2b l 2
2 w2~ l 1!2w2~ l 2!

u l 12 l 2u
50, ~6.32!

which corresponds to the equilibrium solutionw0( l 1). The
two limiting procedures are not commutative.

We also note that, in contrast to the eigenstates~3.14!, the
solutions~6.12! and ~6.15! admit the pointsl i5 l j . The ei-
genvalue problem ofc2

(0) leads to an analytic solution a
these points near equilibrium. In the next section we sh
construct a class of solutions for a situation far from equil
rium. There, we shall see that singularities similar to the o
in the eigenstates~3.14! of H remain.

VII. VIOLATION OF THE RITZ-RYDBERG PRINCIPLE

In the previous example we have considered the eig
value problem of the collision operator for then50 sub-
space near equilibrium. Here we shall construct a solution
a situation far from equilibrium where the system behav
like the quantum Lorentz gas@1,28#. The problem will be
then extended to an51 subspace, which describes stat
with inhomogeneities in the spatial distribution of one of t
particles. The main goal is to show that there are eigenva
of the Liouville operator that violate the ‘‘Ritz-Rydberg prin
ciple.’’ Here, we use the term ‘‘Ritz-Rydberg principle’’ fo
the principle that an eigenvalue of the Liouvillian is given b
a difference of two energies~eigenvalues ofH!. This concept
is a generalization of the original Ritz-Rydberg combinati
principle that indicates the experimental fact that the f
quencies of photons emitted by atoms are always written
difference of two terms. This principle has led to the ve
basis of quantum mechanics, which asserts that the und
ing dynamics of the probability represented by the dens
matrix has a substructure that is described by the produc
probability amplitudes. The violation of the Ritz-Rydbe
principle, therefore, indicates that the irreversible proces
described by the complex spectral representation canno
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reduced to the level of wave amplitudes. The most ba
description is in terms of density matrices, and no more
terms of wave functions.

The solution of the eigenvalue problem for potential sc
tering has been constructed in Ref.@22#. This solution is
easily applied to our case, forN52 ~two-body scattering!.
The collision operator involves the exchange operatorXab
@see Eq.~6.6!#. The eigenstates are then symmetric or an
symmetric functions under exchanges of momenta, such

uup
6&&5

1

&
~ up1 ,p2&&6up2 ,p1&&), ~7.1!

with the conditionp1Þp2 ~here we recall that we are con
sidering distinguishable particles; the eigenstates are sym
trized on the level of density matrices, not wave function!.
The eigenvalues arezp

150 and zp
2524il2/(Lup12p2u),

which can be easily verified in Eq.~6.6!. The symmetric
solution ~with eigenvalue zero! corresponds to an equilib
rium state, while the antisymmetric solution is a decay
mode@22#. The decay rateizp

2 , however, vanishes as 1/L in
the limit L→` and there is no approach to equilibrium f
N52. We note that the solution is singular atp15p2 .

We can extend this solution for arbitrary number of p
ticles N. As we shall see the decay rate then becomes fi
in the thermodynamic limit. Let us put

uua,p&&5aaup1 ,p2 ,p2 ,p2 ,...&&1baup2 ,p1 ,p1 ,p1 ,...&&,
~7.2!

wherep1Þp2 . Then we have7

ua,p~ l !5aadkr~ l 12p1!)
n52

N

dkr~ l n2p2!

1badKr~ l 12p2!)
n52

N

dKr~ l n2p1!. ~7.3!

Inserting this into Eq.~6.11! we obtain

2
2il2

L

N21

up12p2u $aa@dKr~ l 12p1!2dKr~ l 12p2!#

1ba@dKr~ l 12p2!2dKr~ l 12p1!#%

5za@aadKr~ l 12p1!1badKr~ l 12p2!#. ~7.4!

In the thermodynamic limit this leads to the eigenvalue eq
tion of a 232 matrix,

S 2 i j
i j

i j
2 i j D S aa

ba
D5zaS aa

ba
D , ~7.5!

7A more general extension is obtained by settinguup&&
5SSCSupS1

,pS2
, . . . ,pSN

&&, where the sum is taken over all th
permutations (S1 , . . . ,SN) of the numbers (1, . . . ,N), and theCS

are constant coefficients. The result will be reported elsewhere@29#.
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where

j[
2l2c

up12p2u
. ~7.6!

As for the N52 case there are two solutions, a symmet
one, i.e., a15b151, with z150, which corresponds to
equilibrium, and an antisymmetric one, i.e.,a252b251,
with z2522i j, which corresponds to a decaying mod
The decay rate is now finite in the thermodynamic limit.

So far we considered the eigenvalue problem of the c
lision operator in then50 subspace, that is, the subspace
density matrices that are diagonal in the momentum rep
sentation. Now we consider the subspace of density matr
that are diagonal for particles 2, . . . ,N, but off diagonal for
particle 1, i.e., density matrices made up of superposition
states of the form

u l 1 ,l 2 ,...,l N ; l 18 ,l 2 ,...,l N&&. ~7.7!

We shall consider the case where the off-diagonality

k[ l 12 l 18 ~7.8!

is small, of the order

k;O~l2!. ~7.9!

This corresponds to large scale inhomogeneities in space
tributions, since the off-diagonality in the momentum
small. We denote the projection operator associated to
subspace asP1

(k) @see Eq.~5.2!#. Assuming weak coupling
the collision operator corresponding to this subspace
given, to lowest order inl, by @see Eq.~5.13!#

c~1,k!~1 i e!5P1
~k!L01l2P1

~k!LV

1

i e2L0
LVP1

~k!1O~l3!.

~7.10!

Sincek is small we approximatek50 in the second term
in the right-hand side of Eq.~7.10!. Then, the second term in
Eq. ~7.10! has the same operator form asc2

(0)( i e), but now
acting on the states in theP1

(k) subspace, i.e.,

c~1,k!~1 i e!5k v̂1l2c2
~0!~1 i e!1O~l3!, ~7.11!

where

v̂[ l̂ 11 l̂ 1852l̂ 11 l̂ 182 l̂ 152l̂ 12k̂, ~7.12!

l̂ 1 being a momentum superoperator defined byl̂ 1u l ; l &&
5 l 1u l ; l &&. Because of Eq.~7.9!, we neglect the last term o
Eq. ~7.12! in Eq. ~7.11!.

We note that the termk v̂ in the collision operator Eq.
~7.11! corresponds to a difference of energies,l 1

22 l 18
2. In

addition we have thedissipative term l2c2
(0)( i e). As we

shall see, it is this dissipative term that causes the viola
of the Ritz-Rydberg principle.
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To find the eigenvalues ofc (1,k)(1 i e) we use again the
trial solution ~7.2!, but with different values ofaa and ba .
Then the eigenvalue equation~7.5! is modified as follows:

S 2kp12 i j
i j

i j
2kp22 i j D S aa

ba
D5zaS aa

ba
D . ~7.13!

Equation~7.13! leads to the eigenvalues

z652 i j1k~p11p2!6up12p2uAk22kc
2, ~7.14!

with

kc[
j

up12p2u
;O~l2!. ~7.15!

Note that the eigenvalues~7.14! are complex numbers an
there is a critical point atk5kc . This result is quite paralle
to the one obtained for the quantum Lorentz gas8 @1,28#. The
Lorentz gas consists of one light particle being scattered
many~randomly distributed! heavy particles. Here we have
similar situation where one particle with momentump1 is
scattered by all the other particles that have the same
mentump2 ~indeed, in the frame withp11p250, the two
models can be shown to be equivalent by a coordinate tr
formation, under reduction with observables depending o
on particle 1!. For the Lorentz gas the coefficientsaa andba
have been calculated in Refs.@1,28#.

If we consider the Hamiltonian associated to a Hilb
space, the violation of the Ritz-Rydberg principle is trivia
since then the eigenvalues ofH are real, while the eigenval
ues of LH we found above are complex. To make a fa
comparison of the eigenvalues we should assume the Ha
tonian has been extended beyond the Hilbert space. In R
@14,15,30,31# this has been done for a certain class of u
stable Hamiltonian systems. Let us then assume that we

HuF̃p&5~Vp1 i jp!uF̃p&. ~7.16!

However, this extension does not give any effects on
following discussion on the real part of the eigenvalues,
cause the imaginary part does not have any influence in
real part. Indeed, to lowest orders we have for the real pa
the eigenvalue,

Vp5p1
21p2

21•••1pN
2 1lV1,p1O~l2!. ~7.17!

Corresponding to the state~7.2! in the Liouville space, there
are two possible states in the wave-function space we
consider, namely,uF̃p1 ,p2 ,p2 ,...,p2

& and uF̃p2 ,p1 ,p1 ,...,p1
&. Let

us consider the first possibility. Using a Taylor expansion
the parameterk, the difference of the real parts of the eige
values of the statesuF̃p11k,p2 ,p2 ,...,p2

& and uF̃p1 ,p2 ,p2 ,...,p2
&

is given by

8The eigenvalues of the collision operator in the quantum Lore
gas do not have the termk(p11p2). This is because in this mode
the collisions are observed in the center-of-mass reference fr
wherep11p250.
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Vp11k,p2 ,...,p2
2Vp1 ,p2 ,...,p2

5k
]

]p1
Vp1 ,p2 ,...,p2

1
k2

2

]2

]p1
2 Vp1 ,p2 ,...,p2

1•••

5kS 2p11l
]

]p1
V1,p1O~l2! D

1
k2

2 S 21l
]2

]p1
2 V1,pD 1•••

52kp11O~l3!, ~7.18!

where we have used Eq.~7.9!. Similarly for the states
F̃p21k,p1 ,...,p1

andF̃p2 ,p1 ,...,p1
the difference of the real part

of the eigenvalues is given by

Vp21k,p1 ,...,p1
2Vp2 ,p1 ,...,p1

52kp21O~l3!. ~7.19!

Now we can compare this to the real parts of the eig
values~7.14! of LH . Let us first consider the casek.kc .
Then we have

Re~z6!5k~p11p2!6up12p2ukA12kc
2/k2. ~7.20!

Expanding the square root we get~e.g., forp1,p2!

Re~z1!k.kc
52kp21k~p22p1!

kc
2

2k2 1•••,

Re~z2!k.kc
52kp12k~p22p1!

kc
2

2k2 1••• . ~7.21!

Note that the corrections to the first terms on the right-ha
side of these equations are of orderl2 @see Eqs.~7.9! and
~7.15!#. Comparing Eq.~7.21! to Eq.~7.18! or Eq.~7.19!, we
conclude that eigenvalues ofLH are not differences of~com-
plex! eigenvalues ofH, even if its complex eigenvalues ex
ist. For k,kc we obtain the same conclusion, because
real part of the eigenvalues is now

Re~z6!k,kc
5k~p11p2!, ~7.22!

which is again not the same as Eq.~7.18! or Eq. ~7.19!.
Therefore, the Ritz-Rydberg principle is violated in the e
tended functional space. As a result, the correspond
eigenstates cannot be written as a product of wave functi

VIII. CONCLUDING REMARKS

Traditionally quantum mechanics was formulated in ter
of wave amplitudes in the Hilbert space. The need to
outside the Hilbert space in quantum mechanics for a c
tinuous spectrum was recognized already some years ag
various physicists and mathematicians@31–33#. The exten-
sion of the Hilbert space was based on the fundamental w
of Schwartz@34# and Gelfand@35#. The physical motivation
was to include decaying states in the spectrum of the Ha
tonian ~hence the name ‘‘Gamov vectors’’ used by Bo¨hm
and Gadella@31#!.

However, in our formulation the basic elements are n
density matrices, not wave amplitudes@1,22,24#. The density

tz

e,
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matrices belong to more general functional spaces as
cussed in Sec. IV. The nature of the functional space is q
different from that used in the theory of Gamov vectors. O
approach leads to a semigroup description of the time e
lution. In this functional space new solutions of the eige
value problem of the Liouville operator appear. The eige
values are complex and the eigenstates are no lo
products of wave functions. As a consequence, the eigen
ues of LH are no longer differences of eigenvalues ofH.
This is what we have called the ‘‘violation of the Ritz
Rydberg principle.’’

For the 1D system considered here Poincare´’s integrabil-
ity is destroyed in the thermodynamic limit in conjunctio
with the distribution functions that have to be used in no
equilibrium statistical mechanics. This is consistent with
existence of irreversible phenomena, as integrable syst
cannot approach equilibrium. While nonintegrable on
level of a Hamiltonian, they are integrable on the level of t
Liouville operator. This complex spectral representation
LH has been applied to the 1D system studied in this pa
We have presented approximate solutions of the eigenv
problem ofLH , and obtained in this way rates of approach
equilibrium.

The main characteristic of our approach is the formulat
of dynamics in terms of ensembles. This is in common w
classical deterministic chaos. However, there are basic
ferences. Deterministic chaos deals with trajectories that
come noncomputable. In quantum theory we deal with w
functions and the concept of quantum chaos is still a sub
of controversy. More important even is the fact that in cla
sical chaos trajectories remain meaningful~as a stochastic
realization! while in the thermodynamic limit trajectories~in
classical mechanics! or wave functions~in quantum mechan
ics! are destroyed by diffusion processes@1,16#.

In conclusion, we believe that our extension of quant
mechanics bridges the two domains where quantum mec
ics has been quite successful, i.e., spectroscopy and the
equilibrium. This leads to a unification of dynamics and no
equilibrium physics, as it includes the quantum theory
approach to equilibrium.
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APPENDIX A: PERTURBED MOMENTA FOR BOSONS

For a boson system, periodic boundary conditions
posed on the interacting particles give the following equat
for the perturbed momenta@4# ~we take the logarithm of Eq
~2.15! in Ref. @4#!:
is-
te
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n

k̃a5ka1
i

L (
bÞa

N

lnjba~l!5ka2
1

L (
bÞa

N

@fba~l!12pnb#,

~A1!

where

jba~l!5eifba~l![
k̃b2 k̃a1 il

k̃b2 k̃a2 il
~A2!

with real fba(l) that satisfies

2p,fba~l!,p ~A3!

and integernb that specifies the Riemann sheet of the a
lytic continuation of lnjba(l). We note that

fba~l!Þ0 for lÞ0 ~A4!

while fba(l)50 for l50 and the free-particle discretiza
tion is recovered in Eq.~A1!. Although individual momenta
are not multiple integers of 2p/L, due to the translationa
invariance of the system, the total momentum is an inte
multiple of 2p/L even forlÞ0.

By fixing the Riemann sheet of lnjba, there is a one-to-
one correspondence between the perturbed momentumk̃a
and the unperturbed oneka . The simplest correspondence
obtained by fixing the right-hand-side of Eq.~A1! to its prin-
cipal value~we setnb50.! Note, however, that the point
k̃b5 k̃a are excluded in Eq.~A3!. Excluding these points Eq
~A1! has an expansion inl analytic atl50.

We note that the sum in the second term in the right-ha
side of Eq.~A1! containsN21 terms. IfNis finite, this term
then vanishes in the continuous limitL→`,

lim
L→`

k̃a5ka for N finite ~A5!

But in the thermodynamic limit we havek̃aÞka .

APPENDIX B: NORMALIZATION CONSTANT

Here we shall calculate the normalization constant of
eigenstates of the Hamiltonian to lowest order in the c
pling constant in the continuous limit. Defining the fun
tional

Fk@r0#5 lim
e→01

lim
L→`

(
l

8UTlk
k ~Vk

22 i e!

Vk
22 i e2v l

U2

r0~ l !, ~B1!

the normalization constant is given by@see Eq. ~3.19!#
uNk

6u22511Fk @1#. Since this functional also appears in th
calculation of the generalized momentum in Sec. IV,
shall calculateFk@r0# for arbitrary functionr0( l ).

To lowest order we approximateTk5lV1O(l2) and
Vk

65vk1O(l). Then we have

Fk@r0#5 lim
e→01

lim
L→`

l2(
l

8U Vlk

vk2v l6 i eU
2

r0~ l !1O~l3!.

~B2!

The potential~3.2! may be written as
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Vlk5
2

L (
a,b

N

Da,b~ l 2k!, ~B3!

whereDa,b( l 2k)[dKr( l T2kT)da,b
Kr ( l 2k). Combining the Kroeneckerd’s in the potential with the denominator in Eq.~B2!

we have~assumingkaÞkb!

Da,b~ l 2k!

uvk2 i e2v l u2 5
1

2i e
Da,b~ l 2k!S 1

vk2v l2 i e
2c.c.D

52
1

2i e
Da,b~ l 2k!S 1

2@ l a2ka1 ih sgn~ka2kb!#@ l a2kb2 ih sgn~ka2kb!#
2c.c.D

5
1

2i e
Da,b~ l 2k!p i @dh~ l a2kb!1dh~ l a2ka!#

uka2kbu
~ka2kb!21h2 , ~B4!

wherepdh(k)[h/(k21h2) ande5huka2kbu. Then we have in Eq.~B2!

(
l

8U Vlk

vk2v l6 i eU
2

r0~ l 1 ,l 2 ,...,l a ,...,l b ,...l N!

5
2

L2

p

e (
a,b

N uka2kbu
~ka2kb!21h2 (

l aÞka

@dh~ l a2kb!1dh~ l a2ka!#r0~k1 ,k2 ,...,l a ,...,ka1kb2 l a ,...kN!, ~B5!

where we have used the relationuVlku252L21Vlk for this model@see Eq.~B3!#, since we havelÞk in the summation in the
left-hand side. Note that all the summations over the momental b with bÞa have been performed trivially due to th
Kroenekcerd’s of the potential.

Taking now the limitL→` we replace the summation overl a by an integration@see Eq.~2.7!#. In this limit we may drop
the restrictionl aÞka , since it leads to a negligible point contribution of order 1/L in the integration. We obtain

Fk@r0#5
2l2

L2

p

e (
a,b

N uka2kbu
~ka2kb!21h2

L

2p E dla@dh~ l a2kb!1dh~ l a2ka!#r0~k1 ,k2 ,...,l a ,...,ka1kb2 l a ,...,kN!1O~l3!.

~B6!

Taking then the limite→0 we have

Fk@r0#5
l2

eL (
a,b

N uka2kbu
~ka2kb!21h2 ~Xab11!@r0~k!1O~h!#1O~l3!, ~B7!

where we have useddh(k)→d(k) @see Eq.~3.24!#. The operatorXab exchangeska andkb in r(k).
The summation containsO(N2) terms. Because of the condition relatinge andL @see Eq.~3.25!#, Eq. ~B7! goes to zero if

N is finite. Similarly, higher-order terms can be dropped forN finite. The normalization constant, therefore, goes to 1 for fin
N in the continuous limit.

In the thermodynamic limit theN factors compensate theL factors and the right-hand side of Eq.~B7! diverges fore→01
andN→`. The normalization constant then goes to zero in the thermodynamic limit.

APPENDIX C: DIVERGENCE OF INVARIANTS OF MOTION

Here we estimate the order of divergence off0(k) in Eq. ~4.10!, using the momentum representation~3.26! of the
eigenstates of the Hamiltonian in the continuous limit. We have

f0~k!5(
l

r0~ l !U 1

LN21(R,S
AS,R~l,k̃!dKR~ k̃T2 l T! )

a51

N21
2 i

(
b51

a

~ k̃Rb
2 l Sb

!2 ihU
2

. ~C1!

The absolute value squared of the denominators is given byuk̃Rb
2 l Sb

2 ihu225ph21dh( k̃Rb
2 l Sb

). In the limit L→` and

h→01 with the condition~3.25!, we havedh( k̃Rb
2 l Sb

)→d( k̃Rb
2 l Sb

), and the most divergent terms in~C1! are proportional

to (1/h)N21. With the Kroeneckerd of total momentum conservation we can eliminate the summation over one o
variablesl b . In the continuous limit we replace the rest of the summations by integrals@see Eq.~2.7!#. This leads to an overal



n

nsity

3526 56T. PETROSKY AND G. ORDONEZ
volume factor of (1/L)N21. Finally, noting that each permutationR is repeatedN! times ~because of the summation overS
permutations!, we obtain anN!;NN factor. The most divergent terms in Eq.~C1! are then proportional to

1

~hL !N21 NN;S c

h D N21

N ~C2!

in the thermodynamic limit.

APPENDIX D: COMMUTATOR OF MOMENTUM OPERATOR AND THE HAMILTONIAN

Here we calculate the left-hand side of Eq.~4.16! to lowest order inl. We have

^^K̂1
2uLHur0&&5 i

]

]t
^K̂1

2&r0
5(

k
k̃1S 2p

L D N

(
l

^^Fk
2 ;Fk

2uLHu l ; l &&r0~ l !. ~D1!

From the definition of Brillouin-Wigner states~3.31! we obtain

^^Fk
2 ;Fk

2uLH5~2i e1Vk
12Vk

2!uFk
2&^Fk

2u2 i e~ uFk
2&Nk

1^ku1uk&Nk
2^Fk

2u! ~D2!

@whereVk
15(Vk

2)* #. This leads to

^^K̂1
2uLHur0&&5S 2p

L D N

(
k

k̃1(
l

@~2i e1Vk
12Vk

2!u^ l uFk
2&u222i euNk

2u2dKr~ l 2k!#r0~ l !. ~D3!

Using theTk operator~3.16! the expression inside brackets becomes

uNk
2u2S ~Vk

12Vk
2!dKr~ l 2k!1U^ l uQkT

k~Vk
22 i e!uk&

Vk
22v l2 i e U2

~Vk
12Vk

212i e! D . ~D4!

To lowest order we have~keeping all the terms of up to second order inl!

^^K̂1
2uLHur0&&52p il2S 2p

L D N

(
k

k1(
l

de~wk2wl !uVlku2@r0~ l !2r0~k!#1O~l3!. ~D5!

This expression is the time derivative of the generalized momentum. This justifies the replacementt;1/e in Eq. ~4.18!.
Equation~D5! is similar to thel2 term in Eq.~4.13! ~except for thee21 factor!. It is then proportional to the concentratio

c @see the discussion below Eq.~4.15!#. Higher orders inl involve divergent terms proportional toc(c/e)n, wheren is an
integer.

APPENDIX E: EVALUATION OF LKa8

Here we show that the invariantsKa8 defined in Eq.~4.17! do not belong to the domain of the superoperatorL by showing
that the expectation valuê̂ r0uLuKa8&& is divergent in the thermodynamic limit. As an example we use the same de
matrix ur0&&5P(0)ur0&& considered in Sec. IV@see Eq.~4.8!#. Writing L to first order inl we have@see Eq.~5.21!#

^^r0uLuKa8&&5S 2p

L D N

(
l

r0~ l !^^ l ; l uLuKa8&&5S 2p

L D N

(
l

r0~ l !^^ l ; l uS 11lLV

1

i e2L0
Q~0!D uKa8&&1••• , ~E1!

where we have used the orthogonality of the projectorsP(n). Introducing a complete set of statesup;p8&& we obtain

^^r0uLuKa8&&5S 2p

L D N

(
l

r0~ l !S ^^ l ; l uKa8&&1l (
pÞp8

^^ l ; l uLVup;p8&&
1

i e2wpp8
^^p;p8uKa8&& D 1••• . ~E2!

The first term inside the parentheses is well defined in the thermodynamic limit@see the discussion below Eq.~4.17!#. Using
Eqs.~2.26! and ~4.17! the second term, denotedI 2 , becomes

I 25
l

2 (
p

(
kPD

k̃aS Vlp

i e2wpl
@^puFk

2&^Fk
1u l &1c.c.#2

Vpl

i e2wlp
@^ l uFk

2&^Fk
1up&1c.c.# D . ~E3!

To lowest order inl we have in Eq.~3.21! @with d̄Kr(k)[12dKr(k)#
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^puFk
2&5dKr~p2k!1 d̄Kr~p2k!l

Vpk

wkp2 i e
1O~l2!,

^Fk
1u l &5dKr~ l 2k!1 d̄Kr~ l 2k!l

Vkl

wkl2 i e
1O~l2!. ~E4!

Inserting this in Eq.~E3! we obtain

I 25
l2

2 (
p

(
kPD

k̃aF Vlp

i e2wpl
S dKr~p2k!

Vpl

wpl2 i e
1dKr~ l 2k!

Vpl

wlp2 i e
1c.c.D

2
Vpl

i e2wlp
S dKr~ l 2k!

Vlp

wlp2 i e
1dKr~p2k!

Vlp

wpl2 i e
1c.c.D G1O~l3!, ~E5!

which leads to

I 25
l2

2 (
p

(
kPD

k̃auVlpu2@dKr~ l 2k!2dKr~p2k!#S 2

uwlp2 i eu2
1

1

~wpl2 i e!2 1
1

~wpl1 i e!2D1O~l3!. ~E6!
n

e

on

ue
i
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-
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In the thermodynamic limit the first term inside the pare
theses leads to exactly the same divergence as in Eq.~4.13!.
We remark that this calculation shows that each compon
uFk

2&^Fk
1u or uFk

1&^Fk
2u in Eq. ~4.17! diverges separately.

APPENDIX F: SOLUTION OF INTEGRAL EQUATION 9

Here we show an exact solution of the integral equati

E
2`

`

dl2
u1~ l 1!Jb~ l 2!2u1~ l 2!Jb~ l 1!

u l 12 l 2u
5gu1~ l 1!, ~F1!

where

Jb~ l !5 H1
0

for b l 2,1
for b l 2.1. ~F2!

This solution gives an estimation of some of the eigenval
of LH for any temperature, while the solution presented
Sec. VI is valid only for high temperatures. The integ
equation is obtained by approximating the Gauss
exp(2bl2) in Eq. ~6.16! by Jb( l ). We present only a sum
mary of the results. The complete description of the spec
properties of the integral operator~F1! in L2(R) is presented
in @27#.

Writing

u1~ l 1!5Jb~ l 1!w~ l 1! ~F3!

the integral equation becomes@see Eq.~6.19!#

E
2`

`

dl2Jb~ l 2!
w~ l 1!2w~ l 2!

u l 12 l 2u
5gw~ l 1!. ~F4!

9This result has been obtained by Melnikov@27#.
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There are exact polynomial solutions of this equation.
deed, puttingw( l 1)5wr( l 1)5(n50

r qr l 1
r in Eq. ~F4! we ob-

tain Eq.~6.27!, where the expansion now stops atl 1
r , andI m

in Eq. ~6.24! is replaced by

I m~ l 1 ,b!5H 2

m11
l 1
m11 for m even

2

m11
l 1
m112

2

m11
b2~m11!/2 for m odd.

~F5!

Comparing the coefficients of the highest degree inl 1 @for
example, the third degree in Eq.~6.27!# we obtain the eigen-
value

g r5H 0 for r 50

2(
j 51

r

1/j for r .0.
~F6!

Comparing the coefficients of lower degrees, it is straightf
ward to obtain all the constantsqj . Here we display the first
four solutions

w0~ l 1!51, g050, ~F7a!

w1~ l 1!5 l 1 , g152, ~F7b!

w2~ l 1!5123b l 1
2, g253, ~F7c!

w3~ l 1!5 l 1~125b l 1
2/3!, g3511/3. ~F7d!

For r ,3 the eigenstates and eigenvalues are identical to
ones obtained in Sec. VI. For higher orders, some discrep
cies appear. The solutions discussed in Sec. VI have mul
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branches, while the solutions shown here have always o
one branch. For example, forr 53 in Sec. VI there are two
branches, Eqs.~6.29d! and~6.29e!, while the solution shown
here has only one, Eq.~F7d!. This is because the integra
lyI m( l 1 ,b) in Eq. ~6.24! contains powersm11 and higher in
l 1 , while I m( l 1 ,b) only contains the (m11)th power. This
allows for more solutions of the integral equation conside
in Sec. VI.
’
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