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Incompatibility between local realism and quantum mechanics for pairs of neutral kaons

F. Selleri
Dipartimento di Fisica, Universita` di Bari, INFN, Sezione di Bari, Via Amendola 173, I-70126 Bari, Italy

~Received 21 February 1997!

A local realistic theory of single neutral kaons and of correlated neutral kaon pairs is formulated by deducing
the most general consequences of three assumptions:~i! the Einstein-Podolsky-Rosen (EPR) reality criterion,
~ii ! locality, and ~iii ! no retroactive causality. Variables must be introduced for every kaon determining the
stableCP value and the variable value of strangenessS. InstantaneousS jumps are shown to take place. If
kaon pairs are produced inF meson decays, the local realistic probability of observingK̄0K̄0 pairs at certain
different proper times necessarily differs by 30% from the quantum-mechanical predictions. The size of this
difference justifies our systematic neglect ofCP violation. A F factory is thus shown to provide a unique tool
for the study of the EPR problem@S1050-2947~97!05611-4#

PACS number~s!: 03.65.2w, 14.40.2n
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I. INTRODUCTION

The strange nature of quantum correlations between s
rated systems, pointed out for the first time by Einstein, P
olsky, and Rosen~EPR! @1#, has stimulated a lively debat
over the past 60 years. The incompatibility between the p
dictions of quantum theory and some very general con
quences of local realism became fully evident with the 19
work of Bell @2#, showing that a wide class of local hidde
variable models satisfies an inequality often violated
quantum mechanics.

In 1969, Clauser, Holt, Shimony and Horne@3# stressed
that Bell’s inequality could be checked experimentally w
photon pairs emitted by single atoms, even with the availa
low efficiency photon counters, if suitable additional a
sumptions were made. Several experimental investigation
the EPR paradox have accordingly been performed, mo
with photon-polarization correlation measurements using
diative atomic cascade transitions@4#. In practically all these
experiments the inequality was found to be violated, and
quantum-mechanical predictions turned out to agree with
data. It has been pointed out, however, that the introduc
of additional assumptions had brought to the formulation
inequalities different from~and stronger than! Bell’s original
inequality@5#. The experimental results violated the strong
inequalities but were still compatible with Bell’s original in
equality, which was deduced from local realism alone wi
out additional assumptions.

From a strictly logical point of view, the choice betwee
local realism and the existing quantum theory has yet to
made. A more critical scrutiny of the incompatibility be
tween quantum theory and local realism could come from
study of the EPR paradox in domains where highly effici
particle detectors can be used, and the additional assu
tions are not needed. An appealing possibility is the deca
a JPC5122 vector meson into a pair of neutralK mesons
@6–13#. The copious production of theF meson decays into
two neutral kaons in aF factory provides a very useful too
for the study of the EPR problem. An experiment of this ty
is characterized by~a! almost perfect angular correlation b
tween the two kaons,~b! nearly 100% efficient high-energ
particle detectors, and~c! the absence of noise.
561050-2947/97/56~5!/3493~14!/$10.00
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In quantum mechanics the state vector for aJPC5122

system decaying intoK0K̄0, immediately after decay~i.e., at
time zero! is given by

uc&5
1

&
$uK0&auK̄0&b2uK̄0&auK0&b%

5
1

&
$uKS&auKL&b2uKL&auKS&b%, ~1!

wherea ~left! andb ~right! denote the directions of motion
of the kaons andKS andKL are the usual states for short- an
long-lived kaons, respectively. The small effect ofCP non-
conservation is neglected throughout this paper, and
CP561 eigenstates are identified with short long kao
respectively. Their evolution is given by

uKS~ t !&5uKS&exp~2aSt !, uKL~ t !&5uKL&exp~2aLt !,
~2!

wheret is the particle proper time and

aS5 1
2 gS1 imS , aL5 1

2 gL1 imL . ~3!

In Eq. ~3! gS andmS ~gL andmL! denote the decay rate an
mass, respectively, of theS(L) meson. Units\5c51 have
been adopted. The time evolution operator of state~1! is the
product of the time evolutions for the individual kaons,
that at proper timesta and tb one has

uc~ ta ,tb!&5
1

&
$uKS&auKL&bexp~2aSta2aLtb!

2uKL&auKS&bexp~2aLta2aStb!%. ~4!

The difference between the two exponentials in Eq.~4! gen-
eratesK0K0 andK̄0K̄0 components. The probability ofK̄0K̄0

observation at timesta and tb is given by
3493 © 1997 The American Physical Society
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3494 56F. SELLERI
PQM@K̄~ ta!;K̄~ tb!#5 1
8 $e2gSta2gLtb1e2gLta2gStb

22e2~1/2!g~ ta1tb!cosDm~ ta2tb!%,

~5!

whereg5gS1gL , andDm5mL2mS is the KL2KS mass
difference. The right-hand side of Eq.~5! vanishes forta
5tb , as it must. The numerical parameters in units\5c
51 are

gS5~1.12160.002!31010 s21,

gL5~1.93460.015!3107 s21,

Dm5mL2mS5~0.53560.003!31010 s21.

Taking gS as inverse time unit, they can instead be writte

gS51, gL5
1

579.6
, Dm5

1

2.10
.

In a real experiment the detection ofK̄0’s can be achieved
either via hyperon production in two suitably placed targe
or via DS5DQ semileptonic decays at appropriate distan
from theF decay region. The task of the present paper is
show that Eq.~5! is grossly incompatible with the predic
tions of any local realistic theory.

The paper is organized as follows: In Sec. II we revie
the results ~obtained in the Appendix! concerning the
strangeness andCP ‘‘elements of reality’’ attributed to neu-
tral kaons by the local realistic approach. The four neu
kaon states of local realismKi ~i 51, 2, 3, and 4! are intro-
duced. Sections III–V contain a possible~though not yet the
most general! reinterpretation of quantum probabilities fo
single kaons in terms of the elementary probabilities of re
ism pji (tu0): these are probabilities of observing aK j state
at proper timet, conditional on the existence of aKi state at
proper time zero. Thepji can be collected in a 434 matrix
~‘‘standard matrix’’!. The most general probability matrix i
found in Secs. VII and VIII. A single, unknown quantityr
modifies all elements of the standard matrix by appearing
a 6r additional term. Upper and lower bounds are found
r as consequences of the probabilistic interpretation of
pji elements of the most general probability matrix. The
bounds are essential in the final deduction of the range
possible local realistic predictions. Section IX deals w
kaon pairs produced in the decay ofJPC5122F mesons,
and focuses on the probabilityP@K̄;K̄# for detecting two
correlated neutral antikaons at different proper times. Thi
shown to have a very simple expression@Eq. ~71!# in terms
of the probabilitiespji for single kaons. As a curiosity we
show that if a suitable assumption of non locality is made
quantum-mechanical prediction forP@K̄;K̄# is exactly repro-
duced~Sec. X!. For a calculation ofP@K̄;K̄# based on local-
ity, pji (tbuta)’s are needed for two proper timestb and ta
possibly different from zero. Section XI develops a ra
equation method for finding these probabilities. The final
sult for P@K̄;K̄# ~Sec. XII! contains two unknown quantities
one is the aforementionedr; the other one is a functionE of
the time integral of the transition rate for strangeness jum
A least value ofP@K̄;K̄# is calculated by makingr and E
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disappear, and it turns out~Sec. XIII! that this minimum is
violated by quantum mechanics by about 30% in a rat
broad proper time interval. The conclusion is that an exp
mental discrimination between local realism and quant
theory should be relatively easy at aF factory accelerator,
and perhaps also with different techniques.

II. ELEMENTS OF REALITY FOR KAONS

The EPR paradox arises from the incompatibility at t
empirical level between the predictions of quantum the
and local realism. The latter consists of the following thr
assumptions.

~1! If, without in any way disturbing a system, we ca
predict with certainty the value of a physical quantity, th
there exists an element of physical reality corresponding
this physical quantity~the EPRreality criterion!.

~2! If two physical systems~e.g., two kaons! are separated
by a large distance, an element of reality belonging to one
them cannot be created by a measurement performed on
other one~locality!.

~3! If at a given timet a physical system has an eleme
of reality, the latter cannot be created by measurements
the same system performed at timet8, if t8.t ~no retroac-
tive causality!.

Local realism can be applied to kaon pairs describ
quantum mechanically by the state vector~4!, by considering
only those predictions of Eq.~4! to which the EPR reality
criterion can be applied. These are the strict anticorrelati
in strangenessS and in CP. Our conclusions could not be
correct if these anticorrelations were not found experim
tally, but we will show that there is nothing paradoxic
about them. If assumed to be exact the following conclusi
hold ~see the Appendix!.

~1! Each kaon of every pair has an associated elemen
reality l1 , which determines a well definedCP value ~l1
561 corresponds toCP561, respectively!.

~2! Each kaon of every pair has an associated elemen
reality l2 , which determines a well-defined value of strang
nessS ~l2561 corresponds toS561, respectively!.

Furthermorel1 is a stable property, whilel2 undergoes
sudden jumps fromS511 to S521, and vice versa, which
are simultaneous for the two kaons of every pair, but hap
more or less at random times in a statistical ensemble
many pairs: the theory ofS jumps is presented in Sec. X
Notice that the application of local realism to the physic
situation described by Eq.~4! has brought us at least for
mally outside quantum theory: no quantum-mechanical s
vector exists, in fact, which can describe a kaon as hav
simultaneously well definedCP andS values. That this dis-
crepancy is not only formal, but leads to empirically obse
able consequences, will be shown in the following.

III. REALISM AND SINGLE KAON PHYSICS

We wish to reproduce the quantum-mechanical pred
tions for strangeness oscillations and decay of~single! K0

mesons within the local realistic approach. That such a pr
lem can be solved was shown in Ref.@14#, but now we aim
at the most general formulation of realism. The quantu
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56 3495INCOMPATIBILITY BETWEEN LOCAL REALISM AN D . . .
mechanical state vector of an initialS511 kaon evolves at
proper timet into

uK0~ t !&5
1

&
e2aStuKS~0!&1

1

&
e2aLtuKL~0!&

5 1
2 @e2aSt1eaLt#uK0~0!&

1 1
2 @e2aSt2e2aLt#uK̄0~0!&, ~6!

so that, in general, bothK0 andK̄0 components turn out to b
present at proper timet. Other quantum-mechanical tim
evolutions relevant to our problem are the following:

uK̄0~ t !&5
1

&
e2aStuKS~0!&2

1

&
e2aLtuKL~0!&

5 1
2 @e2aSt2e2aLt#uK0~0!&

1 1
2 @e2aSt1e2aLt#uK̄0~0!&, ~7!
u

n
th

d

e

lts
uKS~ t !&5e2aStuKS~0!&5e2aSt
1

&
$uK0~0!&1uK̄0~0!&%,

~8!

uKL~ t !&5e2aLtuKL~0!&5e2aLt
1

&
$uK0~0!&2uK̄0~0!&%.

~9!

For single kaons all these predictions area priori nonpara-
doxical, as they do not refer to the case of correlated p
where the Einstein-Podolsky-Rosen paradox could exist,
to individual quantum objects. We will see, in fact, that loc
realistic models exist reproducing the empirical con
quences of Eqs.~6!–~9!.

Following the ideas of the previous section we introdu
four basic states:
K1[KS : state with S511 and CP511 ~short-living kaon!,

K2[K̄S : state with S521 and CP511 ~short-living antikaon!,

K3[KL : state with S511 and CP521 ~ long-living kaon!,

K4[K̄L : state with S521 and CP521 ~ long-living antikaon!. ~10!
m
nt
Next we introduce the probabilities of observing the previo
states in a given physical situation:

pi~ t !5~probability of Ki at proper timet ! ~ i 51,2,3,4!.
~11!

The initial conditions depend on the particular problem co
sidered. We assume, as an example, that initially only
states withS511 are produced, and that theCP561
states are equiprobable. This corresponds to the situation
scribed in quantum mechanics by theS511 ket ~6!. There-
fore,

p1~0!5p3~0!5 1
2 , p2~0!5p4~0!50. ~12!

In order to agree with the experimentally well-establish
validity of the quantum-mechanical probabilities~which re-
fer to a well-defined initialS without specifyingCP! we
must find a realistic model reproducing the following resu
for the chosen state:

p1~ t !1p2~ t !5u^KS~0!uK~ t !&u25 1
2 ES ,

~13!

p3~ t !1p4~ t !5u^KL~0!uK~ t !&u25 1
2 EL

and

p1~ t !1p3~ t !5u^K~0!uK~ t !&u2

5 1
4 @EL1ES12AELEScosDmt#,

~14!
s

-
e

e-

d

p2~ t !1p4~ t !5u^K̄~0!uK~ t !&u2

5 1
4 @EL1ES22AELEScosDmt#,

where

ES~ t !5e2gSt, EL~ t !5e2gLt. ~15!

Notice that Eqs.~13! and~14! are compatible with Eq.~12!.
The sum of the two equations~13! gives the same as the su
of Eq. ~14!. Therefore we have really only three independe
conditions for the four probabilities~11!.

IV. REINTERPRETATION OF QUANTUM
PROBABILITIES

In order to fix all four probabilities, we startprovisionally
by assuming that they are linear in cosDmt, so that

p15a11b1cosDmt,

p25a21b2cosDmt,
~16!

p35a31b3cosDmt,

p45a41b4cosDmt,

whereai , bi , (i 51,2,3,4) are independent ofDm, and are
to be determined. By comparing Eqs.~16! with Eqs.~13! and
~14!, we obtain
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3496 56F. SELLERI
a11a25 1
2 ES , b11b250,

a31a45 1
2 EL , b31b450,

~17!

a11a35 1
4 @ES1EL#, b11b35 1

2 AESEL,

a21a45 1
4 @ES1EL#, b21b452 1

2 AESEL.

These conditions are again unable to fix completely theai ,
bi , (i 51,2,3,4). It is, however, natural to adopt provisio
ally the symmetrical solutions

a15a25 1
4 ES , b152b25 1

4 ES

2AESEL

EL1ES
,

~18!

a35a45 1
4 EL , b352b45 1

4 EL

2AESEL

EL1ES
,

because Eq.~18! is the simplest choice which satisfies all th
conditions~17! while at the same time giving non-negativ
values to the probabilities. Therefore,

p15 1
4 ESF11

2AESEL

EL1ES
cosDmtG ,

p25 1
4 ESF12

2AESEL

EL1ES
cosDmtG ,

~19!

p35 1
4 ELF11

2AESEL

EL1ES
cosDmtG ,

p45 1
4 ELF12

2AESEL

EL1ES
cosDmtG .

These results can be rewritten in a physically more appea
way as

p1~ t !5 1
4 e2gSt

ucL1cSu2

ucLu21ucSu2 ,

p2~ t !5 1
4 e2gSt

ucL2cSu2

ucLu21ucSu2 ,
~20!

p3~ t !5 1
4 e2gLt

ucL1cSu2

ucLu21ucSu2 ,

p4~ t !5 1
4 e2gLt

ucL2cSu2

ucLu21ucSu2
,

where we introduced the ‘‘wave functions’’

cL5c0exp~2gLt/2!exp~2 imLt !,

cS5c0exp~2gSt/2!exp~2 imSt !. ~21!

Notice that the simple equations~20! do not exist within
standard quantum theory. They suggest the following dua
tic picture.

~1! All kaons are particles embedded in extended wa
which are in all cases superpositions ofcL andcS . The time
g

s-

s

evolution of these wave functions is given by Eq.~21!. Ini-
tially they have the same~unknown! valuec0 .

~2! The physical quantityCP is basically a particle prop-
erty, and every neutral kaon is born with a fixed valu
(61) of it. NeglectingCP violation, every kaon maintains
forever the sameCP with which it was born. Nevertheles
bothcL andcS waves are associated with every kaonic p
ticle independently of itsCP value.

~3! Also, strangenessS is basically a particle property an
every kaon is born with a fixed value (61) of it. Particles
with S511 go always together with the wavecL1cS , par-
ticles with S521 go with cL2cS .

~4! Strangeness jumps fromS511 to S521, or vice
versa, are possible as sudden particle events and wh
jump takes place also the wave is forced to change acc
ingly, e.g., withcS undergoing a sudden phase shiftp. For
example, the particle jump fromS511 to S521 makes
the wave go fromcL1cS to cL2cS .

~5! These jumps take place with a frequency such that
Born rule is always satisfied: the probabilities that any giv
kaon at a certain proper timet hasS561 are proportional to
ucL(t)6cS(t)u2, respectively.

~6! Kaons are unstable particles and decay with cons
ratesgS ~if CP511! and gL ~if CP521!. Thus aCP5
11 (CP521) kaon has a probability of being undecayed
time t which decreases exponentially, just like the squa
modulus ES(EL) of the corresponding wave functioncS
(cL). In this way Born’s rule is easily satisfied.

Probabilities~20! find a complete physical interpretatio
within this model. For example,

p1~ t !5 1
2 e2gSt

ucL1cSu2

2$ucLu21ucSu2%

can be understood as follows: the factor 1/2 is the probab
that the given kaon is born withCP511, in agreement with
Eq. ~12!; the exponential factor is the probability that it ha
remained undecayed at timet; the final fraction is the prob-
ability that it has positive strangeness at timet. In this way
the quantum-mechanical probabilities~13! and~14! are given
a completely new physical interpretation within the local r
alistic approach. The corresponding ensembles are in
preted to be mixtures of other ensembles in which the ba
states of local realism~10! apply. We stress again that Eq
~19! and ~20! do not give the most general probabilitie
within local realism: rather, they give only the most natu
ones. A complete generalization will, however, be given
Sec. VII.

V. PROBABILITIES FOR PURE STATES
OF LOCAL REALISM

A. Introduction

The local realistic probabilities~19! and ~20! describe a
particular mixture, that is, a statistical ensemble in which t
of the basic states~10! are initially present with equal statis
tical weights, as shown by the initial conditions~12!. How-
ever the physical reinterpretation given in Sec. IV allows
to extend very naturally our results to the case of ‘‘pu
states’’~only one kaonic state produced initially!. Probabili-
ties with two indices will be used, the second one specify



E

he

in

n
t

a

s

on

eit
liza-

l

for
see

s of

:
he
nd

eck
-

56 3497INCOMPATIBILITY BETWEEN LOCAL REALISM AN D . . .
which one of the four states~10! was initially present. Natu-
rally there are four possibilities, examined in Secs. V B–V
below. In the following we will use the shorter notation

Q6~ t ![
1

2 F16
2AELES

EL1ES
cosDmtG . ~22!

B. Initial state with CP511 and S511: K1„0…

In a given physical situation the basic probabilities for t
four states~10! at proper timet can be consideredcondi-
tional on the initial presence ofK1(0). By using the symbol
pji (tu0) to denote the probability of a kaon in stateK j at
proper timet conditional on the same kaon having been
stateKi at proper time 0 (j ,i 51,2,3,4) we can write

p11~ tu0!5ES~ t !Q1~ t !,

p21~ tu0!5ES~ t !Q2~ t !,
~23!

p31~ tu0!50,

p41~ tu0!50,

which satisfy the initial conditions

p11~0u0!51, p21~0u0!5p31~0u0!5p41~0u0!50.
~24!

Of course, in Eq.~23!, p11(tu0) has a physical interpretatio
similar to that given forp1(t) at the end of Sec. IV, bu
relative to a different initial condition. In the case ofp11(tu0)
we can say that the given kaon is born withCP5S511,
that Es(t) is the probability that it has not yet decayed
time t, and thatQ1(t) is the probability of its still having
S511 at time t. The interpretation of all pji (tu0)
( j ,i 51,2,3,4) in Eq.~23! and in the coming equations i
always similar.

C. Initial state with CP511 and S521: K2„0…

For this second initial condition one can write

p12~ tu0!5ES~ t !Q2~ t !,

p22~ tu0!5ES~ t !Q1~ t !,
~25!

p32~ tu0!50,

p42~ tu0!50,

which satisfy

p12~0u0!50, p22~0u0!51, p32~0u0!5p42~0u0!50.
~26!

D. Initial state with CP521 and S511: K3„0…

For this third initial condition one can write

p13~ tu0!50, ~27!

p23~ tu0!50,
t

p33~ tu0!5EL~ t !Q1~ t !,

p43~ tu0!5EL~ t !Q2~ t !,

which satisfy

p13~0u0!5p23~0u0!50, p33~0u0!51, p43~0u0!50.
~28!

E. Initial state with CP521 and S521: K4„0…

For this fourth initial condition one can write

p14~ tu0!50,

p24~ tu0!50,
~29!

p34~ tu0!5EL~ t !Q2~ t !,

p44~ tu0!5EL~ t !Q1~ t !,

which satisfy

p14~0u0!5p24~0u0!5p34~0u0!50, p44~0u0!51.
~30!

F. Conclusions

The probabilities introduced in the present secti
through Eqs.~23!, ~25!, ~27!, and~29! will be said to consti-
tute ‘‘the standard set.’’ Of course these probabilities, alb
elegant, are to some extent arbitrary. A complete genera
tion will be given in Sec. VII.

VI. SYSTEMATIC COMPARISON WITH QUANTUM
MECHANICS

In this and in Sec. VII we will use, for the conditiona
probabilities, the shorter notationpji instead ofpji (tu0). We
can now check that all quantum-mechanical probabilities
single kaons are reproduced. First of all we can easily
that the quantum-mechanical conditions ofCP conservation
are satisfied. Indeed,

u^KL~0!uKS~ t !&u2505 1
2 @p311p411p321p42#, ~31!

u^KS~0!uKL~ t !&u2505 1
2 @p131p231p141p24#, ~32!

because all probabilities appearing in the right-hand side
Eqs.~31! and ~32! vanish in Eqs.~23!, ~25!, ~27!, and~29!.
From now on we will write only nonvanishing probabilities
this can be done by excluding all probabilities in which t
first index is either 1 or 2 while at the same time the seco
index is either 3 or 4, and vice versa. It is then easy to ch
that the following 14 conditions@which can easily be de
duced from the state vectors~6!–~9!# are satisfied by the
probabilities of the standard set of equations~23!, ~25!, ~27!,
and ~29!.

u^KS~0!uK~ t !&u25 1
2 ES5 1

2 @p111p21#, ~33!

u^KL~0!uK~ t !&u25 1
2 EL5 1

2 @p331p43#, ~34!

u^K~0!uK~ t !&u25 1
2 ~EL1ES!Q15 1

2 @p111p33#, ~35!
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3498 56F. SELLERI
u^K̄~0!uK~ t !&u25 1
2 ~EL1ES!Q25 1

2 @p211p43#, ~36!

u^KS~0!uK̄~ t !&u25 1
2 ES5 1

2 @p121p22#, ~37!

u^KL~0!uK̄~ t !&u25 1
2 EL5 1

2 @p341p44#, ~38!

u^K~0!uK̄~ t !&u25 1
2 ~EL1ES!Q25 1

2 @p121p34#, ~39!

u^K̄~0!uK̄~ t !&u25 1
2 ~EL1ES!Q15 1

2 @p221p44#, ~40!

u^KS~0!uKS~ t !&u25ES5 1
2 @p111p211p121p22#, ~41!

u^K~0!uKS~ t !&u25 1
2 ES5 1

2 @p111p12#, ~42!

u^K̄~0!uKS~ t !&u25 1
2 ES5 1

2 @p211p22#, ~43!

u^KL~0!uKL~ t !&u25EL5 1
2 @p331p431p341p44#, ~44!

u^K~0!uKL~ t !&u25 1
2 EL5 1

2 @p331p34#, ~45!

u^K̄~0!uKL~ t !&u25 1
2 EL5 1

2 @p431p44#. ~46!

Therefore all the 16 physical conditions imposed by quant
mechanics are satisfied by the probabilities of local real
~23!, ~25!, ~27!, and~29!. These can be collected in a ‘‘stan
dard probability matrix’’P0 as follows:

P05UESQ1

ESQ2

0
0

ESQ2

ESQ1

0
0

0
0

ELQ1

ELQ2

0
0

ELQ2

ELQ1

U , ~47!

where p11(tu0)5ES(t)Q1(t), p12(tu0)5ES(t)Q2(t), etc.,
and Q6 are of course given by Eq.~22!, so thatQ11Q2

51.

VII. MOST GENERAL PROBABILITY MATRIX

With Eqs. ~23!, ~25!, ~27!, and ~29!, we obtained a re-
markable solution for the probabilitiespji (tu0)( j ,i
51,2,3,4). Mathematically speaking, however, this solut
is not unique. In the present section we will study anew
problem of determining the most general set of local reali
probabilities compatible with the quantum-mechanical p
dictions. For simplicity we will not introduce new symbol
but will continue to denote our probabilities aspji even when
they do not belong to the standard set. Naturally conditi
~31!–~46! must still be satisfied. Eqs.~31! and~32! imply the
vanishing of eight probabilities:

p135p145p235p245p315p325p415p4250. ~48!

Taking Eq. ~48! into account, the most general probabili
matrix P is

P5Up11

p21

0
0

p12

p22

0
0

0
0

p33

p43

0
0

p34

p44

U . ~49!
m

n
e
c
-

s

There remain Eqs.~33!–~46!, which can be considered as 1
~not independent! conditions for the eight nonvanishin
probabilities. Writing

Ri5~sum of the elements of thei th row! ~ i 51,2,3,4!,

Cj5~sum of the elements of thej th column!
( j 51,2,3,4),

conditions~33!–~46! for the most general probabilities ca
respectively be written

C15ES , ~338!

C35EL , ~348!

p111p335~EL1ES!Q1 , ~358!

p211p435~EL1ES!Q2 , ~368!

C25ES , ~378!

C45EL , ~388!

p121p345~EL1ES!Q2 , ~398!

p221p445~EL1ES!Q1 , ~408!

C11C252ES , ~418!

R15ES , ~428!

R25ES , ~438!

C31C452EL , ~448!

R35EL , ~458!

R45EL , ~468!

Conditions~338!, ~378!, ~428!, and~438! tell us thatR15R2
5C15C25ES . Conditions~348!, ~388!, ~458!, and~468! tell
us thatR35R45C35C45EL . Condition ~418! is a conse-
quence of Eqs.~338! and ~378!, while condition ~448! is a
consequence of Eqs.~348! and ~388!. A probability matrix
satisfying the previous ten conditions is then

P5U p11

ES2p11

0
0

ES2p11

p11

0
0

0
0

p33

EL2p33

0
0

EL2p33

p33

U . ~50!
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The conditions containingQ6 @Eqs. ~358!, ~368!, ~398!, and
~408!# remain to be analyzed. Written in terms of the pro
abilities appearing in Eq.~50!, they are easily shown to re
duce to the unique condition

p111p335~EL1ES!Q1 . ~51!

The required agreement with quantum probabilities is t
seen to fix everything but the differencep112p33. Writing
a
-
e

m

te
a

re
on
iv
-

s

p112p335R, ~52!

whereR is unknown, we obtain

p115
1
2 @~EL1ES!Q11R#, p335

1
2 @~EL1ES!Q12R#.

~53!

The probability matrix~50! can then be written
P5
1

2 U ~EL1ES!Q11R
ESQ22ELQ12R

0
0

ESQ22ELQ12R
~EL1ES!Q11R

0
0

0
0

~EL1ES!Q12R
ELQ22ESQ11R

0
0

ELQ22ESQ11R
~EL1ES!Q12R

U . ~54!
sult
i-

ne

lly

f

t of
e

.

e-
Restrictions onR can be obtained by taking into account th
every element of Eq.~54! is a probability and must lie be
tween zero and one. This point will be discussed in S
VIII.

VIII. DEVIATIONS FROM THE STANDARD SET

Equation~47! can be used to calculate the value ofR ~call
it R0! predicted by the standard set of probabilities. By co
parison with Eq.~54!, one easily obtains

R052~EL2ES!Q1 .

Given that one can always introduce ar such that

R5R01r, ~55!

the probability matrix~54! takes a form containing6r cor-
rections to the probabilities of the standard set~47!:

P5UESQ11r
ESQ22r

0
0

ESQ22r
ESQ11r

0
0

0
0

ELQ12r
ELQ21r

0
0

ELQ21r
ELQ12r

U .

~56!

Notice that every column refers to a well-defined initial sta
one of the four cases~10!. The sum of the elements of
column equalsES @for K1(0) andK2(0)# andEL @for K3(0)
andK4(0)#, corresponding to the appropriate population
ductions due to spontaneous disintegration. Restrictionsr
can be obtained by assuming every probability to be posit
The first column gives
t

c.

-

,

-

e.

2ESQ1<r<ESQ2 . ~57!

It is easy to see that from the second column the same re
~57! follows. From the third and fourth columns, one sim
larly obtains

2ELQ2<r<ELQ1 . ~58!

The requirement that all elements ofP be less than one is
automatically satisfied if Eqs.~57! and~58! hold, as one can
easily verify. Conditions~57! and~58! must both be satisfied
in any consistent local realistic theory. It is enough that o
of them is violated by a givenr to conclude that the latter is
incompatible with local realism. We checked numerica
that for all timesESQ2,ELQ1 . In other words of the two
upper limits in Eqs.~57! and ~58!, it is enough to consider

r~ t !<ES~ t !Q2~ t !. ~59!

No simplification of this type exists for the lower limits o
Eqs.~57! and ~58!.

The introduction of the unknown quantityr is the most
important difference between the present theory and tha
Ref. @9#. Only the presence ofr allows us to state that we ar
working with the most general formulation of local realism

IX. CASE OF KAON PAIRS

A. Introduction

Kaon pairs arising in the decay of theF meson, e.g.,
produced ine1e2 collisions, are described quantum m
chanically by theJPC5122 state vector~4!. The probability
~5! of a doubleK̄0 observation at proper timesta and tb ,
written with notation~15!, is
PQM@K̄~ ta!;K̄~ tb!#5 1
8 @ES~ ta!EL~ tb!1EL~ ta!ES~ tb!22AES~ ta!EL~ tb!EL~ ta!ES~ tb!cosDm~ ta2tb!#. ~60!
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We will show that the local realistic approach leads nec
sarily to disagreement with prediction~60!. The starting
point is again the discussion in the Appendix where it
shown that local realism applied to the physical situat
described by~4! implies — at equal proper times — a total
anticorrelation both in strangeness and inCP between the
two kaons flying in opposite directions, the four possib
physical configurations appearing at least initially with t

same statistical weight (1
4 ). Given Eq.~10!, we must then

consider the following four cases for the calculation
PLR@K̄(ta);K̄(tb)#.

B. Initial state with K1„0… on the left and K4„0… on the right

The probability that the initialK1(0) on the left evolves
into a S521 state at proper timeta @then, givenCP con-
servation, intoK2(ta)# is given by Eq.~56!:

p21~ t1u0!5ES~ t1!Q2~ t1!2r~ ta!. ~61!

Correlated with the left-going antikaonK2(ta), on the right-
hand side of the physical process there will be at proper t
t̃ b5ta either decay products, or a pureK3 state. The prob-
ability of the latter is of courseEL( t̃ b). The probability of its
evolution intoK4(tb), conditional on the stateK3( t̃ b) ~with
tb. t̃ b! is

p43~ tau t̃ b![p@K4~ tb!uK3~ t̃ b!#. ~62!

Therefore, in this first case the overall probability of doub
S521 observation at proper timesta ~on the left! andtb ~on
the right! is clearly given by

P1@K2~ ta!;K4~ tb!#5p21~ tau0!EL~ t̃ b!p43~ tbu t̃ b!

5$ES~ ta!Q2~ ta!2r~ ta!%

3EL~ t̃ b!p43~ tbu t̃ b!. ~63!

C. Initial state with K2„0… on the left and K3„0… on the right

The probability that the initialK2(0) on the left remains a
S521 state at proper timeta @then, givenCP conservation,
that it becomesK2(ta)# is given by Eq.~56!:

p22~ tau0!5ES~ ta!Q1~ ta!1r~ ta!. ~64!

Correlated with the left-going antikaonK2(ta), on the right-
hand side of the physical process there will be, at the pro
time t̃ b5ta , either decay products or a pureK4 state. The
probability of the latter is of courseEL( t̃ b). The probability
of its evolution intoK4(tb) is again given by Eq.~62!.

Therefore in this second case the overall probability
doubleS521 observation at proper timesta ~on the left!
and tb ~on the right! is

P2@K2~ ta!;K4~ tb!#5p22~ tau0!EL~ t̃ b!p43~ tbu t̃ b!

5$ES~ ta!Q1~ ta!1r~ ta!%

3EL~ t̃ b!p43~ tbu t̃ b!. ~65!
-

n

f

e

er

f

Notice that the termr(ta) disappears when Eqs.~63! and
~65! are summed together, as will be done at the end of
section.

D. Initial state with K3„0… on the left and K2„0… on the right

The probability that the initialK3(0) on the left evolves
into a S521 state at proper timeta @then, givenCP con-
servation, intoK4(ta)# is given by Eq.~56!:

p43~ tau0!5EL~ ta!Q2~ ta!1r~ ta!. ~66!

Correlated with the left-going antikaonK4(ta), on the right-
hand side of the physical process there will be, at a pro
time t̃ b5ta , either decay products or a pureK1 state. The
probability of the latter is of courseEs( t̃ b). The probability
of its evolution intoK2(tb), conditional on its having been
K1( t̃ b) ~with tb. t̃ b!, is

p21~ tbu t̃ b![p@K2~ tb!uK1~ t̃ b!#. ~67!

Therefore in this third case the overall probability of doub
S521 observation at proper timesta ~on the left! andtb ~on
the right! is

P3@K4~ ta!;K2~ tb!#5p43~ tau0!ES~ t̃ b!p21~ tbu t̃ b!

5$EL~ ta!Q2~ ta!1r~ ta!%

3ES~ t̃ b!p21~ tbu t̃ b!. ~68!

E. Initial state with K4„0… on the left and K1„0… on the right

The probability that the initialK4(0) on the left evolves
into a S521 state at proper timeta @then, givenCP con-
servation, intoK4(ta)# is given by Eq.~56!:

p44~ tau0!5EL~ ta!Q1~ ta!2r~ ta!. ~69!

Correlated with the left-going antikaonK4(ta), on the right-
hand side of the physical process there will be, at a pro
time t̃ b5ta , either decay products or a pureK1 state. The
probability of the latter is of courseEs( t̃ b). The probability
of its evolution intoK2(tb) is given by Eq.~67!. Therefore in
this fourth case the overall probability of doubleS521 ob-
servation at proper timesta ~on the left! andtb ~on the right!
is

P4@K4~ ta!;K2~ tb!#5p44~ tau0!ES~ t̃ b!p21~ tbu t̃ b!

5$EL~ ta!Q1~ ta!2r~ ta!%

3ES~ t̃ b!p21~ tbu t̃ b!. ~70!

Notice that ther(ta) term is once more going to disappe
when Eqs.~68! and ~70! will be summed together.

F. Conclusion

The four elementary states of local realism must app

initially with the same weight (14 ) both on the left and on the
right in the physical situation described quantum mecha
cally by the state vector~4!, as shown in the Appendix
Therefore, given the results of Secs. IX B–IX E, we have
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PLR@K̄~ ta!;K̄~ tb!#5 1
4 $P1@K2~ ta!;K4~ tb!#

1P2@K2~ ta!;K4~ tb!#

1P3@K4~ ta!;K2~ tb!#

1P4@K4~ ta!;K2~ tb!#%

5
ES~ ta!EL~ t̃ b!

4
p43~ tbu t̃ b!

1
EL~ ta!ES~ t̃ b!

4
p21~ tbu t̃ b!.

Remembering thatt̃ b5ta , the last equation can be written

PLR@K̄~ ta!;K̄~ tb!#5
ES~ ta!EL~ ta!

4
@p43~ tbuta!1p21~ tbuta!#,

~71!

where ta is now used as time label also for the right-goi
kaon. Equation~71! will be the starting point of our furthe
discussion. The probabilitiesp43 andp21 in Eq. ~71! are not
known in general: our previous considerations would
them @up to the additive terms6r(tb)# only if one hadta
50. As seen in Sec. X, the assumption of nonlocality~action
at a distance! leads to their determination.

X. NONLOCAL MODEL FOR KAON PAIRS

We will show that a nonlocal model exists that reproduc
prediction~60!, as it does with all other consequences of t
state vector~4!. The ~nonlocal! probability for the evolution
of the right-going kaon either fromK1(ta) in K2(tb), or from
K3(ta) in K4(tb), can be obtained with a slight modificatio
of Eq. ~71!:

PNL@K̄~ ta!;K̄~ tb!#5
ES~ ta!EL~ ta!

4

3@p21~ tb2ta!1p43~ tb2ta!#.

~72!

Nonlocality has been introduced by assuming that the pr
abilities for the right-going kaon depend only on the tim
differencetb2ta , as if its history started again at the timeta
when a measurement was performed on its coupled
going kaon. By using this assumption together with Eqs.~23!
and ~27!, we obtain

PNL@K̄~ ta!;K̄~ tb!#5
ES~ ta!EL~ ta!

4
@EL~ tb2ta!1ES~ tb2ta!

22AEL~ tb2ta!ES~ tb2ta!

3cosDm~ tb2ta!#. ~73!

Given that from Eq.~15!, one has

ES~ tb2ta!5
ES~ tb!

ES~ ta!
, EL~ tb2ta!5

EL~ tb!

EL~ ta!
, ~74!

it is easy to obtain
s
e

b-

ft-

PNL@K̄~ ta!;K̄~ tb!#5 1
8 @EL~ tb!ES~ ta!1ES~ tb!EL~ ta!

22AEL~ tb!ES~ ta!ES~ tb!EL~ ta!

3cosDm~ tb2ta!#, ~75!

which is identical with the quantum-mechanical predicti
~60!. The above nonlocal model was found by Cobian
@13#. Its existence is of course a matter of curiosity: if th
choice were only between quantum theory and a causalnon-
local approach, the former should probably be preferred.

XI. RATE EQUATIONS

The remaining problem is calculatingp21(tbuta) and
p43(tbuta) in Eq. ~71!. The first one is the probability that
right-going kaon, that was with certainty aK1 at time t̃ b
5ta , becomes aK2 at time tb . The meaning of the secon
probability is similar. The time evolution mixes opposi
strangeness states without changingCP ~which we assume
to be conserved!. In the case ofCP511 the interesting
probabilities are

p11~ tut0![p@K1~ t !uK1~ t0!#, p21~ tut0![p@K2~ t !uK1~ t0!#,
~76!

which must satisfy the conditions

p11~ t0ut0!51, p21~ t0ut0!50. ~77!

These probabilities are not deducible from the results of S
VII, which refer only to initial time zero, but are calculabl
by means of the following equations:

p11~ t1dtut0!5p11~ tut0!$12@T1~ t !1gS#dt%

1p21~ tut0!T2~ t !dt,

p21~ t1dtut0!5p21~ tut0!$12@T2~ t !1gS#dt%

1p11~ tut0!T1~ t !dt,

~78!

where gS is the decay rate,T1(t) is the transition rate a
proper time t from K1 to K2 , and T2(t) is the opposite
transition rate fromK2 to K1 . The meaning of the two equa
tions ~78! is similar. The first one reads as follows: the pro
ability of the stateK1 at proper timet1dt equals the prob-
ability of having this same state at proper timet times the
probability that nothing happens~neither a transition nor a
decay! in the time interval (t,t1dt), added to the probability
of having the stateK2 at proper timet times the probability
of a transition fromK2 to K1 in the time interval (t,t
1dt).

From Eqs.~78! it is easy to obtain the differential equa
tions

p118 ~ tut0!52@T1~ t !1gS#p11~ tut0!1T2~ t !p21~ tut0!,

p218 ~ tut0!52@T2~ t !1gS#p21~ tut0!1T1~ t !p11~ tut0!.
~79!

These rate equations are more easily solved by writing
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p11~ tut0!5w11~ t,t0!ES~ t2t0!,

p21~ tut0!5w21~ t,t0!ES~ t2t0!, ~80!

where, of course,

ES~ t2t0![e2gS~ t2t0!. ~81!

From Eqs.~79! and ~80!, we obtain equations free of th
decay rates:

w118 ~ t,t0!52T1~ t !w11~ t,t0!1T2~ t !w21~ t,t0!,

w218 ~ t,t0!52T2~ t !w21~ t,t0!1T1~ t !w11~ t,t0!, ~82!

and these give

w118 ~ t,t0!1w218 ~ t,t0!50,

w118 ~ t,t0!2w218 ~ t,t0!522T1~ t !w11~ t,t0!12T2~ t !w21~ t,t0!,
~83!

From the first of equations~83!, one obtains

w11~ t,t0!1w21~ t,t0!5w11~ t0 ,t0!1w21~ t0 ,t0!

5p11~ t0ut0!1p21~ t0ut0!51, ~84!

because of Eqs.~77!, ~80!, and~81!. It then becomes usefu
to expressw11 and w21 in terms of their sum and their dif
ference, the latter defined as

w~ t,t0![w11~ t,t0!2w21~ t,t0!, ~85!

and one obtains

w11~ t,t0!5 1
2 @11w~ t,t0!#, w21~ t,t0!5 1

2 @12w~ t,t0!#.
~86!

The second of equations~83! then becomes

w8~ t,t0!52w~ t,t0!A~ t !1B~ t !, ~87!

where

A~ t ![T1~ t !1T2~ t !, B~ t ![T2~ t !2T1~ t !. ~88!

In the present situation the following ‘‘initial’’ conditions
must be satisfied:

p11~ t0ut0!5w11~ t0 ,t0!51 ⇒ w~ t0 ,t0!51. ~89!

The solution of problem~87!–~89! is given next.

XII. SOLUTION OF THE RATE EQUATIONS

The formal solution of the first-order differential equatio
~87! is well known to be

w~ t,t0!5H w~ t0 ,t0!1E
t0

t

dt8E21~ t8,t0!B~ t8!J E~ t,t0!,

~90!

where

E~ t,t0![expH 2E t

dt8A~ t8!J . ~91!

t0
From Eqs.~86! and ~89!, we obtain

w11~ t,t0!5
1

2
1

1

2 H 11E
t0

t

dt8E21~ t8,t0!B~ t8!J
3E~ t,t0!,

w21~ t,t0!5
1

2
2

1

2 H 11E
t0

t

dt8E21~ t8,t0!B~ t8!J E~ t,t0!.

~92!

Remembering Eq.~80!, the probabilities are

p11~ tut0!5F1

2
1

1

2 H 11E
t0

t

dt8E21~ t8,t0!B~ t8!J E~ t,t0!G
3ES~ t2t0!,

~93!

p21~ tut0!5F1

2
2

1

2 H 11E
t0

t

dt8E21~ t8,t0!B~ t8!J
3E~ t,t0!GES~ t2t0!.

This solution is of no direct use because it contains the
known ratesT1(t) and T2(t). It will nevertheless be very
useful in deducing the incompatibility between local realis
and quantum mechanics in the case of correlated kaon p

A symmetrical argument starting from rate equatio
closely similar to Eq.~79!, but containinggL instead ofgS ,
can be developed forp33(tut0) andp43(tut0), and leads to the
following results:

p33~ tut0!5F1

2
1

1

2 H 11E
t0

t

dt8Ẽ21~ t8,t0!B̃~ t8!J Ẽ~ t,t0!G
3EL~ t2t0!,

P43~ tut0!5F1

2
2

1

2 H 11E
t0

t

dt8Ẽ21~ t8,t0!B̃~ t8!J Ẽ~ t,t0!G
3EL~ t2t0!,

~94!

where

Ẽ~ t,t0![expH 2E
t0

t

dt8Ã~ t8!J ~95!

and

Ã~ t ![T3~ t !1T4~ t !, B̃~ t ![T4~ t !2T3~ t !. ~96!

In Eq. ~96!, T3(t) is the transition rate at proper timet from
K3 to K4 , andT4(t) is the opposite transition rate fromK4
to K3 .

If E(t,t0) is defined witht5tb and t05ta(tb.ta), from
Eq. ~90! it follows that
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w~ tb ,ta!5H 11E
ta

tb
dt8B~ t8!E21~ t8,ta!J E~ tb ,ta!

5E~ tb ,ta!1H E
ta

tb
dt8B~ t8!E21~ t8,0!J E~ tb,0!.

~97!

The rate equation can also be solved by referring to the
tial time zero. The solution can again be obtained from
~90! by putting t050. Considering two different ‘‘final’’
times t5tb and t5ta , one obtains

w~ tb,0!5E~ tb,0!1H E
0

tb
dt8B~ t8!E21~ t8,0!J E~ tb,0!,

w~ ta,0!5E~ ta,0!1H E
0

ta
dt8B~ t8!E21~ t8,0!J E~ ta,0!,

~98!

from which

w~ tb,0!E21~ tb,0!511E
0

tb
dt8B~ t8!E21~ t8,0!,

w~ ta,0!E21~ ta,0!511E
0

ta
dt8B~ t8!E21~ t8,0!.

By taking the difference of these two equations, we have

E
ta

tb
dt8B~ t8!E21~ t8,0!5w~ tb,0!E21~ tb,0!

2w~ ta,0!E21~ ta,0!,

and thus we obtain the most important term of Eq.~97!:

H E
ta

tb
dt8B~ t8!E21~ t8,0!J E~ tb,0!

5w~ tb,0!2w~ ta,0!E~ tb ,ta!. ~99!

It follows by comparison of Eqs.~99! and ~97! that

w~ tb ,ta!5w~ tb,0!1@12w~ ta,0!#E~ tb ,ta!. ~100!

By introducing Eq.~100! in Eq. ~86!, rewritten with t05ta
and t5tb , one easily obtains

w21~ tb ,ta!5w21~ tb,0!2w21~ ta,0!E~ tb ,ta!. ~101!

From the second of equations~80!, it follows that

w21~ tb ,ta!5p21~ tbuta!Es
21~ tb2ta!,

w21~ tb,0!5p21~ tbu0!ES
21~ tb!,

w21~ ta,0!5p21~ tau0!ES
21~ ta!.

~102!

Therefore Eq.~101! can be used to deducep21(tbuta), which
turns out to be
i-
.

p21~ tauta!5ES
21~ ta!@p21~ tbu0!2p21~ tau0!

3ES~ tb2ta!E~ tb ,ta!#. ~103!

Exactly the same approach can be used to deducep43(tbuta),
which turns out to be

p43~ tbuta!5EL
21~ ta!@p43~ tbu0!2p43~ tau0!

3EL~ tb2ta!Ẽ~ tb ,ta!#. ~104!

It is now easy to reconstruct the interesting probability~71!
and obtain

pLR@K̄~ ta!;K̄~ tb!#5
EL~ ta!

4
@p21~ tbu0!2p21~ tau0!

3ES~ tb2ta!E~ tb ,ta!#1
ES~ ta!

4

3@p43~ tbu0!2p43~ tau0!

3EL~ tb2ta!Ẽ~ tb ,ta!#. ~105!

This result is of fundamental importance because it allows
to use the single kaon theory of Sec. V–VIII, which d
scribed kaonic evolution starting from proper time zero. T
probabilitiesp21(tbuta) and p43(tbuta) cannot in general be
written as functions oftb2ta : this type of dependence i
equivalent to an action at a distance from the first obser
kaon to the second one, reducing the latter to the state
newborn particle it had at proper time zero. This conclus
can be reached, for example, by considering the stand
matrix ~47!; a numerical calculation shows then th
p21(tbuta) and p43(tbuta) depend fully on their two time ar-
guments, and not just on their difference.

XIII. CONSTRAINTS FROM LOCAL REALISM

The unknown quantities in Eq.~105! are E(tb ,ta) and
Ẽ(tb ,ta). They can be used to deduce upper and low
bounds for the left-hand side of Eq.~105!. While a system-
atic investigation of this problem is left for a future pape
here we will consider a particularly interesting lower bou
which turns out to be violated by the quantum-mechani
predictions. Given that bothA(t) and Ã(t) are never nega-
tive, as follows from definitions~88! and ~96!, from Eqs.
~91! and ~95! one obtains

0<E~ ta ,tb!, Ẽ~ ta ,tb!<1. ~106!

Observing that in Eq.~105!, E(ta ,tb) andẼ(ta ,tb) multiply
only negative terms, we can take for them the value 1,
obtain the inequality

PLR@K̄~ ta!;K̄~ tb!#>
EL~ ta!

4
@p21~ tbu0!2p21~ tau0!

3ES~ tb2ta!#1
ES~ ta!

4

3@p43~ tbu0!2p43~ tau0!EL~ tb2ta!#.

~107!
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The elementary probabilities entering in Eq.~107! can be
found in matrix~56!, the result being, for timetb ,

p21~ tbu0!5ES~ tb!Q2~ tb!2r~ tb!,

p43~ tbu0!5EL~ tb!Q2~ tb!1r~ tb!.
~108!

Strictly similar results hold for timeta . Therefore Eq.~107!
becomes

PLR@K̄~ ta!;K̄~ tb!#>
EL~ ta!

4
$@ES~ tb!Q2~ tb!2r~ tb!#

2@ES~ ta!Q2~ ta!2r~ ta!#ES~ tb2ta!%

1
ES~ ta!

4
$@EL~ tb!Q2~ tb!1r~ tb!#

2@EL~ ta!Q2~ ta!1r~ ta!#EL~ tb2ta!%.

~109!

There are now two important remarks.
~1! r(tb) enters into Eq.~109! multiplied by 2@EL(ta)

2ES(ta)#/4, which is never positive becausegS.gL .
Therefore one can minimize Eq.~109! by taking the upper
limit ~59!,

rmax~ tb!5ES~ tb!Q2~ tb!. ~110!

~2! r(ta) enters into Eq.~109! multiplied by a factor
clearly vanishing for tb52ta , the factor being
@EL(ta)ES(tb2ta)2ES(ta)EL(tb2ta)#/4. Therefore it is
convenient to maker(ta) disappear by considering Eq.~109!
only for tb52ta .

Thus we can write

PLR@K̄~ ta!;K̄~2ta!#>Pmin
LR @K̄~ ta!;K̄~2ta!#, ~111!

where

Pmin
LR @K̄~ ta!;K̄~2ta!#[

ES~ ta!

4
$@EL~2ta!

1ES~2ta!#Q2~2ta!

2EL~ ta!@EL~ ta!1ES~ ta!#Q2~ ta!%.

~112!

The great advantage of Eq.~112! is that all terms on its
right-hand side are known and calculable. A meaning
comparison can then be made with the quantum-mechan
expression~60!, which for tb52ta becomes

PQM@K̄~ ta!;K̄~2ta!#5
ES~ ta!EL~ ta!

8
@EL~ ta!1ES~ ta!

22AEL~ ta!ES~ ta! cosDmta#.

~113!

A numerical comparison of Eqs.~112! and~113! for ta rang-
ing between 0.2gS

21 and 1.6gS
21 is given in Table I.

In this region, quantum mechanics violates the local re
istic limit by 28%, on the average. We take this to be
sufficient indication of the physical interest of our results a
l
al

l-

d

of the concrete feasibility of an experiment choosing b
tween quantum mechanics and local realism.

A critical discussion of the theoretical studies of the EP
paradox forK0K̄0 pairs was made by Ghirardi, Grassi, an
Weber @15#. Their general conclusion was that aF-factory
facility is not useful for opening new ways of testing qua
tum mechanics versus alternative general schemes of th
cal realistic type. This paper is a good example of how
wrong conclusion can be inferred from a set of genera
correct premises. The main argument presented by the t
authors is the fact that Bell’s inequality, written in terms
four different times of flight of the kaons, is not violated b
the quantum-mechanical two-time joint probability for co
related strangeness. This conclusion is correct, but this d
not mean that a compatibility exists between local reali
and quantum mechanics for kaon pairs: In fact, Bell’s
equality is only one of the many consequences of local re
ism. Concerning Ref.@8#, the three authors objected to th
generality of the local realistic approach formulated with
left-right and particle-antiparticle symmetry. It is possible
agree with them once more, but not with their general c
clusion that meaningful tests of local realism are impossi
with a F-factory facility. In fact, in the present paper w
have shown that the opposite is true. A systematic numer
comparison between the quantum theoretical predictions
the upper and lower predictions of local realistic theories w
be given in a forthcoming paper.

APPENDIX: ELEMENTS OF REALITY
FOR STRANGENESS AND CP

Local realism allows one to attribute elements of reality
each one of the two kaons belonging toK0K̄0 pairs described
by state vector~4!, if this description is assumed correct
least in the predicted~nonparadoxical! correlations inCP
and in S. The reasoning starts from the following assum
tions.

~1! If, without in any way disturbing a kaon, we can pr
dict with certainty the value of one of its physical quantitie
then there exists an element of physical reality correspond
to this physical quantity~the EPRreality criterion!.

~2! If two kaons are separated by a large distance,
element of reality belonging to one of them cannot be c
ated by a measurement performed on the other one~locality!.

~3! If at a given timet a kaon has an element of reality
the latter cannot be created by measurements on the s

TABLE I. Numerical comparison of the quantum-mechanic
prediction with the smallest possible probability of all local realis
theories.

gsta Pmin
LṘ @K̄(ta),K̄(2ta)# PQM@K̄(ta),K̄(2ta)#

0.2 0.0044 0.0018
0.4 0.0118 0.0051
0.6 0.0171 0.0087
0.8 0.0195 0.0115
1.0 0.0192 0.0133
1.2 0.0174 0.0142
1.4 0.0148 0.0144
1.6 0.0119 0.0139
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kaon performed at timet8, if t8.t ~no retroactive causality!.
If one measuresCP on the a ~left! kaon of a pair de-

scribed by the state vector~4!, one finds either11(KS) or
21(KL) with the same frequency. This allows one to pred
with certainty that a futureCP measurement on theb ~right!
kaon will give the result21(KL) or 11(KS), respectively.
Using the EPR reality criterion one can attribute an elem
of reality l1 to the right-going kaon. Without loss of gene
ality one can assumel1 to be dichotomic, withl1561
corresponding toCP561, respectively.

The element of realityl1 , because of locality, is not cre
ated by the measurement made on the other kaon. There
it also exists~even if unknown in the individual case! if no
such a measurement is made on the other kaon.

The element of realityl1 , because of the assumed lack
retroactive causality, is not created by a future measurem
on the same kaon to which it belongs. Therefore it exists a
if no such a measurement is performed.

The situation is fully symmetrical between left and righ
Therefore, the previous reasoning allows one to associa
l1 element of reality both with thea ~left! kaon and with the
b ~right! kaon.

Conclusion:each kaon of every pair has an associat
element of realityl1 , which determines a well-defined C
value ~l1561 corresponds toCP561, respectively!. For
both left- and right-going kaons the two casesl1511 and
l1521 appear at random and with the same~50%! fre-
quency.

A second element of reality, connected with strangen
S, can be introduced. The reasoning is now as follows: If o
measuresS on thea ~left! kaon of a pair described by Eq
~4!, one finds either11(K0) or 21(K̄0) with the same fre-
quency. This allows one to predict with certainty that anS
measurementat equal proper timeon theb ~right! kaon must
give the result21(K̄0) or 11(K0), respectively. Using the
EPR reality criterion one can attribute an element of rea
l2 to the right kaon. Without loss of generality one c
assumel2 to be dichotomic, withl2561 corresponding to
S561, respectively.

The element of realityl2 cannot be created by the me
surement made on the other kaon~locality!. Therefore it also
exists, at least instantaneously, if no measurement is mad
the other kaon.

The element of realityl2 cannot be created by the me
surement on the same kaon to which it belongs~the instru-
ment works properly and could lead to a result different fro
the predicted one!. Thus it exists also if no such a measur
ment is performed.

Conclusion:each kaon of every pair has an associat
element of realityl2 , which determines a well-defined valu
s

t
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ore
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of strangeness S~l2561 corresponds toS561, respec-
tively!. For both left- and right-going kaons the two cas
l2511 andl2521 appear at random and with the sam
~50%! frequency.

The first element of realityl1 describes the objective
property of a kaon to behave either as aCP511 KS or as
a CP521 KL . The second element of realityl2 describes
the objective property of a kaon to behave either as aS5

11 K0 or as aS521 K̄0. The important difference be
tween l1 and l2 is that, while l1 describes a time-
independent property,l2 describes an instantaneous pro
erty: if a kaon of a pair is known at timet0 to haveS5
11 one can expect that, at a later time, it could have
quired S521 because the well-known oscillations ofS
modify the S561 populations. Since at every instant th
value of l2 is well defined, at every instant the kaon h
either theS511 or theS521. Sudden jumps between th
two situations are, therefore, possible, but they must be
multaneous for the two kaons in order to preserve the per
anti correlation inS that must hold at all equal proper time
as predicted by the state vector~4!. This simultaneity can be
compatible with locality, e.g., if the time of the jumps
predetermined when the kaons are produced in the deca
the F meson.

Quantum mechanics makes also the nonparadoxical
diction that auKS& can be observed with equal probability
be auK0& or a uK̄0&, and that the same holds for auKL& @see
Eqs.~8! and~9!#. Correspondingly, in our theory a kaon wit
l1 given is assumed to have with equal probabilityl25
11 andl2521. We see thus that the four possible ka
types withl1561 andl2561 will appear initially with
the same frequency 25% when Eq.~4! applies.

One of the virtues of the previous argument is that
shows the quantum-mechanical correlations inCP and inS
predicted by the state vector~4! to be nonparadoxical, pre
cisely because they are exactly reproduced by the local r
istic approach. Other predictions of Eq.~4! are instead
‘‘paradoxical,’’ that is incompatible with local realism, a
shown in the final part of this paper.

Notice that local realism implies that the two observab
S andCP, described quantum mechanically by noncomm
ing operators, must be simultaneously predetermined by
ments of reality belonging to any given kaon. This is
course the standard treatment of ‘‘incompatible’’ observab
in all ‘‘hidden variable’’ theories. The necessary codefinitio
of S and CP can be rigorously justified by applying loca
realism to a kaon belonging to a correlated kaon pair,
shown above. Nevertheless, it is very natural to believe
all kaons have the same basic properties and to extend
validity of Eq. ~10! to single kaons even when they do n
belong to an EPR pair.
-
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