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Incompatibility between local realism and quantum mechanics for pairs of neutral kaons
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A local realistic theory of single neutral kaons and of correlated neutral kaon pairs is formulated by deducing
the most general consequences of three assumptigriee Einstein-Podolsky-Rosen (EPR) reality criterion
(i) locality, and (iii) no retroactive causalityVariables must be introduced for every kaon determining the
stableCP value and the variable value of strangen8ssnstantaneou$ jumps are shown to take place. If
kaon pairs are produced ih meson decays, the local realistic probability of obsenkiftk° pairs at certain
different proper times necessarily differs by 30% from the quantum-mechanical predictions. The size of this
difference justifies our systematic neglect@®P violation. A ® factory is thus shown to provide a unique tool
for the study of the EPR problefi$1050-2947)05611-4

PACS numbd(ps): 03.65—w, 14.40—n

. INTRODUCTION In quantum mechanics the state vector fod&=1""
system decaying int&°K°, immediately after decagi.e., at

The strange nature of quantum correlations between sepéme zerg is given by
rated systems, pointed out for the first time by Einstein, Pod-
olsky, and RosetEPR [1], has stimulated a lively debate 1 o o
over the past 60 years. The incompatibility between the pre- [y = — {|K®) KO p— KO, KO}
dictions of quantum theory and some very general conse- V2
guences of local realism became fully evident with the 1965
work of Bell [2], showing that a wide class of local hidden-
variable models satisfies an inequality often violated by
guantum mechanics.

In 1969, Clauser, Holt, Shimony and Horfig] stressed
that Bell’s inequality could be checked experimentally with
photon pairs emitted by single atoms, even with the availabl@f the kaons ans andK,_ are the usual states for short- and
low efficiency photon counters, if suitable additional as-°nd-lived kaons, respectively. The small effect@P non-

sumptions were made. Several experimental investigations genservation is neglected throughout this paper, and the

the EPR paradox have accordingly been performed, mostlyy P=*1 eigenstates are identified with short long kaons,

with photon-polarization correlation measurements using rat€SPectively. Their evolution is given by

diative atomic cascade transitiopyd. In practically all these

experiments the inequality was found to be violated, and the |Kg(t))=|Kg)exp(—asgt), |K (t))=|K_ )exp—a.t),

guantum-mechanical predictions turned out to agree with the

data. It has been pointed out, however, that the introduction

of additional assumptions had brought to the formulation ofyheret is the particle proper time and

inequalities different fromand stronger tharBell’s original

inequality[5]. The experimental results violated the stronger

inequalities but were still compatible with Bell's original in-

equality, which was deduced from local realism alone with-

out additional assumptions. In Eq. (3) ys andmg (v, andmy) denote the decay rate and
From a strictly logical point of view, the choice between mass, respectively, of th§(L) meson. Unitsi=c=1 have

local realism and the existing quantum theory has yet to b&een adopted. The time evolution operator of stajes the

made. A more critical scrutiny of the incompatibility be- product of the time evolutions for the individual kaons, so

tween quantum theory and local realism could come from théhat at proper times, andt, one has

study of the EPR paradox in domains where highly efficient

particle detectors can be used, and the additional assump- 1

tions are not needed. An appealing possibility is the decay of [ y(t,,t,)) = — {|Kg)a|KL)peXH — asta— @ ty)

a JP°=1"" vector meson into a pair of neutr&l mesons V2

[6—13. The copious production of thé& meson decays into

two neutral kaons in & factory provides a very useful tool

for the study of the EPR problem. An experiment of this type

is characterized bya) almost perfect angular correlation be- The difference between the two exponentials in &g.gen-

tween the two kaongb) nearly 100% efficient high-energy eratesk°K® andK°K° components. The probability #°K°

particle detectors, angt) the absence of noise. observation at times, andty, is given by

1
=5 {IKs)al KL)b— KL alKs)p} 1)

wherea (left) andb (right) denote the directions of motion

as=%ys+ims, 01|_=%’y|_+imL. (3)

—|KL)alKs)peXp — ata—astp)}.  (4)

1050-2947/97/56)/349314)/$10.00 56 3493 © 1997 The American Physical Society



3494

POMK(t,);K(tp)]=2{e s Nt g™ nta” sl
—2e” (W cosAm(t,—ty)},
)

where y=ys+ vy, andAm=m_ —mg is the K| —Kg mass
difference. The right-hand side of Eb) vanishes fort,
=t,, as it must. The numerical parameters in urits c
=1 are

ys=(1.121+0.002 X 10'° s,
y.=(1.934-0.015x 10" s71,
Am=m_—mg=(0.535-0.003 x 10 s1,
Taking ys as inverse time unit, they can instead be written

1

- 1
""E5796 '

Am= —

L 2.10

Ys=

In a real experiment the detection KP's can be achieved

either via hyperon production in two suitably placed targets,
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disappear, and it turns ogBec. XIll) that this minimum is
violated by quantum mechanics by about 30% in a rather
broad proper time interval. The conclusion is that an experi-
mental discrimination between local realism and quantum
theory should be relatively easy atdafactory accelerator,
and perhaps also with different techniques.

II. ELEMENTS OF REALITY FOR KAONS

The EPR paradox arises from the incompatibility at the
empirical level between the predictions of quantum theory
and local realism. The latter consists of the following three
assumptions.

(1) If, without in any way disturbing a system, we can
predict with certainty the value of a physical quantity, then
there exists an element of physical reality corresponding to
this physical quantityfthe EPRreality criterion).

(2) If two physical systemge.g., two kaonsare separated
by a large distance, an element of reality belonging to one of
them cannot be created by a measurement performed on the
other one(locality).

(3) If at a given timet a physical system has an element

or viaAS=AQ semileptonic decays at appropriate distancef reality, the latter cannot be created by measurements on
from the® decay region. The task of the present paper is tahe same system performed at titie if t’>t (no retroac-

show that Eq.(5) is grossly incompatible with the predic-
tions of any local realistic theory.

tive causality.
Local realism can be applied to kaon pairs described

The paper is organized as follows: In Sec. Il we reviewquantum mechanically by the state vedy, by considering

the results (obtained in the Append)jx concerning the
strangeness an@dP “elements of reality” attributed to neu-

only those predictions of Eq4) to which the EPR reality
criterion can be applied. These are the strict anticorrelations

tral kaons by the local realistic approach. The four neutrain strangenes$ and in CP. Our conclusions could not be

kaon states of local realist]; (i=1, 2, 3, and #are intro-
duced. Sections IlI-V contain a possilftough not yet the
most general reinterpretation of quantum probabilities for

correct if these anticorrelations were not found experimen-
tally, but we will show that there is nothing paradoxical
about them. If assumed to be exact the following conclusions

single kaons in terms of the elementary probabilities of realhold (see the Appendix

ism p;i(t|0): these are probabilities of observing<a state
at proper timet, conditional on the existence ofkq state at
proper time zero. Th@;; can be collected in a4 matrix
(“standard matrix”). The most general probability matrix is
found in Secs. VIl and VIII. A single, unknown quantipy

(1) Each kaon of every pair has an associated element of
reality A, which determines a well definedP value (A
=+1 corresponds t&€ P= * 1, respectively.

(2) Each kaon of every pair has an associated element of
reality \», which determines a well-defined value of strange-

modifies all elements of the standard matrix by appearing asessS (\,= + 1 corresponds t&= *+ 1, respectively.

a = p additional term. Upper and lower bounds are found for

Furthermore\ ; is a stable property, while, undergoes

p as consequences of the probabilistic interpretation of thgudden jumps frons= +1 to S=—1, and vice versa, which
pji elements of the most general probability matrix. Theseare simultaneous for the two kaons of every pair, but happen
bounds are essential in the final deduction of the range afore or less at random times in a statistical ensemble of
possible local realistic predictions. Section IX deals withmany pairs: the theory o jumps is presented in Sec. XI.

kaon pairs produced in the decay #°=1""® mesons,
and focuses on the probability[ K;K] for detecting two

Notice that the application of local realism to the physical
situation described by Ed4) has brought us at least for-

correlated neutral antikaons at different proper times. This ignally outside quantum theory: no quantum-mechanical state

shown to have a very simple expressi@y. (71)] in terms
of the probabilitiesp;; for single kaons. As a curiosity we

vector exists, in fact, which can describe a kaon as having
simultaneously well define@ P andS values. That this dis-

show that if a suitable assumption of non locality is made thesrepancy is not only formal, but leads to empirically observ-

guantum-mechanical prediction fBf K;K] is exactly repro-
duced(Sec. X. For a calculation oP[K;K] based on local-
ity, pji(tp|ta)’s are needed for two proper timég andt,

possibly different from zero. Section XI develops a rate-
equation method for finding these probabilities. The final re-

sult for P[K;K] (Sec. Xll) contains two unknown quantities:
one is the aforementiongg the other one is a functiof of

able consequences, will be shown in the following.

Ill. REALISM AND SINGLE KAON PHYSICS

We wish to reproduce the quantum-mechanical predic-
tions for strangeness oscillations and decay(sifigle K°
mesons within the local realistic approach. That such a prob-

the time integral of the transition rate for strangeness jumpgem can be solved was shown in REf4], but now we aim

A least value ofP[K;K] is calculated by making and E

at the most general formulation of realism. The quantum-
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mechanical state vector of an initi&k= + 1 kaon evolves at 1 .
proper timet into |Kg(t)y=e s |Kg(0)) =g s 5 {IK%(0))+|K°(0))},

1 1 (8)
|KO(t)) = v e *Kg(0))+ v e “'|KL(0))

—1 e*ast_i_eaLt KO 0 1 —
2[ ]l ( )) |KL(t)>=eia'—t|KL(0)>:eia'-t E {|KO(0)>—|KO(0)>}

+3[e” ' —e” 1 |K%0)), (6)

o 9

so that, in general, botk® andK® components turn out to be

present at proper timé. Other guantum-mechanical time ) o o

evolutions relevant to our problem are the following: For single kaons all these predictions areriori nonpara-
doxical, as they do not refer to the case of correlated pairs

_ 1 1 where the Einstein-Podolsky-Rosen paradox could exist, but
[KO(t)) = 5 e “sKg(0))— 5 e “H[KL(0)) to individual quantum objects. We will see, in fact, that local
2 2 realistic models exist reproducing the empirical conse-
=1i[e e —e !|K%(0)) quences of Eqg6)—(9). _ _ _
_ Following the ideas of the previous section we introduce
+3[east+e 2t |KO(0)), (7)  four basic states:

Ki=Kg: state withS=+1 and CP=+1 (short-living kaon,
KZEK_S: state with S=—1 and CP=+1 (short-living antikaom,
Ks=K : state withS=+1 and CP=-1 (long-living kaon,

K4EK_L: state with S=—1 and CP=-1 (long-living antikaon. (20

Next we introduce the probabilities of observing the previous Po(t) + pa(t) = |<K_(0)| K(1))/2

states in a given physical situation:
=%[E_ +Egs— 2VE EscosAmt],
pi(t)=(probability of K; at proper timet) (i=1,2,3,9.
(1)  where

The initial conditions depend on the particular problem con- Eg(t)=e 7, E (H)=e M (15
sidered. We assume, as an example, that initially only the

states withS=+1 are produced, and that theP=+1  Notice that Eqs(13) and(14) are compatible with Eq(12).
states are equiprobable. This corresponds to the situation déhe sum of the two equatiors3) gives the same as the sum

scribed in quantum mechanics by tBe +1 ket(6). There-  Of EQ. (14). Therefore we have really only three independent
fore, conditions for the four probabilitiegL1).

P1(0)=p3(0)=3, pP2(0)=p4(0)=0. (12 IV. REINTERPRETATION OF QUANTUM

. . . PROBABILITIES
In order to agree with the experimentally well-established

validity of the quantum-mechanical probabilitiéghich re- In order to fix all four probabilities, we staprovisionally
fer to a well-defined initialS without specifyingCP) we by assuming that they are linear in &ost, so that
must find a realistic model reproducing the following results

for the chosen state: pi=a;+b;cosAmt,

_ 2_1 =a,+b,cosAmt,
p1(t)+pa(t)=|(Ks(0)|K(1))|*=3Es, (13) P2=az+ Dcosam (16)

P3(t)+ pa(t) =[(KL(0)[K(1))|2=3E, P3=as+bscoshmt,

and pPs=a4+bycosAmt,
P1(t)+pa() =[(K(0)[K(1))|? (149 Wherea;, b;, (i=1,2,3,4) are independent dfim, and are

to be determined. By comparing E{$6) with Egs.(13) and
=%[E_+Eg+2VE _EscosAmt], (14), we obtain
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a;ta,=1Eg, b;+b,=0, evolution of these wave functions is given by E81). Ini-
tially they have the same@inknowr) value .
agt+a,=3E_, bg+b,=0, (2) The physical quantitfCP is basically a particle prop-
17) erty, and every neutral kaon is born with a fixed value
a;+az=3i[EstE.], b;+bs=3\JESE,, (£1) of it. NeglectingCP violation, every kaon maintains
forever the sam& P with which it was born. Nevertheless
a,+ta,=3i[EstE.], b,+b,=—3JESE,. both ¢, and s waves are associated with every kaonic par-
ticle independently of it<CP value.
These conditions are again unable to fix completelyahe (3) Also, strangenesS is basically a particle property and
b, (i=1,2,3,4). It is, however, natural to adopt provision- every kaon is born with a fixed valuex(1) of it. Particles
ally the symmetrical solutions with S=+ 1 go always together with the wavig + ¢, par-

ticles with S= —1 go with ¢ — 5.

e lE. b —boolE 2VESE. (4) Strangeness jumps froif8=+1 to S=—1, or vice
1me2maEs M 27 4TS E +Eg” versa, are possible as sudden particle events and when a
(18) jump takes place also the wave is forced to change accord-
2VESEL ingly, e.g., withis undergoing a sudden phase shift For
— —1 — . .
ag=a,=7E_, by=—b,=3;E ——— E +Es’ example, the particle jump frorB=+1 to S=—1 makes

the wave go fromy + g to o — ¢s.
because Eq18) is the simplest choice which satisfies all the ~ (5) These jumps take place with a frequency such that the
conditions(17) while at the same time giving non-negative Born rule is always satisfied: the probabilities that any given
values to the probabilities. Therefore, kaon at a certain proper tinthasS= * 1 are proportional to
| (1) = ws(1)|%, respectively.

2\ESE, (6) Kaons are unstable particles and decay with constant

I+ g g, cosmt, ratesys (if CP=+1) and y, (if CP=—1). Thus aCP=
+1 (CP=-1) kaon has a probability of being undecayed at

2VESE,

p1=3Es

time t which decreases exponentially, just like the squared
pzziES{l— E TE- cosAmt}, modulus Eg(E,) of the corresponding wave functiofg
L°=s (190 (). In this way Born’s rule is easily satisfied.
Probabilities(20) find a complete physical interpretation

2VEGE, e
=1 Am within this model. For example,
Ps=aEL [1 E +Es °° t}*

[y + ol
2{| | "+ sl

can be understood as follows: the factor 1/2 is the probability
These results can be rewritten in a physically more appealinthat the given kaon is born witB P= + 1, in agreement with

py(t)=3e" 7

2\EE,

1 _ZVv=seL
p4—4EL[1 E +Es cosAmt|.

way as Eq. (12); the exponential factor is the probability that it has
) remained undecayed at timgthe final fraction is the prob-
(t)="Le |¢|_ | ability that it has positive strangeness at timdn this way
Pb)=2 |1//|_|2+ lpe]?” the quantum-mechanical probabilitigis3) and(14) are given
a .co_mpletely new physical interpre.tation within the Iocall re-
- Wel? alistic approach. The corresponding ensembles are inter-
pa(t)= —|¢ 2+ g2’ preted to be mixtures of other ensembles in which the basic
(200  states of local realism10) apply. We stress again that Egs.
|lﬂ|. 2 (19) and (20) do not give the most general probabilities
ps(t)=5e" m within local realism: rather, they give only the most natural
i Vs ones. A complete generalization will, however, be given in
Sec. VII.
[ — el
Pa(t) =G ' s,
|¢'-| +|¢S| V. PROBABILITIES FOR PURE STATES

where we introduced the “wave functions” OF LOCAL REALISM

VL= doexp(— v tiZexa=im.Y), The local realistic probabilitie$19) and (20) describe a

Ws= PoeXp — yst/2)exp( —imgt). (21  particular mixture, that is, a statistical ensemble in which two
of the basic stateg€l0) are initially present with equal statis-

Notice that the simple equation®0) do not exist within tical weights, as shown by the initial conditio(k2). How-
standard quantum theory. They suggest the following dualisever the physical reinterpretation given in Sec. IV allows us
tic picture. to extend very naturally our results to the case of “pure

(1) All kaons are particles embedded in extended wavestates” (only one kaonic state produced initigllyProbabili-
which are in all cases superpositionsygf and 5. The time  ties with two indices will be used, the second one specifying

A. Introduction
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which one of the four statg40) was initially present. Natu-

INCOMPATIBILITY BETWEEN LOCAL REALISM AND . ..

rally there are four possibilities, examined in Secs. V B-V E

below. In the following we will use the shorter notation

1[  2VE.Es
Q.()=75[1=
2 E_+Es

cosAmt|. (22

B. Initial state with CP=+4+1 and S=+1: K;(0)

In a given physical situation the basic probabilities for the

four states(10) at proper timet can be consideredondi-
tional on the initial presence & (0). By using the symbol
p,—i(t|0) to denote the probability of a kaon in stefe at

proper timet conditional on the same kaon having been in

stateK; at proper time 0,i=1,2,3,4) we can write
P11(t]0)=Eg(1)Q. (1),

P21(t]0)=Eg(t)Q_(1),

(23

P31(t|0)=0,

P41(t|0)=0,

which satisfy the initial conditions
P12(0/0)=1, P21(0[0)=pz(0]0)=p44(0[0)=0. (24

Of course, in Eq(23), p11(t|0) has a physical interpretation
similar to that given forp,(t) at the end of Sec. IV, but
relative to a different initial condition. In the casef;(t|0)
we can say that the given kaon is born wiiiP=S=+1,

that E4(t) is the probability that it has not yet decayed at

time t, and thatQ . (t) is the probability of its still having
S=+1 at time t. The interpretation of allpji(t|0)
(j,i=1,2,3,4) in Eg.(23) and in the coming equations is
always similar.

C. Initial state with CP=+1 and S=-1: K,(0)
For this second initial condition one can write

P12(t]0)=Eg(t)Q_(1),
P2o(t]0)=Eg(1)Q. (1),
P3A1/0)=0,

P4(t|0)=0,

(29

which satisfy

P12(0[0)=0, p(0]0)=1, p3x0]0)=p,0[0)= (226

D. Initial state with CP=—1 and S=+1: K3(0)

For this third initial condition one can write
P13(t|0)=0, (27)

P24(1/0)=0,

3497
P33(t]0)=EL(1) Q. (1),
P43(t]0)=EL(1)Q_(1),
which satisfy
P13(0]0)=p,3(0/0)=0, p33(0]0)=1, p43(0/0)=0.
(28
E. Initial state with CP=—1 and S=—-1: K,(0)
For this fourth initial condition one can write
P14(t[0)=0,
P24(t[0)=0, 29
P34(t]0)=EL(1)Q_(1),
P44(t]0)=EL(1) Q. (1),
which satisfy
P14(0]0)=p4(0]0)=p34(0]0)=0, p44(0[0)=1.
(30

F. Conclusions

The probabilities introduced in the present section
through Eqs(23), (25), (27), and(29) will be said to consti-
tute “the standard set.” Of course these probabilities, albeit
elegant, are to some extent arbitrary. A complete generaliza-
tion will be given in Sec. VILI.

VI. SYSTEMATIC COMPARISON WITH QUANTUM
MECHANICS

In this and in Sec. VII we will use, for the conditional
probabilities, the shorter notatiqe); instead ofp;;(t|0). We
can now check that all quantum-mechanical probabilities for
single kaons are reproduced. First of all we can easily see
that the quantum-mechanical conditions@®P conservation
are satisfied. Indeed,

[{KL(0)|Kg(t))|*=0=3[ P31+ Part P32+ Paal,

[(Ks(0)|KL(1))|*=0=3[ P13+ Pazt Pra+ Paal,

because all probabilities appearing in the right-hand sides of
Egs.(31) and(32) vanish in Egs(23), (25), (27), and(29).
From now on we will write only nonvanishing probabilities:
this can be done by excluding all probabilities in which the
first index is either 1 or 2 while at the same time the second
index is either 3 or 4, and vice versa. It is then easy to check
that the following 14 conditiong$which can easily be de-
duced from the state vectok§)—(9)] are satisfied by the
probabilities of the standard set of equati@®3), (25), (27),

and (29).

(31)

(32

[(Ks(0)|K(t))|*=3Es= 2[ P11+ P2l (33
[(KL(0)|K(t))|?=3E_ = 3[Pas+ Paal, (34
[(K(0)|K(t))|?=3(E . +Es)Q4=3[p11+p3al, (35



3498 F. SELLERI 56

|<K_(0)| K(1)|2=21(E, +Eg)Q_=3%[pyu+pas), (36)  There remain EqY33)—(46), which can be considered as 14
(not independent conditions for the eight nonvanishing

(Ks(0)|K(1))]?=3Es=3[p1o+ P2, (37) probabilities. Writing
|<KL(0)|K_('E)>|2=%EL=%[p34+ Padl, (38) Ri=(sum of the elements of théth row) (i=1,2,3,9,
[(K(O)[K(D)P=3(EL+Eg)Q_=3[p1tPad, (39 C;=(sum of the elements of th¢th column

- (j=1,2,3,4),
(K(0)|K(1))|?=3(EL+Eg)Q4=3[pao+Pasl, (40

) . conditions(33)—(46) for the most general probabilities can
[(Ks(0)[Ks())|*=Es=3[ P11+ Part P12t P22l (41 respectively be written

[(K(0)|Kg(t))]?=3Es=3[ P11+ P12l, (42) C,=Es, (33)
(K(0)[K(t)[?=3Es=3[Part P2al, (43
Cy=E_, (34)
[(KL(O)|KL(1))[?=E_=3[Pas+ Pazt Paat Paal, (44)
P11t Pas=(EL+Eg)Q. (35)
[(K(0)|KL(1))]?=3EL =3[ Pas+ Paal, (45 HeTET e
|<K_(O)|KL(t)>|2:%EL:%[p43+ Paal- (46) Part Pas=(ELTESIQ-, (36)
Therefore all the 16 physical conditions imposed by quantum C,=Eg, (37)
mechanics are satisfied by the probabilities of local realism
(23), (25), (27), and(29). These can be collected in a “stan- _ )
dard probability matrix” P, as follows: Ca=EL, (38)
Esg+ ESS* 8 8 P12t Pas=(EL+EgQ-, (39)
P=| 0 o EQ EQ| ©? ,
0 O ELQ— ELQ+ p22+ p44:(EL+ES)Q+ 1 (40)
where p13(t[0)=Eg(t) Q. (t), p1At|0)=Eg(t)Q_(t), etc., Ci+Cy=2Es, (41)
and Q- are of course given by Ed22), so thatQ, +Q_
=L R,=Es, 42)
VIl. MOST GENERAL PROBABILITY MATRIX
R,=Eg, 43
With Egs. (23), (25), (27), and (29), we obtained a re- 2 s (43)
markable solution for the probabilitiesp;;(t|0)(j,i
=1,2,3,4). Mathematically speaking, however, this solution C3+Cy=2E, (44')
is not unique. In the present section we will study anew the
problem of determining the most general set of local realistic Re=E, (45)

probabilities compatible with the quantum-mechanical pre-

dictions. For simplicity we will not introduce new symbols,

but will continue to denote our probabilities pg even when R,=E_, (46')

they do not belong to the standard set. Naturally conditions

(31)—(46) must still be satisfied. Eq$31) and(32) imply the  ~nqitions(33)), (37'), (42'), and (43) tell us thatR, =R,

vanishing of eight probabilities: =C,=C,=Es. Conditions(34), (38)), (45'), and(46) telil

— D= Pog= Poa= Pai=Pas=Pai=Par=0. (48) us thatR;=R,=C;=C,=E, . Condition(41’) is a conse-

P13= P14 P23= P24= P31= P32™ Pa1= P4z =1 quence of Eqs(33) and (37), while condition (44') is a

consequence of Eq$34’) and (38'). A probability matrix

Taking Eq.(48) into account, the most general probability satisfying the previous ten conditions is then

matrix P is

Piz P2 O O P11 Es—pu1 0 0
P21 P22 O 0 Es—p11 P11 0 0

. 49 P
0 O p3s P 49 0 0 P33 EL— P33

0 O P43z Pu 0 0 EL—Pas P33

p= . (50
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The conditions containin@-. [Egs.(35), (36'), (39'), and P11~ Pas=R, (52)
(40')] remain to be analyzed. Written in terms of the prob-

abilities appearing in Eq50), they are easily shown to re- \yhereR is unknown. we obtain
duce to the unique condition '

P11+ Pas=(E +E9)Q, . (51) P11=3[(EL+Eg)Q4+R], pas=3[(E + ES)Q+_R(]5-3)
The required agreement with quantum probabilities is thus
seen to fix everything but the differenpg;— pz3. Writing The probability matrix(50) can then be written

(EL+E9Q +R EsQ_—E.Q,-R 0 0
o_1|EsQ “ELQ\~R (E.+E9Q.+R 0 0 54
S 2 0 0 (ELTE9Q:+—R EQ-—EQ:+R|"
0 0 ELQ-—EsQ:+R (E +EgQ:—R
|
Restrictions orR can be obtained by taking into account that —EsQ.,<p<EQ_. (57)

every element of Eq(54) is a probability and must lie be-

tween zero and one. This point will be discussed in Seclt is easy to see that from the second column the same result

VIII. (57) follows. From the third and fourth columns, one simi-
larly obtains

VIIl. DEVIATIONS FROM THE STANDARD SET

- <p<
Equation(47) can be used to calculate the valueRofcall FLQ-=p=EQ:. 58
it Ry) predicted by the standard set of probabilities. By com-The requirement that all elements Bf be less than one is
parison with Eq.(54), one easily obtains automatically satisfied if Eq$57) and(58) hold, as one can
easily verify. Conditiong57) and(58) must both be satisfied
in any consistent local realistic theory. It is enough that one
Ro=—(EL—E9Q- . of them is violated by a givep to conclude that the latter is
incompatible with local realism. We checked numerically
that for all timesEsQ _<E, Q. . In other words of the two
upper limits in Eqs(57) and(58), it is enough to consider

Given that one can always introduce @uch that

R: R0+ P, (55)
p(H=<Es(t)Q_(1). (59
the probability matrix(54) takes a form containing p cor- o . . o
rections to the probabilities of the standard &&b: No simplification of this type exists for the lower limits of
Egs.(57) and(58).
EQ,+p EQ_—p 0 0 The introduction of the unknown quantigy is the most
EsQ-—p ESQitp 0 0 important difference between the present theory and that of
P= 0 0 E.Q,—p EQ_+p| Ref.[9]. Only the presence gf allows us to state that we are
0 0 E.Q +p EQ.-p working with the most general formulation of local realism.

(56)
IX. CASE OF KAON PAIRS

Notice that every column refers to a well-defined initial state,
one of the four case&l0). The sum of the elements of a
column equal€g [for K1(0) andK,(0)] andE, [for K5(0) Kaon pairs arising in the decay of the meson, e.g.,
andK 4(0)], corresponding to the appropriate population re-produced ine*e™ collisions, are described quantum me-
ductions due to spontaneous disintegration. Restrictions on chanically by the)?©=1"" state vectof4). The probability
can be obtained by assuming every probability to be positive(5) of a doubleK® observation at proper timesg andt,,
The first column gives written with notation(15), is

A. Introduction

POMK (ta);K(tp)]= A Es(ta) EL(ty) + EL(ta) Es(tp) — 2VEg(ta) Ey (tp) EL(ta) Es(ty) cOSAM(ta—ty)]. (60)
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We will show that the local realistic approach leads necesNotice that the ternp(t,) disappears when Eq$63) and

sarily to disagreement with predictiof60). The starting (65 are summed together, as will be done at the end of this

point is again the discussion in the Appendix where it issection.

shown that local realism applied to the physical situation

described by(4) implies — at equal proper tinse— a total  p_|ntial state with K4(0) on the left and K,(0) on the right

anticorrelation both in strangeness anddi® between the . _

two kaons flying in opposite directions, the four possible 1he probability that the initiak5(0) on the left evolves

physical configurations appearing at least initially with the!Nt0 @ S=—1 state at proper time, [then., givenCP con-

same statistical weight3). Given Eq.(10), we must then servation, intoK,(t,)] is given by Eq.(56):

consider the following four cases for the calculation of P43(ta]0)=E () Q_(t,) +p(ty). (66)

PERIK (ta);K(th) -

Correlated with the left-going antikad,(t,), on the right-

hand side of the physical process there will be, at a proper

timet,=t,, either decay products or a pukg state. The
The probability that the initiak,(0) on the left evolves probability of the latter is of coursE(t,). The probability

into aS=—1 state at proper time, [then, givenCP con-  of its evolution intoK ,(t,), conditional on its having been a

B. Initial state with K;(0) on the left and K,(0) on the right

servation, intoK,(t,)] is given by Eq.(56): K, (tp) (with ty>1,), is
P21(t1]0) = Es(t1)Q—(t2) ~ p(ta). (62) P2a(to[Ty) =PI Ka(to) K1) ] (67)

Correlated with the left-going antikadfi,(t,), on the right-  Therefore in this third case the overall probability of double
hand side of the physical process there will be at proper tim&= — 1 observation at proper timég (on the lefy andt, (on
T,=t, either decay products, or a puig state. The prob- the righd is

ability of the latter is of cours&, (t,). The probability of its

evolution intoK 4(t,), conditional on the staté(t,) (with P3[K(ta);Ka(t) 1= Pasltal 0) Es(tn) pas(ty(ts)
fo=to) Is ={EL(t)Q- (t) + p(ta)}
Pas(talth) =p[Ka(tp) K3 (th)]. (62 X Eg(th) Paa(tolth). (68)

Therefore, in this first case the overall probability of double E. Initial state with K,(0) on the left and K,(0) on the right
S= —1 observation at proper timeg (on the lef} andt,, (on

the righ) is clearly given by The probability that the initiak,(0) on the left evolves

into aS=—1 state at proper timg, [then, givenCP con-
servation, intoK,(t,)] is given by Eq.(56):

p44(ta|0):EL(ta)Q+(ta)_P(ta)- (69)

Pl Ka(ta); Ka(tp) 1= par(ta| 0)Ey (th) Pasltu[th)

:{Es(ta)Q—(ta)_p(ta)}
T Correlated with the left-going antikadf,(t,), on the right-

XEL(to)Pag( ). 63 hand side of the physic%l p?ocess the4rEa av)viII be, at gproper
timet,=t,, either decay products or a pukg state. The
C. Initial state with K,(0) on the left and K3(0) on the right probability of the latter is of coursEg(t,). The probability
of its evolution intoK »(ty,) is given by Eq.(67). Therefore in
this fourth case the overall probability of doul$e= —1 ob-
servation at proper times (on the lefj andt,, (on the righ}

The probability that the initiaK,(0) on the left remains a
S= —1 state at proper timg, [then, givenC P conservation,
that it becomeX,(t,)] is given by Eq.(56):

is
P22tal0) = Es(ta) Q.+ (ta) + p(ta). (64) ~
Al 0)=Bo(ta)Q: (ta) ol Pa[Ka(ta);K2(th)]= Pas(tal 0)Es(tp) pas(tofth)
Correlated with the left-going antikadf,(t,), on the right- ={E (1) Q. (ta) —p(t)}
hand side of the physical process there will be, at the proper ~
time t,=t,, either decay products or a pukg state. The X Es(to) Pa(tofth). (70

probability of the latter is of coursg, (t,). The probability
of its evolution intoK,(t,) is again given by Eq(62).

Therefore in this second case the overall probability ofVhen Eas(6
double S= -1 observation at proper timeg (on the lef}

Notice that thep(t,) term is once more going to disappear
8) and (70) will be summed together.

andt, (on the righj is F. Conclusion
_ The four elementary states of local realism must appear
P2l Ka(ta); Ka(tp)]=P2a(tal0)EL (o) Pas(ty[th) initially with the same weight¥) both on the left and on the
—{Eq(t) Q. (t) +p(ty)} right in the physical situation described quantum mechani-

~ cally by the state vectof4), as shown in the Appendix.
X Ey (Ty) Pas(tpty)- (65  Therefore, given the results of Secs. IX B—IX E, we have
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PLRIK (t2); K (tp) 1= H{Pa[Ka(ta)iKa(ty)]
+ Po[Ky(ta); Ka(ty)]
+ P3[K4(ta); Ka(tp) ]
+ P4[Ky(ta); Ka(tp) 1}

Es(t)E ()
% Pas(tofth)

EL(t,)Es(ty)
+ LTS(b P2altofth).

Remembering thai,=t,, the last equation can be written
ES(ta)EL(ta)

2 [Pas(ty|ta) + Pos(tylta)],
(71)

PLRIK(t,);K(ty)]=

3501

PN (ta);K(tp)]= 3 [EL(ty) Es(ta) + Es(ty)EL(ta)
—2VEL(tp)Eg(ta) Es(ty)E, (ta)
xXcosAm(t,—t,)],

(79

which is identical with the quantum-mechanical prediction
(60). The above nonlocal model was found by Cobianco
[13]. Its existence is of course a matter of curiosity: if the
choice were only between quantum theory and a causal
local approach, the former should probably be preferred.

XI. RATE EQUATIONS

The remaining problem is calculating,q(t,|t,) and
Pas(tylta) in Eq. (72). The first one is the probability that a
right-going kaon, that was with certainty K&, at timet,
=t,, becomes &, at timet,,. The meaning of the second
probability is similar. The time evolution mixes opposite

wheret, is now used as time label also for the right-going Strangeness states without chang@®g (which we assume

kaon. Equatior(71) will be the starting point of our further
discussion. The probabilitigs,; andp,; in Eq. (71) are not

known in general: our previous considerations would fix

them [up to the additive termst p(t,)] only if one hadt,
=0. As seen in Sec. X, the assumption of nonlocakitgtion
at a distanceleads to their determination.

X. NONLOCAL MODEL FOR KAON PAIRS

to be conserved In the case ofCP=+1 the interesting
probabilities are

P21(t]to) =p[Ka(t)[Ky(to)],
(76)

P11(t]to) =p[K1(t)[K(to)],

which must satisfy the conditions

P1i(tolte) =1, Pas(telte)=0. (77)

We will show that a nonlocal model exists that reproduces . ]
prediction(60), as it does with all other consequences of theThese probabilities are not deducible from the results of Sec.

state vectol4). The (nonloca) probability for the evolution
of the right-going kaon either fromd,(t,) in K,(ty), or from

K3(ta) in K4(ty), can be obtained with a slight modification

of Eq. (72):

Es(ta)EL(ta)
4
X[P2a(tp—ta) + Pas(tpy—ta) ]
(72

PNYK (tg):K (tp)]=

VII, which refer only to initial time zero, but are calculable
by means of the following equations:

p1y(t+dt|ty) =pya(t|to){1—[T1(t) + ysldt}

+ Pa(t]to) To(t)dt,
(78)

P21(t+dt|to) = Pas(t]to) {1—[Ta(t) + ys]dt}
+pu(tfto) To(D)dt,

where ys is the decay rateT,(t) is the transition rate at

qulpcality has b_een int_roduced by assuming that the PVObproper timet from K, to K,, and T,(t) is the opposite
abilities for the right-going kaon depend only on the timetransition rate fronK, to K. The meaning of the two equa-

differencet,—t,, as if its history started again at the timmge

tions (78) is similar. The first one reads as follows: the prob-

when a measurement was performed on its coupled leftapjlity of the stateK, at proper timet+dt equals the prob-

going kaon. By using this assumption together with Eg3)
and (27), we obtain

Es(ta)EL(ta)

PMK (t)5K (tp)]= —— 5 [EL(tp—ta) +Es(tp—ta)

—2VE (tp—ta)Es(tp—ta)

XcosAm(ty—t,)]. (73
Given that from Eq(15), one has
_ Es(ty) _Ev(ty)
ES(tb_ta) ES(ta) ’ EL(tb_ta)_ EL(ta) ’ (74)

it is easy to obtain

ability of having this same state at proper timémes the
probability that nothing happenseither a transition nor a
decay in the time interval {,t + dt), added to the probability
of having the stat&, at proper time times the probability
of a transition fromK, to K; in the time interval {t
+dt).

From Eqgs.(78) it is easy to obtain the differential equa-
tions

P11(tte)=—[T1(t)+ yslp1a(t|to) + To(t) Pas(tito),

Pay(tlto) = —[Ta(t) + yslpaa(t|to) + T1(t) p1a(t/to).
(79

These rate equations are more easily solved by writing
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P1a(t[to) =wyy(t,tg) Es(t—to),

Pa1(t[to) =Wa(t,tg) Eg(t—to),

where, of course,

(80)

Eqt—to)=e 7stt0), (81)

From Egs.(79) and (80), we obtain equations free of the

decay rates:

Wiq(tto) = = To(t)Was(t,to) + Ta(t)Was(t, to),
Woy(t,tg) = = Ta(t)Was(t,to) + To(t)Wis(t,t),  (82)
and these give
Wis(t,to) +Was(t,to) =0,
(83

Wia(t,tg) —Way(t,tg) = — 2T 1 (t)Wyg(t,te) + 2T (1) Wpy(t, to),

From the first of equation&3), one obtains
W1(t,tg) + Way(t,tg) = Wia(to,to) +Wai(to,to)
= Paa(tolto) + Parltolto) =1, (84)
because of Eqg77), (80), and(81). It then becomes useful
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From Egs.(86) and (89), we obtain

1
Wy(t,tg) = §+ >

t
1+f dt’E‘l(t’,tO)B(t’)]
to

X E(t,tg),

11 t
W21(t,t0)=§—§[1+ tdt’E‘l(t’,to)B(t’) E(t,ty).
0
(92

Remembering Eq80), the probabilities are

P11(tlto)=

1 1 ! =141 4
§+§{1+£Odt E-L(t",ty)B(t )]E(t,to)
X Eg(t—to), (93

P2i(tlto) =

11 1 ftd’E’l’ B(t’
E_E + tot (t -tO) (t)

XE(t,to) |Es(t—to).

This solution is of no direct use because it contains the un-
known ratesT,(t) and T,(t). It will nevertheless be very
useful in deducing the incompatibility between local realism
and quantum mechanics in the case of correlated kaon pairs.
A symmetrical argument starting from rate equations
closely similar to Eq(79), but containingy, instead ofys,
can be developed fqa(t|ty) andp.s(t|ty), and leads to the
following results:

to expressw;; andws,, in terms of their sum and their dif-
ference, the latter defined as

W(t,tg)=wq4(t,tg) —Wa(t,tg), (85
and one obtains

Wyt to) = 3[1+W(t,tg)], Walt,tg)=3[1—w(t,t)].
(86)

The second of equation83) then becomes R - |
Auatons3 paitlte) =[5+ 5 1+ | dvE o) )}E(t.t())
W' (t,tg) = —W(t,t) A(t)+B(t), (87) 0 .
h XEL(t—to),
where (94)
AD=T,(1)+Ty(1), B(t)=Ty(t)—Ty(t). 88 11 t - ~ ~ ]
(=T () +To(t) (O=Ta(t)=Ty(t). (89 Pas(t]to) = 5 1+J dt’E‘l(t’,to)B(t')}E(t,to)
In the present situation the following “initial” conditions fo :
must be satisfied: XEL(t—to),
tolto) = tg,tg)=1 tg,tg)=1.
P11(tolto) =W1s(to,to) = W(tg,tp) (89 where
The solution of problent87)—(89) is given next.
~ t ~
XIl. SOLUTION OF THE RATE EQUATIONS E(t’tO)EEXp[ B ftodt Alt )] (99
The formal solution of the first-order differential equation
(87) is well known to be and
A(=Ty()+Ty(t), BO=Ty(t)=Ta(t).  (96)

W(t,to)=+W(to,t0)+f:dt’E‘l(t’,tO)B(t’)]E(t,to),
0

(90 In Eq.(96), T4(t) is the transition rate at proper timefrom
K3 to K4, andT,(t) is the opposite transition rate frok,
to Kj.

] If E(t,tp) is defined witht=t, andty=t,(t,>t,), from

where

t
dt’A(t")

to

E(t,to)zexp{ - (92 Eq. (90) it follows that



W(tb 1ta) =

1+ thdt’B(t')E1(t’,ta)}E(tb,ta)
ta

=E(tp,ta) +

ftbdt’s(t’)E—l(t’,O)] E(t,,0).
t

a

97)

The rate equation can also be solved by referring to the ini-
tial time zero. The solution can again be obtained from Eq.

(90) by putting to=0. Considering two different “final”
timest=t, andt=t,, one obtains

W(tb,O) = E(tb,O) +

ftbdt’B(t')E—l(t’,O)) E(t,,0),
0

w(ta,0)=E<ta,0)+{ f tadt’B(t’)Efl(t’,O) E(t,,0),
0
(98

from which

W(ty,0E~X(ty,00=1+ ftbdt’B(t’)E‘l(t’,O),
0

ta
w(ta,O)Efl(ta,0)=1+f dt’'B(t’')E~%(t’,0).
0
By taking the difference of these two equations, we have
t
fbdt’B(t’)Efl(t’,0)=W(tb,0)E*1(tb,0)
ta

—W(ta,O) E_l(ta,O),

and thus we obtain the most important term of E3y):

Ut“dt'B(t')El(t',O) E(t,,0)
ta

=wW(tp,0) —wW(ty,00E(ty,t,). (99
It follows by comparison of Eqg99) and (97) that
W(tp,ta) =W(tp,0) +[1-w(t5,0]E(ty,ta). (100

By introducing Eq.(100) in Eq. (86), rewritten withty=t,
andt=t,, one easily obtains

Woi(th ,ta) =Way(tp,0) = Way(ta,0)E(ty, ta). (101
From the second of equatioi®0), it follows that
Wai(th ,ta) = Por(ty|ta) Eg H(tp—ta),
Wos(tp,0) = Paa(tp|0)Eg (ty), (102

Wos(ta,0)= P2a(ta]0)Eg (ta).

Therefore Eq(101) can be used to dedugg,(ty|t,), which
turns out to be
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P21(talta) = Es *(ta)[P2a(ty]|0) — Pas(ts|0)
X ES(tb_ta)E(tb rta)]-

Exactly the same approach can be used to dedugé,|t,),
which turns out to be

Pasth|ta) = EL *(ta)[ Pas(tp|0) — Pas(ts|0)
XEL(tp—ta) E(tp,ta)].

(103

(104

It is now easy to reconstruct the interesting probabilig)
and obtain

— Bt
PRIK (ta);K(tp)]= % [P21(tp|0) — P21(t4|0)

ES(ta)

X [ P43(tp|0) — Paa(ta]0)

><EL('[b_ta)E(tbata)]- (105)

This result is of fundamental importance because it allows us
to use the single kaon theory of Sec. V-VIII, which de-
scribed kaonic evolution starting from proper time zero. The
probabilities p,4(ty|ta) and pas(ty|ts) cannot in general be
written as functions ot,—t,: this type of dependence is
equivalent to an action at a distance from the first observed
kaon to the second one, reducing the latter to the state of a
newborn particle it had at proper time zero. This conclusion
can be reached, for example, by considering the standard
matrix (47); a numerical calculation shows then that
P21(tyta) andpas(ty|ts) depend fully on their two time ar-
guments, and not just on their difference.

XIll. CONSTRAINTS FROM LOCAL REALISM

_ The unknown quantities in Eq109 are E(t,,t;) and
E(ty.ty). They can be used to deduce upper and lower
bounds for the left-hand side of EGL05). While a system-
atic investigation of this problem is left for a future paper,
here we will consider a particularly interesting lower bound
which turns out to be violated by the quantum-mechanical
predictions. Given that botA(t) and A(t) are never nega-
tive, as follows from definitiong88) and (96), from Egs.
(91) and(95) one obtains

0=<E(ty,ty), E(ty,ty)<1. (106
Observing that in Eq(105), E(t,,t,) andE(t,,ty) multiply
only negative terms, we can take for them the value 1, and
obtain the inequality

P'RIK(ta);K(tp)]=

Ev(ta)
- [P2i(ts]0) ~ Pi(to]0)

Es(ta)
4
X [P4a(tp|0) — Paa(ta| O)E(ty—ta)].
(107

X ES(tb_ta)] +
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The elementary probabilities entering in E§.07) can be
found in matrix(56), the result being, for timé,,

P21(tp|0) = Es(tp) Q_(tp) — p(tp),
P43(tp|0) =E| (t,) Q_(tp) + p(tp).

Strictly similar results hold for tim¢, . Therefore Eq(107)
becomes

(108

EL(ta)

PYK (ta)iK (1) 1= 5 {[Es(to) Q- (1) ~ p(ty)]

—[Es(ta)Q_(ta) — P(ta)]ES(tb_ta)}

Es

ta
+ El ){[EL(tb)Q—(tb)+P(tb)]

—[EL(t)Q_(ty) +P(ta)]EL(tb_ta)}-
(109

There are now two important remarks.

(1) p(tp) enters into Eq(109 multiplied by —[E, (t5)
—Eg(ty)1/4, which is never positive becauses™> 1y, .
Therefore one can minimize E¢L09 by taking the upper
limit (59),

Pmad th) = Es(tp) Q- (tp). (110
(2) p(ty) enters into EQ.(109 multiplied by a factor
clearly vanishing for t,=2t,, the factor being
[EL(t)Es(ty—ta) —Es(t)EL(ty—ta) /4. Therefore it is
convenient to make(t,) disappear by considering E4.09
only for t,=2t,.
Thus we can write
PLRIK(t2);K(2t2) 1= Pl K (t2)iK (28],

min

(111

where

Es(ta)
A2t

PLRIK(ta);K(2t,) 1=

+ ES(Zta)]Qf(Zta)
- EL(ta)[EL(ta) + ES(ta)]Q—(ta)}'
(112

The great advantage of Eq112) is that all terms on its

right-hand side are known and calculable. A meaningful
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TABLE I. Numerical comparison of the quantum-mechanical
prediction with the smallest possible probability of all local realistic
theories.

Ysta PER[K(ta) K(2t2)] POMIK (t,),K(2t)]
0.2 0.0044 0.0018
0.4 0.0118 0.0051
0.6 0.0171 0.0087
0.8 0.0195 0.0115
1.0 0.0192 0.0133
1.2 0.0174 0.0142
14 0.0148 0.0144
16 0.0119 0.0139

of the concrete feasibility of an experiment choosing be-
tween quantum mechanics and local realism.
A critical discussion of the theoretical studies of the EPR

paradox fork°K° pairs was made by Ghirardi, Grassi, and
Weber[15]. Their general conclusion was thatdafactory
facility is not useful for opening new ways of testing quan-
tum mechanics versus alternative general schemes of the lo-
cal realistic type. This paper is a good example of how a
wrong conclusion can be inferred from a set of generally
correct premises. The main argument presented by the three
authors is the fact that Bell's inequality, written in terms of
four different times of flight of the kaons, is not violated by
the quantum-mechanical two-time joint probability for cor-
related strangeness. This conclusion is correct, but this does
not mean that a compatibility exists between local realism
and guantum mechanics for kaon pairs: In fact, Bell's in-
equality is only one of the many consequences of local real-
ism. Concerning Refl8], the three authors objected to the
generality of the local realistic approach formulated with a
left-right and particle-antiparticle symmetry. It is possible to
agree with them once more, but not with their general con-
clusion that meaningful tests of local realism are impossible
with a ®-factory facility. In fact, in the present paper we
have shown that the opposite is true. A systematic numerical
comparison between the quantum theoretical predictions and
the upper and lower predictions of local realistic theories will
be given in a forthcoming paper.

APPENDIX: ELEMENTS OF REALITY
FOR STRANGENESS ANDCP

Local realism allows one to attribute elements of reality to

comparison can then be made with the quantum-mechanicakch one of the two kaons belongingd8K° pairs described

expression(60), which for t,= 2t, becomes

Eg(t)EL(t,
POMTK (K (2ta)] = —S = [, (1) + Eq(ty

—2VE (t,)Eg(t,) cosAmt,].

(113

A numerical comparison of Eq§112) and(113) for t, rang-
ing between 0.25* and 1.6/5 is given in Table I.

by state vectoK4), if this description is assumed correct at
least in the predictednonparadoxical correlations inCP
and inS. The reasoning starts from the following assump-
tions.

(2) If, without in any way disturbing a kaon, we can pre-
dict with certainty the value of one of its physical quantities,
then there exists an element of physical reality corresponding
to this physical quantitythe EPRreality criterion).

(2) If two kaons are separated by a large distance, an
element of reality belonging to one of them cannot be cre-

In this region, quantum mechanics violates the local realated by a measurement performed on the other(locality).

istic limit by 28%, on the average. We take this to be a

(3) If at a given timet a kaon has an element of reality,

sufficient indication of the physical interest of our results andthe latter cannot be created by measurements on the same
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kaon performed at tim¢, if t'>t (no retroactive causality ~ of strangeness $\,==*1 corresponds t&==*1, respec-

If one measureP on thea (left) kaon of a pair de- tively). For both left- and right-going kaons th_e two cases
scribed by the state vect¢d), one finds either 1(Kg) or 7‘2:0 +1 andh,=—1 appear at random and with the same
—1(K) with the same frequency. This allows one to predict(50 &) fre_quency. : . C
with certainty that a futur€ P measurement on the (right) The flrsft ell(ement gf rr]eal|t3l\1hdescr|bis the objective
kaon will give the result-1(K,) or +1(Kg), respectively. property of & kaon to behave either a€ &=+ 1 Ks or as

Using the EPR i iteri Hribut | CP=-1 K. The second element of realit, describes
sing the rea .'W criterion one can attribute an element, objective property of a kaon to behave either &=a
of reality A ; to the right-going kaon. Without loss of gener-

. . SRR +1 K% or as aS=—1 KO The important difference be-
ality one can assuma, to be dichotomic, withh,=*1 00, N, and X\, is that, while \; describes a time-
corresponding t&C P= =+ 1, respectively.

) L independent propert describes an instantaneous prop-
The element of reality;, because of locality, is not cre- P Propert , prop

erty: if a kaon of a pair is known at timg, to have S=
ated by the measurement made on the other kaon. Therefore; 4na can expect that, at a later time, it could have ac-

it also exists(even if unknown in the individual cas& no quired S=—1 because the well-known oscillations &

such a measurement is made on the other kaon. modify the S=*1 populations. Since at every instant the
The element of realitk,, because of the assumed lack of yajye of ), is well defined, at every instant the kaon has

retroactive causality, is not created by a future measuremeither theS= + 1 or theS= — 1. Sudden jumps between the

on the same kaon to which it belongs. Therefore it exists als@yq situations are, therefore, possible, but they must be si-

if no such a measurement is performed. _multaneous for the two kaons in order to preserve the perfect
The situation is fully symmetrical between left and right. antj correlation inS that must hold at all equal proper times,

Therefore, the previous reasoning allows one to a_ssomate% predicted by the state vectd). This simultaneity can be

N1 glement of reality both with tha (left) kaon and with the compatible with locality, e.g., if the time of the jumps is

b (right) kaon. _ ~ predetermined when the kaons are produced in the decay of
Conclusion:each kaon of every pair has an associatedihe d meson.

element of reality,, which determines a well-defined CP Quantum mechanics makes also the nonparadoxical pre-

value(\;==1 corresponds t€P=*1, respectively. For  giction that a|Kg) can be observed with equal probability to

both left- and right-going kaons the_ two cases=+1 and o a|K® or a|K®), and that the same holds for i, ) [see

\;=—1 appear at random and with the sat®®%) fre-  £qg (g) and(9)]. Correspondingly, in our theory a kaon with

quency. ) . A1 given is assumed to have with equal probability=
A second element of reality, connected with strangeness 'y "gnqx.=—1. We see thus that the four possible kaon
S, can be introduced. The reasoning is now as follows: If ONGyhes Withz)\l= +1 and\,=*+1 will appear initially with

measuresS on thea (left) kaon of a pair described by Ed. e same frequency 25% when Ed) applies.

(4), one finds either+ 1(K°) or —1(K°) with the same fre- One of the virtues of the previous argument is that it
quency. This allows one to predict with certainty that&n shows the quantum-mechanical correlation€ig and inS
measuremerdt equal proper timen theb (right) kaon must  predicted by the state vecté) to be nonparadoxical, pre-
give the result—1(K° or +1(K°), respectively. Using the cisely because they are exactly reproduced by the local real-
EPR reality criterion one can attribute an element of realityistic approach. Other predictions of E¢4) are instead
A, to the right kaon. Without loss of generality one can “paradoxical,” that is incompatible with local realism, as
assumex, to be dichotomic, withh,= =1 corresponding to  shown in the final part of this paper.
S==*1, respectively. Notice that local realism implies that the two observables
The element of realit\., cannot be created by the mea- SandCP, described quantum mechanically by noncommut-
surement made on the other kadocality). Therefore it also  ing operators, must be simultaneously predetermined by ele-
exists, at least instantaneously, if no measurement is made enents of reality belonging to any given kaon. This is of
the other kaon. course the standard treatment of “incompatible” observables
The element of reality\., cannot be created by the mea- in all “hidden variable” theories. The necessary codefinition
surement on the same kaon to which it belofiye instru- of S and CP can be rigorously justified by applying local
ment works properly and could lead to a result different fromrealism to a kaon belonging to a correlated kaon pair, as
the predicted onje Thus it exists also if no such a measure-shown above. Nevertheless, it is very natural to believe that
ment is performed. all kaons have the same basic properties and to extend the
Conclusion:each kaon of every pair has an associatedvalidity of Eq. (10) to single kaons even when they do not
element of reality,, which determines a well-defined value belong to an EPR pair.
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