PHYSICAL REVIEW A VOLUME 56, NUMBER 1 JULY 1997

Quantum manifestations of bifurcations of closed orbits in the photodetachment cross section
of H™ in parallel fields

A. D. Peters;?3C. Jaffe! J. Gac}® and J. B. Delog®
!Department of Chemistry, West Virginia University, Morgantown, West Virginia 23506
2Colorado Northwest Community College, Craig, Colorado 81625
SHyperfine, Inc., 4946 N 63rd Street, Boulder, Colorado 80301-1843
“Department of Physics and Chemistry, Kean College, Union, New Jersey 07083
Department of Physics, College of William and Mary, Williamsburg, Virginia 23187
JILA, University of Colorado, Boulder, Colorado 80309-0440
(Received 3 June 1996; revised manuscript received 31 January 1997

In the preceding paper, we showed that the semiclassical approximation diverges at a bifurcation, and that
this divergence coincides with the passage of a focused cusp through the origin. Here we obtain a wave
function in the vicinity of this cusp, and we use that wave function to eliminate the divergences in the
photodetachment cross section. To describe the focused cusp, we first discuss the wave function of an ordinary
two-dimensional(nonfocused cusp. This wave function is known as a Pearcey function, and it has been
studied extensively. Then we show how the formulas that lead to the Pearcey function have to be modified to
describe a cylindrically focused cusp. The resulting wave function turns out to be given by an integral of
Fresnel type containing within it a cylindrical Bessel function. This wave function is used to derive a formula
for the photodetachment cross section near a bifurcation. That formula is a simple closed-form expression
containing a Fresnel integral. Comparison with exact quantum calculations shows that this corrected-
semiclassical formula is quite accurat81050-294®7)03406-9

PACS numbd(s): 32.80.Gc

I. PHYSICAL IDEAS AND NUMERICAL CALCULATIONS Lagrangian-manifold methods. Indeed, this is the first non-

trivial case we have come across in which the whole

Cusped caustics are familiar objects in ray optics and.agrangian-manifold formulation of semiclassical theory can
semiclassical mechanics. A theorem from *“catastrophebe carried out analytically, so it is worthwhile to present it in
theory” asserts that such cusps are one of the two generigetail. Finally, the systematic treatment given here provided
forms of caustics in a plangl]. It is well known that at a the foundation for our analysis of a more difficult case, ex-
simple boundary between classically allowed and classicallgijtation of a neutral atom in an electric figld].
forbidden regions(a fold causti¢ the divergent primitive- We show that the wave function near the focused cusp is
semiclassical wave function must be replaced by an Aingiven by Eq.(5.19. The contribution to the photodetachment
function, which is smooth at the caustic and which describegross section near a bifurcation arising from the combined
diffraction or tunneling into the classically forbidden region. effects of the parallel orbit and the bifurcating orbit is given
For a cusped caustic, the relevant diffraction integral ispy Eq.(5.25, with the functionF, given by Eq.(4.159.
known as a Pearcey function. Photographs, contour plots, We have used these formulas to compute corrected-
and formulas for this function are given in Rg2]. semiclassical photodetachment cross sections. In Fig. 1 we

Our structurg 3] is slightly different: the cusp lies on an show an energy range close to the fourth bifurcation of the
axis of cylindrical symmetry, so it is not one of the generic parallel orbit. The heavy line is an “exact” numerical quan-
structures. Nevertheless, such focused cusps are familigim calculation, and the light line is the corrected-
structures in geometrical opti¢d]: they cause the simplest semiclassical result. The divergence in the primitive-

aberration of the focus of a lens, spherical aberration. Theemiclassical formula has been corrected, and the two
relevant diffraction integrals are closely related to Fresneformulas agree rather well with each other.

integrals[5].

In this paper we show that similar Fresnel-Bessel integrals
dgscribg the wave function gnd the recurrence strgng.th ata || CENTRAL PRINCIPLE OF THE DERIVATION
bifurcation of the parallel orbit. The derivation we give is of
some mild interest in itself—instead of the language of A wave function¥(q,,...,q,) must be finite everywhere
nineteenth-century optics, we use the language of twentiettin order to be an acceptable solution to the Sdhrger
century semiclassical mechanics, and particularly the deequation. However, semiclassical approximationst(q)
scription of trajectories and wave functions in terms of La-contain divergences at any boundary between classically al-
grangian manifolds. This approach is the modern expressiolowed and classically forbidden regions, and at any focal
of older methods, and it is also more complete and systenpoint or focal line. “In general” such divergences can be
atic (less “ad hoc¢') than earlier approaches. In the presentrepaired locally by transforming the wave equation to some
case, simple trigonometric expressions can be given for alinixed position-momentum representation, defined as a Fou-
properties of the classical orbits, and therefore this systerier transform of the wave function over some selected set of
provides an excellent paradigm for the application ofqg variables,
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®) This principle has been fully elaborated by Maslov and Fe-

doriuk [8] and Delog9].

The words “in general” and “almost always” have a
precise meaningsame as ‘“generically). They mean that
exceptions to the rule exist, but they are indeed exceptional
in the sense of being a set of measure zero in some suitably
defined space. In physics, we find exceptional cases regularly
because we often deal with systems having special symme-
tries. In the present case, our system has cylindrical symme-
try, so it is quite nongeneric, and we must consider the pos-
sibility that the general principle might fail. In fact, we find
that it works. A good description of the wave function for the
5 8w s s s s s w s e focused cuspl(x,y,z) is obtained by transforming andy
to p, andpy, constructing a semiclassical approximation in
the mixed spaceV(py,py,z), and then transforming back
using Eq.(2.2).

©,(units of a3)

0.01

Energy (cm’)

FIG. 1. Exact quanturiheavy ling and semiclassicaflight
line) calculations of the photodetachment cross section in the vicin-
ity of the fourth bifurcation of the parallel orbit. The cross section is Ill. THE WAVE FUNCTION
in units of bohrs[2], and the energy in units of cm. (a) The FOR A TWO-DIMENSIONAL CUSP
primitive-semiclassical approximation has diverging oscillations. )
(b) The corrected approximation using a Fresnel diffraction integral AS stated earlier, formulas for the focused cusp can be

is much better. derived as natural modifications of the formulas for an ordi-

_ nary two-dimensional cusp. Here we set up those formulas in

W(P1,P2s-+ P} Uj+15---.0n) a manner that will lead us to the necessary modifications.
E(Zwih)’“zf dg;---dg; A. Classical orbits locally forming a cusp

J. As always, semiclassical wave functions are constructed
. from properties of orbits of classical particles, so we begin
Xex;{ 'g’l P/ 7 2.3 by forgetting quantum mechanics, and discuss only classical
orbits.
The integral may be performed over any subset of
(d1,...,.9n) or over all of them(7]. 1. A free-particle cusp
“Almost always,” there exists a representation in which

the semiclassical approximation does not diverge, and, “for We define a “free-particle cusp” as an arrangement of
bp 9, ' _“classical orbits having the following propertied) In the

small 7, cpnst_nutes an adequatg description of the exaCtrelevant domain of configuration variablgs: (x,z), the par-
wave function in that representation. From that wave funcs

. . ) i ticle moves under the Hamiltonian
tion [call it ¥(p,0,) ], an accurate configuration-space wave

function can be constructed by inverse Fourier transforma- -
tion, H(px.Pz.X,2)=(p5+pz)/2m, (3.9)

W(d1,.-Gn)-
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Equation(3.49 satisfies Eq(3.3) for anynéz(px); later we
will show that the cusp structure is obtained if the power

series expansion oB,(p,) starts at the quartic term. The
parameterz; will become the tip of the cusp, and fa,

negative, the cusp points upwarddfis positive.S; is an
arbitrary additive constant. The whole generating function

will later become the phase of the wave functibp, ,z).

From Egs.(3.2) and(3.4), the surface shown in Fig. 3 is
specified by the formulas

PA(Px,2) = PA(Py) = — (2ME— p5) Y%= — (P?—p})*?
(3.59

X(pxaz):px(z_zc)/pz(px)_ap§+"' ) (3.5b

which is called the canonical representation of the Lagrang-
ian manifold. For future reference, we note that

IX(Px,2)
— ——=PAz=20)/pj(p)—3Bapi+--+, (3.50
IPx
where

FIG. 3 Lagrangian man_ifolds_ associated with cugps.For a P=(p)2(+ pg)llzz(sz)l/2>0_ (3.50
free-particle cusp, the manifold is a surface that can be ruled by
straight lines organized so that sections form sigmoid curi®s. . . .
Equationg5.1) give curved orbits that form a more complex global 3. Local parametric representation of the cusp manifold

structure, but a similar local structure. The same two-dimensional surface and its generator can
. _ o also be represented parametrically, by using two alternative
i.e.,Xx=py/m, z=p,/m, p,=p,=0, so all orbits are straight variables ¢’,6’) to span the manifold, and specifying
lines. (2) All orbits have the same value &f, so the motion  q(t’,¢'), p(t’,6"), and§(t’,0’). Each orbit is labeled by its

on all is at the same fixed spee@) The orbits come to-

. ' IS C( ~angle#’, and the position along each orbit is defined by the
gether in the geometrical structure shown in Fig. 2. ThiSgcal time variablet’:

structure will be defined further by formulas given below.

p,(t’',6")=—P cosd’,
2. The Lagrangian manifold and its canonical generator

The orbit structure shown in Fig. 2 can also be described Px(t’,8")=—P sing’,
by a smooth two-dimensional ruled surface in the four- N ) )
dimensional p,p,xz) phase spacéFig. 3). That surface is 2(t,6")==Pt'/m cosp’"+25(6"),
called a Lagrangian manifold. It has the following properties. t’ 9')=—Pt'sing’/m 36
(1) The variablesp, andz can be used as coordinates span- X(t", ") I ' 38

ning the relevant local domain of the manifol®) There The cusp structure is contained in the functigyé’),
exists a canonical generat&(p,,z) such that the embed- which is the location on the axis at which the orbit having
ding of the manifold in phase space is described by the twangle 8’ crossesx=0. This quantity can be related to the
functions[10] parameters4.,«) in the canonical representation by setting

- x=0 in Eg. (3.5b and solving forz, which then represents
X(Px,2)= = dS(px,2)/ py, (328 z,(0'):

D,(Py,2) = IS(py,2)/ 9z. (3.2b 2(x=0)=20(8")=2,— ap2p(py) + - (3.7a

(3) The generator satisfies the Hamilton-Jacobi equation in

=z.— aP3sirfg’'cost’ + - -
(py,2) space,

(3.7b
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and This is the characteristic formula for a cusped caust{e)
o o , , x(z.—2)%?% as stated earlier, is the tip of the cusp, and
2(t',0')=2z,— aP%sir’§' cosy’ — (Pt'/m)cosg’ +- - - the cusp opens downward far>0 if p,<O.
379 Additional information is obtained from the parametric
~2,— aP%0'2— (Pt'/m)co’ +--- | IrEepsre(zeErs;tatlon of the configuration-space Jacobian. From

(3.70 4s.(2.9),

A local parametric representation of the canonical generator It',0)= 9(x,2)

follows immediately, ' at',0")

2 4

S(t',0)=S(py(t",0"),2(t",6"))
=P2%t'cog0’'Im+ aP*(sirfg’ — isin*e’)
+eee (3.9

P aP
=— —t'+ —— (2sirfg’' — 3sirt’).
m m

(3.13

(i) If 8'=0, thenJ(t’',0) passes through zero from posi-
The *“configuration-space generator” is defined such thatijye to negative at’ =0. This point(' =0, t' =0) is located
~ at (x=0, z=z.), i.e., at the tip of the cusp.
S(4)=S(x,2)=S(px(X,2),2) + px(X,2)X.  (3.99 (i) For 8’ =0, we need to evaluatg (x=0, z=0). This
antity is inversely proportional to the classical density of
rticles moving parallel to the axis through the origin.
rom Egs.(3.709 and(3.13 evaluated a#’' =0,

This quantity does not have a good representation inside thg!
cusp, because three sheets of the manifold project to a sing
point in configuration space. However, it does have a goo

parametric representation, J(X= 0,z=0)=— ch/mEJH . (3.14)

I ol — P2+ 40 i 1 _ 3airdpn’
S(t',6")=Pt"/m+aPY(sint g’ — 2sirfe’) - (3.9b We see that iz, <0 (cusp is below the origin J, is nega-
~P2t'/m+ aP*9'2+ -+ | (3.99 tive; when the cusp touches the origin, €0), J; vanishes,
and the classical density goes to infinity; finally when the
[This quantity is related to the phase of the configurationcusp is above the origir; is positive.

space wave functio¥’ (x,z).] (ii) In the last casez.>0, there is another orbit passing
through the origin at some angle. We need the Jacobian as-
4. Jacobians and the local structure of the cusp sociated with that “new” orbitJ, . From Eq.(3.7d we find

The density of particles flowing along classical orbits isthat this orbit approaches at an angle.

related to Jacobians defined either ix2z) space, py,2)
space, or in the parametric representatithd’).
First let us define

0'°=z./aP3,

so again using Eq3.13,

~ ~ (Py.Z _ _
J(px,z)EJ(t’,a’)E%z—chos?H’/m:—pf/m: J,=2Pz=-2J,. (3.15
—(P2—p3)/m. (3.10 The Jacobian associated with the new orbit at the origin is

minus twice that associated with the parallel orbit. When the
cusp is above the origin, the Jacobian for the parallel orbit

The derivatives follow from Eq(3.6). This Jacobian is in- h d ) h than has that for th
versely proportional to the particle density as seen in as ungergone one more sign change than has that for the

) . . L new orbit.
z . Sin is nonzero in the vicinity of th : _—
gtﬂg,d)eﬁgﬁ‘;eis%nit?z S nonzero in the vicinity of the cusp, This fact has consequences for the Maslov indices. It
The corresponding configuration-space density is i< cor> that for a two-dimensional cusp, the Maslov index
versely proportional to the Jacobian for the parallel orbit will be equal to that of the new orbit

plus one. As the cusp passes through the origin, the Maslov

A(X,2) IX \— index of the parallel orbit increases by 1, and the Maslov
J(x,2)=J(t',0")= .0 :((?_ J. (3.11 index of the newly created orbit is equal to that of the par-
' Px allel orbit just before the bifurcatiofiL1].
This quantity vanishes only whe@X/dp,) vanishes. To find
these points(i.e., to find the caustjcwe first “solve” B. The local wave function for a two-dimensional cusp
Xl 9py=0 for py, We now obtain a local semiclassical approximation for a
3ap2=P%(z—2.)/p3 o wave functlon near the cusp. A primitive-semiclassical wave
*Px ( o)/ Pz(Px) function is constructed following the standard rules. We start
on the right-hand side approximage=—P if p, is small, by Specifying some initial line or curve ix(z) space, the
and then substitute the result in(8.5b to show that the ~POints of which are denotex,z,. At each initial point we
caustic occurs when need to have the wave functioh(xp,zp) given. We follow

trajectories from each initial pointxg,z;) to each point
X(z)=*2[(z.—2)/3aP]¥?+--- . (312  (x,2). Then
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‘I’(X,Z)=\I’(Xo,Zo)U(Xo,Zo)/J(X,Z)|1/2 [At a lower level of accuracy, one can evaluate the inte-
_ gral (3.213 by the stationary-phase method. That gives back
X exp[S(x,2)/f— pwl2], (3.16  the primitive-semiclassical approximation, with all its diver-

hereJ ands tivelv. the Jacobi d the ¢l .gences intact. At a higher level of accuracy, one can expand
wheré~ ands are, respectively, the Jacobian and the classly, preexponential factor in powers pf and z—z.). The

cal act|(_)n integrated _fromx(),zo) 0 (x,2), and u is the resulting refined version of Eq3.21H would also contain
Maslov mdex. The pointsx, , z) are regqrded as functions derivatives ofU(¢&, 7). Even more refined approximations
of (x,2). Inside the cusp, three trajectories pass through &V=on be made. by careful mapoin ?éﬁ 7) onto the stan-
ery point, so the wave function is a sum of three such termsd d form . 4 y 2 W pdp 9 i Py d fth
As shown earlierJ(x,z) vanishes on the cusped caustic, soﬁg;mgr:?;fu gu”—nu. We do not need any of those re-
this wave function diverges on those curves.

A suitable mixed representation gives a valid semiclassi-

cal approximation. Since the Lagrangian manifold Kias
cally) a good projection intoffy,z) space, we can use that  Now we modify the above formulas to construct a wave
{PxyZo}, on which ¥(py ,zo) is known, we again follow tempted to simply replacp, by p,. but that will not give

IV. THE WAVE FUNCTION FOR A CYLINDRICAL CUSP

trajectories to final pointsp,z), and the correct result. The cylindrically focused cusp is a three-
~ ~ _ dimensional object—i.e., the caustic is a two-dimensional
W(py,2) =W (Px,:20)[I(Px,20)/I(Px,2) [ surface of revolution in the three-dimensionalyg) space.
- The family of orbits is obtained by sweeping Fig. 2 around
X exp[S(py,2)/h—vml2], (3.17  thez axis. The associated wave functions are focused onto

the z axis, and therefore are much more intense on that axis

wherev is the Maslov index for the mixed representation. lnthan is predicted by the Pearcey function.

the present case, we tak¥(p,,z) from Eg. (3.4 and

J(px.2) from Eq.(3.10, to obtain A. Local parametric and canonical representations
{I}(px,z)z\ll(pXoyzoﬂ’j( px0,20)|1/2| m/p2(py)| M2 As in Eq.(3.1), the local Hamiltonian is now
X expli[ po(po) (2= 20) + L ap*1it —ivar/2). H=(p3+pj+p;)/2m=P?/2m=E, (4.13
(3.18 p*=p{+pj=2mE—p;, (4.1b
As stated earlier, in the vicinity of the cusp, does not o (DP2_ n2\1/2
vanish, so this representation is credible. The corresponding P=(P) (PT=p9™ (4.19
configuration-space wave function is and the local parametric representation of the orbitgcis
e _ Eq. (3.6)]
V(x,2)=(—2 iﬁlzf exp(ipx/h)W(py,z)dpy.
( ) ( ™ ) Cw F( pX ) (pX ) pX px(t',ﬁ',(p')z—PSiﬂﬁ’CO&p',
(3.19
_ _ py(t’,0",¢")=—P sing’sing’,
Near the cusp, it can be reduced to a Pearcey function. Con-
nor [2b] defines the Pearcey function as p,(t',0',¢")=—P cos’,
U(§,7;)=f exdi(u*—¢u?—qu)]du. (3.20 X(t',0",0")=px(0',¢")t'/m,

If we substitute Eq.(3.18 into Eq. (3.19, expandp, in Y0 @) =py (6, 0Tyt m,
powers of py(p,=—P+ p§/2P), and approximate every- 2(t',0" ¢ )=2.— aP30' 2+ p,(6' 0" )t/ Im+ -+,
thing except the exponential by constants, we find

const | . p(t', 0" ¢")=|pt'|/m=]|P sing’t'|/m. (4.2
V(X2)= Zar X —1P(z=zo) /A —ivml2] Suitable canonical coordinates for the Lagrangian manifold
are (py,py,2z), and the generato%(px,py,z) is obtained

X fm ex%i % apt+ ZZ_PZC p2+Xp, / h]dpx from Eq.(3.4) through replacing by pZ+ p’=p?:
(3.213 S(px.Py,2)=Sc—[2MmE—(pZ+p;) Y4z~ 2,)
& 2 2\1/
— const< exif —iP(z—zg)/%i — i virl2] - (alh) + S, (pi+py) 2],
XU ((zo—2)/12P(fia) Y2 x1 %3411, (3.21h Sy(p)=tapi+--- . (4.33

Plots and pictures of these diffraction functions near a cusgo show that this gives a cylindrically symmetric cusp, we
are given in Ref[2]. just note that(i) for p,=0 it gives the same picture as the
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two-dimensional cuspf{ii) §(px,py,z) is independent of W(x,y,2)=Y(X,Y0:20)|I(X0,Y0.20)/I(X,y,Z)|?
angle in thep,,py plane. It follows that we can write it as is i 2 48
S(p,z). Various alternative representations will be useful X exiS(x.y.2)/h = pml2]. (4.9

later: . . .
ater Again we combine such terms wherever two or more trajec-
_ _ 7—7 1 tories contribute. This wave function is well behaved every-
S(p,2)=S;—P(z—z)+ 2PC p?+ 2 apt+---, where outside the cylindrical-cusp caustic, but it diverges on
(4.35) that caustic surfacpbecausel,(p,z) vanishes therg and it
' diverges on the axisinsidethe cusplbecause/p, vanishes
_ - there.
S(p,2)=S(p.0)+pAP)z, (4.30 Therefore we go to a mixed representation—appropriate
1 coordinates arep,py,z), and this wave function is again
< <z % 4 calculated by integrating trajectories from an initial surface
=S,— == p°+ - +-- . N
S(P.O=5 2p P T g P ’ (4.39 (Px,:Py,:20) ON Which it is already known:
So=Sc+Pz. (439 V(py.Py.2)=A(Px.Py . 2)exiS(p.2) /1~ vl2],
(4.3f) (4.9
[In our Taylor expansions, we drop terms proportional to ~ = ~ ~ 112
(z—2z;)p* and all higher-degree ternjs. A(px,Py,2) =W (Py Py, 20) [ I(Pxy: Py, 20)1I(Px Py, 2) |2
From the formula= —34S/dpy, y=—dS/dp,, one can (4.10

easily show that ' . L .
Then the configuration-space wave function is obtained from

p(p,2)= |&§(p,z)/ap|. (4.4) the two-dimensional Fourier transform,
The local Jacobian is equal times the Jacobian for the WXV 7)=(—2mik _1J exd i (Dux+ /%
two-dimensional cusp, which we now cadl(p,z), (xy,2)=(=2mi%) Hi(px+pyy)i]

j(pXipy’Z):‘a(t/ 0! QD,)

=p[J2(p,2)| =pp2/m,
At this point, (x,y) and (py,py) are distinct, independent

(4.53 variables(On the Lagrangian manifolkl andy are functions
— P3co26’sing’/m (4.50 of p, andp,, but here we are integrating over the momen-
’ ' tum plane). Transforming to cylindrical coordinates in both

All the properties of the Jacobiah that were described in spaces
Sec. Il A 4 still hold, except that now the two-dimensional = _
Jacobian is multiplied byp. (When the relevant ratio of Ja- =P COSp, Px=P COSpy,
cobians is calculated, that factor will drop quit. _ _

There again exists a configuration-space generator y=p Sing, Py=p SiNpy,

S(q) =S+ pyx+pyy=S+pp (4.9 PxX+ Pyy=Ppp COL o~ @p), (4.12

(_vvhere_ Px an(_j py are to be ex.pressed. as functions of con-5 presuming thaf'(px Py,,20) is independent of, , we
figuration variableg]), and we find that it has the same para-c 4ot the resultin V\?aveo function depends onlveoand
metric representatio3.9b), and (3.99. The configuration- 9 P Yo

space Jacobian '

| axy | | apa) | ; V(x,y,2)=¥(p,2)
(X,y,Z)— (?(t/,a/,(P;”—P ﬁ(t/,af)|—P 2(P:Z) | _ '
4.7 =57 | Alp.z)explilpp cose— ¢p)
is equal top times the two-dimensional Jacobian discussed in +S(p,2)/%i}p dp de,

Egs.(3.1)—(3.15.

i [~ -
B. Local wave function for the focused cusp h f Ap.2)Jo(pp/f)exiS(p.2)/ ]p dp.
Following the same prescription as before, the wave func- (4.13
tion is specified on an initial two-dimensional surface in con-
figuration spacdsuch asz, equals large positive constant Referring back to Eq(4.3b we see that we have an integral
trajectories are followed to relate{,y,,2), to (x,y,z), and  with at least second and fourth powersmin the exponent.
then We need some information about such integrals.
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C. Reduction to integrals of Fresnel type

i . -
We define integrals of Fresnel type to be those of the form? (P=02)= - exd —iP(z=2,)/7 ]A

© © Z—Z
sz g(e)exdif (e)/f]de, (4.14 xJ exp(i/ﬁ)(ae2+ < e)de, (4.163
0 0
where g(e), f(e) are smooth functions of, g(0)+0, =i(ha) Yeexgd —iP(z—z)/h]
f'(e)=df(e)/de is a monotonically increasing function of U
€, g(€)—0 sufficiently rapidly at largee that there are no XF1((z—2)/P(ha) DA, (4.16b

guestions about convergence. Such an integral has at mast L .
one stationary-phase poirit, wheref’ (¢) =0, in the interval This function is smooth and well behaved for aJl and it

[0). We need suitable approximations for this integral.contains_ the cor]tributions from all orbits that pass thrOL_Jgh
Those approximations are the following. p=0, with aII. divergences removed. The_ Bessel function
(a) If there is a single stationary-phase poiat0 corrects _the divergences due to the cylindrical focus, and t_he
Fresnel integral corrects the divergences due to the caustic.
The various asymptotic approximations to this integral

- ZWAh )1’29(%)eif(;),hei(WM)SQW(;) given in Egs(4.158—(4.150 can be shown to have physical
[f"(€)] meaning: every term in Eq$4.153—(4.159 corresponds to
) a configuration-space ter(d.8). The end point contributions
+ : g(0)elf(@/h (4.153 [Eq. (4.159 or the second term in E¢4.153] correspond to
f'(0) ' ’ the “parallel” orbit on thez axis that runs straight down

through the cusp. The stationary-phase tffirst term in Eq.
(b) If there is a stationary-phase pointat 0, (4.153] is present only inside the cusp, and then it corre-
sponds to the new orbit that passes thropgtD at an angle.
112 The formula(4.15b applies when the stationary-phase point
) g(o)eif(0>/hei(w/4)sgrf”(0)_ (4.15b and thez axis coincide. That is at the tip of the cusp. There
the contributions to the full wave function, including the par-
) ) ) ] allel orbit, the new orbit, and their neighbors all coherently
(0) If there is no stationary-phase point near the intervakgc sed together, add to one-half of the contribution of the
[0%), new orbit.
The other important special case occurs wipeis large

E 1( 2mh
N
2 \[f"(0)]

i% _ enough thapp/a>1 for relevant values op. In that case
FHWQ(O)G'”OW- (4.150  we can use the asymptotic approximation for the Bessel
function.
(d) Whenever we can truncate Taylor expansions, Jo(W) = (2mw) ™ Y2l W= 74) 4 g-iw=mid)) (417
f(e)=fo+ Betae?+-- , (4.159  The first of these exponentials gives in £4.13
20 1/2
g(e)=go+-- , (4.158 WV (p,z)~ %) exgd —iP(z—z.)/h]
: o i [« z—Z
F—(hla)"?F1(Bl(fia)")geeo,  (4.150 X fo ex;{g (Z p'+ S5 PP+pp }pl’zdp.
where (4.18

- Comparing with Eq(2.273 we see that this wave function is
Fl(g)EJ’ exp (u?+ Zu)du (4.159  very much like the Pearcey function, but it drops off more
0 rapidly with increasingp, as p~ Y2 This is typical of the
_ _ behavior of any wave function near a cylindrical focus.
is a complex Fresnel integral. The wave function for the focused cusp can be said to be
Equation(4.159 is derived simply by truncating the ex- of order unity at largep, of orders ~ Y2 everywhere on the
pansion at the terms listed. The others could then be derived axis and of ordef ~Y# on the caustic surface away from
from Eq. (4.15f by using familiar properties of Fresnel in- the 7 axis.

tegrals[5]. Actually Egs.(4.153—(4.159 also hold under
somewhat more general conditions—we are looking at
stationary-phase integrals with end poirit2], and they
have been analyzed carefully in REL3]. Everything we did in the previous two sections consti-
Now let us reexamine Eq4.13. At p=0, Jo(pp/%)  tuted a local description: the trajectories, manifold, and wave
=1, and[assumingA(p,z)=consi when we substitute Eq. functions were described in a small region of space close to
(4.3b and change variables = p?/2, we find the cusp. Therefore the formulas therein are very general;

V. “GLOBAL"” WAVE FUNCTION
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they describe orbits and wave functions in the vicinity of anyFor the expansion of, we definezy as the location of the
two-dimensional cusp or any three-dimensional cylindricallyparticle on the parallel orbit & cyclotron times:
focused cusp.

Now we need to show that the orbits of an electron in Zn=2(ty,00,=0) =Pty /m—teFstd/m.  (5.59
parallel fields actually form such cusps, and we need to
evaluate the important parametefor these cusps. After this  Then, from Eq.(5.14,
is done, we will need to find the wave function in the whole
space, the so-called “global{or at least county-widewave 2(t, 0y) = Zy + Pt COSo/M— Pty /m— e Fy(t2—t2)/m
function. More precisely, we need to connect the local wave ~ ~ °V N out N 2=ro N(5 5h
function near the cusp with that in other townships; specifi- '
cally, we have to connect it with the outgoing wave from the

atom. This will allow us to evaluate the previously ignored =2yt (Pty/m)(Cooy— 1)+ (P ooy~ eFty)

guantities in Eq.(4.10—the wave function on the initial X (t—ty)/m (5.50
surface and the ratio of Jacobians. We will find that in the
particular case we considek(p,z) is indeed equal to a con- Pty P,(tn  ou)
stant, which we will evaluatgEq. (5.19]. == 5 2 o (t=ty).
(5.50

A. Returning orbits and cusp structure

In the accompanying papgB], we gave formulas that ~ Do Egs.(5.4) and(5.5d describe a cusp? We compare
here constitute the “global” parametric representation of thewith Eq. (4.2), the local parametric representation, and we
electron orbits, see that they directly correspond. in the local representa-

tion is the same a8, in the global representation, ahdin
2(t, Oou) = Pt cOHy/M— 3€Fpt?/m, (5.13  the local representation is equivalentttety in the global
representation. The tip of the cuspis atzy, the position of
p(t, 0ou) = (P/May)sindgdsin w t|, (5.10  the particle moving on the parallel orbit ldtcyclotron times.
Furthermore, this comparison allows us to evaluate the pa-
p(t, Oou) =P cosh, i~ eFpt, (5.10  rametera for this cusp. The quantityP? in the local rep-
resentation corresponds Bxty/2m in the global representa-
P,(t, Oou) =P sinfy, cOg w t modm). (5.10 tion, so

[In Eqg. (5.1 we have restricte@ to be positive. It follows a=ty/2mP2. (5.6a
that on one cycle,(t,0,,) goes from positive to negative,

and at the end of the cycle it jumps discontinuously to posi-again presuming that the tip of the cusp is not far from the

tive again; that is the meaning of cagf{modm) in EQ.  origin, thenty is close to the return time of the parallel orbit
(5.1d. Of course this means also that the returning orbitsg the origin,

will form only the right-hand half of the cusp.
In Sec. | it was presumed, as always, that the applied ty=t,=2P/eF,
electric and magnetic forces are weak compared to typical
atomic forces. As a consequence, anywhere in the vicinity of
the origin we can make the approximation that fiie are
constant and thg’s change linearly with time. Let us define a=(meFR,P) L. (5.6b

ty=Nm/w =Nt,, 5.2 . . .
NT RO N (6.2 All of the same results, including the evaluationagfcan

which is the time for theth return ofp(t, 64,9 to the origin. ~ &!s0 be _derived by coan:';\rirJg the parametric forms of the
We assume that at that tinzét, 6, is also reasonably close action S(t—ty, ) —S(t’,6") or the Jacobian J(t

to the origin. —tnsOou) —J(t',0"), always presuming that, is not too
From Eq.(5.2) far from the origin andd,,,; is small.
One more property of the returning orbits will be needed
Pt Oou) = — Pz(0,00u) = — P COSAyt, later. Locally the characteristic function associated with the
returning orbitsS(t, 6,,) can be reexpressed in the canonical
Pp(tn s Oou) == Pp(0,00u) = — P SiNOoy, (5.3 representation aS(p,z). We need the second derivative of

. o . ] ] this function at that value op corresponding to the newly
i.e., the direction of motion of the orbit at its return to the pifyrcated orbit that returns to the origin. Noting that

origin is exactly opposite to its initial direction. Furthermore, 2 =133(p.2)/ a0l [Eq. (4.4 we propose that
whenever the particle returns close to the origin, there is ng(p, )=195(p.2)/op| [Ea. (4.4)], prop

angular motion p,=0) sop,==* (p)2(+ p§)1’2= +p.
We need to expang(t,f,,) and z(t,f,,) in a Taylor

. ow) and (. ¢ @b (5.7
series abouty . The expansion op is trivial: p

#S(p.2)  dp(p.2) _( N
2 - &p -

wL

p(t, 8o = P|t—ty|SinGgy/m. (5.9 Proof: From Eq.(4.1b), with p,=p close to the origin,
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eigenvalueg all these quantities being evaluated at the
stationary-phase pointxg,yo). A straightforward calcula-
tion gives

p=(p/may)|sinw 1],

(5.89

p
+ = coqwt)

ap |sinw, t| at
ap), Mo ap/, X(6pep)

Py Pyy20) = (MDA Foo e

at) (&z/&p)t_ (t/m)(dp,/ap) _tp
apl, (o), p,/m  pZ X exlip,(Px, Py, 20/A],  (5.13
5.8
(589 where @, ,¢,) are polar and azimuthal angles in momentum
Now sett=Nw/w,, space. As stated earlier, this formula holds for agybe-
tween about 8, and 10@,, and for classically allowed
d t p2 N , (such thatp? +p2 <P?).
(— —p) =— p—zz — tarf e, (5.9 (P Pyo) Pyt Py
ap/, mp; Mo

C. Returning wave function
whered is the returning angle of the orbit and is equal to the
outgoing angle of the orbit.

Equation (5.7) will be used later in a stationary-phase
evaluation of an integral.

To calculate the complete returning wave function in the
vicinity of the origin (when the cusp is near the origirwe
also need the ratio of Jacobians. The absolute value of that
ratio is equal to 1. Proof: For short times, the exact equation

of motion (5.1) reduces to free-particle motion,
B. The mixed-space outgoing wave

- : " . Z(t, Oy ~ Pt coy i/ M,
Continuing our evaluation of the quantities that go into (t, Gou) out

the wave function4.9) we now need the wave function on
an initial surface,\lf(pxo,pyo,zo). For this purpose we use a
Fourier transform of the initial outgoing wave.

In configuration space, that initial outgoing wave was
shown to bdpaper |, Eq.(A11)]

P(t, Oy ~ P Sinfyy (5.19

so evaluation of the Jacobida.53 gives

|3(Py,Py,Z0)| = PoP?COS /M= popZy/m  (5.15

Vol X,Y,2)~ (2im/A2)1 (K) x( 6, )exp(ikr)/r.

(5.10 but for any orbit that returns to the origipp=p and p,g

=p,. Q.E.D.
This formula describes the outgoing wave at distances _ Finally, the phase of the wave function in E@.9) is
about 5,— 10, large enough that the asymptotic form of Obtained by taking the relevant integrals
the Hankel function is appropriate, but small enough that the
curvature of the orbits caused by the external fields is negli-

gible.

Let us take a surface=z, somewhere in this vicinitywe
might choosez,~20a,; it will drop out later anyway, and
evaluate the mixed-space wave function on this surface,

V(py Py 20) = (27ih) f exp —i(px X+ Py Y)/%]

XW(X,y,zg)dx dy. (5.11

Cartesian coordinates and a two-dimensional stationary-

phase approximation are suitable:

(27ri7’i)*1£c Ax,y)exdid(x,y)/h]dx dy

(27h)

=(2mi) " *ACkY0) XTI P (XaYo) ] (oo

Xex;{i ; sgrﬂ)”), (5.12

where ®" is the matrix of second derivatives d#(X,y),
detd” is its determinant, and s@ is its signaturéthe num-

S= f p,dz—xdp—ydp,

from the initial surfacez=z; to the final point. Clearly we
should combine that integral with the phapgz, in Eq.

(5.13 and call the whole thing. Let us evaluate that quan-
tity at the cusp point:

’éc:’é( Px=0, Py= 0, z=z;)

Zc
=pAPx,Py)Zot+ f p,dz—x dp,—y dp,
0

Zc
= fo [P(t, Oou=0)dz(t, 6oy =0)/dt]dt

=S(x=0, y=0, z=2,)=S;. (5.1
This integral from zero t@. means along the parallel orbit
from origin to turning point and back to the cusp point.
Then the phase of the returning wave is given by this
value at the cusp point plus the local form, for which various
representations were given in 5¢.3). Comparison of Egs.
(4.39 and (5.16 gives the physical interpretation @,
=S.+ Pz itis the action of the parallel orbit from origin to

ber of positive eigenvalues minus the number of negativerigin,
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§0: S= 3€ [P(t, Oou=0)dZ(t, 65, = 0)/dt]dt.
(5.17

Combining all the above in Ed4.9), we obtain

X( 0p ,QDp) e*iVﬂT/Z

V(papy2)=(2im/1%)1 (k) 5
p

xexdiS(p,z)/#]. (5.18
For z-polarized light,x(6,) = (47) ~*?cos(,), and, follow-
ing the same steps that were used to obtain (BEd.3), the
returning wave is

~ (> ~ 0
lI'ret(p,Z)=Bf0 Jo(pp/fi)exdiS(p,2)/#] )é(()s;z p dp,
(5.193
~ 2m )
B= —(W) | (ke "2, (5.19H

We have obtained precisely the local wave function for

the focused cusp, now with all constants evaluated.

D. Photodetachment cross section

To obtain the photodetachment cross section we need the
overlap of this returning wave with the source function
(D ¢i| hep- This quantity is an integral over the spatial vari-
ablesp,z, involving the wave functiony,, which is an
integral overp. The result comes out very simply if we

interchange the order of integration, integrating opeaind
z first, making use of a partial-wave expansion.
For this purpose, we separa®€p,z) as in Eq.(4.30,

~ /] ~
<D¢i|wret>=8fdp)éésgz pexriiS(p,O)/ﬁ]f rzdr

X sing d6 der cosIR(r)Jo(pplh)ePPZ,
(5.20

The partial-wave expansidhA22) [this notation denotes

Eq. (A22) of paper | can be used again,

Jo<pp/ﬁ>e‘pz<p>2’h=<2w>2 2(=1) KDY 1o(6,9)

XY o(Opp)- (5.20)

The only difference between this formula and the one used in
Eq.(1.A22) is that now the angleg, ¢, lie inside an integral.

After integration over§ and ¢, only the term having’=1
survives, and it reduces to an old friend, EQA7),

f r2dr sind dd der cosgR(r)Jo(pp)e'PPZh
0

=(—4mi)ly(k)x* (6p) (5.22

SO

(Dl e =B~ 4mi)11(K) J:exqi'ém,owh]

|X(0p)|2

At last we combine this formula with all the constants
contained in Eq(l.2.2) and simplify using(l.A10a):

6 ) o ~
aretzao(m—z)lm[ie'”’zf exdiS(p,0)/#]

0
2
X(Gp)pd ]

X
0059p

(5.29

For numerical calculation of the cross section near the bifur-
cation we may use the representatidn3d for S(p,0) and
replace X2(0p)/c090p~—~1/47-r. Changing variables toe
=p?/2 we obtain

6 ) ) T
Oret— 00 m_E Im{i exp S‘/ﬁ—VE

(2] [ e a2

o

(5.253

3 T
:Uo(m)“’n:l exp(S/h—v E)

xFl(—zC/P(ﬁa)l’ﬂ. (5.25h

This is the formula we used in our numerical calculations.

E. Maslov indices and consistency check

Only one thing remains. We have not yet specified the
value ofv. General theory12,13 gives rules for calculating
the value ofv from the properties of the complete Lagrang-
ian manifold. Those rules correspond to the following pre-
scription: » must be chosen such that stationary-phase trans-
formation of the wave function fromp,p,) to (x,y) gives
the correctu for each orbit. The result of this analysis is that

v= u(parallel orbit before bifurcation (5.263

= u(new orbit after bifurcation
(5.26b

= u(parallel orbit after bifurcation-2.
(5.260

We can verify this and also provide a consistency check
on our calculations by comparing E.25 with the semi-
classical formulas derived in the preceding paper. Let us ap-
ply the approximatiori4.159 to the integral5.24), and con-
sider only the stationary-phase term, keepipgas the
variable of integration,
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6 o 2 [Py .
=0l —|Im{ie "™ < 2 Ore=00 5—= Im|ie!So~1vm2 | (5309
Oret 0-0( mE) { S”(I’:\),O)‘ Coyp re 2mE (_ZC/P)
~ - 3% _ T
Xp exp| S(P.O)/E+ - sgE'(p) | 1. (5273 =00 [pgy (TSN S—v 5, (5.300

which is precisely Eq(1.B28a with Eq. (5.263. After the
bifurcation, Eq.(5.309 still holds, but—z; is negative, so
we obtain

We already explained that the stationary-phase p@int
=P sing, corresponds to the new orbit, K(p,0) is the
action around that orbit from origin to origin. Furthermore,
we evaluateds’(p,0) in Egs.(5.7) and(5.8), and we note 3h (S T

that this quantity is positive for the returning orbit. There- Oret= 00 Pz (—)Sln( ?—(v—Z) ik (5.31)
fore, combining and simplifying,

- which verifies Eq.(5.269, and gives yet another proof that
Sy ™ the Maslov index of the parallel orbit increases by 2 on pas-
7_(”_ b 2 + 4 sage through the focused cusp.

(5.27b

ﬁwL 1/2
Orot= 0'0127T< E) x2(0y)sin

VI. CONCLUSION

o |12, . S\ 7w 7 . . .
=ogl2m NE| X (fn)sin(—) it We have derived Eq45.25, a semiclassical formula for
(5.279 the photodetachment cross section in the vicinity of a bifur-
' cation of the parallel orbit. We already saw in Fig. 1 that this
This is exactly Eq.(B28b) of the preceding paper, and it formula compares well with a quantum calculation in the
verifies Eq.(5.26D. vicinity of the fourth bifurcation. At present, no experiments
Similarly we can show that the end point contributions in©On this system are available for comparison.

Eq. (4.153 or (4.159 give Eq.(1.B28a), which we rewrite In the next paper, we examine photoexcitation of a neutral
using atom in an electric field. Similar bifurcations occur, but the

theory also has to contend with the Coulomb singularity. We

mz, find that analogous formulas correct the divergences in the
tH:tNJ“T (5.28 semiclassical approximation, and we compare the results
with measured recurrence spectra.

as
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Before the bifurcatiorz, <0, and applying Eg4.150 to Eq.
(5.253 we find
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