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Duality in potential curve crossing: Application to quantum coherence
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A field-dependent §@) gauge transformation connects between the adiabatic and diabatic pictures in the
(Landau-Zener-Stueckelbgrgotential curve crossing. It is pointed out that weak and strong potential curve
crossing interactions are interchanged under this transformation, thus realizing a naive strong and weak duality.
A reliable perturbation theory should thus be formulated in limits of both weak and strong interactions. In fact,
the main characteristics of the potential crossing phenomena such as the Landau-Zener formula including its
numerical coefficient are well described by simfiiene-independentperturbation theory without referring to
Stokes phenomena. We also show that quantum coherence in a double-well potential is generally suppressed
by the effect of a potential curve crossing, which is analogous to the effect of Ohmic dissipation on quantum
coherence[S1050-294{07)09310-4

PACS numbdss): 03.65.Sq, 31.15:p, 32.80.Bx

I. INTRODUCTION effect of a potential curve crossing on quantum coherence in
a double-well potential. We show that a potential crossing
Potential curve crossing is related to a wide range ofgenerally suppresses quantum coherence, which is analogous
physical and chemical processes, and the celebrated Landdg- the effect of Ohmic dissipation on quantum coherence
Zener formula[1-3] correctly describes the qualitative fea- [13,14. To our knowledge, this clear recognition of duality,
tures of those process¢d—8|. An effort to improve the and the precise criterion for naive perturbation theory includ-
Landau-Zener formula and to make it a more quantitativdNd the analysis of quantum coherence, have not been dis-
formula is actively going or[9,10. The purpose of the cussed before.
present paper is to study this old problem on the basis of
modern field-theoretical ideas, namely, duality and gauge Il. MODEL HAMILTONIAN OF POTENTIAL
transformation. CURVE CROSSING AND DUALITY
Adiabatic and diabatic pictures in a potential curve cross- ) i i
ing problem are related to each other by a field-dependent 10 @nalyze the potential curve crossing, we start with a
su?2) gauge transformatiofs,8], and we point out that this model Hamiltonian defined in the so-called diabatic picture
transformation leads to an interchange of strong and weai<5’8]
potential curve crossing interactions, which is analogous to

the electric and magnetic duality in conventional gauge Hzi P2+ Vi) +Va(x) + Vi)~ Va(x) 03+1 o
theory [11]. This strong and weak duality should allow a 2m 2 2
reliable perturbative treatment of potential curve crossing (2.1

phenomena at the both limits of very weékdiabatic pic- ) )

ture) and very strongdiabatic picturg potential crossing in- Whereos and oy stand for the Pauli matrices. We assume

teractions. In fact, it is shown that the main features of pc)_throlughout this paper that the potentlal crossing occurs at the

tential curve crossing phenomena are well described b@rigin, Vi(0)=V>(0)=0 (see Fig. 1. We also take the con-

straightforward time-independent perturbation theory comYention that the slope of the first potential at the crossing

bined with the zeroth order WKB wave functiofs,8,14,  Pointis positiveV1(0)>0. The sign oV;(0) may be either

without referring to Stokes phenomena; perturbation theoryhe same as that of;(0) (Sec. Il) or opposite to it(Sec.

thus becomes more flexible to cover a wide range of problV).

lems. If one neglects the last term in the above Hamiltonian,
To illustrate duality, we first reexamine the old problem one obtains the unperturbed Hamiltonian in the diabatic pic-

of the Landau-Zener formula, and show that simple time{ure

independent perturbation theory gives an adequate descrip-

tion of the Landau-Zener formula including numerical coef- _ 1, Vi) +Va(x) N Vi (X) = Va(X)
ficients in limits of both adiabatic and diabatic pictures. We 0=m P 2 2 I3
encounter an interesting topological object in the adiabatic (2.2

picture. We then apply our formulation to an analysis of the
This HamiltonianH ; describes two potentials, which are de-
coupled from each other. The last term in E§.1), H,
*Electronic address: hsuzuki@mito.ipc.ibaraki.ac.jp =¢,/g, with a constanty, causes the transition between
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To eliminate the potential curve mixing, the last term of Eq.

vy ) (2.4), we choose the gauge paramefi¢x) as[8]
T2 V100~ V()
X)— V(X
= cot (x)=g %Ef(x). (2.5
O -,
We then obtain the Hamiltonian in treiabatic picture,
H'=H{+H/, (2.6)
} x where
0 a, a
vl 1 ., Ui(X)+Ux(x)  Uy(x)=Ux(X)
H(,)E ﬁ p°+ 5 + 2 o3
FIG. 1. Landau-Zener process in the diabatic picture. 2.7
these two otherwise independent potential curves. In othegng
words, if one takesgg—large, this case physically corre-
sponds to a&ompletepotential crossing from a view point of o . 52
anadiabatictwo-potential crossingFig. 2). That is,g stands Hi=- am LPO(X) + 9,0(x)ploa+ am [9x0(x) ]2
for the strength of the potential crossing interaction, and 2.9

g—large corresponds to a very strong potential crossing in-
teraction. On the other hand, if one legsbecome smaller,

the effects of the last term in E@2.1) become substantial
and the HamiltoniarHy, Eqg. (2.2), does not present a sen-

The potential energies in the adiabatic picture are related to
those in the adiabatic picture @8ig. 2)

sible zeroth—c_)rder Hamiltonian. V() + V() Vi(x)=V,o(x)]2 1)\
To deal with the case of a smajl we perform the non- Uy Ax)= 5 + > —| .
Abelian “gauge transformation” 9
(2.9
— Al 0(X) aof2 1 — Al 0(X)0ol21y a— i 0(X) /2 o .
D(x) =T (x), H'=e T2 He N2 (53  From the definition of the gauge parameter in E5), the
23 “gauge field” 9,0(x) is expressed as
where o, is a Pauli matrix. The Hamiltonian in the new £7(x)
icture is given b = —0. .
p g y &Xa(x) 1+f(X)2 (2 1@
2
H'=-—|p— A 00(X)oy| + Vi) +Va(x) The transition from the diabatic picture to the adiabatic
2m 2 2 picture is a local gauge transformation, or, in the conven-
_ tional field theoretical sense, is regarded as a field-dependent
V1(X) —Va(x) 1 . .
+| ———=———=cosf(x)+ = sin (x) |o3 transformation. The transformation from one of these two
2 9 pictures to the other is ax-dependent notion.

In the adiabatic picture, the,-dependent term in the in-
1. teractionH; , Eq.(2.8), causes the potential crossing. If one
neglectsH, , the two potentials characterized by (x) and
(24 U,(x) do not mix with each other: Physically, this mears
potential crossing. This suggests tht is proportional to
the coupling constarg, since a smalfj corresponds taveak
potential crossing by definition. This is in fact the case as is
U, (x) clear from Egs(2.10 and(2.5).
E We thus conclude that the two extreme limits of potential
crossing interaction should be reliably handled in perturba-
0T tion theory; that is, the strong potential crossing interaction
in thediabaticpicture, and the weak potential crossing inter-
action in the gauge transformeatliabatic picture. This is
analogous to the electric-magnetic duality in conventional
gauge theoryf11]: The diabatic picture may correspond to
the electric picture with a coupling constaat 1/g, and the
adiabatic picture to the magnetic picture with a coupling con-
1 2 stantg.
A general criterion for the validity of perturbation theory
FIG. 2. Landau-Zener process in the adiabatic picture.  in the adiabatic pictur€2.6) is

V1(X) = Va(x)
+[‘ — 2

1
sin 6(x) + 5 cos 0(X)

Ul(X)

b
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where the semiclassical momenta in the adiabatic picture are
, (2.1)  defined by

f
E |8X0(x)|<|p(x)

which is expected to be satisfied when the coupling constant P1AX)=V2ME—U;Ax)] 3.7

g is small and the incident particle is sufficiently energetic. anda, anda, denote the classical turmning pointsig. 2.

Within the WKB approximation, we also have
I1l. LANDAU-ZENER FORMULA

!
As an illustration of the duality discussed in Sec. Il, we ¢1(X)
reexamine a perturbative derivation of the Landau-Zener for-

mula in both of the adiabatic and diabatic pictuféss,g]. _ & A 7T _ E fx

For definiteness, we shall assumMg0)>V4(0) as in Fig. 1. 2h [P+ exp{ fi aldx|p1(x)| for x>a,
Let us start with the adiabatic picture with weak potential =~ C, 1 (a -

crossing interaction. Since the gauge field generally van- 7 Vp1(X)sin %j dx pl(x)—z for x<a,;

ishes,d,0(x)— 0 for |[x| -, we can define thasymptotic X

states in terms of the eigenstatedH}f, Eq.(2.7). We define 3.9

the initial and final state®; and®; by
and a similar relation fop;(x). The normalization ofp,(x)

di(x)= <P1(§X) , Di(x)= , (3.) is chosen a<;=2\m to make the probability flux of the
2(X) incident wave unity. On the other hand, the final-state wave
which satisfy function in Eq.(3.3) has to be normalized by th&function

with respect to the energy®;|P,)= 8(E;,—E,), and this
specifiesC,=2\/m/ 2 7.
¢1(X)=Eg@1(X), We estimate the matrix eleme(8.4) by using the oscil-
lating parts of the wave functior(8.5 and(3.6). This treat-
ment is justified if the following conditions are satisfigd):
©2(X)=E@y(X). (3.2  |p(0)|—large andm—large with v=|p(0)|/m kept fixed
such that nonrelativistic treatment is valid in the physically

We then obtain the potential curve transition probability duerelevant region andi) g—small, but with

to the perturbatioH, , Eq. (2.8):

1 5201
%p-i- 1(X)

1 524U
Sm Pt 2(X)

1< ! |p(0)|? (3.9
s 3= 2m PO 9
W(|—>f)=7|(q)f|H|'|‘bi>|2- 3.3 .
to ensure Eq(2.11) and the condition
The transition matrix element is given by B<a, (3.10
h2 (= h . . . . .

OJH D= — _ wherea is an average turning point anglis a typical geo-
(PlHr|P) 4m Jloodx O~ 920 1(X) metrical extension o#,60(x). If Eq. (3.10 is satisfied, we

, can estimate the matrix element by using the oscillating parts
T ea(X)p1(X)]. (3.4 of wave functions only sincé, 8(x) rapidly goes to zero for

_ [x|> B on the real axis.
To evaluate the matrix element, we use the WKB wave Tpe integral(3.4) is then written as

functions[4]

inC,C
—Cl exp{—E fxdxlpl(x)| for x>a, (DrlHi|d)=~ 81 2 fdx 0%
o1(X)= 2\/|p1(X)| h ag ex x
C, 1 (a 7 X[exr{g L dx pu(x)— > L dx p(x)
mcoa{g L dx pl(x)—z} for x<a; | 1X | i
(3.5 —exp{—g faldx P+ dex pz(x)H,

and

(3.1

L exr{ — 3 fx dx|p,(x)|| for x>a, where we have sqi;(X)/p,(x)=1 in the prefactors. This is
2| p2(X)| i Ja, justified within the saddle-point approximation fér—O0;
P2(X)= this is also justified ifz/|p(0)|< 3, the characteristic length
& cog{i Jazdx o(X) — Z} for x<a, scale of the present problem, by settip@) large, as speci-
Vp2(X) i Jx 4 fied in (i). Therefore we need to evaluate an integral of the
(3.69) form
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IEJ:dx &xe(x)ex;{;— f:ldx pl(x)—;,l— J;dx pz(x)}. Fr(0 =TT+ 0, (3.18

iax>+1
(3.12
which is located between the real axis and the pole positions
Here we present an explicit evaluation of £§.12 for  x==*i of 4,0(B8x) so that we can smoothly deform the in-

the linear potential crossing problend,(x)=V;(0)x and tegration contour; these poles also coincide with the complex
V,(x)=V5(0)x, on the basis of local data without referring potential crossing points. If one sets-iy in Eq. (3.18 for
to Stokes phenomena. For sufficiently large energy,~1<y<1, one has
E—-(U;+U,)/2>(U;—U,)/2, the difference of momenta

; 1 2y
can be approximated @see Eq(2.9)] 1-y?=— STy (3.19
X X 2
dx{ p1(X) — pa(x :—f dx X2+ B2, : . .
fo [P1(X)—pa(X)] 0 X o008 B which has auniquesolution
(3.13 i (2|23
Xs=iye=—i+7|— 3.2
where we used = 2 a) (320
V}(0)—V5(0) X for large «. (The complex conjugate of; is located in the
f(x)=g - X= ,E second Riemann sheeEor this value of the saddle point
Xq 1 2 2/3
1 Uy (x)+U(x) ]| 2 F(x =f dx\/x2+1+.—ln(—)
v(x)EE<2m g U0 )2 29 ) . (314 =, ia |

mo 20 1 [2\%B
andv(x) is approximated to be a constant=v(0) in the =217 3."ia Inj ~|

following. From Eq.(2.10), we also have “

Iy 0(x) = — ey (3.19 (3.29

We thus have a Gaussian integral which decreases in the
direction parallel to the real axis

a)2’3 s i fo i (o
—| eexg— dx X ——f dx X
2 fL ay pl( ) h a, pZ( )

- 413
X fﬁxdx exp{—S(%) (X—Xg)? ex;{ —?)
- ( z) 1/2(22/3
e
exp( —T)

3
(3.22

and thus

i o i o
Iz—ex;{% Jaldx pl(x)—% dex Po(X)

. B 2 [x
X f_wdx XZTIBZ exp( - W fo dxyx%+ Bz

i (o i o
=—ex;{% Jaldx pl(x)—% dex Po(X)

oo 1 X
[ i 2
xf wdx N ex;{ IaJo dxyx“+1

i (o i (o
Xexp{% faldx pl(x)—g dex Po(X)

i (o i (o
=—exp{% faldx pl(x)—g dex Po(X)

X fw dx exd —iaF(x)], (3.16

From Eq.(3.11), we obtain

1/2

e2/3

% 1/2
2

f:ldx pl(X)—Lozdx P2(X)

<<1>f|H.’|<1>i>=—(§

where

|

au
Xexp{ B hvgz[vm—vg(on}' .23

It is interesting that the numerical value of the coefficient of
the above expressioR/7e?3/v3=1.993 17, is very close to
We evaluate integral3.16) by a saddle-point approximation the canonical value 24], and we replace it by 2 in the
with respect tae. We thus seek the saddle point following. For a past analysis of the prefactor in the time-

(1
Xsin g

x 1
F(X)EJ dxx%+ 1+ — In(x?+1),
0

28 4 -
hvg hvg’[V1(0)—Vy(0)]

0. (317

a
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dependent perturbation theory, see REI§]. We thus have C, 1 x
the transition probability from E¢(3.3), — ex;{ -— f dx|p,(x)|| for x>a,
| 2] hJa,
1 0 0 ? C, 5{1 Jazd ) 77} for x<a
w(i—f) 4su*?{h [lex Py(X) dex Po(X) } o0 1% I 4
p{ 27 ] (3.28
X Xexp — TINT -
hvgV1(0)=V3(0)] In the above expressions, semiclassical momenta are defined

2 by
~2exp — i (3.24
hvg?[V1(0)—V5(0)])’

P1AX)=VZME—V;AX)]. (3.29

] ) ) The transition probability in the diabatic picture is then given
where we replaced the square of sine function by its averaggy

1 in the final expression. We emphasize that the numerical

coefficient ofw(i —f) is fixed by time-independent pertur-

bation theory and the !oc_al da_ta without _referr_ing to globa_l w(i—f)= 2_7T RGN (3.30
Stokes phenomena,; this is satisfactory, since linear potential h

crossing is a locally valid idealization. ) ) ) )

We interpret thatv(i —f) in Eq. (3.24) expresseswice The evaluation of t_he maitrix element in E.30 is the _
the nonadiabatic transition probability. Notice that ourStandard one described in the textbook by Landau and Lif-
initial-state wave function contains the reflection wave asShitz[4], for example. The saddle point fbr<1 is located at
well as the incident wave. Therefore the transition probabilthe originxs=0 and we have an integral, for example,
ity per onecrossing is given by half of Eq3.24),

o 1
dX ——=
J*“ VP1(X)p2(X)
2w . .
P(1—2)=exp — ; ; , (3.2 I [x i [x
(=2 4 rogVi0) V0] > xex{g [ axmoo—5 [ ax po
ay a
which is the celebrated Landau-Zener formlgs]. Our per- - 2mh
turbative derivation presented here is conceptually much Vm[V3(0)—V5(0)](2mE)**
simpler than the past work4,4,5,8,12, and it should also _ _ _
be useful for a pedagogical purpose also. T fo _ JO _m
It is interesting to study the same problem in the diabatic X ex h aldx PL() h ade P2(x) 4|
picture in Fig. 1 withH,=o4/g for large g. We first note
that the initial state in the adiabatic picture asymptotically (3.3

corresponds to the eigenfunction\d$(x) and the final state
corresponds toV,(x), under the present setup’;(0)
>V,(0). Therefore the initial and final zeroth-order wave _ 8
functions in the diabatic picture are taken as w(i—f)= 7 0(0)g7[V(0) —V5(0)]

Under this approximation, we have, f&r>0,

% 32 1 azd ( ) 1 ald ( ) m
_ 0 _¢//1(X) co %fo szx_?lfo XplX_Z
‘l’i(X)— ¢2(X) ’ q’f(x)_( 0 ) (326)
_ 41 (332
g Vi(0)—Vy(0)] ‘
In the WKB approximation, vgTV1(0)=V2(0)]
[v(0) is the velocity at the crossing point, ang(0)
=+/2E/m.] For E<O0, one can verify that there is no saddle
C, [{ 1 fxd ps00l| for x> point and, therefore,
——exp — X|p1(X or Xx=a,
2| p1(x)] hJa ' .
P (x)= w(i—f)=0. (3.33

C, 1 (a ™ f
N 3% L dx py(X) = 4 or X<& We aggi_n interpret Eo(3.3_2)_ as twice the potentiql crossing
(3.27)  Probability, because our initial-state wave function contains
the reflection wave as well as the incident wave. The transi-
tion probability per one potential crossing is given by half of
and Eq. (3.32.
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A simple interpolating formula, which reproduces Eg.
(3.29 in the weak-coupling limit and Eq(3.32 in the
strong-coupling limit, is given by

i f)=2 2
W= t)=2exp = & Vi (0) - V3(0)]

V(%) vV, (%)

—exp| — . . .
hvg?[V1(0)—V4(0)]
(3.39
. . . . ) . . FIG. 3. Quantum coherence in the diabatic picture.

This expression is also consistent with tfeemiclassical
conservation of probabilitj4]. A justification of Eq.(3.34 Itis plausible that the effects of a potential curve crossing
is facilitated by combining the analysis of Stokes phenomengith nearby potentials influence the quantum coherence of
and the conservation of probabilif§]. the two degenerate ground states. Here we analyze the gen-

Motivated by duality, we reexamined a perturbative deri-g ) features of the effects of potential crossing on quantum

vation of the Landau-Zener formula, and we rederived for-coherence on the basis of time-independent perturbation
mula (3.24) including its numerical coefficient on the basis theory, which was confirmed in Sec. Il to be reliable in

of perturbation theory. However, our final rest8t24) inthe  jinits” of both weak and strong potential curve crossing in-
adiabatic picture does not contain the coupling constant as @ ion. We assUM¥,(x)=V,(—x) and V4(0)<0. We

prefactor. This is related to an interesting topological objecEh | thi blem f two diff t Vi int
in the present formulation. From the definition of Eg.10), us analyze this problem irom two difierent view points.

the “gauge field” satisfies the relation ) o )
A. Strong potential curve crossing interactiong>1

(diabatic picture)

f dx d,0(X)= () — 6(—»)=—1r, (3.395 We start with the diabatic picture in Fig. 3, and incorpo-
‘°° rate the effects of the potential crossing interactiey/g.

That is, we (approximately diagonalize the total Hamil-

tonian in the diabatic picture. By treating the last term of Eq.

fk(xlzl_k) itoo flor XTbi:: 'resp;ctlvetlﬁl. Bec?use of tth'ts (2.1) as a perturbation fog>1, we obtain the energy eigen-
inklike topological behavior of(x), the coupling constan values of the two lowest-lying states @sith E the zeroth

does not appear as a prefactor of the matrix element in Pes, der degenerate energy eigenvalue
turbation theory if the wave functions spread over the range
which covers the geometrical size @&f8(x) well. The pre- .
cise criterion of the validity of perturbation theory is thus 1) — *

given by Eq.(2.11): This gondit?on is in fact sati)gfied if E(t)_E0+§ fﬁwdx PL(X) Pr(X), (4.9
conditions(3.9—(3.10 are satisfied. For small values »f

the small couplingy helps to satisfy Eq(2.11). Even for the  with the corresponding eigenfunctions

values ofx near the average turning poiat we have

which isindependenbf the coupling constarg; we assume

1 [ (%) 1
h 1(B\h & ‘1’+(X):—(_ (x) =—[esh(X)—e_yr(X)],
5 lx0@)|=5 | —| Z<_=[p(a)l, (3.36 VAR V2
where 8 stands for the typical geometrical size @f6(x). 1 (%) 1
The estimate on the left-hand side is based on linear poten- ¥ _(x)=— ( L = Lo g () +e_gr(X)].
tials (3.15, but we expect that the condition is satisfied for v \Ur(X)] 42
more general potentials as well. To conclude this section, we 4.2

clarified the basic mechanism why the prefactor of the i
Landau-Zener formuld3.25 should come out to be very 1hatis, both of these two statés. (x) choose
close to unity in time-independent perturbation theory.
e,y (X) in the region of left valley,
IV. POTENTIAL CURVE CROSSING

AND QUANTUM COHERENCE e_ir(x) in the region of right valley. (4.3

The effects of dissipative interactions on macroscopic
guantum tunneling have been extensively analyzed in thdhe “spin” eigenstatese. and the “space” eigenstates
path-integral formalisnj13] and also in the canonicdield YL (X) or yr(X) are strongly correlated. Note that one can
theoretical formalism [14]. It is generally accepted that conveniently think of the two potentials as spin-up and spin-
Ohmic dissipation suppresses the macroscopic quantum cdown states. Originally, before we incorporate the perturba-
herence; in fact, an attractive idea of a dissipative phase tration o, /g in Eq. (4.1), we have two energetically degenerate
sition has been suggestgt3]. states with energ¥, defined by
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‘I’L(X)=(¢Léx) =e, (X)), (4.9
which is always a spin-up state, and
— 0 J—
Wr(x)= Pr(X) =e_yr(X), (4.5

which is always a spin-down state.

In the strong potential crossing limig,—c°, we haveno
effectof the conventional quantum tunneling in addition to
the mixing in Eqg.(4.2), since the conventional tunneling
goes through the interactionr; /g in Eq. (2.1), and thus
higher-order effects in t/

We can find theD(1/g) energy splitting in the WKB ap-
proximation. The left wave functiogy (x) is given by Eg.
(3.27 with C;=2mow/#. (For a sufficiently low-energy
state such as the ground state,can be regarded as the
curvature of the potential energy at the minimuifhe right
wave functiongy(x) is given by

Pr(X)

L exr{— E fazdx|p2(x)| for x<a,
] 2VIpa(x)] B Jx
i co{% fxdxpz(x)—Z for x>a,,
VP2(X) ap 4 6
4.6

with C,=+2mw/ 7. In the saddle-point approximation, we
have the overlap integral
1

X ————
f VIP1 ()| p2(x)]

1 (x 1 (x
xexg —+ [ axipy0ol+ 7 [ axipz00)

_ 2mh
 Jm[V(0)=V5(0)](—2mE)Y

1 (o 1 (o
xex — 3 [ adpool+ 5 [ axlpo0o)

(4.7)
which yields the energy splitting
14
ED-—ED~ v2h ( m )
g\ V1(0)—V5(0)] | ~2Eo
1 (a
X ex ——f dxv2m[V(x)—Eq]; .
4.9

In the above expression, we have defiﬁd) as the follow-
ing “ A-shape” potential:

KAZUO FUJIKAWA AND HIROSHI SUZUKI

Ul(X)

U, (x)

FIG. 4. Quantum coherence in the adiabatic picture.

Vi(x)
Va(X)

for x<0

V(x)= for x>0.

4.9

We recall that, when the upper adiabatic potentia(x) is
absent, the standard WKB formula gives the energy splitting
of lowest leveld 4],

ho p{
— ex
T

Comparing this with Eq(4.8), we find that the quantum
coherence is actually suppressed by two elements; the over-
all small coefficient Ig<1 and the exponential suppression
factor; V(x) is always larger than the lower potenti®fi(x)
>U5(X).

1 (a
Jladx\/Zm[Uz(x) —Eo]t.

E_—E, -
(4.10

B. Weak potential curve crossing interactiong<<1
(adiabatic picture)

In this case, we can use the gauge transformed adiabatic
picture defined by Eq(2.6). In this scheme, the low-lying
eigenstates foH, are described by the nearly degenerate
two states in the lower potential curidy(x); see Fig. 4. For
a smallg, the two potential curve$),(x) and U,(x) are
widely separated. We thus take the ground states of the spin-
down sectofi.e., the nearly degenerate two ground states of
the lower potential curye

, (411

®.00-{ T 00-[,°
0= g0 -, (%)

as the zeroth-order approximation of the lowest-lying states.
These two states correspond to the conventional symmetric
and antisymmetric tunneling eigenstates of the double-well
potentialU,(x), whose energy splitting gives tt@der pa-
rameterof the quantum coheren¢&3]. To the second order

of the gauge field, 0(x), the energy eigenvalue is perturbed
to
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KPyalHI @)

E(+2):E++ (I)+ H’ CI)+ -
+ + < 7| || 7> ; El,n_Ei

ﬁZ
=E.+ g f dX[ 34 0(x) * @2 (X)?

h? 5 1
16m* < E;,—E.

2
dX(Pl,n(X)[ﬁ&xa(X) + dx0(X) E’]@Zi(x) )

(4.12

X

where®, ,(x) [and ¢;,(x)] is thenth energy eigenstate of
the upper potential (x).

It is generally difficult to conclude the suppression or en-
hancement of the quantum coherence solely from the pertu
bation formula(4.12. The reason is that the effect of inter-
mediate state sum can depend on the details of the upp

@
X f—
2

1/2
p‘Pl,n(X)—>_i|p1,n|(a) Cos

n
|p1,n|5h?- (4.19

Under these assumptions, the energy stdifi2 is esti-
mated for the even-parity state

hZ
E(f)=E++% J dX[ 94 0(X)12@2+(0)?

h? < |p1,n|2
16m? =4 E;,—E,
2 1/2 nar a 2 )
r- X jdx a cos|— x+§ A, 0(X)| @o4(0)°.

potential curve. Nevertheless, when the well of the upper ) 5
potential is narrow enough, we can show that the quanturBY Noting |py,|*=2m[E;,—U,(0)] and U;(0)>E. , we

coherence is always suppressed.

see that

We first assume that the lowest-lying parity even- and

odd-parity states are given, respectively, by a linear combi
nation of the ground states in left and right wells:

1
O-Zi(x):ﬁ [ @2 (X) £ @or(X)], (4.13

where in the WKB approximation in the classically forbid-
den region,

G,

1 (x
®aL(X) = @or(—X) = m exr{ 7 f dx| pz(X(:| 5

The normalization constant is given I8s= v2mw/ 7.
We next assume that the upper potentia(x) is narrow

- h? 2 A% Ey,—Ug(0) A2
5 |p1,n| _ 1n 1( ) o (4.19)
16m El,n_E+ 8m El,n_E+ 8m

and thus

hZ 2 *
ED>E, + o [ da000Ter (07

8m =0
2
fdx — COoS
a

X
=E,, (4.20

2

90(X)| ¢2+(0)?

nwT
a

L@
X f—
2

where we have added the=0 mode to make the cosine
functions a complete set. Therefore the perturbation always
increases the ground-state energy.

On the other hand, Eq4.12 gives, for the odd-parity

enough and can be well approximated by a square well pogtate,

tential with the widtha. The eigenfunctions in the upper
potential are therefore given by

a
X+ =
2

nw

, h=12,..

1/2
P1p(x)= (5> sin ..
(4.15

Moreover, since the gauge fiefd(x) defined in Eq(2.10
is nonzero only within this narrow region, we may make the
following replacements in integréft.12):

P2+ (X)—=@1(0), @p_(X)—0,

P2+ (X)—=0, Pea—(X)—i|pa(0)]o2.(0) (4.16

and

E®=E_ -

h? i |p2(0)]?
16m*=y Eyn—E_

X

2
de @1n(X)3x0(X)| ¢2,(0)% (4.2

Since the second term of E(.21) is negative definite, we
see that the perturbation always lowers the odd state energy,

EQP<E_. (4.22

The perturbative corrections in Eqg.18 and(4.21) are
proportional to the wave function at the origin, which satis-
fies ¢, (0)>=m(E_—E.)/[%|p,(0)|] [4], and therefore
the correction to the energy splitting itself is proportional to
the zeroth-order energy splittifg_ — E, . Since the correc-
tion cannot excess the zeroth-order value in a reliable region
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of perturbation theory, we should ha®?—E?®>0. By V. DISCUSSION AND CONCLUSION

combining Eqs(4.20 and(4.22, therefore, we find Motivated by the presence of interesting weak and strong
duality in the model Hamiltoniari2.1) of potential curve
2 =2 crossing, we reexamined a perturbative approach to potential
O<EX'-ES<E_-E., (423 crossing phenomena. We have shown that straightforward
time-independenperturbation theory combined with zeroth-
which shows that the quantum coherence is suppressed. order WKB wave functions provides a reliable description of
Although we derived the suppression of quantum cohergeneral potential crossing phenomena. Our analysis is based
ence for a very special configuration in the weak-couplingon the local data as much as possible without referring to
adiabatic picture, we expect that this suppression of quantur@lobal Stokes phenomeria2]. Formulated in this manner,
coherence is more general at least for srgalThis is based ~Perturbation theory becomes more flexible to cover a wide
on the following physical picture: When a particle tunnels'@nge of problems. From a perturbative view point, the treat-
the barrier in the lower potential curve, it has a small prob_ment of the Landau-Zener formula in the adiabatic picture is

ability of crossing to the upper potential curve. This potentialmgﬁt ?ﬁ?}g'cfﬁg&tﬂpc\?\/g d%ierftggtocucf[%ﬂ? tt::g (;%uspel'nncgec(%né
curve crossing means that the particle enters deep inside tﬁé , P S P :
oupling constant in the prefactor is related to the presence

tunneling region of the upper potential curve, and is repelle f an interesting kinklike topological object in the present

bf"‘Ck by th? upper potentidhs is expected i.n the diabatic formulation of adiabatic picturgThe appearance of a topo-
picture, which in turn leads to the suppression of q“a”t“mlogical object in the “magnetic” picture is reminiscent of

tunneling_of the particle. This argument leads to_the gene_raéauge theory11].) The absence of a coupling constant in the
suppression of quantum coherence by potential crossingyefactor is thus perfectly consistent with perturbation
This is also consistent with the suppression of barrier transtheory, provided that a more precise criterion of the pertur-
mission in the scattering process by nonadiabatic coupling iBation theory(2.11) is satisfied. In effect, we have explained
linear potential curve crossin@]. why the prefactor of the Landau-Zener formula should come
Our explicit analyses both in weak and strong potentialout to be very close to unity in perturbation theory.

crossing interactions suggest the general suppression of The suppression of quantum coherence by potential curve
guantum coherence by potential crossing, which is analogousrossing, which to our knowledge has not been discussed
to the effect of Ohmic dissipation on quantum coherencéefore in this context, has also been neatly formulated in our
[13,14. In this connection, we note that formuld.12 and treatment, in the limits of both very strong and very weak
the Ohmic dissipation in the Caldeira-Leggett mofi&8] potential crossing interactions. From the viewpoint of gen-
both correspond to a dipole approximation with the sameeral gauge theory, it is not unlikely that the electric-magnetic
selection rules. However, an analysis of the basically nonperduality in conventional gauge theory is also related to some
turbative tunneling effect in second-order perturbation theongeneralized form of potential crossing in so-called moduli
requires great care; for this reason, we were able to analyZPace{11]. We hope that our work may also turn out to be
explicitly only the very specific case in Eq&.15—(4.17).  relevant from this viewpoint.

This suppression phenomenon of quantum coherence may
become important in the future when one takes the effects of
the environment into account in the analysis of potential We gratefully acknowledge H. Nakamura for critical
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