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Duality in potential curve crossing: Application to quantum coherence
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A field-dependent su~2! gauge transformation connects between the adiabatic and diabatic pictures in the
~Landau-Zener-Stueckelberg! potential curve crossing. It is pointed out that weak and strong potential curve
crossing interactions are interchanged under this transformation, thus realizing a naive strong and weak duality.
A reliable perturbation theory should thus be formulated in limits of both weak and strong interactions. In fact,
the main characteristics of the potential crossing phenomena such as the Landau-Zener formula including its
numerical coefficient are well described by simple~time-independent! perturbation theory without referring to
Stokes phenomena. We also show that quantum coherence in a double-well potential is generally suppressed
by the effect of a potential curve crossing, which is analogous to the effect of Ohmic dissipation on quantum
coherence.@S1050-2947~97!09310-4#

PACS number~s!: 03.65.Sq, 31.15.2p, 32.80.Bx
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I. INTRODUCTION

Potential curve crossing is related to a wide range
physical and chemical processes, and the celebrated Lan
Zener formula@1–3# correctly describes the qualitative fe
tures of those processes@4–8#. An effort to improve the
Landau-Zener formula and to make it a more quantitat
formula is actively going on@9,10#. The purpose of the
present paper is to study this old problem on the basis
modern field-theoretical ideas, namely, duality and ga
transformation.

Adiabatic and diabatic pictures in a potential curve cro
ing problem are related to each other by a field-depend
su~2! gauge transformation@5,8#, and we point out that this
transformation leads to an interchange of strong and w
potential curve crossing interactions, which is analogous
the electric and magnetic duality in conventional gau
theory @11#. This strong and weak duality should allow
reliable perturbative treatment of potential curve cross
phenomena at the both limits of very weak~adiabatic pic-
ture! and very strong~diabatic picture! potential crossing in-
teractions. In fact, it is shown that the main features of
tential curve crossing phenomena are well described
straightforward time-independent perturbation theory co
bined with the zeroth order WKB wave functions@5,8,12#,
without referring to Stokes phenomena; perturbation the
thus becomes more flexible to cover a wide range of pr
lems.

To illustrate duality, we first reexamine the old proble
of the Landau-Zener formula, and show that simple tim
independent perturbation theory gives an adequate des
tion of the Landau-Zener formula including numerical co
ficients in limits of both adiabatic and diabatic pictures. W
encounter an interesting topological object in the adiab
picture. We then apply our formulation to an analysis of t
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effect of a potential curve crossing on quantum coherenc
a double-well potential. We show that a potential cross
generally suppresses quantum coherence, which is analo
to the effect of Ohmic dissipation on quantum coheren
@13,14#. To our knowledge, this clear recognition of dualit
and the precise criterion for naive perturbation theory inclu
ing the analysis of quantum coherence, have not been
cussed before.

II. MODEL HAMILTONIAN OF POTENTIAL
CURVE CROSSING AND DUALITY

To analyze the potential curve crossing, we start with
model Hamiltonian defined in the so-called diabatic pictu
@5,8#

H5
1

2m
p̂21

V1~x!1V2~x!

2
1

V1~x!2V2~x!

2
s31

1

g
s1 ,

~2.1!

wheres3 and s1 stand for the Pauli matrices. We assum
throughout this paper that the potential crossing occurs at
origin, V1(0)5V2(0)50 ~see Fig. 1!. We also take the con
vention that the slope of the first potential at the cross
point is positive,V18(0).0. The sign ofV28(0) may be either
the same as that ofV18(0) ~Sec. III! or opposite to it~Sec.
IV !.

If one neglects the last term in the above Hamiltonia
one obtains the unperturbed Hamiltonian in the diabatic p
ture

H0[
1

2m
p̂21

V1~x!1V2~x!

2
1

V1~x!2V2~x!

2
s3 .

~2.2!

This HamiltonianH0 describes two potentials, which are d
coupled from each other. The last term in Eq.~2.1!, HI
[s1 /g, with a constantg, causes the transition betwee
3436 © 1997 The American Physical Society
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56 3437DUALITY IN POTENTIAL CURVE CROSSING: . . .
these two otherwise independent potential curves. In o
words, if one takesg→ large, this case physically corre
sponds to acompletepotential crossing from a view point o
anadiabatictwo-potential crossing~Fig. 2!. That is,g stands
for the strength of the potential crossing interaction, a
g→ large corresponds to a very strong potential crossing
teraction. On the other hand, if one letsg become smaller,
the effects of the last term in Eq.~2.1! become substantia
and the HamiltonianH0 , Eq. ~2.2!, does not present a sen
sible zeroth-order Hamiltonian.

To deal with the case of a smallg, we perform the non-
Abelian ‘‘gauge transformation’’

F~x!5eiu~x!s2/2C~x!, H85eiu~x!s2/2He2 iu~x!s2/2,
~2.3!

where s2 is a Pauli matrix. The Hamiltonian in the ne
picture is given by

H85
1

2m F p̂2
\

2
]xu~x!s2G2

1
V1~x!1V2~x!

2

1FV1~x!2V2~x!

2
cosu~x!1

1

g
sin u~x!Gs3

1F2
V1~x!2V2~x!

2
sin u~x!1

1

g
cosu~x!Gs1 .

~2.4!

FIG. 1. Landau-Zener process in the diabatic picture.

FIG. 2. Landau-Zener process in the adiabatic picture.
er

d
-

To eliminate the potential curve mixing, the last term of E
~2.4!, we choose the gauge parameteru(x) as @8#

cot u~x!5g
V1~x!2V2~x!

2
[ f ~x!. ~2.5!

We then obtain the Hamiltonian in theadiabaticpicture,

H85H081HI8 , ~2.6!

where

H08[
1

2m
p̂21

U1~x!1U2~x!

2
1

U1~x!2U2~x!

2
s3

~2.7!

and

HI8[2
\

4m
@ p̂]xu~x!1]xu~x! p̂#s21

\2

8m
@]xu~x!#2.

~2.8!

The potential energies in the adiabatic picture are relate
those in the adiabatic picture as~Fig. 2!

U1,2~x![
V1~x!1V2~x!

2
6S FV1~x!2V2~x!

2 G2

1
1

g2D 1/2

.

~2.9!

From the definition of the gauge parameter in Eq.~2.5!, the
‘‘gauge field’’ ]xu(x) is expressed as

]xu~x!52
f 8~x!

11 f ~x!2 . ~2.10!

The transition from the diabatic picture to the adiaba
picture is a local gauge transformation, or, in the conv
tional field theoretical sense, is regarded as a field-depen
transformation. The transformation from one of these t
pictures to the other is anx-dependent notion.

In the adiabatic picture, thes2-dependent term in the in
teractionHI8 , Eq. ~2.8!, causes the potential crossing. If on
neglectsHI8 , the two potentials characterized byU1(x) and
U2(x) do not mix with each other: Physically, this meansno
potential crossing. This suggests thatHI8 is proportional to
the coupling constantg, since a smallg corresponds toweak
potential crossing by definition. This is in fact the case as
clear from Eqs.~2.10! and ~2.5!.

We thus conclude that the two extreme limits of potent
crossing interaction should be reliably handled in pertur
tion theory; that is, the strong potential crossing interact
in thediabaticpicture, and the weak potential crossing inte
action in the gauge transformedadiabatic picture. This is
analogous to the electric-magnetic duality in conventio
gauge theory@11#: The diabatic picture may correspond
the electric picture with a coupling constante51/g, and the
adiabatic picture to the magnetic picture with a coupling co
stantg.

A general criterion for the validity of perturbation theor
in the adiabatic picture~2.6! is
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3438 56KAZUO FUJIKAWA AND HIROSHI SUZUKI
\

2
u]xu~x!u!up~x!u, ~2.11!

which is expected to be satisfied when the coupling cons
g is small and the incident particle is sufficiently energet

III. LANDAU-ZENER FORMULA

As an illustration of the duality discussed in Sec. II, w
reexamine a perturbative derivation of the Landau-Zener
mula in both of the adiabatic and diabatic pictures@1,5,8#.
For definiteness, we shall assumeV18(0).V28(0) as in Fig. 1.

Let us start with the adiabatic picture with weak potent
crossing interaction. Since the gauge field generally v
ishes,]xu(x)→0 for uxu→`, we can define theasymptotic
states in terms of the eigenstates ofH08 , Eq. ~2.7!. We define
the initial and final statesF i andF f by

F i~x!5S w1~x!

0 D , F f~x!5S 0
w2~x! D , ~3.1!

which satisfy

F 1

2m
p̂21U1~x!Gw1~x!5Ew1~x!,

F 1

2m
p̂21U2~x!Gw2~x!5Ew2~x!. ~3.2!

We then obtain the potential curve transition probability d
to the perturbationHI8 , Eq. ~2.8!:

w~ i→ f !5
2p

\
z^F f uHI8uF i& z2. ~3.3!

The transition matrix element is given by

^F f uHI8uF i&52
\2

4m E
2`

`

dx ]xu~x!@2w28~x!w1~x!

1w2~x!w18~x!#. ~3.4!

To evaluate the matrix element, we use the WKB wa
functions@4#

w1~x!55
C1

2Aup1~x!u
expF2

1

\ E
a1

x

dxup1~x!uG for x.a1

C1

Ap1~x!
cosF 1

\ E
x

a1
dx p1~x!2

p

4 G for x,a1

~3.5!

and

w2~x!55
C2

2Aup2~x!u
expF2

1

\ E
a2

x

dxup2~x!uG for x.a2

C2

Ap2~x!
cosF 1

\ E
x

a2
dx p2~x!2

p

4 G for x,a2

~3.6!
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where the semiclassical momenta in the adiabatic picture
defined by

p1,2~x![A2m@E2U1,2~x!# ~3.7!

and a1 and a2 denote the classical turning points~Fig. 2!.
Within the WKB approximation, we also have

w18~x!

.5 2
C1

2\
Aup1~x!u expF2

1

\ E
a1

x

dxup1~x!uG for x.a1

C1

\
Ap1~x!sinF 1

\ E
x

a1
dx p1~x!2

p

4 G for x,a1

~3.8!

and a similar relation forw28(x). The normalization ofw1(x)
is chosen asC152Am to make the probability flux of the
incident wave unity. On the other hand, the final-state wa
function in Eq.~3.3! has to be normalized by thed function
with respect to the energy,^F28uF2&5d(E282E2), and this
specifiesC252Am/A2p\.

We estimate the matrix element~3.4! by using the oscil-
lating parts of the wave functions~3.5! and~3.6!. This treat-
ment is justified if the following conditions are satisfied:~i!
up(0)u→ large andm→ large with v5up(0)u/m kept fixed
such that nonrelativistic treatment is valid in the physica
relevant region and~ii ! g→small, but with

1

g
!

1

2m
up~0!u2 ~3.9!

to ensure Eq.~2.11! and the condition

b!a, ~3.10!

wherea is an average turning point andb is a typical geo-
metrical extension of]xu(x). If Eq. ~3.10! is satisfied, we
can estimate the matrix element by using the oscillating p
of wave functions only since]xu(x) rapidly goes to zero for
uxu@b on the real axis.

The integral~3.4! is then written as

^F f uHI8uF i&.2
i\C1C2

8m E dx ]xu~x!

3H expF i

\ E
a1

x

dx p1~x!2
i

\ E
a2

x

dx p2~x!G
2expF2

i

\ E
a1

x

dx p1~x!1
i

\ E
a2

x

dx p2~x!G J ,

~3.11!

where we have setp1(x)/p2(x)51 in the prefactors. This is
justified within the saddle-point approximation for\→0;
this is also justified if\/up(0)u!b, the characteristic length
scale of the present problem, by settingp(0) large, as speci-
fied in ~i!. Therefore we need to evaluate an integral of t
form
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I[E
2`

`

dx ]xu~x!expF i

\ E
a1

x

dx p1~x!2
i

\ E
a2

x

dx p2~x!G .
~3.12!

Here we present an explicit evaluation of Eq.~3.12! for
the linear potential crossing problem,V1(x)5V18(0)x and
V2(x)5V28(0)x, on the basis of local data without referrin
to Stokes phenomena. For sufficiently large ener
E2(U11U2)/2@(U12U2)/2, the difference of momenta
can be approximated as@see Eq.~2.9!#

E
0

x

dx@p1~x!2p2~x!#.2E
0

x

dx
2

v~x!gb
Ax21b2,

~3.13!

where we used

f ~x!5g
V18~0!2V28~0!

2
x[

x

b
,

v~x![
1

m S 2mFE2
U1~x!1U2~x!

2 G D 1/2

, ~3.14!

and v(x) is approximated to be a constantv5v(0) in the
following. From Eq.~2.10!, we also have

]xu~x!52
b

x21b2 , ~3.15!

and thus

I .2expF i

\ E
a1

0

dx p1~x!2
i

\ E
a2

0

dx p2~x!G
3E

2`

`

dx
b

x21b2 expS 2
2i

\vgb E
0

x

dxAx21b2D
52expF i

\ E
a1

0

dx p1~x!2
i

\ E
a2

0

dx p2~x!G
3E

2`

`

dx
1

x211
expS 2 iaE

0

x

dxAx211D
52expF i

\ E
a1

0

dx p1~x!2
i

\ E
a2

0

dx p2~x!G
3E

2`

`

dx exp@2 iaF~x!#, ~3.16!

where

F~x![E
0

x

dxAx2111
1

ia
ln~x211!,

a[
2b

\vg
5

4

\vg2@V18~0!2V28~0!#
.0. ~3.17!

We evaluate integral~3.16! by a saddle-point approximatio
with respect toa. We thus seek the saddle point
,

F8~x!5Ax2111
1

ia

2x

x211
50, ~3.18!

which is located between the real axis and the pole positi
x56 i of ]xu(bx) so that we can smoothly deform the in
tegration contour; these poles also coincide with the comp
potential crossing points. If one setsx5 iy in Eq. ~3.18! for
21,y,1, one has

A12y252
1

a

2y

12y2 , ~3.19!

which has auniquesolution

xs5 iys.2 i 1
i

2 S 2

a D 2/3

~3.20!

for large a. ~The complex conjugate ofxs is located in the
second Riemann sheet.! For this value of the saddle point

F~xs!5E
0

xs
dxAx2111

1

ia
lnS 2

a D 2/3

.2
p i

4
1

2

3

i

a
1

1

ia
lnS 2

a D 2/3

,

F9~xs!.23i S a

2 D 1/3

. ~3.21!

We thus have a Gaussian integral which decreases in
direction parallel to the real axis

I .2S a

2 D 2/3

e2/3 expF i

\ E
a1

0

dx p1~x!2
i

\ E
a2

0

dx p2~x!G
3E

2`

`

dx expF23S a

2 D 4/3

~x2xs!
2GexpS 2

pa

4 D
52S p

3 D 1/2

e2/3

3expF i

\ E
a1

0

dx p1~x!2
i

\ E
a2

0

dx p2~x!GexpS 2
pa

4 D .

~3.22!

From Eq.~3.11!, we obtain

^F f uHI8uF i&.2S p

3 D 1/2

e2/3S \

2p D 1/2

3sinH 1

\ F E
a1

0

dx p1~x!2E
a2

0

dx p2~x!G J
3expH 2

p

\vg2@V18~0!2V28~0!#J . ~3.23!

It is interesting that the numerical value of the coefficient
the above expression,Ape2/3/)51.993 17, is very close to
the canonical value 2@4#, and we replace it by 2 in the
following. For a past analysis of the prefactor in the tim



a
ic
r-
a

nt

u
a

bi

uc

ti

lly

e

fined

en

Lif-

le

g
ins
si-

of

3440 56KAZUO FUJIKAWA AND HIROSHI SUZUKI
dependent perturbation theory, see Refs.@15#. We thus have
the transition probability from Eq.~3.3!,

w~ i→ f !.4 sin2H 1

\ F E
a1

0

dx p1~x!2E
a2

0

dx p2~x!G J
33expH 2

2p

\vg2@V18~0!2V28~0!#J
.2 expH 2

2p

\vg2@V18~0!2V28~0!#J , ~3.24!

where we replaced the square of sine function by its aver
1
2 in the final expression. We emphasize that the numer
coefficient ofw( i→ f ) is fixed by time-independent pertu
bation theory and the local data without referring to glob
Stokes phenomena; this is satisfactory, since linear pote
crossing is a locally valid idealization.

We interpret thatw( i→ f ) in Eq. ~3.24! expressestwice
the nonadiabatic transition probability. Notice that o
initial-state wave function contains the reflection wave
well as the incident wave. Therefore the transition proba
ity per onecrossing is given by half of Eq.~3.24!,

P~1→2!.expH 2
2p

\vg2@V18~0!2V28~0!#J , ~3.25!

which is the celebrated Landau-Zener formula@4,5#. Our per-
turbative derivation presented here is conceptually m
simpler than the past works@1,4,5,8,12#, and it should also
be useful for a pedagogical purpose also.

It is interesting to study the same problem in the diaba
picture in Fig. 1 withHI5s1 /g for large g. We first note
that the initial state in the adiabatic picture asymptotica
corresponds to the eigenfunction ofV2(x) and the final state
corresponds toV1(x), under the present setupV18(0)
.V28(0). Therefore the initial and final zeroth-order wav
functions in the diabatic picture are taken as

C i~x!5S 0
c2~x! D , C f~x!5S c1~x!

0 D . ~3.26!

In the WKB approximation,

c1~x!55
C1

2Aup1~x!u
expF2

1

\ E
a1

x

dxup1~x!uG for x.a1

C1

Ap1~x!
cosF 1

\ E
x

a1
dx p1~x!2

p

4 G for x,a1

~3.27!

and
ge
al

l
ial

r
s
l-

h

c

c2~x!55
C2

2Aup2~x!u
expF2

1

\ E
a2

x

dxup2~x!uG for x.a2

C2

Ap2~x!
cosF 1

\ E
x

a2
dx p2~x!2

p

4 G for x,a2.

~3.28!

In the above expressions, semiclassical momenta are de
by

p1,2~x![A2m@E2V1,2~x!#. ~3.29!

The transition probability in the diabatic picture is then giv
by

w~ i→ f !5
2p

\
z^C f uHI uC i& z2. ~3.30!

The evaluation of the matrix element in Eq.~3.30! is the
standard one described in the textbook by Landau and
shitz@4#, for example. The saddle point for\!1 is located at
the originxs50 and we have an integral, for example,

E
2`

`

dx
1

Ap1~x!p2~x!

3expF i

\ E
a1

x

dx p1~x!2
i

\ E
a2

x

dx p2~x!G
.

A2p\

Am@V18~0!2V28~0!#~2mE!1/4

3expF i

\ E
a1

0

dx p1~x!2
i

\ E
a2

0

dx p2~x!2
p i

4 G .
~3.31!

Under this approximation, we have, forE.0,

w~ i→ f !.
8p

\v~0!g2@V18~0!2V28~0!#

3cos2F 1

\ E
0

a2
dx p2~x!2

1

\ E
0

a1
dx p1~x!2

p

4 G
.

4p

\vg2@V18~0!2V28~0!#
. ~3.32!

@v(0) is the velocity at the crossing point, andv(0)
5A2E/m.# For E,0, one can verify that there is no sadd
point and, therefore,

w~ i→ f !.0. ~3.33!

We again interpret Eq.~3.32! as twice the potential crossin
probability, because our initial-state wave function conta
the reflection wave as well as the incident wave. The tran
tion probability per one potential crossing is given by half
Eq. ~3.32!.
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A simple interpolating formula, which reproduces Eq
~3.24! in the weak-coupling limit and Eq.~3.32! in the
strong-coupling limit, is given by

w~ i→ f !.2 expH 2
2p

\vg2@V18~0!2V28~0!#J
3S 12expH 2

2p

\vg2@V18~0!2V28~0!#J D .

~3.34!

This expression is also consistent with the~semiclassical!
conservation of probability@4#. A justification of Eq.~3.34!
is facilitated by combining the analysis of Stokes phenom
and the conservation of probability@6#.

Motivated by duality, we reexamined a perturbative de
vation of the Landau-Zener formula, and we rederived f
mula ~3.24! including its numerical coefficient on the bas
of perturbation theory. However, our final result~3.24! in the
adiabatic picture does not contain the coupling constant
prefactor. This is related to an interesting topological obj
in the present formulation. From the definition of Eq.~2.10!,
the ‘‘gauge field’’ satisfies the relation

E
2`

`

dx ]xu~x!5u~`!2u~2`!52p, ~3.35!

which is independentof the coupling constantg; we assume
f (x)→6` for x→6`, respectively. Because of thi
kinklike topological behavior ofu(x), the coupling constan
does not appear as a prefactor of the matrix element in
turbation theory if the wave functions spread over the ra
which covers the geometrical size of]xu(x) well. The pre-
cise criterion of the validity of perturbation theory is thu
given by Eq. ~2.11!: This condition is in fact satisfied i
conditions~3.9!–~3.10! are satisfied. For small values ofx,
the small couplingg helps to satisfy Eq.~2.11!. Even for the
values ofx near the average turning pointa, we have

\

2
u]xu~a!u.

1

2 S b

a D \

a
!

\

a
.up~a!u, ~3.36!

whereb stands for the typical geometrical size of]xu(x).
The estimate on the left-hand side is based on linear po
tials ~3.15!, but we expect that the condition is satisfied f
more general potentials as well. To conclude this section,
clarified the basic mechanism why the prefactor of
Landau-Zener formula~3.25! should come out to be ver
close to unity in time-independent perturbation theory.

IV. POTENTIAL CURVE CROSSING
AND QUANTUM COHERENCE

The effects of dissipative interactions on macrosco
quantum tunneling have been extensively analyzed in
path-integral formalism@13# and also in the canonical~field
theoretical! formalism @14#. It is generally accepted tha
Ohmic dissipation suppresses the macroscopic quantum
herence; in fact, an attractive idea of a dissipative phase t
sition has been suggested@13#.
a

-
-

a
t

r-
e

n-

e
e

c
e

o-
n-

It is plausible that the effects of a potential curve cross
with nearby potentials influence the quantum coherence
the two degenerate ground states. Here we analyze the
eral features of the effects of potential crossing on quan
coherence on the basis of time-independent perturba
theory, which was confirmed in Sec. III to be reliable
limits of both weak and strong potential curve crossing
teraction. We assumeV2(x)5V1(2x) and V28(0),0. We
thus analyze this problem from two different view points.

A. Strong potential curve crossing interactiong@1
„diabatic picture…

We start with the diabatic picture in Fig. 3, and incorp
rate the effects of the potential crossing interactions1 /g.
That is, we ~approximately! diagonalize the total Hamil-
tonian in the diabatic picture. By treating the last term of E
~2.1! as a perturbation forg@1, we obtain the energy eigen
values of the two lowest-lying states as~with E0 the zeroth
order degenerate energy eigenvalue!

E6
~1!5E07

1

g E
2`

`

dx cL~x!cR~x!, ~4.1!

with the corresponding eigenfunctions

C1~x!.
1

&
S cL~x!

2cR~x! D[
1

&
@e1cL~x!2e2cR~x!#,

C2~x!.
1

&
S cL~x!

cR~x! D[
1

&
@e1cL~x!1e2cR~x!#.

~4.2!

That is, both of these two statesC6(x) choose

e1cL~x! in the region of left valley,

e2cR~x! in the region of right valley. ~4.3!

The ‘‘spin’’ eigenstatese6 and the ‘‘space’’ eigenstate
cL(x) or cR(x) are strongly correlated. Note that one c
conveniently think of the two potentials as spin-up and sp
down states. Originally, before we incorporate the pertur
tion s1 /g in Eq. ~4.1!, we have two energetically degenera
states with energyE0 defined by

FIG. 3. Quantum coherence in the diabatic picture.
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CL~x!5S cL~x!

0 D[e1cL~x!, ~4.4!

which is always a spin-up state, and

CR~x!5S 0
cR~x! D[e2cR~x!, ~4.5!

which is always a spin-down state.
In the strong potential crossing limit,g→`, we haveno

effectof the conventional quantum tunneling in addition
the mixing in Eq. ~4.2!, since the conventional tunnelin
goes through the interactions1 /g in Eq. ~2.1!, and thus
higher-order effects in 1/g.

We can find theO(1/g) energy splitting in the WKB ap-
proximation. The left wave functioncL(x) is given by Eq.
~3.27! with C15A2mv/p. ~For a sufficiently low-energy
state such as the ground state,v can be regarded as th
curvature of the potential energy at the minimum.! The right
wave functioncR(x) is given by

cR~x!

55
C2

2Aup2~x!u
expF2

1

\ E
x

a2
dxup2~x!uG for x,a2

C2

Ap2~x!
cosF 1

\ E
a2

x

dxp2~x!2
p

4 G for x.a2 ,

~4.6!

with C25A2mv/p. In the saddle-point approximation, w
have the overlap integral

E dx
1

Aup1~x!uup2~x!u

3expF2
1

\ E
a1

x

dxup1~x!u1
1

\ E
a2

x

dxup2~x!uG
.

A2p\

Am@V18~0!2V28~0!#~22mE!1/4

3expF2
1

\ E
a1

0

dxup1~x!u1
1

\ E
a2

0

dxup2~x!uG ,
~4.7!

which yields the energy splitting

E2
~1!2E1

~1!.
A2\

gAp@V18~0!2V28~0!#
S m

22E0
D 1/4

3expH 2
1

\ E
a1

a2
dxA2m@V̄~x!2E0#J .

~4.8!

In the above expression, we have definedV̄(x) as the follow-
ing ‘‘ L-shape’’ potential:
V̄~x!5 HV1~x!

V2~x!

for x,0
for x.0. ~4.9!

We recall that, when the upper adiabatic potentialU1(x) is
absent, the standard WKB formula gives the energy splitt
of lowest levels@4#,

E22E1.
\v

p
expH 2

1

\ E
2a

a

dxA2m@U2~x!2E0#J .

~4.10!

Comparing this with Eq.~4.8!, we find that the quantum
coherence is actually suppressed by two elements; the o
all small coefficient 1/g!1 and the exponential suppressio
factor; V̄(x) is always larger than the lower potential,V̄(x)
.U2(x).

B. Weak potential curve crossing interactiong!1
„adiabatic picture…

In this case, we can use the gauge transformed adiab
picture defined by Eq.~2.6!. In this scheme, the low-lying
eigenstates forH08 are described by the nearly degenera
two states in the lower potential curveU2(x); see Fig. 4. For
a small g, the two potential curvesU1(x) and U2(x) are
widely separated. We thus take the ground states of the s
down sector~i.e., the nearly degenerate two ground states
the lower potential curve!,

F1~x!5S 0
w21~x! D , F2~x!5S 0

w22~x! D , ~4.11!

as the zeroth-order approximation of the lowest-lying sta
These two states correspond to the conventional symm
and antisymmetric tunneling eigenstates of the double-w
potentialU2(x), whose energy splitting gives theorder pa-
rameterof the quantum coherence@13#. To the second orde
of the gauge field]xu(x), the energy eigenvalue is perturbe
to

FIG. 4. Quantum coherence in the adiabatic picture.
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E6
~2!5E61^F6uHI8uF6&2(

n

z^F1,nuHI8uF6& z2

E1,n2E6

5E61
\2

8m E dx@]xu~x!#2w26~x!2

2
\2

16m2 (
n

1

E1,n2E6

3U E dxw1,n~x!@ p̂]xu~x!1]xu~x! p̂#w26~x!U2

,

~4.12!

whereF1,n(x) @andw1,n(x)# is thenth energy eigenstate o
the upper potentialU1(x).

It is generally difficult to conclude the suppression or e
hancement of the quantum coherence solely from the pe
bation formula~4.12!. The reason is that the effect of inte
mediate state sum can depend on the details of the u
potential curve. Nevertheless, when the well of the up
potential is narrow enough, we can show that the quan
coherence is always suppressed.

We first assume that the lowest-lying parity even- a
odd-parity states are given, respectively, by a linear com
nation of the ground states in left and right wells:

s26~x!5
1

A2
@w2L~x!6w2R~x!#, ~4.13!

where in the WKB approximation in the classically forbi
den region,

w2L~x!5w2R~2x!5
C2

2Aup2~x!u
expF2

1

\ Ex

dxup2~x!uG .
~4.14!

The normalization constant is given byC25A2mv/p.
We next assume that the upper potentialU1(x) is narrow

enough and can be well approximated by a square well
tential with the widtha. The eigenfunctions in the uppe
potential are therefore given by

w1,n~x!5S 2

aD 1/2

sin Fnp

a S x1
a

2D G , n51,2, . . . .

~4.15!

Moreover, since the gauge field]xu(x) defined in Eq.~2.10!
is nonzero only within this narrow region, we may make t
following replacements in integral~4.12!:

w21~x!→w21~0!, w22~x!→0,

p̂w21~x!→0, p̂w22~x!→ i up2~0!us21~0! ~4.16!

and
-
r-

er
r

m

d
i-

o-

p̂w1,n~x!→2 i up1,nuS 2

aD 1/2

cos Fnp

a S x1
a

2D G ,
up1,nu[\

np

a
. ~4.17!

Under these assumptions, the energy shift~4.12! is esti-
mated for the even-parity state

E1
~2!5E11

\2

8m E dx@]xu~x!#2w21~0!2

2
\2

16m2 (
n51

` up1,nu2

E1,n2E1

3U E dxS 2

aD 1/2

cos Fnp

a S x1
a

2D G]xu~x!U2

w21~0!2.

~4.18!

By noting up1,nu252m@E1,n2U1(0)# and U1(0).E1 , we
see that

\2

16m2

up1,nu2

E1,n2E1
5

\2

8m

E1,n2U1~0!

E1,n2E1
,

\2

8m
~4.19!

and thus

E1
~2!.E11

\2

8m E dx@]xu~x!#2w21~0!22
\2

8m (
n50

`

3U E dxA2

a
cos Fnp

a S x1
a

2D G]xu~x!U2

w21~0!2

5E1 , ~4.20!

where we have added then50 mode to make the cosin
functions a complete set. Therefore the perturbation alw
increases the ground-state energy.

On the other hand, Eq.~4.12! gives, for the odd-parity
state,

E2
~2!5E22

\2

16m2(
n51

` up2~0!u2

E1,n2E2

3U E dx w1,n~x!]xu~x!U2

w21~0!2. ~4.21!

Since the second term of Eq.~4.21! is negative definite, we
see that the perturbation always lowers the odd state ene

E2
~2!,E2 . ~4.22!

The perturbative corrections in Eqs.~4.18! and~4.21! are
proportional to the wave function at the origin, which sat
fies w21(0)2.m(E22E1)/@\up2(0)u# @4#, and therefore
the correction to the energy splitting itself is proportional
the zeroth-order energy splittingE22E1 . Since the correc-
tion cannot excess the zeroth-order value in a reliable reg
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of perturbation theory, we should haveE2
(2)2E1

(2).0. By
combining Eqs.~4.20! and ~4.22!, therefore, we find

0,E2
~2!2E1

~2!,E22E1 , ~4.23!

which shows that the quantum coherence is suppressed
Although we derived the suppression of quantum coh

ence for a very special configuration in the weak-coupl
adiabatic picture, we expect that this suppression of quan
coherence is more general at least for smallg. This is based
on the following physical picture: When a particle tunne
the barrier in the lower potential curve, it has a small pro
ability of crossing to the upper potential curve. This poten
curve crossing means that the particle enters deep inside
tunneling region of the upper potential curve, and is repe
back by the upper potential~as is expected in the diabat
picture!, which in turn leads to the suppression of quantu
tunneling of the particle. This argument leads to the gen
suppression of quantum coherence by potential cross
This is also consistent with the suppression of barrier tra
mission in the scattering process by nonadiabatic couplin
linear potential curve crossing@8#.

Our explicit analyses both in weak and strong poten
crossing interactions suggest the general suppressio
quantum coherence by potential crossing, which is analog
to the effect of Ohmic dissipation on quantum coheren
@13,14#. In this connection, we note that formula~4.12! and
the Ohmic dissipation in the Caldeira-Leggett model@13#
both correspond to a dipole approximation with the sa
selection rules. However, an analysis of the basically non
turbative tunneling effect in second-order perturbation the
requires great care; for this reason, we were able to ana
explicitly only the very specific case in Eqs.~4.15!–~4.17!.
This suppression phenomenon of quantum coherence
become important in the future when one takes the effect
the environment into account in the analysis of poten
curve crossing in physical and chemical processes.
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V. DISCUSSION AND CONCLUSION

Motivated by the presence of interesting weak and stro
duality in the model Hamiltonian~2.1! of potential curve
crossing, we reexamined a perturbative approach to pote
crossing phenomena. We have shown that straightforw
time-independentperturbation theory combined with zeroth
order WKB wave functions provides a reliable description
general potential crossing phenomena. Our analysis is b
on the local data as much as possible without referring
global Stokes phenomena@12#. Formulated in this manner
perturbation theory becomes more flexible to cover a w
range of problems. From a perturbative view point, the tre
ment of the Landau-Zener formula in the adiabatic picture
most complicated, since it does not contain the coupling c
stant in the prefactor. We pointed out that this absence
coupling constant in the prefactor is related to the prese
of an interesting kinklike topological object in the prese
formulation of adiabatic picture.~The appearance of a topo
logical object in the ‘‘magnetic’’ picture is reminiscent o
gauge theory@11#.! The absence of a coupling constant in t
prefactor is thus perfectly consistent with perturbati
theory, provided that a more precise criterion of the pert
bation theory~2.11! is satisfied. In effect, we have explaine
why the prefactor of the Landau-Zener formula should co
out to be very close to unity in perturbation theory.

The suppression of quantum coherence by potential cu
crossing, which to our knowledge has not been discus
before in this context, has also been neatly formulated in
treatment, in the limits of both very strong and very we
potential crossing interactions. From the viewpoint of ge
eral gauge theory, it is not unlikely that the electric-magne
duality in conventional gauge theory is also related to so
generalized form of potential crossing in so-called mod
space@11#. We hope that our work may also turn out to b
relevant from this viewpoint.
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