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Arrival time in quantum mechanics
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A self-adjoint operator with dimensions of time is explicitly constructed, and it is shown that its complete
and orthonormal set of eigenstates can be used to define consistently a probability distribution of the time of
arrival at a spatial point.@S1050-2947~97!09210-X#

PACS number~s!: 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

The role that time plays in quantum mechanics has alw
been controversial. This is in part a consequence of the ra
singular status that time exhibits in nonrelativistic physics
particular, time enters the Schro¨dinger equation as an exte
nal parameter and, accordingly, the quantum formalism
usually concerned with probability distributions of meas
able quantities at a definite instant of time. However, o
may also ask for the instant of time at which a certain pr
erty of a quantum system takes a given value. In this c
time has the character of a dynamical variable: It depend
the initial state of the system and on its dynamical evoluti
and appears as an intrinsic property of the physical sys
under study. Since such an instant of time is, in principle
perfectly measurable quantity it seems natural to try to inc
porate the concept of a time observable into the quan
formalism. However, this is not an easy task. The stand
quantum formalism associates measurable quantities
self-adjoint operators acting on the Hilbert space of phys
states, and postulates that the probability distribution of
outcomes of any well-designed measuring apparatus ca
obtained in terms of the orthogonal spectral decomposi
of the corresponding self-adjoint operator, with no expli
dependence on the particular properties of the measuring
vice. Therefore, the problem reduces, in principle, to find
a suitable quantum operator. This is usually accomplis
via the correspondence principle, starting from the cor
sponding classical expressions and quantizing by using
tain specific quantization rules. However, in doing so o
frequently has to face the problem that in general there ex
no unique way to obtain a quantum operator which redu
to a given known expression in the classical limit (\→0).

Given the HamiltonianH(q,p) of a conservative classica
system, expressed in terms of canonical variables (q,p), one
can always make a canonical transformation to new can
cal variables (H,T), whereH is the Hamiltonian of the sys
tem andT its conjugate variable, which satisfies Hamilton
equation@1,2#

dT

dt
5$H,T%51, ~1!

$H,T% denoting the Poisson bracket ofH andT. The impor-
tant point is that the above equation clearly reflects that
canonical variableT is nothing but the interval of time. Thu
the next step would be to take advantage of this desira
561050-2947/97/56~5!/3425~11!/$10.00
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fact and translate the above formulation to the quant
framework. This can be easily accomplished by means of
canonical quantization method@3#, which basically states
that the classical formulation remains formally valid in th
quantum domain with the substitution of Poisson brackets
commutators,$H,T%→1/i\@Ĥ,T̂#, and interpreting the dy-
namical variables as self-adjoint operators in the Heisenb
picture. Then, based on the correspondence principle and
canonical quantization method, one is led to look for a se
adjoint time operator conjugate to the Hamiltonian,

@Ĥ,T̂#5 i\. ~2!

As can be easily verified, this commutation relation a
holds true in the Schro¨dinger picture, and has the addition
desirable consequence that it implies the uncertainty rela

DHDT>1/2u@Ĥ,T̂#u, ~3!

with DH and DT being the usual root-mean-square dev
tions of the corresponding dynamical variables. Unfor
nately no such time operator exists. As remarked by Pa
the existence of a self-adjoint operator satisfying the ab
commutation relation is incompatible with the semibound
character of the Hamiltonian spectrum@4#.

The lack of a proper time observable has a number
consequences@5#. In particular, the time-energy uncertain
relation has remained unclear over the time. This is so b
cally because, contrary to what happens with the well-kno
position-momentum uncertainty relation, there exists
unique way to put in a quantitative setting what is rea
meant by the time spreadDT. In fact the consequences de
rived from incorrect application of the time-energy unce
tainty relation have led to a great deal of confusion.

Another related problem which remains controversial
present is that concerned with the formal definition of t
versal and tunneling times@6,7#. This subtle question ha
received considerable attention in recent years@8–15#, moti-
vated in part by the possible applications of tunneling
semiconductor technology. However, the simplest probl
involving time as a dynamical variable is that concerned w
the time of arrival of a free particle at a given spatial poi
Such a time constitutes a well-defined concept which a
classical level can be extracted from the formalism by sim
inverting the corresponding equations of motion. Moreove
is a perfectly measurable quantity whose probability dis
3425 © 1997 The American Physical Society
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3426 56V. DELGADO AND J. G. MUGA
bution can, in principle, be experimentally determined with
any desirable precision. However, the standard quan
theory of measurement does not provide any formulat
which allows one to infer such a probability distribution.
fact, some time ago Allcock@16# argued against such a po
sibility. This author claimed that it is not possible to co
struct any operationally meaningful and apparat
independent probability formula. Even though more recen
a number of works addressing this question from a m
optimistic perspective have appeared@9,17–22#, the problem
is yet far from being resolved, and additional investigati
on this fundamental question is worthwhile.

In this paper we analyze the possibility of defining a pro
ability distribution for the arrival time of a quantum partic
at a definite spatial point. Specifically, we are interested
searching for an apparatus-independent theoretical predic
for the probability distribution of arrival times at a give
spatial point, as a certain function of the initial state of t
system. Our results turn out to be similar to those previou
obtained by Kijowski@17#. However, the approach by Ki
jowski was based on the definition of a nonconventio
wave function which evolves on a family ofx5const planes
~instead of evolving in time according to the Schro¨dinger
equation!, and whose relation to the conventional wave fun
tion is unclear@23,24#. Our approach, conversely, is entire
developed within the formalism of standard quantum m
chanics.

We begin considering in detail the case of a free quan
particle, and then we study the more interesting case
quantum particle scattered by a potential barrier. For simp
ity we shall restrict ourselves to one spatial dimension.
our purpose, it proves to be useful first to analyze in so
detail the reason for the nonexistence of a self-adjoint t
operator in quantum mechanics.

II. NONEXISTENCE OF A TIME OPERATOR IN
QUANTUM MECHANICS

As stated above, according to Pauli’s argument, beca
of the semibounded character of the energy spectrum, t
exists no self-adjoint operator conjugate to the Hamiltoni
i.e., satisfying the commutation relation~2!. The same nega
tive conclusion was found by Allcock@16# using a somewha
different argument based on the time-translation property
the arrival time concept.

If $uT&% denotes a set of measurement eigenstates for
arrival time at a given spatial point of a particle in the qua
tum stateuc&, then, according to the standard quantum f
malism, the probability amplitude for the arrival time at th
instantt5T would be given byc(T)5^Tuc&. If one trans-
lates the state of the system forward through time by
amountt, i.e., uc&→uc8&5exp(2iĤt/\)uc&, then it seems
natural to expect the probability amplitude to transform
cording toc(T)→c8(T)5c(T1t). Since this transforma
tion property must be true for any state vectoruc&, it follows
that the measurement eigenstates$uT&% must satisfy

uT1t&5eiĤ t/\uT&, ~4!

which reflects the fact that, under a translation backward
time by an amountt, any measurement eigenstate cor
m
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sponding to arrival time at the instantt5T transforms into
another measurement eigenstate, corresponding to an a
time t5T1t. Based on general grounds, Allcock show
that measurement eigenstates with such a desirable pro
cannot be orthogonal, which implies that it is not possible
construct the corresponding self-adjoint arrival-time ope
tor. It is not difficult to see that this negative conclusion c
be traced back again to the semi-infinite nature of the Ham
tonian spectrum. To this end let us consider the followi
three statements.

~i! There exists a self-adjoint operatorT̂ conjugate to the
HamiltonianĤ, i.e., satisfying@Ĥ,T̂#5 i\.

~ii ! There exists a self-adjoint operatorT̂, whose~ortho-
normal and complete! set of eigenstates$uT&% transforms un-
der time-translations aseiĤ t/\uT&5uT1t&.

~iii ! There exists a self-adjoint operatorT̂ which generates
unitary energy translations, i.e., such that for any ene
eigenstateuE& and any parameter« with dimensions of en-
ergy, it holds that

eiT̂«/\uE&5uE2«&, ~5!

where the operatorT̂ is assumed to be defined onto the who
Hilbert space spanned by the Hamiltonian eigenstates.

It is not difficult to see that these statements are in f
equivalent. Indeed, if~i! is true, then, by induction, one ha

@Ĥn,T̂#5 in\Ĥn21, n>1, ~6!

whereĤ0[1. Of course the validity of Eq.~6! rests on the
reasonable assumption that the Hamiltonian is well beha
enough so as to guarantee the existence of all its highe
teger powers. Since it also holds that@Ĥn,T̂#50 for n50,
then, multiplying Eq.~6! by (i t/\)n/n! ( t being an arbitrary
parameter with dimensions of time! and summing fromn
50 to n5`, one finds

@eiĤ t/\,T̂#52teiĤ t/\. ~7!

If $uT&% denotes a complete and orthonormal set of eig
states ofT̂, then, according to Eq.~7!, it holds that

T̂eiĤ t/\uT&5~T1t!eiĤ t/\uT&, ~8!

which after suitable choice of normalization and phase le
to statement~ii !. Conversely, if~ii ! is true for any eigenstate
uT& and any parametert, then one can repeat the same ste
backward to reach~i!.

On the other hand, it can be readily seen that statemen~i!
also implies statement~iii !. Indeed, if~i! holds, one has by
induction that

@Ĥ,T̂n#5 in\T̂n21, n>0 ~9!

(T̂0[1), which implies that, for any parameter« with di-
mensions of energy,

@Ĥ,eiT̂«/\#52«eiT̂«/\. ~10!
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56 3427ARRIVAL TIME IN QUANTUM MECHANICS
Therefore, according to Eq.~10! any energy eigenstateuE&
verifies

ĤeiT̂«/\uE&5~E2«!eiT̂«/\uE&, ~11!

from which after proper normalization follows~iii !. An
analogous reasoning can be repeated from~iii ! to ~i!, which
shows the equivalence among the above three statemen

Since~iii ! is obviously incompatible with a semibounde
Hamiltonian spectrum, it follows that it is not possible to fin
a self-adjoint arrival time operator satisfying the desira
conditions~i! or ~ii !.

III. SELF-ADJOINT OPERATOR WITH DIMENSIONS
OF TIME

We start by considering the simplest conceivable arri
time problem, namely, a one-dimensional free particle m
ing along thex axis toward a detector. In looking for a prob
ability distribution of the time of arrival it is most convenien
to work in the energy representation$uE,a&;E>0,
a51,2% defined by the eigenvalue equations

Ĥ0uE,6&5EuE,6&, ~12!

P̂uE,6&56A2mEuE,6& ~13!

where Ĥ05 P̂2/2m is the Hamiltonian of the free particle
and P̂ its momentum operator. The orthonormal and co
plete set of energy eigenstates$uE,a&%, which satisfy

(
a56

E
0

`

dEuE,a&^E,au51, ~14!

^E,auE8,a8&5daa8d~E2E8! ~15!

can be expressed in terms of the usual momentum repre
tation by means of the relation

uE,6&5~m/2E!1/4up56A2mE&, ~16!

where the momentum eigenstates$up&% are normalized as

E
2`

1`

dpup&^pu51, ~17!

^pup8&5d~p2p8!. ~18!

As stated above, the impossibility of finding a time-o
arrival operator can always be traced back to the boun
character of the Hamiltonian spectrum. To circumvent suc
difficulty we shall instead look for a self-adjoint operatorT̂
with dimensions of time, conjugate to a conveniently defin
self-adjoint operatorĤ, with dimensions of energy and
nonbounded spectrum,

@Ĥ,T̂#5 i\. ~19!

Of course this is a somewhat arbitrary procedure, si
the definition of T̂ depends in a fundamental way on th
arbitrary choice one makes for the operatorĤ. Moreover, as
.
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long asĤ differs from the Hamiltonian of the system, th
corresponding operatorT̂ could not be associated to the a
tual physical time. Therefore, the fundamental question
mains of verifying whether it is possible to give a prop
physical interpretation to the selectedT̂ operator in terms of
measurement results, i.e., whether it is possible to define
algorithm which enables us to connect the probability dis
bution of measurement results with the set of eigenval
and eigenstates of the operatorT̂. At this point we shall post-
pone this essential question and simply consider the pro
dure just outlined to be worth exploring.

We now introduce projectors,Q(6 P̂), onto the sub-
spaces generated by plane waves with positive and/or n
tive momenta,

Q~6 P̂!5E
0

`

dpu6p&^6pu, ~20!

and define the self-adjoint operator

sgn~ P̂![Q~ P̂!2Q~2 P̂!. ~21!

Obviously, sgn(P̂) commutes with the Hamiltonian and sa
isfies the eigenvalue equation

sgn~ P̂!uE,6&56uE,6&. ~22!

This operator allows us to define a simple self-adjoint ope
tor with dimensions of energy,

Ĥ[sgn~ P̂!Ĥ0 , ~23!

which exhibits a nonbounded spectrum,

ĤuE,6&56EuE,6& ~E>0!. ~24!

Notice that this is, in a sense, the simplest choice, si
the restrictions ofĤ to the subspaces spanned by pla
waves with positive and/or negative momentum coinc
with plus and/or minus the corresponding restrictions of
HamiltonianĤ0. Specifically,

Q~6 P̂!ĤQ~6 P̂!56Q~6 P̂!Ĥ0Q~6 P̂!. ~25!

Introducing for the energy eigenstates the notation

u«&5H u1E&[uE,1& if «>0,

u2E&[uE,2& if «,0,
~26!

the above results can be rewritten in terms of the comp
and orthonormal set of states$u«&;«P(2`,1`)% satisfying
the eigenvalue equations

Ĥu«&5«u«&, ~27!

P̂u«&5sgn~«!A2mu«uu«&, ~28!

Ĥ0u«&5u«uu«&. ~29!
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3428 56V. DELGADO AND J. G. MUGA
Now searching for a self-adjoint operatorT̂ conjugate to
Ĥ is a straightforward matter. To this end let us introduce
statesut& defined in the$u«&% basis as

ut&5h21/2E
2`

1`

d« ei«t/\u«&. ~30!

These states also constitute a complete and orthonorma
Indeed,

^tut8&5E
2`

1`

d«^tu«&^«ut8&5h21E
2`

1`

d« e2 i«~t2t8!/\

5d~t2t8!, ~31!

E
2`

1`

dtut&^tu5h21E
2`

1`

dtE
2`

1`

d«

3E
2`

1`

d«8ei ~«2«8!t/\u«&^«8u

5E
2`

1`

d«u«&^«u51. ~32!

We can therefore define a self-adjoint operator, with eig
states and eigenvalues given byut& and t, respectively, in
terms of its spectral decomposition

T̂5E
2`

1`

dt tut&^tu. ~33!

The operator so defined has dimensions of time and a
matically satisfies the commutation relation~19!. However,
there exists no guarantee that it will be useful in the time-
arrival problem. In fact,T̂ turns out to be invariant unde
time reversal, and consequently the variablet cannot be
identified with the physical timet. This can be most easily
seen in the momentum representation

^put&5~ upu/mh!1/2ei sgn~p!~p2/2m!t/\. ~34!

Let R̂ denote the time-reversal operator; then we have

R̂ut&5E
2`

1`

dpu2p&^put&* 5E
2`

1`

dpu2p&^2put&5ut&,

~35!

so that, according to Eq.~33!, it holds thatR̂T̂R̂†5T̂. More-
over,

ut1t8&5ei Ĥt8/\ut&ÞeiĤ 0t8/\ut&, ~36!

and the states$ut&% do not exhibit the desirable time
translation property~4! either.

In spite of these facts, it is possible to give a physi
interpretation to the operatorT̂. As we shall see below, on
can consistently define a probability distribution of arriv
times in terms of the eigenvalues and eigenstates of this
erator. To this end it is convenient to decomposeut& to a
superposition of negative- and positive-momentum contri
tions,
e

et.

-

o-

-

l

l
p-

-

ut&5h21/2E
0

`

dE e2 iEt/\uE,2&1h21/2E
0

`

dE eiEt/\uE,1&.

~37!

Defining new states

ut,6&[h21/2E
0

`

dE eiEt/\uE,6&, ~38!

we see thatut& can be written in the form

ut&5ut52t,2&1ut51t,1&. ~39!

The important point is thatut& has been decomposed
terms of states$ut,6&% which do satisfy the time-translatio
property~4!,

ut1t8,6&5eiĤ 0t8/\ut,6&, ~40!

and transform under time reversal as

R̂ut,6&5u2t,7&, ~41!

so that the variablet, unlike t, could, in principle, be asso
ciated with physical time.

Note that even though the states$ut,6&% constitute a com-
plete set

(
a56

E
2`

1`

dtut,a&^t,au51, ~42!

they are not orthogonal,

^t,aut8,a8&5 (
b56

E
0

`

dE^t,auE,b&^E,but8,a8&

5
daa8

h E
0

`

dE e2 iE~ t2t8!/\

5 1
2 daa8H d~ t2t8!2P.P.

i

p~ t2t8!
J . ~43!

For this reason, the states$ut,6&% cannot be used to con
struct a self-adjoint operator.

IV. MEAN ARRIVAL TIME

One of the most controversial aspects of quantum m
chanics is that concerning the connection between the th
retical formulation and the corresponding measurement
sults. In its space-time representation, quantum mecha
becomes a continuous wave theory, whereas measuring
vices usually deal with individual particles. The quantu
formalism tells us how to obtain the probability distributio
of the measurement results in terms of projections of
state vector onto appropriate subspaces of the Hilbert sp
While in the standard interpretation it is commonly assum
that probability distributions refer to individual particle
their experimental verification requires an ensemble. Qua
ties defined in the ensemble may offer practical guidance
only in the interpretation of quantum measurement theo
but also in the search for the quantum counterpart of a c
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56 3429ARRIVAL TIME IN QUANTUM MECHANICS
sical physical variable. In this sense, the mean arrival t
may be useful in looking for a probability distribution o
arrival times.

Consider a classical statistical ensemble of particles
massm, directed along a well-defined direction, and char
terized by the phase-space distribution functionf (x,p,t).
The average time of arrival at a spatial pointx0 is given by

^tx0
&5

E
2`

1`

dt t J~x0 ,t !

E
2`

1`

dt J~x0 ,t !

, ~44!

whereJ(x0 ,t) represents the average current atx0,

J~x0 ,t !5E E f ~x,p,t !
p

m
d~x2x0!dx dp, ~45!

and plays the role of an unnormalized probability distrib
tion of arrival times. It seems natural to make use of
correspondence principle in order to translate the expres
for the classical average time of arrival, Eq.~44!, to the
quantum formalism. This can be accomplished by substi
ing J(x0 ,t) by the expectation value of the current opera

Ĵ~X!5
1

2m
~ P̂uX&^Xu1uX&^XuP̂!. ~46!

Such a quantum definition for the average time of arri
has been widely used in recent years@9,18–20#. However,
unlike its classical counterpart, even for wave packets
rected along a well-defined spatial direction, the quant
probability current is not positive definite. For this reason
cannot be considered as a probability distribution of in
vidual arrival times, and the validity of the above expre
sions in a quantum context is questionable. In fact, stric
speaking,Ĵ(X) is an operator-valued distribution~the opera-
tor analog of a generalized function!, and, as pointed out by
Goldrich and Wigner@25#, there exist quantum quantitie
such asĴ(X), whose expectation values do not correspond
averages of individual measurements~eigenvalues!, but rep-
resent a measurable property of the ensemble as a who

In spite of the general inadequacy ofĴ(X) to describe the
probability distribution of arrival times, when quantum bac
flow contributions become negligible the quantum curr
becomes positive and admits a probability interpretat
@18#. Such a situation occurs, at large times, for freely mo
ing packets containing only positive momenta, and it a
occurs under the standard asymptotic conditions of scatte
theory. In fact, Eq.~44! can be operationally justified in th
quantum case by using aperfect absorber, i.e., a complex
potential that absorbs the incoming wave in an arbitr
small spatial region, without reflection or transmission@20#.
According to such an operational model, which simulates
detection of incoming particles by a destructive procedu
the average time given by Eq.~44! coincides with the aver-
age time of absorption~detection! within any desirable pre-
cision. Thus, any properly defined arrival time probabil
distribution should be compatible with Eq.~44!.
e
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V. PROBABILITY DISTRIBUTION OF ARRIVAL TIMES:
FREE PARTICLE

We shall restrict ourselves to the case of a free part
moving along a well-defined direction toward a detector si
ated at the pointx5X. Specifically, we assume that the in
going asymptote of the actual state of the particle cor
sponds, in the position representation, to a wave pac
which is either a linear superposition of positive plane wav
or a linear superposition of negative plane waves,

uc6, in&[Q~6 P̂!uc6, in&. ~47!

Under these circumstances, the in asymptote becomes in
tinguishable from the actual stateuc6(t50)&, so that we
shall not discriminate between them from now on. Note t
as a consequence of the commutation between the t
evolution operatore2 iĤ 0t/\ and the projectorsQ(6 P̂), at
any timet it also holds that

uc6~ t !&[Q~6 P̂!uc6~ t !&. ~48!

As stated in Sec. IV, the mean arrival time at a pointX is
given by

^tX&65

E
2`

1`

dt t^c6~t!uĴ~X!uc6~t!&

E
2`

1`

dt^c6~t!uĴ~X!uc6~t!&

, ~49!

where Ĵ(X) is the current operator in the Schro¨dinger pic-
ture, given in Eq.~46!, and ^c6(t)uĴ(X)uc6(t)& is the
probability current at the instant of timet[t in the ~Schrö-
dinger! stateuc6(t)&.

In the free case, we have

E
2`

1`

dt^c6~t!uĴ~X!uc6~t!&561, ~50!

so that the mean arrival timêtX&6 can be expressed as th
expectation value

^tX&6[6^c6uĴ6~X!uc6&, ~51!

where uc6& denotes the state of the particle in the Heise
berg picture, i.e.,

uc6&5eiĤ 0t/\uc6~t!&5uc6~0!&, ~52!

and we have introduced the operator

Ĵ6~X![E
2`

1`

dt tQ~6 P̂!ĴH~X,t!Q~6 P̂!, ~53!

whereĴH(X,t) is the Heisenberg current operator,

ĴH~X,t!5eiĤ 0t/\Ĵ~X!e2 iĤ 0t/\. ~54!

For later convenience use has been made in the above e
tions of the identityuc6(0)&[Q(6 P̂)uc6(0)&.

Inserting twice the resolution of unity, Eq.~14!, and using
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3430 56V. DELGADO AND J. G. MUGA
Q~6 P̂!uE,a&5da,6uE,a&, ~55!

Ĵ6(X) takes the form

Ĵ6~X!5E
2`

1`

dt tE
0

`

dEE
0

`

dE8ei ~E2E8!t/\uE,6&

3^E,6uĴ~X!uE8,6&^E8,6u. ~56!

Substituting expression~46! for Ĵ(X), using Eq.~13!, and
taking into account that, according to Eq.~16!,

^XuE,6&5h21/2~m/2E!1/4e6 iA2mEX/\, ~57!

the matrix element in the integrand of Eq.~56! can be rewrit-
ten in the form

^E,6uĴ~X!uE8,6&

56
1

2hH S E

E8
D 1/4

1S E8

E D 1/4J e7 i ~A2mE2A2mE8!X/\. ~58!

After insertion of Eq.~58! into Eq.~56!, the operatorĴ6(X)
reads

Ĵ6~X!5e2 i P̂X/\Ĵ6~X50!e1 i P̂X/\, ~59!

where we have again taken advantage of Eq.~13! to write

eiP̂X/\uE,6&5e6 iA2mEX/\uE,6&, ~60!

and Ĵ6(X50), which is the operator involved in the dete
mination of the mean arrival time at the pointX50, is given
by

Ĵ6~0!56E
2`

1`

dt tE
0

`

dEE
0

`

dE8
1

2hH S E

E8
D 1/4

1S E8

E D 1/4J
3ei ~E2E8!t/\uE,6&^E8,6u. ~61!

In order to guarantee that the integrand is well beha
over the whole interval of integration, we shall restrict ou
selves to physical states satisfying the boundary conditio

lim
E→ `

E1/4^E,6uc6&50,

lim
E→ 0

E21/4^E,6uc6&50, ~62!

which, in the more familiar momentum representation, ta
the form

lim
p→ 6 `

^puc6&50, lim
p→ 0

p21^puc6&50. ~63!

Put another way, we shall restrict ourselves to normaliza
wave packets, which are superpositions of either positive
negative plane waves, and which vanish faster thanp as p
approaches zero.

The integral in thet variable, in Eq.~61!, can be readily
performed to obtain
d
-
s

e

le
or

Ĵ6~0!57
i\

2 E
0

`

dEE
0

`

dE8S ]

]E
d~E2E8! D

3H S E

E8
D 1/4

1S E8

E D 1/4J uE,6&^E8,6u. ~64!

To proceed further, it is convenient to consider the mat
elements ofĴ6(0) between arbitrary statesuF&, uC& satis-
fying the boundary conditions~62!. Using the derivative of
the Diracd in the integrand of~64! to perform one of the two
energy integrals, one arrives at

^FuĴ6~0!uC&56 i\E
0

`

dE^E,6uC&
]

]E
^FuE,6&.

~65!

On the other hand, using the resolution of the unity, Eq.~32!,
and taking into account that

6 i\
]

]E
^tuE,6&5t^tuE,6&, ~66!

one can obtain a useful alternative expression for the ene
derivative in the integrand of Eq.~65!, in terms of the self-
adjoint ‘‘time’’ operator defined in Eq.~33!. Indeed,

6 i\
]

]E
^FuE,6&56 i\E

2`

1`

dt^Fut&
]

]E
^tuE,6&

5E
2`

1`

dt t^Fut&^tuE,6&5^FuT̂uE,6&.

~67!

Therefore,

^FuĴ6~0!uC&5E
0

`

dE^FuT̂uE,6&^E,6uC&. ~68!

Taking uF&5uC&5 e1 i P̂X/\uc6&, we have

^tX&6[6^c6ue2 i P̂X/\Ĵ6~0!e1 i P̂X/\uc6&5

6E
0

`

dE^c6ue2 i P̂X/\T̂uE,6&^E,6ue1 i P̂X/\uc6&.

~69!

Using the identity

uE,6&^E,6u[Q~6 P̂! (
a56

uE,a&^E,au, ~70!

as well as Eq. ~14!, and taking into account thatQ
(6 P̂)e1 i P̂X/\uc6&5e1 i P̂X/\uc6&, we finally find

^tX&656^c6ue2 i P̂X/\T̂e1 i P̂X/\uc6&. ~71!

Accordingly, the self-adjoint operator involved in the d
termination of the mean arrival time at an arbitrary pointX,
is given by the spatial translation of the operatorT̂ previously
defined,



te
y
l

te
e

o
rm

th

th

ity

si

cal
e
le
y

te

at

left

an-
we

op-
totic
ally,

is

56 3431ARRIVAL TIME IN QUANTUM MECHANICS
T̂~X!5e2 i P̂X/\T̂e1 i P̂X/\, ~72!

and its spectral resolution reads

T̂~X!5E
2`

1`

dt tut;X&^t;Xu, ~73!

where

ut;X&5e2 i P̂X/\ut&

5h21/2E
2`

1`

d« ei ~«t2sgn~«!A2mu«uX!/\u«&. ~74!

Since the states$ut;X&% are generated from the comple
and orthonormal set$ut&% via a unitary transformation, the
also constitute, for a givenX, a complete and orthonorma
set.

Introducing the complete but nonorthogonal set of shif
states$ut,6;X&%, defined as the spatial translation of the s
$ut,6&%,

ut,6;X&[e2 i P̂X/\ut,6&

5h21/2E
0

1`

dE ei ~Et7A2mEX!/\uE,6&, ~75!

the statesut;X& can be decomposed as a superposition
negative- and positive-momentum contributions, in the fo

ut;X&5ut52t,2;X&1ut51t,1;X&. ~76!

Inserting now the spectral resolution ofT̂(X), Eq. ~73!,
into Eq. ~71!, one can express the mean arrival time at
spatial positionX, in the form

^tX&65E
2`

1`

dt~6t!z^t;Xuc6& z2, ~77!

so that

^tX&15E
2`

1`

dt t z^t51t,1;Xuc1& z2, ~78!

^tX&25E
2`

1`

dt~2t!z^t52t,2;Xuc2& z2. ~79!

On the other hand, taking into account the resolution of
unity,

(
a56

E
2`

1`

dtut,a;X&^t,a;Xu51, ~80!

we have

15^c6uc6&5E
2`

1`

dtz^t,6;Xuc6& z2, ~81!

which, for a free particle, coincides with the total probabil
of arriving at the pointX at any instant.

Therefore, the quantitiesz^t;Xuc6& z2 enter the above
equations as a probability density, and lead to an expres
d
t

f

e

e

on

for the mean arrival time having the correct semiclassi
limit in terms of the probability current. However, unlike th
latter, it is definite positive. Accordingly, for a free partic
in the Heisenberg stateuc1&, one can interpret consistentl
^t;Xuc1&5^t51t,1;Xuc1& as the probability amplitude
of arriving at the spatial pointX from the left, at the instant
t5t. Similarly, for a free particle in the Heisenberg sta
uc2&, the scalar product̂ 2t;Xuc2&5^t51t,2;Xuc2&
can be interpreted as the probability amplitude of arriving
X from the right, at the instantt5t.

VI. PROBABILITY DISTRIBUTION OF ARRIVAL TIMES.
POTENTIAL BARRIER

Consider the passage of particles incident from the
over a one-dimensional potential barrierV(x). As usual, we
assume that far away from the scattering center,V(x) van-
ishes sufficiently fast as to guarantee the validity of the st
dard scattering theory formalism. Under the conditions
are interested in, the ingoing asymptote,uc in&, of the actual
state of the particle satisfies

uc in&[Q~ P̂!uc in&. ~82!

The Mo” ller operatorsV̂6 , which play a central role in
scattering theory, are defined as

V̂65 lim
t→7`

eiĤ t/\e2 iĤ 0t/\, ~83!

whereĤ05 P̂2/2m, and Ĥ5 Ĥ01V(X̂) is the Hamiltonian
governing the dynamical evolution of the system. These
erators have the importance that they map the asymp
states onto the corresponding scattering states. Specific
the actual state of the particle,uc(t50)&, is related to its in
and out asymptotes,uc in& and ucout&, by means of

uc~ t50!&5V̂1uc in&5V̂2ucout&. ~84!

Making use of the intertwining relations for the Mo” ller
operators@26#,

V̂6
† ĤV̂65Ĥ0 , ~85!

the mean arrival time at a spatial pointX, on the right of the
barrier and asymptotically far from the interaction region
given by

^tX&5

E
2`

1`

dt t^c~t!uĴ~X!uc~t!&

E
2`

1`

dt^c~t!uĴ~X!uc~t!&

, ~86!

where now we have

^c~t!uĴ~X!uc~t!&5^c inueiĤ 0t/\V̂1
† Ĵ~X!V̂1e2 iĤ 0t/\uc in&.

~87!

Inserting twice the resolution of unity, Eq.~17!, and tak-
ing advantage of Eq.~82! to write ^puc in&5Q(p)^puc in&,
one obtains
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^c~t!uĴ~X!uc~t!&5E
0

`

dp8E
0

`

dp eiEp8t/\e2 iEpt/\^c inup8&

3^p8uV̂1
† Ĵ~X!V̂1up&^puc in&, ~88!

whereEp5p2/2m.

The stateup1&[V̂1up&, which is the solution of the
Lippmann-Schwinger equation corresponding to an ingo
plane waveup&, satisfies the eigenvalue equationĤup1&
5Epup1& with the boundary conditions

x→2`: ^xup1&;^xup&1R~p!^xu2p&, ~89!

x→1`: ^xup1&;T~p!^xup&, ~90!

R(p) andT(p) being the reflection and transmission coef
cients, respectively. Thus, for spatial pointsX on the right
and asymptotically far from the interaction center one ha

^p81uĴ~X!up1&5T* ~p8!T~p!^p8uĴ~X!up&, ~91!

where use has been made of Eqs.~46! and~90!. Substituting
in Eq. ~88!, we obtain

^c~t!uĴ~X!uc~t!&5E
0

`

dp8E
0

`

dp T* ~p8!^c inup8&

3^p8ueiĤ 0t/\Ĵ~X!e2 iĤ 0t/\up&

3^puc in&T~p!. ~92!

Taking Eq. ~92! into account, thet integral in the de-
nominator of ~86! can be readily carried out to obtain
Dirac’s delta,

d~Ep82Ep!5
m

upu
d~p82p!1

m

upu
d~p81p!, ~93!

and this can in turn be used to obtain finally,

E
2`

1`

dt^c~t!uĴ~X!uc~t)&5E
0

`

dpuT~p!u2z^puc in& z2,

~94!

which is nothing but the transmittance. Defining the~unnor-
malized! freely evolving transmitted stateuc tr& as

uc tr&[E
0

`

dp T~p!^puc in&up&, ~95!

and using Eq.~92!, the mean arrival time~86! takes the form

^tX&5
1

^c truc tr&
^c tru E

2`

1`

dt tQ~ P̂!ĴI~X,t!Q~ P̂!uc tr&,

~96!

where we have taken advantage of Eq.~82!, and ĴI(X,t)
denotes the current operator in the interaction picture,

ĴI~X,t![eiĤ 0t/\Ĵ~X!e2 iĤ 0t/\. ~97!
g

A comparison between Eqs.~97! and ~54! shows that the
current operator in the interaction picture coincides with
free current operator in the Heisenberg picture. This is
important point which allows us to rewritêtX& in terms of
the freely evolving operatorĴ1(X) of Eq. ~53! and, conse-
quently, exploit the formalism developed in the previous s
tion for the free case, to obtain finally,

^tX&5
^c truĴ1~X!uc tr&

^c truc tr&
5

^c truT̂~X!uc tr&

^c truc tr&
. ~98!

Inserting the expression for the self-adjoint operatorT̂(X),
given in Eqs.~73! and~74!, the mean arrival time at a spatia
point X behind the barrier and asymptotically far from th
interaction center takes the suggestive form

^tX&5
1

^c truc tr&
E

2`

1`

dt t z^t;Xuc tr& z2. ~99!

Furthermore, taking into account that, for a givenX, the
states$ut;X&% constitute a complete and orthonormal set,
find that the integral

E
2`

1`

dt z^t;Xuc tr& z25^c truc tr&5E
0

`

dpuT~p!u2z^puc in& z2

~100!

coincides with the transmittance, which is nothing but t
total probability of arriving at an asymptotic point behind th
barrier. Therefore, we can consistently interpret^t;Xuc tr&
5^t5t,1;Xuc tr& as the~unnormalized! probability ampli-
tude of arriving at the asymptotic pointX, behind the barrier,
at the instantt5t.

The above results can be expressed in terms of the in
ing asymptoteuc in& by using the scattering operatorŜ
[V̂2

† V̂1 , which relates the in and out asymptotesucout&
5Ŝuc in&. Indeed, it is shown in the Appendix that the free
evolving transmitted stateuc tr& can be written as

uc tr&5Q~ P̂!Ŝuc in&, ~101!

so that the~unnormalized! probability density of arriving at
an asymptotic pointX, behind the barrier, at the instantt
5t reads

z^t;XuQ~ P̂!Ŝuc in& z25 z^t5t,1;XuŜuc in& z2. ~102!

Finally, it should be noted that when the wave pack
corresponding to the actual scattering state att50 ~which is
assumed to be a linear superposition of only positive pl
waves! does not overlap with the potential barrier, then
becomes physically indistinguishable from the asympto
ingoing wave packet, and the above equations hold true w
the substitutionuc in&→uc(t50)&.

VII. TIME-ENERGY UNCERTAINTY RELATION

Giving a precise meaning to the well-known time-ener
uncertainty relation seems to be a reasonable requiremen
any quantum formulation of the time-of-arrival concept. A
already stated, the commutation relation@Ĥ,T̂#5 i\ auto-
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matically leads to the uncertainty relation~3!. Although, it
has not been possible to develop a quantum formulation
the arrival-time concept based on such a commutation r
tion, there is still room for a time-energy uncertainty relatio
because even though the existence of a commutation rela
is a sufficient condition for the existence of an uncertai
relation, it is by no means a necessary condition.

It should be noted that the self-adjoint operatorT̂(X) de-
fined by Eqs.~72!–~74! is conjugate to the operatorĤ. Spe-
cifically,

@Ĥ,T̂~X!#5e2 i P̂X/\@Ĥ,T̂#e1 i P̂X/\5 i\. ~103!

Introducing a probability amplitude for the time of arriv
in terms of the eigenvalues and eigenstates of a self-ad
operator satisfying the above commutation relation has a
important consequence the existence of a time-energy un
tainty relation. To see this, let us consider the problem st
ied in Sec.VI, namely, the arrival time of a quantum partic
at a detector located behind a potential barrier and asy
totically far from the interaction center.@The free case is
nothing but a particular case of the latter corresponding
T(p)→1, which impliesuc tr&→uc in&.#

Because of Eq.~103!, it automatically holds that

DHDTX>\/2, ~104!

whereDH andDTX are the root-mean-square deviations

the corresponding observables, i.e., (DH)2[^Ĥ2&2^Ĥ&2,

and (DTX)2[^T̂ 2(X)&2^T̂(X)&2, with ^Â&[^c truÂuc tr&/
^c truc tr&. However, from Eqs.~23! and ~95! it follows that

Ĥuc tr&5Ĥ0uc tr&, ~105!

and henceDH coincides with the statistical spread of th
energy of particles arriving at the detector,

~DH!25^Ĥ0
2&2^Ĥ0&

2[~DE!2. ~106!

On the other hand, according to Eqs.~73! and ~98! we
have

~DTX!25^@ T̂~X!2^tX&#2&

5
1

^c truc tr&
E

2`

1`

dt~t2^tX&!2z^t;Xuc tr& z2

[~DtX!2, ~107!

and sincez^t;Xuc tr& z2/^c truc tr& is the probability distribution
of the arrival time of particles at the detector, the abo
equation shows thatDTX is nothing but the correspondin
statistical deviationDtX . Therefore, the statistical spreads
the energy,DE, and time of arrival,DtX , of particles reach-
ing the detector satisfy the time-energy uncertainty relati

DEDtX>\/2. ~108!

VIII. CONCLUSION

Despite its fundamental nature, the quantum formulat
of the time-of-arrival concept is a problem which remai
of
a-
,
on
y

int
an
er-
-

p-

o

f

e

n

open nowadays. This question has the additional interest
probability distributions of arrival times are, in principle, e
perimentally accessible via the time-of-flight techniqu
Moreover, a quantum formulation of such a problem m
provide a useful tool for a better understanding of the tu
neling time problem as well as its possible technologi
applications.

The main difficulty in defining a quantum time operat
lies in the nonexistence, in general, of a self-adjoint opera
conjugate to the Hamiltonian, a problem which can be
ways traced back to the semibounded nature of the en
spectrum. In turn, the lack of a self-adjoint time opera
implies the lack of a properly and unambiguously defin
probability distribution of arrival times.

Although it has been shown that under certain circu
stances of physical interest, the probability current becom
positive and admits a proper interpretation as an unnorm
ized probability distribution of the time of arrival@18–20#, it
cannot be considered as a fully satisfactory solution of
problem, for it is not positive definite as it should be.

In searching for a probability distribution defined throug
a quantum time operator one has to circumvent the prob
stated above. There are two possibilities. If one decides
any proper time operator must be strictly conjugate to
Hamiltonian, then one has to abandon the idea of findin
self-adjoint operator.~Even though such a property is a ha
mark of any observable in the standard quantum formali
it is not strictly necessary for a consistent formulation
probability distributions of measurements results@27,28#.! If,
conversely, one imposes self-adjointness as a desirable
quirement for any observable, then one necessarily ha
abandon the requirement that such an operator be conju
to the Hamiltonian. In the present paper we have adopted
latter view. We have explicitly constructed a self-adjoint o
eratorĤ with dimensions of energy, and a nonbounded sp
trum. Such an operator is essentially the energy of the p
ticle with the sign of its momentum. The nonbound
character of its spectrum enables us to introduce a s
adjoint operator with dimensions of time,T̂, by demanding it
to be conjugate toĤ. Since the latter is essentially th
Hamiltonian, except for sign, one expects the self-adjo
operatorT̂ so defined to be physically meaningful and re
evant to the arrival time problem. Indeed, we have sho
that it is possible to define consistently a probability dist
bution of arrival times at a spatial point, in terms of th
eigenvalues and eigenstates of such an operator. This p
ability distribution, which is a function of the initial state o
the system, does not depend on the particular design of
measuring device, and has the additional desirable co
quence that it leads to a precisely defined time-energy un
tainty relation.
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APPENDIX A: TRANSMITTED STATE AS A FUNCTION
OF THE INGOING ASYMPTOTE

In this appendix we show that the freely evolving tran
mitted stateuc tr& can be written in terms of the ingoing as
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ymptoteuc in& in the form @Eq. ~101!#

uc tr&5Q~ P̂!ucout&5Q~ P̂!Ŝuc in&, ~A1!

whereŜ denotes the scattering operator, relating the ingo
and outgoing asymptotes,

ucout&5Ŝuc in&5E
2`

1`

dp8E
2`

1`

dpup8&^p8uŜup&^puc in&.

~A2!

Taking into account that the matrix elements of the sc
tering operator can be written in terms of theon-the-energy-

shell T̂ matrix as @26#

^p8uŜup&5d~p2p8!22p id~Ep2Ep8!^p8uT̂~Ep1 i0!up&,
~A3!

Eq. ~A2! reads

ucout&5Ŝuc in&

5E
0

`

dp@122p im/p^puT̂~Ep1 i0!up&#^puc in&up&

1E
0

`

dp@22p im/p^2puT̂~Ep1 i0!up&#

3^puc in&u2p&. ~A4!

On the other hand, from the Lippmann-Schwinger eq
tion for up1&, it follows that the wave function̂xup1& can
be written as

^xup1&5^xup&1E dx8^xu~Ep1 i02Ĥ0!21ux8&

3^x8uT̂~Ep1 i0!up&. ~A5!

Substituting in the above equation the expression for
Green’s function~which can be easily obtained by insertin
.

al

-
.

g

t-

-

e

the resolution of unity in terms of momentum eigenstates
evaluating the resulting integral by contour integration in t
complex plane!,

^xu~Ep1 i02Ĥ0!21ux8&52
im

\upu
ei upuux2x8u/\, ~A6!

one obtains, forp.0 andx→1`,

^xup1&;^xup&22p im/p^xup&E dx8^pux8&

3^x8uT̂~Ep1 i0!up&

5@122p im/p^puT̂~Ep1 i0!up&#^xup&. ~A7!

A comparison with Eq.~90! yields

T~p!5@122p im/p^puT̂~Ep1 i0!up&#. ~A8!

Similarly, for p.0 andx→2`, Eq. ~A5! leads to

^xup1&;^xup&22p im/p^xu2p&E dx8^2pux8&

3^x8uT̂~Ep1 i0!up&

5^xup&1@22p im/p^2puT̂~Ep1 i0!up&#

3^xup2&, ~A9!

and comparing with Eq.~89! we find

R~p!5@22p im/p^2puT̂~Ep1 i0!up&#. ~A10!

Substituting Eqs.~A8! and~A10! in ~A4! we finally arrive at

ucout&5Ŝuc in&

5E
0

`

dp T~p!^puc in&up&1E
0

`

dp R~p!^puc in&u2p&,

~A11!

from which follows Eq.~A1!.
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