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Arrival time in quantum mechanics
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A self-adjoint operator with dimensions of time is explicitly constructed, and it is shown that its complete
and orthonormal set of eigenstates can be used to define consistently a probability distribution of the time of
arrival at a spatial poin{.S1050-294{@7)09210-X
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[. INTRODUCTION fact and translate the above formulation to the quantum
framework. This can be easily accomplished by means of the
The role that time plays in quantum mechanics has alwaysanonical quantization methofB], which basically states
been controversial. This is in part a consequence of the rathéhat the classical formulation remains formally valid in the
singular status that time exhibits in nonrelativistic physics. Inquantum domain with the substitution of Poisson brackets by
particular, time enters the Schlinger equation as an exter- commutators,{H,T}—>1/iﬁ[|:|,'f], and interpreting the dy-
nal parameter and, accordingly, the quantum formalism i;iamical variables as self-adjoint operators in the Heisenberg
usually concerned with probability distributions of measur-picture. Then, based on the correspondence principle and the
able quantities at a definite instant of time. However, oneanonical quantization method, one is led to look for a self-
may also ask for the instant of time at which a certain propadjoint time operator conjugate to the Hamiltonian,
erty of a quantum system takes a given value. In this case
time has the character of a dynamical variable: It depends on [8,T]=i% %)
the initial state of the system and on its dynamical evolution, ' '
and appears as an intrinsic property of the physical system . . . . .
underpsgudy. Since such an iﬁstgnt gf time isF,) iz princip))/le, As can be easily verified, this commutation relation also

perfectly measurable quantity it seems natural to try to incor10ldS true in the Schrbnger picture, and has the additional
porate the concept of a time observable into the quanturﬂes"able consequence that it implies the uncertainty relation
formalism. However, this is not an easy task. The standard o
guantum formalism associates measurable quantities with AHAT=1/2[H,T]], (3)
self-adjoint operators acting on the Hilbert space of physical
states, and postulates that the probability distribution of thgvith AH and AT being the usual root-mean-square devia-
outcomes of any well-designed measuring apparatus can hgns of the corresponding dynamical variables. Unfortu-
obtained in terms of the orthogonal spectral decompositiomately no such time operator exists. As remarked by Pauli,
of the corresponding self-adjoint operator, with no explicitthe existence of a self-adjoint operator satisfying the above
dependence on the particular properties of the measuring deommutation relation is incompatible with the semibounded
vice. Therefore, the problem reduces, in principle, to findingcharacter of the Hamiltonian spectry#.
a suitable quantum operator. This is usually accomplished The lack of a proper time observable has a number of
via the correspondence principle, starting from the correconsequencels]. In particular, the time-energy uncertainty
sponding classical expressions and quantizing by using cefelation has remained unclear over the time. This is so basi-
tain specific quantization rules. However, in doing so onecally because, contrary to what happens with the well-known
frequently has to face the problem that in general there existgosition-momentum uncertainty relation, there exists no
no unigue way to obtain a quantum operator which reducegnique way to put in a quantitative setting what is really
to a given known expression in the classical linfit-0). meant by the time sprealiT. In fact the consequences de-
Given the HamiltoniarH (g, p) of a conservative classical rived from incorrect application of the time-energy uncer-
system, expressed in terms of canonical variabdgp), one tainty relation have led to a great deal of confusion.
can always make a canonical transformation to new canoni- Another related problem which remains controversial at
cal variables K, T), whereH is the Hamiltonian of the sys- present is that concerned with the formal definition of tra-
tem andT its conjugate variable, which satisfies Hamilton’s versal and tunneling timefs,7]. This subtle question has
equation[1,2] received considerable attention in recent y¢&8rs15|, moti-
vated in part by the possible applications of tunneling in
semiconductor technology. However, the simplest problem
involving time as a dynamical variable is that concerned with
the time of arrival of a free particle at a given spatial point.
{H,T} denoting the Poisson bracketldfandT. The impor-  Such a time constitutes a well-defined concept which at a
tant point is that the above equation clearly reflects that thelassical level can be extracted from the formalism by simply
canonical variabld is nothing but the interval of time. Thus inverting the corresponding equations of motion. Moreover it
the next step would be to take advantage of this desirables a perfectly measurable quantity whose probability distri-
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bution can, in principle, be experimentally determined withinsponding to arrival time at the instab& T transforms into
any desirable precision. However, the standard quanturanother measurement eigenstate, corresponding to an arrival
theory of measurement does not provide any formulatiortime t=T+ 7. Based on general grounds, Allcock showed
which allows one to infer such a probability distribution. In that measurement eigenstates with such a desirable property
fact, some time ago Allcockl6] argued against such a pos- cannot be orthogonal, which implies that it is not possible to
sibility. This author claimed that it is not possible to con- construct the corresponding self-adjoint arrival-time opera-
struct any operationally meaningful and apparatustor. It is not difficult to see that this negative conclusion can
independent probability formula. Even though more recentlybe traced back again to the semi-infinite nature of the Hamil-
a number of works addressing this question from a moreonian spectrum. To this end let us consider the following
optimistic perspective have appeaf@dl7—-27, the problem three statements.
is yet far from being reso!ved-, and addi.tional inVeStigation (|) There exists a Se|f_adj0int Operaﬁjrconjugate to the
on this fundamental question is worthwhile. Hamiltonianf, i.e., satisfying A, T]=i%.

In this paper we analyze the possibility of defining a prob- ) - A
ability distribution for the arrival time of a quantum particle (i) There exists a self-adjoint operafdr whose(ortho-
at a definite spatial point. Specifically, we are interested ii'0"mal and complejeset of eigenstate§T)} transforms un-
searching for an apparatus-independent theoretical predictigier time-translations as™™*|T)=|T+ 7).
for the probability distribution of arrival times at a given (i) There exists a self-adjoint operafbwhich generates
spatial point, as a certain function of the initial state of theunitary energy translations, i.e., such that for any energy
system. Our results turn out to be similar to those previousleigenstatdE) and any parameter with dimensions of en-
obtained by Kijowski[17]. However, the approach by Ki- ergy, it holds that
jowski was based on the definition of a nonconventional
wave function which evolves on a family &f=const planes eifs/h| E)=|E—¢), (5)
(instead of evolving in time according to the Sctlirger

equation, and whose relation to the conventional wave .func'where the operato'i’ is assumed to be defined onto the whole
tion is uncleaf23,24]. Our approach, conversely, is entirely

develoned within the f i ¢ standard i Hilbert space spanned by the Hamiltonian eigenstates.
eveloped within the formalism of standard quantum me- s not difficult to see that these statements are in fact

chanics. . ey ; .
. . . equivalent. Indeed, ifi) is true, then, by induction, one has
We begin considering in detail the case of a free quantum q @) y

particle, and then we study the more interesting case of a
guantum particle scattered by a potential barrier. For simplic-
ity we shall restrict ourselves to one spatial dimension. For

our purpose, it proves to be useful first to analyze in somévhereH°=1. Of course the validity of Eq(6) rests on the
detail the reason for the nonexistence of a self-adjoint timgeasonable assumption that the Hamiltonian is well behaved

[A",T]=inAA""L, n=1, (6)

operator in quantum mechanics. enough so as to guarantee the existence of all its higher in-
teger powers. Since it also holds t&t", T]=0 for n=0,
Il. NONEXISTENCE OF A TIME OPERATOR IN then, multiplying E_q(6) t_)y (i T/h)r_‘/n! (7 being an arbitrary
QUANTUM MECHANICS parameter with dimensions of tileand summing frorm

=0 ton=o, one finds
As stated above, according to Pauli’'s argument, because

of the semibounded character of the energy spectrum, there [eil:h/ﬁ F1=— reifih )

exists no self-adjoint operator conjugate to the Hamiltonian, '

i.e., satisfying the commutation relati¢®). The same nega-

tive conclusion was found by AllcodKk.6] using a somewhat

different argument based on the time-translation property o

the arrival time concept. . .
If {|T)} denotes a set of measurement eigenstates for the T T)=(T+7n)e"""T), tS)

arrival time at a given spatial point of a particle in the quan-

tum Sta‘[e| ¢>, then, according to the standard quantum for-WhiCh after suitable choice of normalization and phase leads

malism, the probability amplitude for the arrival time at the to statementii). Conversely, if(ii) is true for any eigenstate

instantt=T would be given byy(T)=(T|#). If one trans- |T) and any parameter, then one can repeat the same steps

lates the state of the system forward through time by arpackward to reacki). . .

amountr, i.e., |¢)H|ap’>=exp(—il3| 7%)|y), then it seems Oq thg other hand, |t"can be reagilly seen that statefient

natural to expect the probability amplitude to transform ac-_also |r_an|es statemenfii). Indeed, if(i) holds, one has by

cording to¢(T)— ' (T)=y(T+ 7). Since this transforma- nduction that

tion property must be true for any state vedts}, it follows . .

that the measurement eigenstaf)} must satisfy [H,T"]=inAT"", n=0 9

If {|T)} denotes a complete and orthonormal set of eigen-
ptates ofT, then, according to Eq7), it holds that

T+ T):eiﬁf/ﬁ|1—>, (4) (T°=1), which implies that, for any parameter with di-
mensions of energy,
which reflects the fact that, under a translation backward in . A
time by an amountr, any measurement eigenstate corre- [H,eTeh]=—gelTe/t, (10)
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Therefore, according to Eq10) any energy eigenstal&)  |ong as# differs from the Hamiltonian of the system, the

verifies corresponding operatdf could not be associated to the ac-
tual physical time. Therefore, the fundamental question re-
mains of verifying whether it is possible to give a proper

from which after proper normalization followsii). An physical interpretation to the select@perator in terms of

analogous reasoning can be repeated f(dimto (i), which  measurement results, i.e., whether it is possible to define an

shows the equivalence among the above three statements.algorithm which enables us to connect the probability distri-
Since(iii ) is obviously incompatible with a semibounded bution of measurement results with the set of eigenvalues

Hamiltonian spectrum, it follows that it is not possible to find and eigenstates of the operafbrAt this point we shall post-

a self-adjoint arrival time operator satisfying the desirablepone this essential question and simply consider the proce-

ﬂeifs/h|E>:(E_s)eﬁ'a/h|E>, (12)

conditions(i) or (ii). dure just outlined to be worth exploring.
We now introduce projectors® (+P), onto the sub-
IIl. SELF-ADJOINT OPERATOR WITH DIMENSIONS spaces generated by plane waves with positive and/or nega-
OF TIME tive momenta,

We start by considering the simplest conceivable arrival "
time problem, namely, a one-dimensional free particle mov- CIE= ﬁ)):f dp|=p){*pl, (20)
ing along thex axis toward a detector. In looking for a prob- 0
ability distribution of the time of arrival it is most convenient ) o
to work in the energy representatio|E,«);E=0, and define the self-adjoint operator
a=+,—} defined by the eigenvalue equations

A sgnP)=0(P)-0(-P). (2D)
HolE,=)=E|E, =), (12 A
Obviously, sgnP) commutes with the Hamiltonian and sat-
P|E,*)=*\2mEE,*) (13) isfies the eigenvalue equation
where Ho=P?/2m is the Hamiltonian of the free particle, sgnP)|E, +)=+|E,+). (22)
and P its momentum operator. The orthonormal and com-_ ) ) o
plete set of energy eigenstatd&, )}, which satisfy This operator allows us to define a simple self-adjoint opera-
tor with dimensions of energy,
2. |, dElE.)Eal=1 14 F=sgr(P) Ao, (23
(E,alE',a")=6,, 8(E-E') (15) which exhibits a nonbounded spectrum,
can be expressed in terms of the usual momentum represen- H|E,+)=+E|E,*) (E=0). (24

tation by means of the relation
Notice that this is, in a sense, the simplest choice, since

|E, =)=(m/2E)"|p= = J2mE), (160 the restrictions off{ to the subspaces spanned by plane
waves with positive and/or negative momentum coincide
with plus and/or minus the corresponding restrictions of the

HamiltonianH,. Specifically,

where the momentum eigenstafgp)} are normalized as

—+ oo
| aploxpl-1 7 o o
O(=P)YHO(xP)=x0O(£P)H O (=P). (25
{plp")=d(p=p"). (18 Introducing for the energy eigenstates the notation
As stated above, the impossibility of finding a time-of- . .
arrival operator can always be traced back to the bounded &)= [+E)=[E,+) if £=0, (26)

character of the Hamiltonian spectrum. To circumvent such a |-E)=|E,—) if <0,

difficulty we shall instead look for a self-adjoint operaﬁjr ) )
with dimensions of time, conjugate to a conveniently definedne above results can be rewritten in terms of the complete

self-adjoint operator/{, with dimensions of energy and a ;ned;irtzr?\r,]gﬂgaéSS;S;,?,;M@M;8 € (=9, +=)} satisfying
nonbounded spectrum, 9 q

[, 7]=i. (19 Hle)=¢le), (27)
Of course this is a somewhat arbitrary procedure, since Ple)=sgr(e)\2m[e[|e), (29)

the definition of 77 depends in a fundamental way on the
arbitrary choice one makes for the operatorMoreover, as Hole)=|el|e). (29
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Now searching for a self-adjoint operat@irconjugate to

| : . _ :hfl/zjoc E e iETHE _\4 71/2J°° EdhE 4y
‘H is a straightforward matter. To this end let us introduce the| i 0 dEe [E,=)+h 0 dE e=HE, +)
states|7) defined in the{|e)} basis as (37)

+oo . Defining new states
|T>:h_l/2f de e'”/h|s>. (30 g

| [t £)=h"17 J “dE VI, £), (39)
These states also constitute a complete and orthonormal set. 0

Indeed, . .
we see that7) can be written in the form
—+ o0 + oo X ,

<T|7'>=f dS<T|8><8|T'>:h71f de e lelr7)/h |Ty=|t=—7,—)+|t=+7,+). (39
=8(r—7") (31) The important point is thatr) has been decomposed in
' terms of state$|t,= )} which do satisfy the time-translation

oo +oo +oo property(4),
f d7'|7'><7'|=h_1f de de L
- e A |t+ 7', x)=eom /At +), (40)
% J+wd8fei<s—s’>r/ﬁ|8><8f| and transform under time reversal as

b Rlt,=)=|-t,%), (4D

N J,m defe)(e[=1 (32 so that the variablé, unlike 7, could, in principle, be asso-

ciated with physical time.
We can therefore define a self-adjoint operator, with eigen- Note that even though the statét =)} constitute a com-
states and eigenvalues given fy and r, respectively, in plete set

terms of its spectral decomposition
+

wdt|t,a)(t,a|=1, (42

— o0

A +o
T=f dr 7 7){7]. (33
. they are not orthogonal,
The operator so defined has dimensions of time and auto-
matically satisfies the commutation relatict®). However, ., * .,
there exists no guarantee that it will be useful in the time-of-  (talt’.a >:,32’¢ fo dE(t,a[E, BXE. Bt a’)
arrival problem. In fact7 turns out to be invariant under

time reversal, and consequently the variableeannot be _ 5aa’fdeeiE(tt’)/h
identified with the physical timé. This can be most easily h Jo
seen in the momentum representation
_ 12,7 sgr(p)(p3/2m)w/h =18401 O(t—t")—P.P.————}. (43

Let R denote the time-reversal operator; then we have  Eqr this reason, the statélt, =)} cannot be used to con-
struct a self-adjoint operator.

®lny= | apl-ppln = [ vl -p)(-pl =17
(35

IV. MEAN ARRIVAL TIME

o One of the most controversial aspects of quantum me-
so that, according to E¢33), it holds thatR7RT=7. More-  chanics is that concerning the connection between the theo-
over, retical formulation and the corresponding measurement re-

. . sults. In its space-time representation, quantum mechanics
|7+ 7 )= M7 /R 7y Mo 17| 1), (36)  becomes a continuous wave theory, whereas measuring de-
vices usually deal with individual particles. The quantum
and the stateg|7)} do not exhibit the desirable time- formalism tells us how to obtain the probability distribution
translation property4) either. of the measurement results in terms of projections of the
In spite of these facts, it is possible to give a physicalstate vector onto appropriate subspaces of the Hilbert space.
interpretation to the operatdf. As we shall see below, one While in the standard interpretation it is commonly assumed
can consistently define a probability distribution of arrival that probability distributions refer to individual particles,
times in terms of the eigenvalues and eigenstates of this opheir experimental verification requires an ensemble. Quanti-
erator. To this end it is convenient to decompdseto a ties defined in the ensemble may offer practical guidance not
superposition of negative- and positive-momentum contribuenly in the interpretation of quantum measurement theory,
tions, but also in the search for the quantum counterpart of a clas-
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sical physical variable. In this sense, the mean arrival timeV. PROBABILITY DISTRIBUTION OF ARRIVAL TIMES:
may be useful in looking for a probability distribution of FREE PARTICLE

arrival times, We shall restrict ourselves to the case of a free particle
Consider a classical statistical ensemble of particles of P

massm, directed along a well-defined direction, and charac.moving along a well-defined direction toward a detector situ-

terized by the phase-space distribution functi(x,p,t). atgd at the poink=X. Specifically, we assume th".it the in-
i : . IR going asymptote of the actual state of the particle corre-
The average time of arrival at a spatial poxgtis given by

sponds, in the position representation, to a wave packet
" which is either a linear superposition of positive plane waves
dttI(xo,t) or a linear superposition of negative plane waves,
— (44)

f dt J(xg,t)

+

()= e i =O(= Py ). (47)
Under these circumstances, the in asymptote becomes indis-
tinguishable from the actual state¢.(t=0)), so that we
whereJ(xo,t) represents the average currenkgt shall not discriminate between them from now on. Note that
as a consequence of the commutation between the time-
J(Xo,t):J f f(X,p’t)Bg(X_XO)dXdp' (45  evolution operatore o’ and the projector®(=P), at
m any timet it also holds that

and plays the role of an unnormalized probability distribu- |I)[/t(t)>z®(t|5)|lrllt(t)>_ (48)
tion of arrival times. It seems natural to make use of the

correspondence principle in order to translate the expression As stated in Sec. IV, the mean arrival time at a po{ns
for the classical average time of arrival, E@4), to the given by

guantum formalism. This can be accomplished by substitut-

ing J(Xq,t) by the expectation value of the current operator ““d”< ¢+(T)|3(X)|¢+(7))

A 1 . . (tx)== o
300 = 5= (PIX)X| + X)X P). (46) | Caru 3001y )

: (49

Such a quantum definition for the average time of arrival
has been widely used in recent yef®s18—2Q. However,
unlike its classical counterpart, even for wave packets
rected along a well-defined spatial direction, the quantu
probability current is not positive definite. For this reason, it
cannot be considered as a probability distribution of indi-
vidual arrival times, and the validity of the above expres- o
sions in a quantum context is questionable. In fact, strictly j dr(g (D] IX)| (7)) =*1, (50)

speakingj(X) is an operator-valued distributidthe opera-

tor analog of a generalized functigrand, as pointed out by . :
Goldrich and Wigner{25], there exist quantum quantities, Z?q;zgatt?;nrcgﬁne arrival timix) . can be expressed as the
such as](X), whose expectation values do not correspond to
averages of individual measuremerggyenvaluel but rep- (t) o=+ (e | T (X)), (51
resent a measurable property of the ensemble as a whole.

In spite of the general inadequacyd(X) to describe the ~Where|¢.) denotes the state of the particle in the Heisen-
probability distribution of arrival times, when quantum back- berg picture, i.e.,
flow contributions become negligible the quantum current "
becomes positive and admits a probability interpretation [ y=€eMo ., (7)) =]4.(0)), (52
[18]. Such a situation occurs, at large times, for freely mov- .
ing packets containing only positive momenta, and it alsd"d We have introduced the operator
occurs under the standard asymptotic conditions of scattering oo
theory. In fact, Eq(44) can be operationally justified in the :7¢(X)Ef dr O (=P)JI(X,10(=P), (53
guantum case by using erfect absorberi.e., a complex —
potential that absorbs the incoming wave in an arbitrary R
small spatial region, without reflection or transmissj@d].  whereJy(X, 7) is the Heisenberg current operator,
According to such an operational model, which simulates the ~ . .
detection of incoming particles by a destructive procedure, Ju(X, ) =eMomj(X)e Mok, (54
the average time given by E¢4) coincides with the aver- ] ]
age time of absorptiordetection within any desirable pre- For later convenience use has begn made in the above equa-
cision. Thus, any properly defined arrival time probability tions of the identity] .- (0))=0 (+ P)| - (0)).
distribution should be compatible with E4). Inserting twice the resolution of unity, E€L4), and using

wheref](x) is the current operator in the Scllinger pic-
giture, given in Eq.(46), and (o (D IX) |+ (7)) is the
robability current at the instant of tinte= 7 in the (Schro
dingen state|.(7)).
In the free case, we have
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O(£P)|E,a)=46, +|E,a), (55)

3i(X) takes the form
~ + 0 % . ,
Ji(X)=f dwf dEf dE’eE-EDVTRE +)
— 0 0

X(E,*|I(X)|E", = E’, *|. (56)

Substituting expressiof6) for J(X), using Eq.(13), and
taking into account that, according to E36),

<X|E,i>:hfl/2(m/2E)l/4 ti\e“WEXIh, (57)

the matrix element in the integrand of E§6) can be rewrit
ten in the form

(E,=[J(X)[E", =)

1/4
1|(E ENYA
— )| — — Fi(VZmE—V2mE' )X/
iZh[(E’) +(E> ]e -

After insertion of Eq(58) into Eq.(56), the operatot7. (X)
reads

:\7t(x) :efiISX/h&i(X:O)eJriISX/ﬁ, (59)
where we have again taken advantage of @8) to write

eiISX/h|E,i>:eti\s‘WEX/ﬁ|E,i , (60)

and 7. (X=0), which is the operator involved in the deter-

mination of the mean arrival time at the poXt&0, is given

by

. v e e 1 [ENYE BV

ji(O):ij_w dTTfO dEJ;)dE E E +<E)
(62)

x el BB E £ y(E" x|,
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- i [ o d
ji(o):17j0 dEJO dE’(Eﬁ(E—E’))

d

To proceed further, it is convenient to consider the matrix
elements of7. (0) between arbitrary staté®), |¥) satis-
fying the boundary condition&2). Using the derivative of
the Diracé in the integrand of64) to perform one of the two
energy integrals, one arrives at

E
E/

14 r\ 14
+(E) ]|E,i)(E’,i|. (64)

n o J
(@17 (0 ¥)= =i | "aE(E, = [W) L (@E ).
(65)

On the other hand, using the resolution of the unity, B8),
and taking into account that

J
iiﬁﬁ 7|E,=)=r(7|E, =), (66)

one can obtain a useful alternative expression for the energy
derivative in the integrand of E@65), in terms of the self-
adjoint “time” operator defined in Eq(33). Indeed,

14 +oo J
J_fii’i£<<l)|E,i>=iiﬁJlOo dT<(I)|T>£ 7|E, %)

:f:dTT@ITWIE,i>=<<I>|§TE,¢>,

(67)

Therefore,
(@170 )= | "dE@ /e =)E W) (69

Taking|®)=|¥)= e "Xy, ), we have

In order to guarantee that the integrand is well behaved <tx>+Ei<w+|e—il5xlﬁ\"7+(o)e+il5xlh|w+>:

over the whole interval of integration, we shall restrict our-
selves to physical states satisfying the boundary conditions

lim EY4E,+|y4.)=0,

E— o«

lim E-Y4E,+|y.)=0,
E— 0

(62

which, in the more familiar momentum representation, take

the form

lim (p|¢.)=0, limp *(p[y.)=0. (63

p— = » p— 0

Put another way, we shall restrict ourselves to normalizable

ifxdE<¢i|e*“5X’h§TE,i><E,tIe*iﬁ’x’ﬁlt/fg-
0
(69

Using the identity

[E,£)(E,+[=0(+P) 2 |E.a)(El, (70

as well as Eg.(14), and taking into account tha®
(£ P)et PXh|y y=etPX/h|y ) we finally find

(t)==+(h|e PXNTEHPXIA Y, ), (70)

wave packets, which are superpositions of either positive or

negative plane waves, and which vanish faster theaas p
approaches zero.

The integral in ther variable, in Eq.(61), can be readily

performed to obtain

Accordingly, the self-adjoint operator involved in the de-
termination of the mean arrival time at an arbitrary poft
is given by the spatial translation of the operafqreviously
defined,
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ﬁx):e—iﬁxm%ﬂﬁxm (72) for the mean arrival time having the correct semiclassical
’ limit in terms of the probability current. However, unlike the
and its spectral resolution reads latter, it is definite positive. Accordingly, for a free particle

in the Heisenberg state/, ), one can interpret consistently
+ o0 . . il ;
r s i i (r;X|¢r,)=(t=+7,+;X|,) as the probability amplitude
X)= f_w d7 77 X7 X, (73 of arriving at the spatial poinK from the left, at the instant
t=r. Similarly, for a free particle in the Heisenberg state

where |¢_), the scalar product—7;X|¢_)=(t=+7,—;X|_)
B can be interpreted as the probability amplitude of arriving at
|7 X)y=e"""""|7) X from the right, at the instartt= 7.

+o )
- h‘l’zf de ei(e7—sane)2mleRX/t| oy - (74)  VI. PROBABILITY DISTRIBUTION OF ARRIVAL TIMES.
—o0 POTENTIAL BARRIER

Since the statef{ 7;X)} are generated from the complete  Consider the passage of particles incident from the left
and orthonormal sef 7)} via a unitary transformation, they over a one-dimensional potential barrié¢x). As usual, we
also constitute, for a giveX, a complete and orthonormal assume that far away from the scattering cengx) van-
set. ishes sufficiently fast as to guarantee the validity of the stan-

Introducing the complete but nonorthogonal set of shifteddard scattering theory formalism. Under the conditions we
states{lt,t ;X)}, defined as the spatial translation of the setare interested in, the ingoing asymptd'@.m>, of the actual

{It, =)}, state of the particle satisfies
tix)=e Pt + |4y =O(P)| ). (82
:h‘l’ZJ’wdE d(Et+ v“WEX)/ﬂE,i , (75 The Mdler operatorsf)i, which play a central role in
0 scattering theory, are defined as
the stategr;X) can be decomposed as a superposition of @:: lim eiﬁt/he—iﬁot/h, (83

negative- and positive-momentum contributions, in the form

t—Foo
[TX)=[t=— 7= X)F =+ 74 X). (76) whereHy=P?%2m, andH= Hy+V(X) is the Hamiltonian

: - ing the dynamical evolution of the system. These op-
Inserting now the spectral resolution @tX), Eqg. (73), governing ; .
into Eq. (7% one can gxpress the mean@;rri)val (t]ime at theerators have the importance that they map the asymptotic
spatial positi’onX in the form states onto the corresponding scattering states. Specifically,

the actual state of the particlpy(t=0)), is related to its in

+oo and out asymptotes$i;,) and , by means of
(tx)== f dr(= D(mX|p)P, (77 ymprotesi) ) Vol >
) |9(t=0))= Qs [in) = Q| hou- (84)
so that . . - .
Making use of the intertwining relations for the /N&r
+oo operatorq 26|,
b= [ ardt=rrrxig o, 9 S
- QLHO. =H,, (85)

“+ oo
(ty)_= f dr(—n)[(t=—7,—;X|y_)]% (799  the mean arrival time at a spatial poXt on the right of the
- barrier and asymptotically far from the interaction region is

L . given by
On the other hand, taking into account the resolution of the

unity, +

f “dr H(g(n) 300 ()

— o0

> jjmdt|t,a;x><t,a;x|=l, (80) (t)= : (86)

fﬁ:drw(r)lﬁ(xw(r»
we have
where now we have

_ _ i 4 2 R . “ -
1={vlu) f—wdt'<t"'x|‘/’:>" (81 (P(DIX) | P( 7)) = (o €07 QT I(X) Q€7 Hom |y .

8
which, for a free particle, coincides with the total probability ®7
of arriving at the poinX at any instant. Inserting twice the resolution of unity, E¢L7), and tak-

Therefore, the quantitie§(7;X|4.)[> enter the above ing advantage of Eq(82) to write (p|in) =0 (pP){P| i),
equations as a probability density, and lead to an expressiapne obtains
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(DI (7)) = f:dp' f:dp efo e 1Eom iy p")

x(p'1QTI000, [p)(pl o),  (89)

whereE,= p%/2m.
The state|p+)=Q ,|p), which is the solution of the

Lippmann-Schwinger equation corresponding to an ingoing

plane wave|p), satisfies the eigenvalue equatiéHer)
=Ey|p+) with the boundary conditions
X— —00;

(X|p+)~(x|p)+R(p)(X|—p), (89

(XIp+)~T(p){xIp),
R(p) andT(p) being the reflection and transmission coeffi-

cients, respectively. Thus, for spatial poir¥son the right
and asymptotically far from the interaction center one has

X— + 0 (90

(P’ +1IX)|p+)=T*(p")T(P){p'|I(X)|p),

where use has been made of E@) and(90). Substituting
in Eq. (88), we obtain

91

300N = | dp [ ap T (o))

X<p/ |ei|:|o7'/hj(x)e—il:10'r/ﬁ|p>
X<p| ¢in>T( p)-

Taking Eqg.(92) into account, ther integral in the de-
nominator of (86) can be readily carried out to obtain a
Dirac’s delta,

(92

m m

5(ED'_ED):|p| 5(p,_p)+|p| 5(p,+p)7 (93)

and this can in turn be used to obtain finally,

+

|

which is nothing but the transmittance. Defining thenor-
malized freely evolving transmitted state),,) as

“dr (D300 (7)) =

)

| dniro Kol
(94

w= [ ap o plulp). (%)

and using Eq(92), the mean arrival timé36) takes the form

1 +o A R
<tX>:m<‘/’tr| ﬁx d7 70 (P)J|(X,7)O(P)| i),
(96)

where we have taken advantage of E§2), and J,(X,7)
denotes the current operator in the interaction picture,

:]I(X,T)Eeil:io‘r/ﬁj(x)efilqoflh.

(97
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A comparison between Eq€7) and (54) shows that the
current operator in the interaction picture coincides with the
free current operator in the Heisenberg picture. This is the
important point which allows us to rewritgy) in terms of
the freely evolving operataf’, (X) of Eq. (53 and, conse-

quently, exploit the formalism developed in the previous sec-
tion for the free case, to obtain finally,

(Yl T (X)) _ (] TOX)| )
(Wl e (Wl )

Inserting the expression for the self-adjoint operaftX),
given in Eqs(73) and(74), the mean arrival time at a spatial
point X behind the barrier and asymptotically far from the
interaction center takes the suggestive form

(t)= (99)

— 1 A . 2
(tx)= <¢tr| wtr> f_m dTTK Tax|¢tr>| . (99

Furthermore, taking into account that, for a givin the
states{| 7;X)} constitute a complete and orthonormal set, we
find that the integral

| kXt =l = | “aniTo) Kl
(100

coincides with the transmittance, which is nothing but the
total probability of arriving at an asymptotic point behind the
barrier. Therefore, we can consistently interptetX| i)
=(t=7,+;X|¢) as the(unnormalizedl probability ampli-
tude of arriving at the asymptotic poiKt, behind the barrier,
at the instant=r.

The above results can be expressed in terms of the ingo-

ing asymptote|;,) by using the scattering operat®
=0"Q., which relates the in and out asymptotes, )

=8| ¢in). Indeed, it is shown in the Appendix that the freely
evolving transmitted statg),) can be written as

|)=O(P)S|in),

so that the(unnormalizedl probability density of arriving at
an asymptotic poinX, behind the barrier, at the instant
=7 reads

(101

(102

Finally, it should be noted that when the wave packet
corresponding to the actual scattering state=ad (which is
assumed to be a linear superposition of only positive plane
waveg does not overlap with the potential barrier, then it
becomes physically indistinguishable from the asymptotic
ingoing wave packet, and the above equations hold true with
the substitution] ¢;,) — | ¥(t=0)).

K7 X[O(P)S| i) P=Kt=7,+; X|S i) >

VII. TIME-ENERGY UNCERTAINTY RELATION

Giving a precise meaning to the well-known time-energy
uncertainty relation seems to be a reasonable requirement for
any quantum formulation of the time-of-arrival concept. As

already stated, the commutation relatipd,T]=i% auto-
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matically leads to the uncertainty relatid®). Although, it  open nowadays. This question has the additional interest that
has not been possible to develop a quantum formulation gfrobability distributions of arrival times are, in principle, ex-
the arrival-time concept based on such a commutation relgperimentally accessible via the time-of-flight technique.
tion, there is still room for a time-energy uncertainty relation, Moreover, a quantum formulation of such a problem may
because even though the existence of a commutation relatigiovide a useful tool for a better understanding of the tun-
is a sufficient condition for the existence of an uncertaintyn€ling time problem as well as its possible technological
relation, it is by no means a necessary condition. applications.

It should be noted that the self-adjoint operafoX) de- . T_he main d|ff|_culty In _deflnmg a quantum time operator
lies in the nonexistence, in general, of a self-adjoint operator

fined by Eqs(72)—(74) is conjugate to the operatdt. Spe-  copjugate to the Hamiltonian, a problem which can be al-

cifically, ways traced back to the semibounded nature of the energy
A TS S S N spectrum. In turn, the lack of a self-adjoint time operator

[H,7(X)]=e [H,T]e =ith. (103 implies the lack of a properly and unambiguously defined

Introducing a probability amplitude for the time of arrival probability distribution of arrival times.

in terms of the eigenvalues and eigenstates of a self-adjoint[ Although it has been shown that under certain circum-

operator satisfying the above commutation relation has as apances of physical interest, the probability current becomes

important consequence the existence of a time-energy unce[?ps't've and admits a proper interpretation as an unnormal-

tainty relation. To see this, let us consider the problem stud'—zed probability distribution of the time of arrivgl8—2, it

ied in Sec.VI, namely, the arrival time of a quantum particlecannot be considered as a fully satisfactory solution of the

at a detector located behind a potential barrier and asym&rﬁglzzérior:i: '?or;(;t p;)ostl)g\{:)eili?egg:ﬁbisti:nsggﬁrl]igiﬁrou h
totically far from the interaction centefThe free case is 9 P y 9

nothing but a particular case of the latter corresponding & guantum time operator one has lo circumvent the_problem
T(p)— 1, which implies| i) — | ¢).] stated above. There are two possibilities. If one decides that
' tr in/+

: . any proper time operator must be strictly conjugate to the
Because of Eq(103), it automatically holds that Hamiltonian, then one has to abandon the idea of finding a
AHAT =112, (104  self-adjoint operatortEven though such a property is a hall-
mark of any observable in the standard quantum formalism,
whereA’H and A7y are the root-mean-square deviations ofit is not strictly necessary for a consistent formulation of
the corresponding observables, i.eAH)?=(H2)—(#)?, ~ Probability distributions of measurements res{is,2§.) If,
and (A'];()ZE<'}2(X)>—<'}(X)>2, with («A‘UE(%J;U Y conversely, one imposes self-adjointness as a desirable re-

. quirement for any observable, then one necessarily has to
(4l thy). However, from Eqgs(23) and (95) it follows that abandon the requirement that such an operator be conjugate

to the Hamiltonian. In the present paper we have adopted the

Hlb) =Hol ), (109 latter view. We have explicitly constructed a self-adjoint op-
and henceAH coincides with the statistical spread of the erator with dimensions of energy, and a nonbounded spec-
energy of particles arriving at the detector, trum. Such an operator is essentially the energy of the par-

ticle with the sign of its momentum. The nonbounded
(AH)2=<I:|§)—(I:IO>ZE(AE)2. (106  character of its spectrum enables us to introduce a self-

. adjoint operator with dimensions of tim@, by demanding it
On the other hand, according to EqZ3) and (98) we {5 pe conjugate toft. Since the latter is essentially the
have Hamiltonian, except for sign, one expects the self-adjoint
> A 2 operator7 so defined to be physically meaningful and rel-
(AT)“=([T(X) = (tx)]1%) evant to the arrival time problem. Indeed, we have shown
1 +o that it is possible to define consistently a probability distri-
:WJ dr(7—(tx)) 2 7 X] ) |? bution of arrival times at a spatial point, in terms of the
/S eigenvalues and eigenstates of such an operator. This prob-
=(Aty)?, (107)  ability distribution, which is a function of the initial state of
the system, does not depend on the particular design of the
and since( 7; X| ) [2/{ | ) is the probability distribution measuring device, and has the additional desirable conse-
of the arrival time of particles at the detector, the abovequence that it leads to a precisely defined time-energy uncer-
equation shows thad 7y is nothing but the corresponding tainty relation.
statistical deviatiom\ty . Therefore, the statistical spreads of

the energyAE, and time of arrivalAty, of particles reach- ACKNOWLEDGMENTS
ing the detector satisfy the time-energy uncertainty relation  This work has been supported by Gobierno umo de
AEAL,=H/2. (108 CanariagProject No. PI 2/9%

APPENDIX A: TRANSMITTED STATE AS A FUNCTION
VIll. CONCLUSION OF THE INGOING ASYMPTOTE

Despite its fundamental nature, the quantum formulation In this appendix we show that the freely evolving trans-
of the time-of-arrival concept is a problem which remainsmitted state ¢,) can be written in terms of the ingoing as-



3434 V. DELGADO AND J. G. MUGA 56

ymptote| ¢;,) in the form[Eq. (101)] the resolution of unity in terms of momentum eigenstates and
evaluating the resulting integral by contour integration in the
| 1) = O (P)| thouy = O (P) S| tin), (A1)  complex plang
whereS denotes the scattering operator, relating the ingoing (xl(Ep+iO—|:|o)*1|x’>: - ﬂei\pl\X*X’\/ﬁ, (AB)
and outgoing asymptotes, fi|pl

one obtains, fop>0 andx— + o,

~ +o +o ~
o =Slu= o’ [ doloy o' 8p) L

. (xlp+)~(xlp)—2mimip(x|p) [ ax ()
Taking into account that the matrix elements of the scat- X(x'|T(E,+i0)|p)
tering operator can be written in terms of the-the-energy- _ ~ .
shell T matrix as[26] =[1—27im/p(p|T(E,+i0)|p)I(x|p). (A7)

. , . IR . A comparison with Eq(90) yields
(p'|SIpy=8(p—p’)—2mi S(E,—Ep/ )(p |T(Ep+|0)|([2é

) T(p)=[1—2mim/p(p| T(E,+i0)|p)]. (A8)
Eqg. (A2) reads Similarly, for p>0 andx— —«, Eq. (A5) leads to
[oud =S4 i) (xlp+)~(xlp) ~2mim/p(x|—p) | ax (~plx)
=fo dp[1—27im/p(p|T(Ep+i0)[p) )Pl ¢in)|p) X (x'|T(E,+i0)|p)
+de 2/ — plTEL 4 10)p)] =(x|p)+[—2mim/p(—p|T(E,+i0)|p)]
p[—2m@im/p{—p i0)|p
0 P X{x|p—), (A9)
X{p|in)| —P)- (A4)  and comparing with Eq(89) we find
On the other hand, from the Lippmann-Schwinger equa- R(p)z[—27-rim/p<—p|'T'(Ep+iO)|p>]. (A10)
tion for |[p+), it follows that the wave functiofix|p+) can - _ _ ,
be written as Substituting Eqs(A8) and(A10) in (A4) we finally arrive at
|¢out>:AS| ¢in>

(xlp+)=(xlp)+ | @ (x|(E, +i0- Ao x') . .
= | “ap Tpplule)+ | b PPl -,

X(x'|T(Ep+i0)|p). (A5)
o . . (A11)

Substituting in the above equation the expression for the
Green’s function(which can be easily obtained by inserting from which follows Eq.(Al).
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