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General theory of the decoherence effect in quantum mechanics
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The decoherence effect, which may be held responsible for the vanishing of macroscopic quantum interfer-
ences, has only been exhibited in special models though it is presumed to be unielsast when there is
a possibility of dissipation A more general model encompassing the already known ones is proposed in the
present work. A master equation for the reduced density operator is established by means of two different
methods. A direct method, which is given first, is simple but too specific. A second method relies on the
projection method in the theory of irreversible processes. It is in principle very general and not confined to a
special model. It shows that decoherence is a typical irreversible process from a theoretical standpoint. The
master equation is worked out in detail when there exist convenient, so-called microstable collective observ-
ables(for which a criterion is givep selecting a preferred basis in which diagonalization occurs. For macro-
scopic mechanics, this basis is given by the position coordinates in three-dimensional space of relatively small
parts in an object. Previously proposed models, including the quantum diffusion model, are found to be special
cases of the present theof$a1050-294{@7)08609-3

PACS numbes): 03.65.Bz, 05.70.Ln

I. INTRODUCTION where the formal subsystem that is describedybig called
the “environment” and Tg means a partial trace over it.
The decoherence effect is a mechanism destroying quari-aking the trace in Eq(1.1) is equivalent to a nonobserva-
tum interferences at a macroscopic level. It has remarkablgon of the environment.
analogies with irreversible processes as they are known in The importance of taking the environment into account in
thermodynamics. The two kinds of effects occur only in aa quantum measurement has been realized early and almost
maCfOSCOpiC system in which a relatively Sma!l number Ofsince the beginnings of guantum mechanqsee, for in-
degrees of freedom are accessible to observation. These dgance[1]). Its effect was investigated as a source of noise
grees of freedom parametrize a “collective” or “relevant” [2] before being identified with a phase loss by Z8h One

subsystem for which new rules of physics emerge from any,ay consider as an example the case when the total Hamil-
inner complexity. It therefore seems interesting to look atonian of the system is

decoherence with the methods that have been successful for
irreversible processes.

For explaining most simply the decoherence effect, one
may think of the wave function of a macroscopic system as a
function ¢(x,y), wherex can be observetbeing, e.g., the |; andl, being the unit operators in the Hilbert spadés
position of a pointer or similar collective quantitjes/hereas and H,, where the indexc denotes the collectivéor rel-
the many variabley representing microscopic observablesevant, or reducedsubsystem an@ the environment. The
cannot all be measured. One can then express grossly tliteraction couplingH, is then held to be responsible for
decoherence effect by considering the various functions of noise, dissipation, and decoherence. The common origin for
one obtains associated with different fixed values:oThey the first two effects results in the fluctuation-dissipation theo-
tend to become orthogonal as time increases, because thegm [4,5]. Other similarities were also found for decoher-
are too complex for keeping mutual coherence for everyence.
value ofy, even if they had some coherence at the begin- These similarities were apparent in the solution of specific
ning. The destruction of quantum interferences when observnodels[6]. Particularly important is a model where the en-
ing x is a direct consequence of this inner orthogonality. It isvironment is represented by a collection of harmonic oscil-
often vividly described by saying that, after decoherencelators andH, is linear in the canonical variablep,(q) of the
Schralinger’s cat must be either dead or alive and cannot bescillators[7—-14]. This model can be solved explicitly be-
seen as a superposition of “dead” and “alive” states. cause of the simple properties of harmonic oscillators, allow-

A convenient mathematical formulation consists in intro-ing, for instance, explicit Feynman path integratids|. De-
ducing the density operat® = | ¢)(#| of the whole system coherence results from a “master equation” one finds for

H=H.®l.+1.QH;+H{, 1.2

and the reduced density operator pe, hamely,
X', X)= X", y)* (x,y)dy={(x'|Tr,D|x), .01 ) )
pC( ) f lﬂ( y)lﬂ ( y) y < | e | > <X pc_m [HC!pc] X> :_M(X _X)ZPC(X ,X)
(1.7
—(yI12) (X" =x) (9l Ix" — 3l 9x)
*Laboratoire associau CNRS. X pe(X',X). 1.3
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The “decoherence coefficient)y is very large and it is re- in the oscillator variablef{,q)’s, as one may check easily in
lated to the friction coefficient (occurring in the classical the case of a gaseous environmetitwould therefore be an
relation v=— yv) by error to believe that the oscillator model has a really large
range of applicability and, too often, the success of its results
w=y(mT/Ah?), (1.9 has been wrongly attributed to its own validity. It will be
shown that in fact Eq(1.3) is rather general, much more

in the special case wheH.=P?2m+V(x), T being the than the model_thrqugh which it was discqvereq. _
absolute temperatufeupposed to be high enough energy Before entering into more formal considerations, it may
units. This occurrence of temperature and the proportionalit?® USeful to introduce a simple example, as follows. A
of the two coefficients for decoherence and friction indicatededanken piston, with mass, has only one degree of free-
an intimate relation between the two effects and a relatioflom. Which may be taken as its positienA spring acts on
with irreversible processes. Most important is the very smalfn€ piston so thatH=P“/(2m)+U(x). The piston can
denominatot:2 in Eq. (1.4) showing a tremendous efficiency MOVe inside an ideal cylindea geometric abstractigrcon-

of decoherencep.(x',x) becomes very rapidly “almost di- taining a gas, which constitutes the environment. The piston
agonal” though complete diagonality is forbidden by energy©an I_<eep_ the gas molecules on one side if the interaction
conservation and is limited by the commutator in the left-HamiltonianH, is equal to> ,u(x—x;), where the summa-
hand side of Eq(1.3) [16,17. tion goes over the gas molecules qmd; a sufficiently re-

The importance of a preferred “pointer” basis for diago- puIS|ve_ potential. This example will be used for making
nalization was emphasized by Zurk8—20, who made SOMe ideas clearer. _ _
clear its relation with measurement processes. Another im- Most of the present paper will be concerned with the
portant contribution was made by Joos and Z2hj, who ~ Model given by the Hamiltoniatl.2). The theory will be
considered another model of environment consisting of a§iven in two different ways, opposing simplicity and gener-
external gas ofatmospheremolecules or photons. They ob- ality. It will first be.descrlbed accordmg to th_e easiest ap-
tained a master equation practically identical with Eg3). pr(_)ach, throu_gh which it was discovered. The idea was to try
In view of the very different models of environment that had USing & density operator
been used, these converging results strongly suggest that _
there should exist a general theory of the effect, relying on Do=pc®pe, 19
no detailed assumptions about the environment except f%herepc is the exact reduced density apdis formally an
the large number of degrees of freedom. One would expeclo ilibrium density
some sort of decoherence-dissipation theorem as an outcomt(s:I
of such a theory. _ _ _ _ _

The search for such a general theory is motivated by the pe=exil = (H.=F)] 18
essential role of decoherence in the consistency of an intefFhe quantities3 andF are determined by the conditions
pretation of quantum mechanif22—-27, by some questions
raised about the meaning of decoherence in “fundamental” Trepe=1, E=Treo(Hepe)=Tr(HeD), 1.7
physics[28-30, and, of course, by the experimental evi-
dence for the effect. It was often said that decoherence is th¢here Tg means a trace over the environment Hilbert space
most efficient effect in physics, to a point where observatiorie and Tr means a complete trace. Equatidng) mean that
always comes too late, after the effect has reached compléie correct value of the environment energy is obtained
tion. Some strong indications for the effect in action havefrom Dy. One should notice, however, that this energy, in
first been seen in superconducting quantum interference deur example, fluctuates with the inelastic collisions of the
vices(SQUID’s) [31] and it has now been observed unques-piston with gas molecules. The parametgrandF therefore
tionably in quantum opticE32]. The aim of the present work fluctuate. Their time average may also change because of
is to propose the necessary general theory, or at least tiglissipation, though at a much slower pace. It should be
correct framework for it. stressed in any case thate does not assume the environ-

Does one need a general theory or does it already existhent to be really in thermal equilibriuand the introduction
Caldeira and Leggetin [9], Appendix Q have shown that of p. is no more than a mathematical device.
the oscillator model can sometimes apply for nontrivial rea- The assumptions of the model we use are contained in Eq.
sons and therefore have a larger range of application thafl.2) and in the following condition for applying perturbation
expected. In the case of a superconductor, they noticed thaglculus: Our example indicates wity; is most often too
one can formally associate an oscillator with each energyarge for a perturbation: the repulsive poteniiddetween the
level E,, of the environment, with a frequendy;,/h. These
ideal oscillators represent a non-occupied or occupied energy

level E, if they are in their ground state or first excited state 1rq; o environment consisting of a bath of independent particles,
and, in view of the very large number of energy levels, theig; one denote bypi) the state of particlé with momentump and
formal oscillators have a negligible probability to be in apy ; the interaction potential of this particle with the collective
higher excited state. This remark is helpful for justifying the subsystem, when this subsystem is at positier0. The coupling
theoretical analysis of the Paris experimgB2]. One must  H, with ideal oscillators when the object is at positiris then

be careful, however, not to extend this idea too far. Thoughyiven by2i<pi|y|qi>exr[i(p—q)x]apia$i, It is not linear in the cre-
one can always use a model of environment by ideal oscilation and annihilation operatoes,;, a},; and it can be even more
lators, their external coupling, is only exceptionally linear complex in general.
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piston and a gas molecule must be large for the piston tdecoherence to friction is shown in Sec. V. Though the
keep molecules on one side. One can therefore introduce d@heory trivially agrees with the results of an oscillator model
average interaction for the environment, the fact that it also encompasses the
particle model[21] and therefore acts truly as a common
AHc=Tre(peH1)- (1.8)  framework, is less obvious and is shown in Sec. VI. Section
.. VIl will sum up the various assumptions that are introduced
Y9n the construction and indicates which result depends on
What assumption.
This summary of assumptions and results will show why
H =H.—AH.®I (1.9 the model we used first is not yet general enough. For in-
- 1 [ e . . .
stance, a realistic quantum measurement cannot be properly

is a much smaller quantity. It represents in our example th@"d completely described by such a model, because the col-

fluctuating part in the collision&he basic assumption of the '€ctive, or relgvant observables can be generated in the
examples we give will be that/Hs small enough for being course of time: In the case of a bubble char_nber, every new-
treated as a perturbatian born bubble asks for its share of a new Hilbert spate

It will be shown in Sec. Il how one can derive a rnasterThere are also some questions about the theory itself: Why

equation forp, from this assumption, by using second-orderd0€S the guesel.5 work? Why doesD, act small though

perturbation theory itH/ for the basic evolution equation not being small? To improve the first draft_of the theory, one
1 must understand what is the real key for its success.

iD=[H D] (1.10 One can get an answer to these questions by using the
' ' general method of projection superoperators in the theory of
(in units wherefi=1). It might look rather surprising that a quantum irreversible processg®#,35, to which we turn in

perturbation calculation can work, because the quantity ~ Sec. VIII. It will be shown in Sec. IX that the initial ap-
proach we used in our model is in fact a special case of this

D,;=D—Dy, (1.11 method.

Every master equation that is known for any irreversible
inevitably entering in the calculations, cannot be small. Itprocess can be derived from some version of the projection
will be found however to “act small,” suggesting that some- method. Some master equations hold because of perturbation
thing more general than the model can still lie behind. theory, or from short memory approximations or other rea-

The master equation can be used for useful investigationsons[35]. They do not assume the vicinity of thermal equi-
such as the Paris experimef@2], for instance. It will be librium nor that the relevant observables be given once and
shown, however, in Sec. Ill that the master equation befor all. A general theory of the decoherence effect consists
comes much simpler when there exists a special basis. Thiierefore simply in applying the known theory of irreversible
occurs when there exists a complete set of commuting “miprocesses to the special “relevant” observables showing de-
crostable” observableX in the collective Hilbert spacg{;  coherence. The present paper shows one rather far-ranging
such that example of this method, but it will be interesting to investi-

gate other situations one also meets in real measurements.

the pressure force exerted by the gas on the piston. The
maining interaction

[X,H;]=0. (1.12
Another way of expressing this is to say that the time deriva- II. A MASTER EQUATION FOR DECOHERENCE
tiVeS OfX one ObtainS from the fu" Hamiltonian or the COI' One W|” assume that the environment iS in therma' equi_
lective effective one coincide, namely, librium at an initial time 0, which implie®,(0)=0. Though
this assumption is not necessary, it allows one to dispose of
[H,X]=[H+AH,,X]. (1.13 P y b

some uninteresting terms that have nothing to do with deco-
herence.

One may first notice three consequences of the defini-
I%i_ons, namely,

In our example, this is true for the piston position and both
quantities(1.13 coincide withP/m. More generally, a mi-
crostable observable is one preserving the usual proportio
ality between momentum and velocity. The center-of-mass
position of a piece of solid or fluid matter is of that type and

this explains why classical mechanics, when derived from
guantum mechanics, can be described in ordinary three-d('BF)

pc=TreD, (2.7)

/dt—(dBIdt) TrpeHe=d( BF)/dt— (dB/dt)E,=0,

dimensional spacegThis argument is not completely new (2.2)
[20,33.) Another interesting example will be given for an .

induction circuit, showing that microstable observables can Tre{H1.,pe]=0, 23
sometimes be extended outside classical mechanics to an-

other domain of classical physics, but not to every domain Tr.D;=0. (2.9
and not for every problem. This remark opens an interesting

new field, which we have not explored. The first relation is the definition of the reduced density op-

The master equation derived from this approach in Secerator. The second one follows from HG.6) and the third
IV exhibits the main features one suspected from the modelgine from Eqs(1.8) and(1.9). The last one follows from Egs.
though it is of course much more general. The relation of(2.1), (1.5), and(1.12).
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Taking the trace of Eq1.10 over the environment, one _ L,
gets Q’—Q=—(I/ﬁ)Tre{ H1th U(t,t")pe

0
Q=TrH;,Dq]. (2.6)  The integral is necessarily of a higher order ttfamecause
) of the occurrence ofi; and therefor€)’ =, up to correc-
Proof. The time derivative o, in Tr,D, vanishes be- tions of a higher order. The quantiy’ is obtained from the
cause of Eq.(2.1). One has TfH,Do]=[Hc,pc] and auxiliary density operatdd;, which in view of Eq.(2.13) is
Tr[He,Do] vanishes as the trace of a commutator. Thera small quantity of first order so th& itself is of second
TrH;,Dol=[AH.,p.] from Eq. (1.8. One has order. This is a very remarkable result since it means that in
Tr[H¢,D1]=0 because of Eq2.4) and Tg[H;,D,]=0 as  some sensé), acts small though it is not small. As a matter
a trace of a commutator, so that[l,D,] is reduced td).  of fact, there are certainly some operat@rsn the complete
Similar straightforward algebraic calculations will be omit- Hilbert space that would have an average valu® Dy of
ted from here on. the order of their nornfO||, which is a reasonable way of
The density operatoD, occurring in{) is a priori very  expressing thaD; is not small. However, as it happens in
complicated. The basic equatigh.10 becomes in fact an jrreversible processes, the matrix elementsDqf are ex-
equation forD, when using Eqs(1.11), (1.5, and (2.9.  tremely numerous and do not favor the collective observ-
This gives ables. This is at least an intuitive manner of understanding
. the present result.
iD;=[H,D1]+[H,Do]+A, (2.7) Finally, one has obtained a master equation that is, up to
terms of third order and higher,

ibc:[Hc+AHcapc]+Qa (2.5
2Q(t")UT(t,t")dt’

where

A=—iB(E;—H)Do+ pe® Q. (2.9

t
The quantity[H} ,Do] is of first order in the small quantity Pt i[Hc+ AHc.pc]=— J'OTre{[Hi(t)vaUe(tvt’)
H;. Thoughg can be considered to be smé@k least when
there are microstable observables, as shown in the Appen- X[H1(t"),Do(t")JUIU (Lt Tt
dix), one has no idea of the importance of the second term in (2.15
Eq. (2.8 since one does not kno®, except that it is at most '
of first order according to Eq2.6). One therefore introduces One has replacet (t,t') by U.(t,t")U(t,t"), abbreviated

an auxiliary operatob; through the equation here asU_U(t,t'). This master equation contains the two
T ) effects of decoherence and dissipation and one must now
i(D3=Dy)—[H,D1=D1]=pe®40. (2.9 extract this physical meaning.

SinceD4(0)=0, one ha€)(0)=0 andD;(0) can be taken

. . Ill. MICROSTABLE BASES AND THEIR MEANING
to be zero. UsingD=D,+D,, together with Eqs(1.5),

(2.1), and(2.3), Eq. (1.10 becomes The master equatiof2.15 is not transparent. One can
) get, however, an inspiration from the ideas of Zuf&&—2Q
iD;=[H,D;]+B, (2.10  and from the results of known models. This suggests a search
. for convenient bases. One therefore introduces a complete
B=—iB(E¢—He)Do+[Hj,Dol. (2.1)  set X of commuting observables ift{, with eigenvectors

|x) together with the basig) of the eigenvectors ofi, in
To solve Eq.(2.9), one introduces the evolution operator  #,. As a matter of fact, the most useful basis%fy may
sometimes be of a different type and it was found conve-
(2.12 nient, in the case of the electromagnetic field, to use the
overcomplete basis of coherent stdte4]. We shall not con-
sider this case however, nor shall we try to investigate the
where T means a time ordered product. Similar evolutionmaster equation in all cases. We shall rather develop the
operatorsU, and U are defined by replacingl, respec- consequences of this equation when there exists what was
tively, by He andH¢+AH.. One thus gets called in the Introduction a set of microstable observables.
This is defined as a complete set of commuting observables

DI(t)=—i ftU(t tB(t)UT(t,t)dt’. (2.13 satisfying the commutation relation.
0
[H1,X]=0. (3.2

t
u,tH)=T exr{ —iJ H(t")dt”
t

Equation(2.9) gives, at first order in perturbation theory,

The observableX may have a continuous or a discrete
spectrum. When discussing a spin measurement, for in-
stance, the spin observable that is measured should be in-
cluded in the seX (H. containing the interaction Hamil-
Introducing the quantitf)’ =Tr[H;,D;], Eq.(2.14 gives  tonian between the spin and the rest of the collective

t
D;—D;= foU(t,t’)pe®Q(t')u*(t,t')dt’. (2.149
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system. The discussion will be limited, however, to ordinary ~ One does not need to take care in these expressions of the
collective observables, with a continuous spectrum. Theslightly fluctuating character gf, nor of its smooth variation
physical meaning of the assumpti¢® 1) is made clearer if with time, which is slow. These are second-order effects. We
one writes it as shall not consider moreover the possibility of short-time hys-
. teresis, as it may occur in solid frictid87,38, so that these
—iX=[H,X]=[H.+AH.,X]. (3.2 functions depend only upan-t’. More explicitly, one has

WhenX represents a set of position coordinatiEg with , , , , i (=t
a kinetic energys(M ~1};;P;P; , this means that the familiar F(X".x.t=t ):2 Vi (X, OVira(X, ) ppe“n'nt 2,
relationP;=Mj;X; remains valid in spite of the presence of " (3.6)
the environment. The assumption is therefore valid in ordi-
nary mechanics, when a macroscopic system that is made ofith p,=exd —B(E,—F)], E, being an eigenvalue dfl,.
solid parts and fluid parts is describedla Newton, as con-  One may also notice the useful relations
sisting of small macroscopic parts. The relat{@®) for the

center-of-mass coordinates of these small parts and their G(x' x,1)=F(x,x",—7)=F*(x',X,7). (3.7
momentum follows in that case from the fact tiviitcan be
written in terms of all the constitutive particles(electrons One will be particularly interested in values »fand x’

and nuclei as z(pi/zma+vaﬁ)_ Since classical physics is that are macroscopically close. One expects the correlation
known to follow from decoherence, the present theory im-functions to behave typically in a standard fashion:
plies that classical mechanics can be described as takirfg(X',x) depends only slowly, i.e., on a macroscopic scale,
place in three-dimensional space. This remark would lookipon the gross position of the syst¢which is described by
trivial if one did not realize that semiclassical physics hasz(x’+x) for degrees of freedom in spdcelt depends
only presently reached a description of classical physics istrongly, however, uporx—x’, and moreover uponx(
configuration spacésee, however[33]), and one did not —Xx)?, in view of simple invariance argumenfddore prop-
remember how surprised Schiinger was to find that wave erly, it depends in general upon the difference’s<x;)? for
functions are defined in a configuration place. the various degrees of freeddmhs for its dependence upon

The origin of this important result is to be found in invari- time, the typical time scale df(t—t') is given by fluctua-
ance under a change of inertial reference system. In a changiens, for instance, the time between successive collisions in
of inertial frame with a nonrelativistic velocity (with no  the case of an external environment. This is most often ex-
translation for the origin of space or time nor a change in théremely short. In any case, the present remarks about
direction of axep the position observables change accordingF(x’,x,t—t") should not be considered as universally valid
to x(t) —x+vt. Using the fact that momentum operators and they must be checked against the real physics of the
are the generators of infinitesimal space translations and usystem under consideration. They have been mentioned here
ing the Lie algebra of the Galilei group, it can be shown thatfor a better understanding of probably the most frequent
individual momenta are transformed accordingpgg—p,  cases.
+mv. The relation(3.2) follows then from the equatioR
=0 in the inertial reference system where the center of mass IV. DECOHERENCE
of a piece of matter is instantaneously at rest.

Another interesting example is offered by an induction ~The existence of a microstable basis will now be used to
loop, such as the ones that are used in a superconductifftract the effects of decoherence and dissipation from the
quantum interference devi¢81]. The role ofX is taken by ~ Mmaster equation2.15. The right-hand side of this equation
the magnetic fluxb through the loopP being —CV where  involves the collective propagation operatdg(t—t’). Be-

V is the potential difference across the terminals of the looFause of the very-short-time scale of the correlation func-
and C the capacity[36]. The relation between momentum tions, the approximation
and velocity is given by = —d®/dt and this is insensitive

to the presence of an environment since it is a direct conse- Uc(t—t)~1—i(Hc+AH)(t—t") (4.9)
quence of Maxwell’s equations, so that the magnetic flux is a ] o
microstable observable. is certainly sufficient. One can moreover keep only the terms

in Eg. (2.15 that are at most linear i—t’. One can there-

WhenX is microstable, Eq(3.1) implies thatH is diag- : >
fore write the master equation as

onal inH, namely,
(xn[Hi|x'n")y=8(Xx—X" )V (X). (3.3 peti[HetAHc,pc] =Ryt Ry, (4.2)

where the indexd stands for decoherence ahdor friction.

These two terms correspond, respectively, to the leading

terms one obtains in E¢2.15 by settingU.(t—t')=1 and

FOX X, 1) =Trod VX, HUo(t,t V(X t ULt ) et to the terms linear im—t’ resulting from E_q(4_.1). We shall
(3.4 first consider the decoherence teRy, which is given by

The master equatiof2.15 suggests the introduction of con-
venient correlation functions that are defined by

G(x’,x,t—t')=Tre{V(x',t)peue(t,t’)V(x,t’)ug(t,t'()g.s) (X' |Relx) = — f‘K(X,,X,t_t,)pc(x,,x,t)dt,,
. 0
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where the kernel is given directly in terms of the correlation The contribution of the leading terms in the master equa-

functions by tion is therefore
K(X, 1 X, T) = F(X, ,X, ’ T) - G(XI !XvT) - G(X,X, T T) <X, |pC+ I[HC+ AHC 1pC]|X> == Iu’ij(xi, - Xi)(xj, _XJ)
+F(X,X,— 7). 4.3 X{(X"| pe|X). (4.12
In view of the relationg3.7), this can be written in terms of It will soon be shown(and already known from modelthat
a unique correlation function as the decoherence coefficients are large, except when there is
no dissipation. Considering only one degree of freedom, it is
K(x",x,7)=F(x' x",7)—F*(x",x,7)—F(x,x",7) then clear that the reduced density operator will behave as
+EX(X,%,7). (4.4 (X' |pe(D)]x)=(x"| pc(0)|x)exd — w(X’ —x)?t]
(4.13

One can introduce the real and imaginary parts of the _ )
function F(x’,x,7) by F=F;+iF,, with the symmetry and become practically diagonal, except for valuex ahd
properties following from Eq(3.7), x" so close that the effect ¢H.+AH.,p.] becomes com-

parable to the decoherence effé4t12) or larger[16,17].
Fix,x',—7)=F1(X",X,7), Fax,x",—7)=—F,(X'X,7).
(4.5 V. DISSIPATION

The explicit expression of these functions, in view of Eq. One must now evaluate the second tdkmin the master
(3.9, is equation, which was attributed to friction and comes from
the terms linear inl,+AH.) (t—t’). Itis given according
, o1 , , to Eq.(2.15 by
Fi(x'x,t—t ):E 2 Vo (X D) Var(X,t)
nn’

t
Rf:if Tra[H1(),[Hg Uq(t,t )[H1(t'), Do(t)JUL(t,t)]]

X (ppt+pa)e et (4.9 0

1 X(t—t")dt’, (5.9
Fo(Xxt=t)=5; nEn, Van (L OV (.t where we have writtei . for short in place oH .+ AH,.
o , This quantity is easy to evaluate if one makes the follow-
X(pp—pp)e "M (47 ing assumptions(i) One can neglect the time dependence of
_ ) F, and F, coming directly from the products
with wnn=E, —E,. At temperatures high enough for hav- v/ (x’ t)v,,,,(x,t’). (i) The temperature is high enough
ing Bwny<1 for the significant contributions, it may be for Eq. (4.3 to be used(iii) H,+AH, can be written as

noticed that AM~1);PiP;+V(X). The conjugation of these three as-
B sumptions is somewhat restrictive, though still frequently
Fo(X X t—t) ~— = D V(X OV n(,t) met. Our aim is, h_o_vvever, _only to clarify the meaning of the

2i results, and specific applications to cases where these as-

oAt sumptions do not hold should better be investigated for their
X(pnt pnr)@ppe " n( ). (4.8 own sake.
We shall make the calculation for only one degree of

The decoherence effect is most easily seen if one tak&geedom. One can first replade! by its kinetic part in Eq.
advantage of the short memory of the correlation function for(s_l)_ The various parts of the triple commutator can be

integrating directlyF(t—t’) overt’ in Ry. In view of the oy 5juated by using
assumed dependence of the correlation function upon (

—x")2 and leaving the slow dependence upori+x) un- 2

written, one has (X'|P?A|x)=— 2 (XA,
* ’ _ r_ 2 (92
fo Fi(x",x,n)d7=f((x{ —x;)°). 4.9 (x'|AP?|x)= — -2 (x'|Ax).
For x and x" macroscopically close and when retardationOne notices that decoherence is much more rapid than dissi-
effects are negligible, one has pation. Although this result will be a consequence of the
present calculation, one may anticipate it and consider that
* / / / R; is noticeable only after decoherence has reduced the ma-
K(x",x,7)d7= ;i (x| =) (X' —x;), (4.1 f e ;
fo (XE%, 1) A7= 15 O =X (%]~ X)) (4.19 trix elementsp., (x’,X) to a quasidiagonal form. This means

that one can write
the decoherence coefficients; being given by
f Fo(x',x,7)rdr=a+(My/2)(x'—x)?, (5.2
0

iy =21}(0). (411
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still leaving aside a possible smooth dependence »n (n’. The basis|n), used inp,, is made of free incoming
+x'), and neglecting terms of higher order i’ ¢ x)2 that  plane wavesp,(y) = exp(py), if y represents the position of
are anyway suppressed by the exponential decoherence fate molecule. For the basis’, however, one uses the full
tor in Eq. (4.13. The meaning ofy in Eq. (5.2 will soon  scattering wavesy,. The matrix elementsi; ., are there-
become clear. A straightforward algebraic calculation givestore given by (¢plv|¥p). According to the well-known

Re= — (712)(X' —X)(3l X — dlx) pe(xX' X). (5.3 hg)spmann—Schwmger relation in scattering thegABg], one

When this is used to evaluate the rate of momentum change

(noticing thatRy does not contribude one gets the familiar AT ,
expression of friction (Pplvlypy=— om F(P.p"), (6.2)
d(P)/dt=—(aVIox)— y(P). (5.9

wherem is the mass of the molecule arfdp,p’) is the
Using Eqs(46) and (48), one gets on the Other hand Scattering amplitude f0r a CO||iSiOI’l Where the moment]blm
goes top’. This is how the scattering amplitude is found to
% , o , enter the calculations in the present theory, explaining the
fo Fo(x".x,7)rd7=(BI2) fo Fix".x,1)d7 (5.5  central role it plays in the approach by Joos and Zeh. From
there on, the calculation can proceed as it was done by Joos
and since and Zeh and it needs not be developed.
One cannot fail to mention a most important aspect of
-, ) decoherence, which is very frequently a semiclassical behav-
MIZJO I°F1(X,X, 1)/ dxax"d, ior of the collective subsystem. This question has been con-
sidered, however, with great care by Gell-Mann and Hartle

one hasu=MTy, a relation that may also be understood as 33l and there is nothing essential to add to their work.

implying that a thermal equilibrium distribution satisfies Eq.
(1.3), which is the final result when there is a microstable VIl. SUMMARIZING THE RESULTS

basis. Reintroducing explicitly Planck’s constant and several o
degrees of freedom, one obtains One may conclude this first approach to the theory of

decoherence by recalling the various assumptions that were
mij=(M "y)i]-T/ﬁZ. (5.6) made along the way and which results hold under what con-
ditions.

(1) The choice of the collective subsystem is made once
and for all.

The results one has obtained agree, as one would expect, (2) The Hamiltonian can be separated as in 8c2).
with the special case of the oscillator model. The master (3) The fluctuating partH; of the coupling is small
equation(2.15 involves also the kind of double commutator enough to be treated as a perturbation.
that was postulated in the quantum diffusion md@8—42. (4) One can use the test densby, given by Eqgs.(1.5
In this model, the stochastic charactertf(t) is described and(1.6).
by a Brownian noise and the quantum diffusion model can One then obtains the master equati@ri5).
therefore be considered as belonging mostly to the present (5) There exists a system of microstable collective observ-
theory. ablesX.

This is not so obvious for the results of the external envi- The decoherence effect is then described by E4<)
ronment mode[21], though their coincidence with those of and(4.4).
the oscillator model was the main hint for the existence of a (6) The correlation functions have the behavidr9).
common background. To obtain them from the present (7) Retardation effects are negligible.
theory, one may proceed as follows. The relevant system is The decoherence effect is then described by (Ed.2).
an object that is surrounded by a gaseous environment made (8) The assumptions made in Sec. V are used.
of particles. In the case of molecules, the interaction between At a time when decoherence has already taken place, fric-
the object and a particular molecule is a potential, which igion effects can be written as in E(.3) and the coefficients
the sunmv of the interaction potentials between that moleculeof decoherence and friction are related by Egi6).
and all the atoms in the object. Considering for simplicity ~One can now evaluate and criticize each assumption. As-
that the molecules do not interact togetkar each molecule sumption(1) is convenient for discussing simple models of a
is considered during its last mean free path towards the oljuantum measurement, for instance, the famous von Neu-
ject), each colliding molecule can be individualized within mann model[44] to which one adds an interaction of the
the environment. The summation in E@.6) can then be ‘“pointer” with an environment. It does not apply to realistic
split into independent summations over the various molmeasurements, when, for instance, new bubbles or any other
ecules. macroscopic real records are created.

In order to take care of the time distribution of the colli-  Assumption(2): One would prefer to select only, as a
sions, one may consider the scattering of one molecule orelevant quantity and this does not necessarily demand the
the object. In the summation over the indiaes’ that was expression(1.2) for H. It often happens that the environment
written in Eqg.(3.6), one can use two different bases foand  HamiltonianH, depends upon the collective observables. In

VI. THE CONNECTION WITH PREVIOUS WORKS
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the example of the pistoi, depends in fact upon the piston densities made of operators that are not necessarily supposed
position. to be positive nor with trace 1. Dualify.e., the introduction

Assumption(3) seems to be essential for the whole ap-of linear functional is expressed by a “scalar product”
proach and it also looks quite reasonable. between an operat@ and a densityA denoted by

Assumption(4) does not hold when the piston is submit-
ted to the action of a gas pressure on both sides. One should (AJA)=Tr AA. 8.9
then make room for two different “temperatures” on the two
sides and, more generally, resort to an expression of the test The relevant observables we shall use are
density p. analogous to the one describing local thermal ,
equilibrium rather than full equilibrium. It seems that this is A =[x} (X' [®le, A°=I.@H,, (8.2
only a technical complication with no special difficulty. ) _ )

Assumption(5) is known to be wrong for an electromag- collectively denoted byA'. Though|x)(x'| is not an observ-
netic collective system. One can use, however, a basis @Ple, it is a combination of the observableg|x)(x’|
coherent states that will play the role of our microstable ba-+|X"){X|) and (1/2)(|x)(x'|—[x')(x|) and it is more con-
sis. There exist certainly more general situations, which/enient to take it in that form. The averages of these quanti-

would require a more systematic investigation of E9).  ties with the exact total densify are
From there orfassumption$6) and(7)], our analysis was , o )
only meant for some clarity rather than generality. Specific a'=TrA'D, i.e., @ =(x'|pc|x), a®°=E.. (8.3

examples, where the assumptions do not hold, should be

treated for their own sake. One could write in particular a Balian’s theory starts with the introduction of a reference
more elaborate relation between the coefficients of frictiorlensity operatoD, that is defined by

and decoherence at low temperature, but it is not very illu- .

minating. Here again, the peculiarities of a specific applica- Do=exp(—\A"), (8.9
tion should be preferred. ) i .

To go further, one should also understand better why th&€ parameters\; being determined by the conditions
present method works, if only to remove some unnecessary’ A'Do=a'. It coincides in the present case with our pre-
assumptions. This will be our next topic. It will be shown Vious Do with A.=p [see Eq.(1.5]. Though Eq.(8.4) is
that, at least in principle, one can overcome the limits ofuSually motivated by information theory, EQ..5) is enough
assumptionsg1) and (2), which are too narrow for a full 0 Sho_w thatDy is the S|mplest. reference one can use for
theory of measurement. The general theory of irreversiblécceding to the reduced density operator and this will be
processe$34,35 will be used for that purpose. Though this €nough for our purpose. .
second approach is much more general, it is well known that A Significant remark should, however, be made. Balian
the mathematical techniques for using the formalism of irre/Mentions that it is convenient to include the identity operator
versible processes must be adapted to every special probldn@mong the relevant observables and he insists upon the idea
one wants to investigatE35]. This is why we shall only of |r_1troducmg also every conserved quantity, which would
consider the essentials by recasting our first approach in tHe in the present case the total Hamiltonidn The first
new framework{with Assumptions(1) and (2) explicit], to requirement is already satisfied sinicés a linear combina-
obtain again the same master equation. Even if this is a verjon of the A*'. When consideringH in the form H,
limited achievement, it shows that this second way of look-+AH.+H,+H;, one realizes thatl.+AH_ is a combina-

ing at the theory provides the right framework for a thoroughyjon, of the AXX' so that the recommended reference density

treatment of decoherence. would be
VIIl. ANOTHER APPROACH THROUGH THE THEORY E0=ex;{ — j AxxrAXX/dde’ —B(He+H)|.
OF IRREVERSIBLE PROCESSES

The theory of irreversible processes is by now far fromThe two reference densities are related in perturbation theory
being restricted to systems near thermal equilibrium. Weby
shall rely upon its formulation by Balian and co-workers
[34,35. The idea is to select some “relevant” quantities for
which to obtain an evolution equation while leaving ignored
the details of other quantities, much larger in number. This is
also obviously the basic idea of decoherence. Rather than
recalling the theory itself, we shall reconstruct it as it applies
to the present problem, which has some peculiar features that
are more easily grasped in that way. with a similar relation givingDq in terms ofEy. When try-

We still keep the structure of two coupled systeenand  ing to useEg, as is usually done in Balian’s theory, one is
c, with the Hamiltonian(1.2), all the notations being kept the inevitably led to use these cumbersome relations and the
same. A basi$x) in H, is introduced, not necessarily asso- theory loses much of its elegance. Quite fortunately, it turns
ciated with microstable observables nor necessarily obsenout that one can also start directly frddy, which is much
ables with continuous spectra. One considers the algebra sfmpler thanE,, at the price of rederiving the equations that
operators in the full Hibert spacH and the dual space of will follow rather than using directly Balian’s formulas. This

1
Eo= Do—ﬁj Dg “HiDgdu
0

+/32J Dy " YH;D§H D4du dv,
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is our main reason for starting from scratch, with the advan-
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One can then solve EQ(9.2). Setting D2——7>DO

tage of not supposing the reader familiar with the theory of QLPD, and usingPDy=D,, which givesPDy= QDy,

irreversible processes.
The basic evolution equatidi.10 for D is conveniently
written in the form

D=,D, (8.5

where £ is a (Liouvillian) linear operator acting linearly in
the space of densitigsuperoperat9r Acting on an arbitrary
densityA, it gives

LA=(1/)[H,A]. (8.9

One can then introduce a set of densitieghat are de-
fined by

si=dDgldal, i.e., Sy =|x")X|®pe,
Se=pc®(He—Ee)A2, (8.7)
Ap=TrHZpe—EZ. (8.8
They satisfy the orthogonality relations
(Al;s)=TrA's;= §'j. (8.9
In view of Eq.(8.9), the superoperator
P=sA', PA=s, Tr(AlA) (8.10

(with the usual convention of summation over repeated indi-

ce9 is a projection operator, i.e?’="P. The operatorQ
=1—"P (wherelA=A) is also a projection operator and one
has

P°=P, Q*=Q, PQ=QP=0. (8.1D)
Explicitly, one has
PA=peTroA+pe(He— Eo) (1/A)TrHA.  (8.12)
Our previous densitieBy andD are given by
Dy=PD, D;=0QD, D=Dy+D;. (8.13

IX. THE MASTER EQUATION
Differentiating Eq.(8.13 with respect to time and using

Eqg. (8.5, one gets
— PLPDy=PLD,+PQAD;, 9.1
Dl—QEQD1=—7>QD1—7>DO+ QLPD,, (9.2

—P and Eq.(8.11). Usually, when one
rather thanH., one

where one use@=
starts from the total HamiltoniaM,

finds thatPQ=0. This is not so in the present case and one

has(as shown in the Appendjx

POA=—i(1/AE2) pe(Ee—He)peTr([H HelA).
(9.3

The occurrence oH; implies that this is a small quantity
that can be treated as a perturbation.

one gets

D,=Q(—Dy+ LDy), (9.4)

Eqg. (9.2 becomes

—QLQD,=—PQD,;+D,. (9.5

One may notice tha@D,=D,. Introducing the operatbr

Wit tH)=T exr{ JKQ,CQ(t”)dt”), (9.6
v

the solution of Eq(9.5) at first order inH; (which will turn
out to be enoughis given by

D,=D,+Dy, 9.7

Da= f;W(t,t’)Q(t’)Dz(t')dt’, 9.9

t
Dbzf dt’/ W(t,t)
0

[— ?Q(t’)] f:dt”W(t’ A O(t")Do(t"). (9.9

It may be noticed that the choice of a definite direction of
time in the integrals marks the place where irreversibility
enters. Sinc®,, as given by Eq(9.4), is expressed in terms
of Dy, the introduction of Eq(9.7) into Eq.(9.1) gives the
required master equatidiat second order if ;),

—PLPDy=PLD,+D )+73QD (9.10
It does not look particularly simple. It might also be noticed
that, sinceP and Q, according to Eq(8.12, depend upon
pc, the master equation looks nonlinear. Nonlinearity is an
intrinsic feature of irreversible processes in general, but it
does not occur in the present case. As a matter of fact, the
linearity of the evolution equation foD together with the
relation p.=Tr.,D imply that the present equation must be
linear, which is of course verified by the explicit calculation
to follow.

One is not directly interested iy but in p.=Tr.Dy.
Taking the trace of Eq9.10 over the environment, one gets
the reduced master equation, as shown in the Appendix,

—()[Hc+AH¢,pc]=(11)Tr{H,Da+Dy]
+(1)Trg H,PQD,].
(9.11

2t should be noticed that the “memory kernel” used by Balian is
our WQ, which he callsw.
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The calculations in the Appendix show that, to second ordeablesX, the trace oHH;,D] vanishes. One can then use
in Hj, this equation coincides with the master equationEq. (2.7) for D,, using the fact tha# is negligible because

(2.15 that was already obtained by a direct method. (1, though depending updd,, is known to be a quantity of
second order. As for the first termi 8(Ec—Hg) Do in A, it
X. CONCLUSIONS would only give a negligible correction to E¢AL) for 8.

One is thus left with
Two different methods have been proposed for obtaining

a master equation for decoherence, when one can select a iD =[H,D,]+[H!,Dy]
) , . . : 1 D1 1Yol
small interaction coupling. The direct method was explained

in the Introduction and a rather detailed summary of its "®¥rom which it follows with Eq.(AL) that,B is a quantity of
sults was given in Sec. Vil. The second method, though apé(Tcond order. Another proof, using the approach by irrevers-
plied here under the same assumptions, relies on a geneigji, s a consequence of the calculations at the end of this

theory of irreversjble processes. It can cover, at least in pri”Appendix, showing that the assumption of a microstable ba-
ciple, a much wider range of applications than the one deéis is not necessary

veloped here and it will be interesting to try it on a fully
realistic and complete quantum measurement. The effect of h f of
decoherence has been shown to be a particularly interesting 2. The proof of Eg. (9.3)

irreversible process, though only one such process from the One has obviously

standpoint of theory. This is an important epistemic finding ) ) :

since it shows, as noted elsewhé2é], that the discussions POA="PA—PPA. (A2)
about the “practical for all purposes” or “fundamental” .

meaning of decoherend@8-30 cannot be distinguished One cannot easily use E(8.12 for computingP because
from the similar problems that arose in statistical mechanichis would involve the unknown quantiy. . One therefore

since Boltzmann. uses the definitiort8.10 of P, which gives
One may add that decoherence had always been previ- . . ‘ .
ously studied in rather special models, leading to similar re- PA=s;Tr(A'A)+ s TrA'A. (A3)

sults though an inability to explain these similarities. The_ =~
reason is that these results are in fact much more general addis 9ives
they are now established on firm and precise foundations. : . . : :
PQA=s;{(TrA'A—TrA's; TrA/A)
ACKNOWLEDGMENTS +5,(TrA'A = TrAls; TrAIA). (A4)

| have benefited from interesting discussions with manyrpq identities(8.9) remove the term irs; . The time deriva-
people on the present subject and related questions. | wish %R/es of operators are given Wzi[H ,IA‘] and. using Eas
thank Roger Balian, Murray Gell-Mann, and Wojciech Zurek(8 2 and(% 6, one etg Eq(9.3) ' ' g £as.
for particularly important and decisive remarks and sugges*"" o 9 -9
tions. Some of these discussions were made possible by a

grant from the Centre National de la Recherche Scientifique. 3. The proof of Eg. (9.11)

In view of Egs.(9.10 and(8.12, one has
APPENDIX: THE PROOF

OF SOME INTERMEDIATE RESULTS

Straightforward, even if tedious, algebraic calculationsThis gives, in view of some vanishing traces,
will not be given explicitly. There are, however, some inter- o
mediate steps that may require some care and they are given TrePLPDo=(1/)[Hc+AHc, pe]-

in the present Appendix. According to Eq.(8.12, one has T¢PA=Tr,A so that
TreQA=0. Therefore TyPD,=Tr.Q Dy=0.

TrePLA= (1) TrH,A]. (A5)

1. WhyB does not affect decoherence (Sec. Il)

Some terms involving the derivati\ﬁ of the inverse tem- 4. Derivation of the master equation from Eq. (9.11)
perature were neglected in Sec. Il. This is justified when Using Eds.(9.4) and(8.6). one finds
there exists a system of microstable observabdeas fol- 9 Eas(9.9 (8.6,

lows. D,=(1i)[H,Dg]— (1) p.TrH,Do]— Al Tr(H.D
Deriving Eq.(1.7) with respect to time, one has 2= (1MH,Dol = (1h)peTr H,Do] = A{Tr(HcDo)
— (M) Tr(HH,Do])}, (AB)

Ec=—BA,=TrH.D=—iTr(HJ[H,D])
) with
=—iTr(HH;,D]), (A1)
A=Dy(He—Ep)/A,. (A7)
whereA,=Tr,(H2p.) — E2 and the last equality is easily ob-
tained by introducing a basifn). One writesD=D, It will be useful to show thaD,, is a quantity of first order in
+D;. When there exists a system of microstable observH;. This results from



Tr(HeDo) = pcEe.
and
Ee=Tr(HeD)=(1/)Tr(H[H,D])=(1/)Tr(HH} ,D]).
therefore

The coefficient of A in Eq. is

(1) Tr(H[H1,D4]). This gives

(A6)

Dy=(1/)[H1,Do] = (LN)ATr(He[H;,D1]), (A8)
which implies
Tr.D,=0 (A9)

and shows thab, is of first order inH; .
One must now computé(t)=D,(t)=W(t,t")D,(t'). A
direct calculation gives

il.::iQEQF:[HaF]_PeTre[H!F]_[H’peTreF]
+pe[Het AHc, TreF]—[H,A]Tr(H—E()F.

(A10)
This implies Tgllzzo and in view of Eq(A9),
Tr,F=0. (A11)
One is thus left with
il-:=[H,F]—peTre[H,F]—[H,A]Tr(HF), (A12)
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which implies

i %Tr(HF)= —Tr(HpeTre[H,F])

Tre{(He+ AH)Tre[Hy ,F 1}

=—Tr{(H.+AH)[H,F]}, (A13)

but from Eq.(A7), one sees that HD, is at least of first
order inH; so that TrHF) is also at least of first order. On
the other hand, in view of EqA10), one has T4 H,F]
=Tr[H;,F]. Equation(A10) becomes therefore

iF —[H,F]= — peTro[H,F]—[H,A]Tr(HF)= — B,
(A14)

whereB is of first order inH; . This equation can be solved
at first order to give

Da(t)=U(t,t")Dy(t")UT(t,t")
—(1/i)ftU(t,t”)B(t”)UT(t,t”)dt”. (A15)
t!

The end of the calculation is straightforward and it is
convenient to use the expressi@b) for D,. One finds that
the second term in EQA15) gives a negligible contribution
to the master equatiofof third order inH;). Similarly the
contributions (1) Tr[H,D,] and (1) Tr[H,PQD,] to Eq.
(9.1 are negligible.
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