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General theory of the decoherence effect in quantum mechanics

Roland Omne`s
Laboratoire de Physique The´orique et Hautes Energies, Baˆtiment 210, Universite´ de Paris–Sud, 91405 Orsay Cedex, France*

~Received 21 January 1997!

The decoherence effect, which may be held responsible for the vanishing of macroscopic quantum interfer-
ences, has only been exhibited in special models though it is presumed to be universal~at least when there is
a possibility of dissipation!. A more general model encompassing the already known ones is proposed in the
present work. A master equation for the reduced density operator is established by means of two different
methods. A direct method, which is given first, is simple but too specific. A second method relies on the
projection method in the theory of irreversible processes. It is in principle very general and not confined to a
special model. It shows that decoherence is a typical irreversible process from a theoretical standpoint. The
master equation is worked out in detail when there exist convenient, so-called microstable collective observ-
ables~for which a criterion is given!, selecting a preferred basis in which diagonalization occurs. For macro-
scopic mechanics, this basis is given by the position coordinates in three-dimensional space of relatively small
parts in an object. Previously proposed models, including the quantum diffusion model, are found to be special
cases of the present theory.@S1050-2947~97!08609-5#

PACS number~s!: 03.65.Bz, 05.70.Ln
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I. INTRODUCTION

The decoherence effect is a mechanism destroying q
tum interferences at a macroscopic level. It has remarka
analogies with irreversible processes as they are know
thermodynamics. The two kinds of effects occur only in
macroscopic system in which a relatively small number
degrees of freedom are accessible to observation. Thes
grees of freedom parametrize a ‘‘collective’’ or ‘‘relevant
subsystem for which new rules of physics emerge from
inner complexity. It therefore seems interesting to look
decoherence with the methods that have been successfu
irreversible processes.

For explaining most simply the decoherence effect, o
may think of the wave function of a macroscopic system a
function c(x,y), wherex can be observed~being, e.g., the
position of a pointer or similar collective quantities!, whereas
the many variablesy representing microscopic observabl
cannot all be measured. One can then express grossly
decoherence effect by considering the various functionsy
one obtains associated with different fixed values ofx: They
tend to become orthogonal as time increases, because
are too complex for keeping mutual coherence for ev
value of y, even if they had some coherence at the beg
ning. The destruction of quantum interferences when obs
ing x is a direct consequence of this inner orthogonality. I
often vividly described by saying that, after decoheren
Schrödinger’s cat must be either dead or alive and canno
seen as a superposition of ‘‘dead’’ and ‘‘alive’’ states.

A convenient mathematical formulation consists in intr
ducing the density operatorD5uc&^cu of the whole system
and the reduced density operator

rc~x8,x!5E c~x8,y!c* ~x,y!dy5^x8uTreDux&,

~1.1!

*Laboratoire associe´ au CNRS.
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where the formal subsystem that is described byy is called
the ‘‘environment’’ and Tre means a partial trace over i
Taking the trace in Eq.~1.1! is equivalent to a nonobserva
tion of the environment.

The importance of taking the environment into account
a quantum measurement has been realized early and al
since the beginnings of quantum mechanics~see, for in-
stance,@1#!. Its effect was investigated as a source of no
@2# before being identified with a phase loss by Zeh@3#. One
may consider as an example the case when the total Ha
tonian of the system is

H5Hc^ I e1I c^ He1H1 , ~1.2!

I c and I e being the unit operators in the Hilbert spacesHc
andHe , where the indexc denotes the collective~or rel-
evant, or reduced! subsystem ande the environment. The
interaction couplingH1 is then held to be responsible fo
noise, dissipation, and decoherence. The common origin
the first two effects results in the fluctuation-dissipation the
rem @4,5#. Other similarities were also found for decohe
ence.

These similarities were apparent in the solution of spec
models@6#. Particularly important is a model where the e
vironment is represented by a collection of harmonic os
lators andH1 is linear in the canonical variables (p,q) of the
oscillators@7–14#. This model can be solved explicitly be
cause of the simple properties of harmonic oscillators, allo
ing, for instance, explicit Feynman path integration@15#. De-
coherence results from a ‘‘master equation’’ one finds
rc , namely,

K x8Uṙc2
1

i\
@Hc ,rc#UxL 52m~x82x!2rc~x8,x!

2~g/2!~x82x!~]/]x82]/]x!

3rc~x8,x!. ~1.3!
3383 © 1997 The American Physical Society
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The ‘‘decoherence coefficient’’m is very large and it is re-
lated to the friction coefficientg ~occurring in the classica
relation ẏ52gy! by

m5g~mT/\2!, ~1.4!

in the special case whenHc5P2/2m1V(x), T being the
absolute temperature~supposed to be high enough! in energy
units. This occurrence of temperature and the proportiona
of the two coefficients for decoherence and friction indic
an intimate relation between the two effects and a rela
with irreversible processes. Most important is the very sm
denominator\2 in Eq. ~1.4! showing a tremendous efficienc
of decoherence:rc(x8,x) becomes very rapidly ‘‘almost di
agonal’’ though complete diagonality is forbidden by ener
conservation and is limited by the commutator in the le
hand side of Eq.~1.3! @16,17#.

The importance of a preferred ‘‘pointer’’ basis for diag
nalization was emphasized by Zurek@18–20#, who made
clear its relation with measurement processes. Another
portant contribution was made by Joos and Zeh@21#, who
considered another model of environment consisting of
external gas of~atmosphere! molecules or photons. They ob
tained a master equation practically identical with Eq.~1.3!.
In view of the very different models of environment that h
been used, these converging results strongly suggest
there should exist a general theory of the effect, relying
no detailed assumptions about the environment except
the large number of degrees of freedom. One would exp
some sort of decoherence-dissipation theorem as an outc
of such a theory.

The search for such a general theory is motivated by
essential role of decoherence in the consistency of an in
pretation of quantum mechanics@22–27#, by some questions
raised about the meaning of decoherence in ‘‘fundamen
physics @28–30#, and, of course, by the experimental ev
dence for the effect. It was often said that decoherence is
most efficient effect in physics, to a point where observat
always comes too late, after the effect has reached com
tion. Some strong indications for the effect in action ha
first been seen in superconducting quantum interference
vices~SQUID’s! @31# and it has now been observed unque
tionably in quantum optics@32#. The aim of the present work
is to propose the necessary general theory, or at leas
correct framework for it.

Does one need a general theory or does it already ex
Caldeira and Leggett~in @9#, Appendix C! have shown that
the oscillator model can sometimes apply for nontrivial re
sons and therefore have a larger range of application
expected. In the case of a superconductor, they noticed
one can formally associate an oscillator with each ene
level En of the environment, with a frequencyEn /h. These
ideal oscillators represent a non-occupied or occupied en
level En if they are in their ground state or first excited sta
and, in view of the very large number of energy levels,
formal oscillators have a negligible probability to be in
higher excited state. This remark is helpful for justifying t
theoretical analysis of the Paris experiment@32#. One must
be careful, however, not to extend this idea too far. Thou
one can always use a model of environment by ideal os
lators, their external couplingH1 is only exceptionally linear
ty
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in the oscillator variable (p,q)’s, as one may check easily i
the case of a gaseous environment.1 It would therefore be an
error to believe that the oscillator model has a really la
range of applicability and, too often, the success of its res
has been wrongly attributed to its own validity. It will b
shown that in fact Eq.~1.3! is rather general, much mor
than the model through which it was discovered.

Before entering into more formal considerations, it m
be useful to introduce a simple example, as follows.
gedanken piston, with massm, has only one degree of free
dom, which may be taken as its positionx. A spring acts on
the piston so thatHc5P2/(2m)1U(x). The piston can
move inside an ideal cylinder~a geometric abstraction! con-
taining a gas, which constitutes the environment. The pis
can keep the gas molecules on one side if the interac
HamiltonianH1 is equal to(Jy(x2xj ), where the summa-
tion goes over the gas molecules andy is a sufficiently re-
pulsive potential. This example will be used for makin
some ideas clearer.

Most of the present paper will be concerned with t
model given by the Hamiltonian~1.2!. The theory will be
given in two different ways, opposing simplicity and gene
ality. It will first be described according to the easiest a
proach, through which it was discovered. The idea was to
using a density operator

D05rc^ re , ~1.5!

whererc is the exact reduced density andre is formally an
equilibrium density

re5exp@2b~He2F !#. ~1.6!

The quantitiesb andF are determined by the conditions

Trere51, Ee[Tre~Here!5Tr~HeD !, ~1.7!

where Tre means a trace over the environment Hilbert spa
He and Tr means a complete trace. Equations~1.7! mean that
the correct value of the environment energyEe is obtained
from D0 . One should notice, however, that this energy,
our example, fluctuates with the inelastic collisions of t
piston with gas molecules. The parametersb andF therefore
fluctuate. Their time average may also change becaus
dissipation, though at a much slower pace. It should
stressed in any case thatone does not assume the enviro
ment to be really in thermal equilibriumand the introduction
of re is no more than a mathematical device.

The assumptions of the model we use are contained in
~1.2! and in the following condition for applying perturbatio
calculus: Our example indicates whyH1 is most often too
large for a perturbation: the repulsive potentialy between the

1For an environment consisting of a bath of independent partic
let one denote byupi& the state of particlei with momentump and
by v the interaction potential of this particle with the collectiv
subsystem, when this subsystem is at positionx50. The coupling
H1 with ideal oscillators when the object is at positionx is then
given by( i^piuvuqi&exp@i(p2q)x#apiaqi

† . It is not linear in the cre-
ation and annihilation operatorsapi , api

† and it can be even more
complex in general.
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56 3385GENERAL THEORY OF THE DECOHERENCE EFFECT IN . . .
piston and a gas molecule must be large for the piston
keep molecules on one side. One can therefore introduc
average interaction

DHc5Tre~reH1!. ~1.8!

This interaction can be interpreted in our example as giv
the pressure force exerted by the gas on the piston. The
maining interaction

H185H12DHc^ I e ~1.9!

is a much smaller quantity. It represents in our example
fluctuating part in the collisions.The basic assumption of th
examples we give will be that H18 is small enough for being
treated as a perturbation.

It will be shown in Sec. II how one can derive a mas
equation forrc from this assumption, by using second-ord
perturbation theory inH18 for the basic evolution equation

iḊ 5@H,D# ~1.10!

~in units where\51!. It might look rather surprising that a
perturbation calculation can work, because the quantity

D15D2D0 , ~1.11!

inevitably entering in the calculations, cannot be small
will be found however to ‘‘act small,’’ suggesting that som
thing more general than the model can still lie behind.

The master equation can be used for useful investigat
such as the Paris experiment@32#, for instance. It will be
shown, however, in Sec. III that the master equation
comes much simpler when there exists a special basis.
occurs when there exists a complete set of commuting ‘‘
crostable’’ observablesX in the collective Hilbert spaceHc
such that

@X,H18#50. ~1.12!

Another way of expressing this is to say that the time deri
tives of X one obtains from the full Hamiltonian or the co
lective effective one coincide, namely,

@H,X#5@Hc1DHc ,X#. ~1.13!

In our example, this is true for the piston position and bo
quantities~1.13! coincide withP/m. More generally, a mi-
crostable observable is one preserving the usual propor
ality between momentum and velocity. The center-of-m
position of a piece of solid or fluid matter is of that type a
this explains why classical mechanics, when derived fr
quantum mechanics, can be described in ordinary th
dimensional space.~This argument is not completely ne
@20,33#.! Another interesting example will be given for a
induction circuit, showing that microstable observables c
sometimes be extended outside classical mechanics to
other domain of classical physics, but not to every dom
and not for every problem. This remark opens an interes
new field, which we have not explored.

The master equation derived from this approach in S
IV exhibits the main features one suspected from the mod
though it is of course much more general. The relation
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decoherence to friction is shown in Sec. V. Though t
theory trivially agrees with the results of an oscillator mod
for the environment, the fact that it also encompasses
particle model@21# and therefore acts truly as a commo
framework, is less obvious and is shown in Sec. VI. Sect
VII will sum up the various assumptions that are introduc
in the construction and indicates which result depends
what assumption.

This summary of assumptions and results will show w
the model we used first is not yet general enough. For
stance, a realistic quantum measurement cannot be prop
and completely described by such a model, because the
lective, or relevant observables can be generated in
course of time: In the case of a bubble chamber, every n
born bubble asks for its share of a new Hilbert spaceHc .
There are also some questions about the theory itself: W
does the guess~1.5! work? Why doesD1 act small though
not being small? To improve the first draft of the theory, o
must understand what is the real key for its success.

One can get an answer to these questions by using
general method of projection superoperators in the theor
quantum irreversible processes@34,35#, to which we turn in
Sec. VIII. It will be shown in Sec. IX that the initial ap
proach we used in our model is in fact a special case of
method.

Every master equation that is known for any irreversib
process can be derived from some version of the projec
method. Some master equations hold because of perturb
theory, or from short memory approximations or other re
sons@35#. They do not assume the vicinity of thermal equ
librium nor that the relevant observables be given once
for all. A general theory of the decoherence effect cons
therefore simply in applying the known theory of irreversib
processes to the special ‘‘relevant’’ observables showing
coherence. The present paper shows one rather far-ran
example of this method, but it will be interesting to inves
gate other situations one also meets in real measuremen

II. A MASTER EQUATION FOR DECOHERENCE

One will assume that the environment is in thermal eq
librium at an initial time 0, which impliesD1(0)50. Though
this assumption is not necessary, it allows one to dispos
some uninteresting terms that have nothing to do with de
herence.

One may first notice three consequences of the de
tions, namely,

rc5TreD, ~2.1!

d~bF !/dt2~db/dt!TrreHe5d~bF !/dt2~db/dt!Ee50,
~2.2!

Tre@H18 ,re#50, ~2.3!

TreD150. ~2.4!

The first relation is the definition of the reduced density o
erator. The second one follows from Eq.~1.6! and the third
one from Eqs.~1.8! and~1.9!. The last one follows from Eqs
~2.1!, ~1.5!, and~1.11!.
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Taking the trace of Eq.~1.10! over the environment, one
gets

i ṙc5@Hc1DHc ,rc#1V, ~2.5!

where

V5Tre@H18 ,D1#. ~2.6!

Proof. The time derivative ofre in TreḊ0 vanishes be-
cause of Eq.~2.1!. One has Tre@Hc ,D0#5@Hc ,rc# and
Tre@He ,D0# vanishes as the trace of a commutator. Th
Tre@H1 ,D0#5@DHc ,rc# from Eq. ~1.8!. One has
Tre@Hc ,D1#50 because of Eq.~2.4! and Tre@Hc ,D1#50 as
a trace of a commutator, so that Tre@H,D1# is reduced toV.
Similar straightforward algebraic calculations will be om
ted from here on.

The density operatorD1 occurring inV is a priori very
complicated. The basic equation~1.10! becomes in fact an
equation forD1 when using Eqs.~1.11!, ~1.5!, and ~2.5!.
This gives

iḊ 15@H,D1#1@H18 ,D0#1A, ~2.7!

A52 i ḃ~Ee2He!D01re^ V. ~2.8!

The quantity@H18 ,D0# is of first order in the small quantity
H18 . Thoughḃ can be considered to be small~at least when
there are microstable observables, as shown in the Ap
dix!, one has no idea of the importance of the second term
Eq. ~2.8! since one does not knowV, except that it is at mos
of first order according to Eq.~2.6!. One therefore introduce
an auxiliary operatorD18 through the equation

i ~Ḋ182Ḋ1!2@H,D182D1#5re^ V. ~2.9!

SinceD1(0)50, one hasV(0)50 andD18(0) can be taken
to be zero. UsingD5D01D1 , together with Eqs.~1.5!,
~2.1!, and~2.3!, Eq. ~1.10! becomes

iḊ 185@H,D18#1B, ~2.10!

B52 i ḃ~Ee2He!D01@H18 ,D0#. ~2.11!

To solve Eq.~2.9!, one introduces the evolution operator

U~ t,t8!5T expF2 i E
t

t

H~ t9!dt9G , ~2.12!

where T means a time ordered product. Similar evoluti
operatorsUe and Uc are defined by replacingH, respec-
tively, by He andHc1DHc . One thus gets

D18~ t !52 i E
0

t

U~ t,t8!B~ t8!U†~ t,t8!dt8. ~2.13!

Equation~2.9! gives, at first order in perturbation theory,

D182D15E
0

t

U~ t,t8!re^ V~ t8!U†~ t,t8!dt8. ~2.14!

Introducing the quantityV85Tre@H18 ,D18#, Eq. ~2.14! gives
n

n-
in

V82V52~ i /\!TreH FH1t8 ,E
0

t

U~ t,t8!re

^ V~ t8!U†~ t,t8!dt8G J .

The integral is necessarily of a higher order thanV because
of the occurrence ofH18 and thereforeV85V, up to correc-
tions of a higher order. The quantityV8 is obtained from the
auxiliary density operatorD18 , which in view of Eq.~2.13! is
a small quantity of first order so thatV itself is of second
order. This is a very remarkable result since it means tha
some sense,D1 acts small though it is not small. As a matt
of fact, there are certainly some operatorsO in the complete
Hilbert space that would have an average value TrOD1 of
the order of their normiOi , which is a reasonable way o
expressing thatD1 is not small. However, as it happens
irreversible processes, the matrix elements ofD1 are ex-
tremely numerous and do not favor the collective obse
ables. This is at least an intuitive manner of understand
the present result.

Finally, one has obtained a master equation that is, u
terms of third order and higher,

ṙc1 i @Hc1DHc ,rc#52E
0

t

Tre$†H18~ t !,UcUe~ t,t8!

3@H18~ t8!,D0~ t8!#Uc
†Ue

†~ t,t8!‡%dt8.

~2.15!

One has replacedU(t,t8) by Uc(t,t8)Ue(t,t8), abbreviated
here asUcUe(t,t8). This master equation contains the tw
effects of decoherence and dissipation and one must
extract this physical meaning.

III. MICROSTABLE BASES AND THEIR MEANING

The master equation~2.15! is not transparent. One ca
get, however, an inspiration from the ideas of Zurek@18–20#
and from the results of known models. This suggests a se
for convenient bases. One therefore introduces a comp
set X of commuting observables inHc with eigenvectors
ux& together with the basisun& of the eigenvectors ofHe in
He . As a matter of fact, the most useful basis inHc may
sometimes be of a different type and it was found con
nient, in the case of the electromagnetic field, to use
overcomplete basis of coherent states@14#. We shall not con-
sider this case however, nor shall we try to investigate
master equation in all cases. We shall rather develop
consequences of this equation when there exists what
called in the Introduction a set of microstable observab
This is defined as a complete set of commuting observa
satisfying the commutation relation.

@H18 ,X#50. ~3.1!

The observablesX may have a continuous or a discre
spectrum. When discussing a spin measurement, for
stance, the spin observable that is measured should b
cluded in the setX ~Hc containing the interaction Hamil
tonian between the spin and the rest of the collect



ry
h

r
of
d
e

ir

s
m
ki
o
a

s

i-
an

th
in
rs
u
a

a

on
ct

o

s
is

-

f the

We
ys-

tion
n:
le,

n

s in
ex-
out

lid
the

here
ent

to
the
n

nc-

ms

ing

56 3387GENERAL THEORY OF THE DECOHERENCE EFFECT IN . . .
system!. The discussion will be limited, however, to ordina
collective observables, with a continuous spectrum. T
physical meaning of the assumption~3.1! is made clearer if
one writes it as

2 iẊ[@H,X#5@Hc1DHc ,X#. ~3.2!

WhenX represents a set of position coordinates$Xi% with
a kinetic energy1

2 (M 21% i j Pi Pj , this means that the familia
relationPi5Mi j Ẋj remains valid in spite of the presence
the environment. The assumption is therefore valid in or
nary mechanics, when a macroscopic system that is mad
solid parts and fluid parts is described,à la Newton, as con-
sisting of small macroscopic parts. The relation~3.2! for the
center-of-mass coordinatesX of these small parts and the
momentum follows in that case from the fact thatH can be
written in terms of all the constitutive particlesa ~electrons
and nuclei! as ((pa

2/2ma1vab). Since classical physics i
known to follow from decoherence, the present theory i
plies that classical mechanics can be described as ta
place in three-dimensional space. This remark would lo
trivial if one did not realize that semiclassical physics h
only presently reached a description of classical physic
configuration space~see, however,@33#!, and one did not
remember how surprised Schro¨dinger was to find that wave
functions are defined in a configuration place.

The origin of this important result is to be found in invar
ance under a change of inertial reference system. In a ch
of inertial frame with a nonrelativistic velocityv ~with no
translation for the origin of space or time nor a change in
direction of axes!, the position observables change accord
to xk(t)→xk1vt. Using the fact that momentum operato
are the generators of infinitesimal space translations and
ing the Lie algebra of the Galilei group, it can be shown th
individual momenta are transformed according topk→pk
1mkv. The relation~3.2! follows then from the equationP
50 in the inertial reference system where the center of m
of a piece of matter is instantaneously at rest.

Another interesting example is offered by an inducti
loop, such as the ones that are used in a supercondu
quantum interference device@31#. The role ofX is taken by
the magnetic fluxF through the loop,P being2CV where
V is the potential difference across the terminals of the lo
and C the capacity@36#. The relation between momentum
and velocity is given byV52dF/dt and this is insensitive
to the presence of an environment since it is a direct con
quence of Maxwell’s equations, so that the magnetic flux
microstable observable.

WhenX is microstable, Eq.~3.1! implies thatH18 is diag-
onal inHc , namely,

^xnuH18ux8n8&5d~x2x8!Vnn8~x!. ~3.3!

The master equation~2.15! suggests the introduction of con
venient correlation functions that are defined by

F~x8,x,t,t8!5Tre$V~x8,t !Ue~ t,t8!V~x,t8!Ue
†~ t,t8!re%,

~3.4!

G~x8,x,t2t8!5Tre$V~x8,t !reUe~ t,t8!V~x,t8!Ue
†~ t,t8!%.

~3.5!
e

i-
of

-
ng
k
s
in

ge

e
g

s-
t

ss

ing

p

e-
a

One does not need to take care in these expressions o
slightly fluctuating character ofre nor of its smooth variation
with time, which is slow. These are second-order effects.
shall not consider moreover the possibility of short-time h
teresis, as it may occur in solid friction@37,38#, so that these
functions depend only upont2t8. More explicitly, one has

F~x8,x,t2t8!5(
nn8

Vnn8~x8,t !Vn8n~x,t8!rne2 ivn8n~ t2t8!,

~3.6!

with rn5exp@2b(En2F)#, En being an eigenvalue ofHe .
One may also notice the useful relations

G~x8,x,t!5F~x,x8,2t!5F* ~x8,x,t!. ~3.7!

One will be particularly interested in values ofx and x8
that are macroscopically close. One expects the correla
functions to behave typically in a standard fashio
F(x8,x) depends only slowly, i.e., on a macroscopic sca
upon the gross position of the system@which is described by
1
2 (x81x) for degrees of freedom in space#. It depends
strongly, however, uponx2x8, and moreover upon (x8
2x)2, in view of simple invariance arguments.@More prop-
erly, it depends in general upon the differences (xi82xi)

2 for
the various degrees of freedom.# As for its dependence upo
time, the typical time scale ofF(t2t8) is given by fluctua-
tions, for instance, the time between successive collision
the case of an external environment. This is most often
tremely short. In any case, the present remarks ab
F(x8,x,t2t8) should not be considered as universally va
and they must be checked against the real physics of
system under consideration. They have been mentioned
for a better understanding of probably the most frequ
cases.

IV. DECOHERENCE

The existence of a microstable basis will now be used
extract the effects of decoherence and dissipation from
master equation~2.15!. The right-hand side of this equatio
involves the collective propagation operatorUc(t2t8). Be-
cause of the very-short-time scale of the correlation fu
tions, the approximation

Uc~ t2t8!'I 2 i ~Hc1DHc!~ t2t8! ~4.1!

is certainly sufficient. One can moreover keep only the ter
in Eq. ~2.15! that are at most linear int2t8. One can there-
fore write the master equation as

ṙc1 i @Hc1DHc ,rc#5Rd1Rf , ~4.2!

where the indexd stands for decoherence andf for friction.
These two terms correspond, respectively, to the lead
terms one obtains in Eq.~2.15! by settingUc(t2t8)5I and
to the terms linear int2t8 resulting from Eq.~4.1!. We shall
first consider the decoherence termRd , which is given by

^x8uRdux&52E
0

t

K~x8,x,t2t8!rc~x8,x,t !dt8,
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where the kernel is given directly in terms of the correlati
functions by

K~x8,x,t!5F~x8,x8,t!2G~x8,x,t!2G~x,x8,2t!

1F~x,x,2t!. ~4.3!

In view of the relations~3.7!, this can be written in terms o
a unique correlation function as

K~x8,x,t!5F~x8,x8,t!2F* ~x8,x,t!2F~x,x8,t!

1F* ~x,x,t!. ~4.4!

One can introduce the real and imaginary parts of
function F(x8,x,t) by F5F11 iF 2 , with the symmetry
properties following from Eq.~3.7!,

F1~x,x8,2t!5F1~x8,x,t!, F2~x,x8,2t!52F2~x8,x,t!.
~4.5!

The explicit expression of these functions, in view of E
~3.6!, is

F1~x8,x,t2t8!5
1

2 (
nn8

Vnn8~x8,t !Vn8n~x,t8!

3~rn1rn8!e
2 ivn8n~ t2t8!, ~4.6!

F2~x8,x,t2t8!5
1

2i (
nn8

Vnn8~x8,t !Vn8n~x,t8!

3~rn82rn!e2 ivn8n~ t2t8!, ~4.7!

with vn8n5En82En . At temperatures high enough for ha
ing bvn8n!1 for the significant contributions, it may b
noticed that

F2~x8,x,t2t8!'2
b

2i (
nn8

Vnn8~x8,t !Vn8n~x,t8!

3~rn1rn8!vn8ne2 ivn8n~ t2t8!. ~4.8!

The decoherence effect is most easily seen if one ta
advantage of the short memory of the correlation function
integrating directlyF(t2t8) over t8 in Rd . In view of the
assumed dependence of the correlation function uponx
2x8)2 and leaving the slow dependence upon (x81x) un-
written, one has

E
0

`

F1~x8,x,t!dt5 f „~xi82xi !
2
…. ~4.9!

For x and x8 macroscopically close and when retardati
effects are negligible, one has

E
0

`

K~x8,x,t!dt5m i j ~xi82xi !~xj82xj !, ~4.10!

the decoherence coefficientsm i j being given by

m i j 52 f i j9 ~0!. ~4.11!
e

.

es
r

(

The contribution of the leading terms in the master eq
tion is therefore

^x8uṙc1 i @Hc1DHc ,rc#ux&52m i j ~xi82xi !~xj82xj !

3^x8urcux&. ~4.12!

It will soon be shown~and already known from models! that
the decoherence coefficients are large, except when the
no dissipation. Considering only one degree of freedom,
then clear that the reduced density operator will behave

^x8urc~ t !ux&'^x8urc~0!ux&exp@2m~x82x!2t#
~4.13!

and become practically diagonal, except for values ofx and
x8 so close that the effect of@Hc1DHc ,rc# becomes com-
parable to the decoherence effect~4.12! or larger@16,17#.

V. DISSIPATION

One must now evaluate the second termRf in the master
equation, which was attributed to friction and comes fro
the terms linear in (Hc1DHc) (t2t8). It is given according
to Eq. ~2.15! by

Rf5 i E
0

t

Tre@H18~ t !,†Hc8 ,Ue~ t,t8!@H18~ t8!,D0~ t8!#Ue
†~ t,t8!‡#

3~ t2t8!dt8, ~5.1!

where we have writtenHc8 for short in place ofHc1DHc .
This quantity is easy to evaluate if one makes the follo

ing assumptions.~i! One can neglect the time dependence
F1 and F2 coming directly from the products
Vnn8(x8,t)Vn8n(x,t8). ~ii ! The temperature is high enoug
for Eq. ~4.3! to be used.~iii ! Hc1DHc can be written as
1
2(M 21) i j Pi Pj1V(X). The conjugation of these three a
sumptions is somewhat restrictive, though still frequen
met. Our aim is, however, only to clarify the meaning of t
results, and specific applications to cases where these
sumptions do not hold should better be investigated for th
own sake.

We shall make the calculation for only one degree
freedom. One can first replaceHc8 by its kinetic part in Eq.
~5.1!. The various parts of the triple commutator can
evaluated by using

^x8uP2Aux&52
]2

]x82 ^x8uAux&,

^x8uAP2ux&52
]2

]x2 ^x8uAux&.

One notices that decoherence is much more rapid than d
pation. Although this result will be a consequence of t
present calculation, one may anticipate it and consider
Rf is noticeable only after decoherence has reduced the
trix elementsrc (x8,x) to a quasidiagonal form. This mean
that one can write

E
0

`

F2~x8,x,t!tdt5a1~Mg/2!~x82x!2, ~5.2!
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still leaving aside a possible smooth dependence onx
1x8), and neglecting terms of higher order in (x82x)2 that
are anyway suppressed by the exponential decoherence
tor in Eq. ~4.13!. The meaning ofg in Eq. ~5.2! will soon
become clear. A straightforward algebraic calculation giv

Rf52~g/2!~x82x!~]/]x82]/]x!rc~x8,x!. ~5.3!

When this is used to evaluate the rate of momentum cha
~noticing thatRd does not contribute!, one gets the familiar
expression of friction

d^P&/dt52^]V/]x&2g^P&. ~5.4!

Using Eqs.~4.6! and ~4.8!, one gets on the other hand

E
0

`

F2~x8,x,t!tdt5~b/2!E
0

`

F1~x8,x,t!dt ~5.5!

and since

m52E
0

`

]2F1~x,x,t!/]x]x8dt,

one hasm5MTg, a relation that may also be understood
implying that a thermal equilibrium distribution satisfies E
~1.3!, which is the final result when there is a microstab
basis. Reintroducing explicitly Planck’s constant and seve
degrees of freedom, one obtains

m i j 5~Mg! i j T/\2. ~5.6!

VI. THE CONNECTION WITH PREVIOUS WORKS

The results one has obtained agree, as one would ex
with the special case of the oscillator model. The mas
equation~2.15! involves also the kind of double commutat
that was postulated in the quantum diffusion model@39–42#.
In this model, the stochastic character ofH18(t) is described
by a Brownian noise and the quantum diffusion model c
therefore be considered as belonging mostly to the pre
theory.

This is not so obvious for the results of the external en
ronment model@21#, though their coincidence with those o
the oscillator model was the main hint for the existence o
common background. To obtain them from the pres
theory, one may proceed as follows. The relevant system
an object that is surrounded by a gaseous environment m
of particles. In the case of molecules, the interaction betw
the object and a particular molecule is a potential, which
the sumv of the interaction potentials between that molec
and all the atoms in the object. Considering for simplic
that the molecules do not interact together~or each molecule
is considered during its last mean free path towards the
ject!, each colliding molecule can be individualized with
the environment. The summation in Eq.~3.6! can then be
split into independent summations over the various m
ecules.

In order to take care of the time distribution of the col
sions, one may consider the scattering of one molecule
the object. In the summation over the indicesnn8 that was
written in Eq.~3.6!, one can use two different bases forn and
(
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n8. The basisun&, used inrn , is made of free incoming
plane wavesfp(y)5exp(ipy), if y represents the position o
the molecule. For the basisn8, however, one uses the fu
scattering wavescp . The matrix elementsH1nn8

8 are there-
fore given by ^fpuvucp8&. According to the well-known
Lippmann-Schwinger relation in scattering theory@43#, one
has

^fpuvucp8&52
4p

2m
f ~p,p8!, ~6.1!

where m is the mass of the molecule andf (p,p8) is the
scattering amplitude for a collision where the momentump
goes top8. This is how the scattering amplitude is found
enter the calculations in the present theory, explaining
central role it plays in the approach by Joos and Zeh. Fr
there on, the calculation can proceed as it was done by J
and Zeh and it needs not be developed.

One cannot fail to mention a most important aspect
decoherence, which is very frequently a semiclassical beh
ior of the collective subsystem. This question has been c
sidered, however, with great care by Gell-Mann and Ha
@33# and there is nothing essential to add to their work.

VII. SUMMARIZING THE RESULTS

One may conclude this first approach to the theory
decoherence by recalling the various assumptions that w
made along the way and which results hold under what c
ditions.

~1! The choice of the collective subsystem is made on
and for all.

~2! The Hamiltonian can be separated as in Eq.~1.2!.
~3! The fluctuating partH18 of the coupling is small

enough to be treated as a perturbation.
~4! One can use the test densityD0 given by Eqs.~1.5!

and ~1.6!.
One then obtains the master equation~2.15!.
~5! There exists a system of microstable collective obse

ablesX.
The decoherence effect is then described by Eqs.~4.2!

and ~4.4!.
~6! The correlation functions have the behavior~4.9!.
~7! Retardation effects are negligible.
The decoherence effect is then described by Eq.~4.12!.
~8! The assumptions made in Sec. V are used.
At a time when decoherence has already taken place,

tion effects can be written as in Eq.~5.3! and the coefficients
of decoherence and friction are related by Eq.~5.6!.

One can now evaluate and criticize each assumption.
sumption~1! is convenient for discussing simple models o
quantum measurement, for instance, the famous von N
mann model@44# to which one adds an interaction of th
‘‘pointer’’ with an environment. It does not apply to realisti
measurements, when, for instance, new bubbles or any o
macroscopic real records are created.

Assumption~2!: One would prefer to select onlyrc as a
relevant quantity and this does not necessarily demand
expression~1.2! for H. It often happens that the environme
HamiltonianHe depends upon the collective observables.
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3390 56ROLAND OMNÈS
the example of the piston,He depends in fact upon the pisto
position.

Assumption~3! seems to be essential for the whole a
proach and it also looks quite reasonable.

Assumption~4! does not hold when the piston is subm
ted to the action of a gas pressure on both sides. One sh
then make room for two different ‘‘temperatures’’ on the tw
sides and, more generally, resort to an expression of the
density re analogous to the one describing local therm
equilibrium rather than full equilibrium. It seems that this
only a technical complication with no special difficulty.

Assumption~5! is known to be wrong for an electromag
netic collective system. One can use, however, a basi
coherent states that will play the role of our microstable
sis. There exist certainly more general situations, wh
would require a more systematic investigation of Eq.~4.9!.

From there on@assumptions~6! and~7!#, our analysis was
only meant for some clarity rather than generality. Spec
examples, where the assumptions do not hold, should
treated for their own sake. One could write in particula
more elaborate relation between the coefficients of frict
and decoherence at low temperature, but it is not very i
minating. Here again, the peculiarities of a specific appli
tion should be preferred.

To go further, one should also understand better why
present method works, if only to remove some unneces
assumptions. This will be our next topic. It will be show
that, at least in principle, one can overcome the limits
assumptions~1! and ~2!, which are too narrow for a full
theory of measurement. The general theory of irrevers
processes@34,35# will be used for that purpose. Though th
second approach is much more general, it is well known
the mathematical techniques for using the formalism of ir
versible processes must be adapted to every special pro
one wants to investigate@35#. This is why we shall only
consider the essentials by recasting our first approach in
new framework@with Assumptions~1! and ~2! explicit#, to
obtain again the same master equation. Even if this is a v
limited achievement, it shows that this second way of loo
ing at the theory provides the right framework for a thorou
treatment of decoherence.

VIII. ANOTHER APPROACH THROUGH THE THEORY
OF IRREVERSIBLE PROCESSES

The theory of irreversible processes is by now far fro
being restricted to systems near thermal equilibrium.
shall rely upon its formulation by Balian and co-worke
@34,35#. The idea is to select some ‘‘relevant’’ quantities f
which to obtain an evolution equation while leaving ignor
the details of other quantities, much larger in number. Thi
also obviously the basic idea of decoherence. Rather
recalling the theory itself, we shall reconstruct it as it appl
to the present problem, which has some peculiar features
are more easily grasped in that way.

We still keep the structure of two coupled systemse and
c, with the Hamiltonian~1.2!, all the notations being kept th
same. A basisux& in Hc is introduced, not necessarily ass
ciated with microstable observables nor necessarily obs
ables with continuous spectra. One considers the algebr
operators in the full Hibert spaceH and the dual space o
-
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densities made of operators that are not necessarily supp
to be positive nor with trace 1. Duality~i.e., the introduction
of linear functionals! is expressed by a ‘‘scalar product
between an operatorA and a densityD denoted by

~A;D![Tr AD. ~8.1!

The relevant observables we shall use are

Axx85ux&^x8u ^ I e , Ae5I c^ He , ~8.2!

collectively denoted byAi . Thoughux&^x8u is not an observ-
able, it is a combination of the observables1

2 (ux&^x8u
1ux8&^xu) and (1/2i )(ux&^x8u2ux8&^xu) and it is more con-
venient to take it in that form. The averages of these qua
ties with the exact total densityD are

ai5TrAiD, i.e., axx85^x8urcux&, ae5Ee . ~8.3!

Balian’s theory starts with the introduction of a referen
density operatorD0 that is defined by

D05exp~2l iA
i !, ~8.4!

the parametersl i being determined by the condition
Tr AiD05ai . It coincides in the present case with our pr
vious D0 with le5b @see Eq.~1.5!#. Though Eq.~8.4! is
usually motivated by information theory, Eq.~1.5! is enough
to show thatD0 is the simplest reference one can use
acceding to the reduced density operator and this will
enough for our purpose.

A significant remark should, however, be made. Bali
mentions that it is convenient to include the identity opera
I among the relevant observables and he insists upon the
of introducing also every conserved quantity, which wou
be in the present case the total HamiltonianH. The first
requirement is already satisfied sinceI is a linear combina-
tion of the Axx8. When consideringH in the form Hc

1DHc1He1H18 , one realizes thatHc1DHc is a combina-

tion of the Axx8 so that the recommended reference dens
would be

E05expS 2E lxx8A
xx8dxdx82b~He1H18! D .

The two reference densities are related in perturbation the
by

E05D02bE
0

1

D0
12uH18D0

udu

1b2E D0
12u2vH18D0

uH18D0
vdu dv,

with a similar relation givingD0 in terms ofE0 . When try-
ing to useE0 , as is usually done in Balian’s theory, one
inevitably led to use these cumbersome relations and
theory loses much of its elegance. Quite fortunately, it tu
out that one can also start directly fromD0 , which is much
simpler thanE0 , at the price of rederiving the equations th
will follow rather than using directly Balian’s formulas. Thi
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is our main reason for starting from scratch, with the adv
tage of not supposing the reader familiar with the theory
irreversible processes.

The basic evolution equation~1.10! for D is conveniently
written in the form

Ḋ5LD, ~8.5!

whereL is a ~Liouvillian! linear operator acting linearly in
the space of densities~superoperator!. Acting on an arbitrary
densityD, it gives

LD5~1/i !@H,D#. ~8.6!

One can then introduce a set of densitiessi that are de-
fined by

si5]D0 /]ai , i.e., sxx85ux8&^xu ^ re ,

se5rc^ ~He2Ee!D2 , ~8.7!

D25TreHe
2re2Ee

2. ~8.8!

They satisfy the orthogonality relations

~Ai ;sj ![TrAisj5d i j . ~8.9!

In view of Eq. ~8.9!, the superoperator

P5siA
i , PD5si Tr~AiD! ~8.10!

~with the usual convention of summation over repeated in
ces! is a projection operator, i.e.,P25P. The operatorQ
5I 2P ~whereID5D! is also a projection operator and on
has

P25P, Q25Q, PQ5QP50. ~8.11!

Explicitly, one has

PD5reTreD1rc~He2Ee!~1/D2!TrHeD. ~8.12!

Our previous densitiesD0 andD1 are given by

D05PD, D15QD, D5D01D1 . ~8.13!

IX. THE MASTER EQUATION

Differentiating Eq.~8.13! with respect to time and usin
Eq. ~8.5!, one gets

Ḋ05PLPD05PLD11ṖQD1 , ~9.1!

Ḋ12QLQD152ṖQD12ṖD01QLPD0 , ~9.2!

where one usedQ̇52Ṗ and Eq.~8.11!. Usually, when one
starts from the total HamiltonianH, rather thanHe , one
finds thatṖQ50. This is not so in the present case and o
has~as shown in the Appendix!

ṖQD52 i ~1/DEe
2!rc~Ee2He!reTr~@H18He#D!.

~9.3!

The occurrence ofH18 implies that this is a small quantit
that can be treated as a perturbation.
-
f

i-

e

One can then solve Eq.~9.2!. Setting D252ṖD0

1QLPD0 and usingPD05D0 , which givesṖD05QḊ0 ,
one gets

D25Q~2Ḋ01LD0!, ~9.4!

Eq. ~9.2! becomes

Ḋ12QLQD152ṖQD11D2 . ~9.5!

One may notice thatQD25D2 . Introducing the operator2

W~ t,t8![T expS E
t8

k

QLQ~ t9!dt9D , ~9.6!

the solution of Eq.~9.5! at first order inH18 ~which will turn
out to be enough! is given by

D15Da1Db , ~9.7!

Da5E
0

t

W~ t,t8!Q~ t8!D2~ t8!dt8, ~9.8!

Db5E
0

t

dt8W~ t,t8!

@2ṖQ~ t8!#E
0

t8
dt9W~ t8,t9!Q~ t9!D2~ t9!. ~9.9!

It may be noticed that the choice of a definite direction
time in the integrals marks the place where irreversibil
enters. SinceD2 , as given by Eq.~9.4!, is expressed in terms
of D0 , the introduction of Eq.~9.7! into Eq. ~9.1! gives the
required master equation~at second order inH18!,

Ḋ02PLPD05PL~Da1Db!1ṖQDa . ~9.10!

It does not look particularly simple. It might also be notice
that, sinceP andQ, according to Eq.~8.12!, depend upon
rc , the master equation looks nonlinear. Nonlinearity is
intrinsic feature of irreversible processes in general, bu
does not occur in the present case. As a matter of fact,
linearity of the evolution equation forD together with the
relation rc5TreD imply that the present equation must b
linear, which is of course verified by the explicit calculatio
to follow.

One is not directly interested inD0 but in rc5TreD0 .
Taking the trace of Eq.~9.10! over the environment, one get
the reduced master equation, as shown in the Appendix,

ṙc2~1/i !@Hc1DHc ,rc#5~1/i !Tre@H,Da1Db#

1~1/i !Tre@H,ṖQDa#.

~9.11!

2It should be noticed that the ‘‘memory kernel’’ used by Balian
ourWQ, which he callsW.
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The calculations in the Appendix show that, to second or
in H18 , this equation coincides with the master equat
~2.15! that was already obtained by a direct method.

X. CONCLUSIONS

Two different methods have been proposed for obtain
a master equation for decoherence, when one can sel
small interaction coupling. The direct method was explain
in the Introduction and a rather detailed summary of its
sults was given in Sec. VII. The second method, though
plied here under the same assumptions, relies on a ge
theory of irreversible processes. It can cover, at least in p
ciple, a much wider range of applications than the one
veloped here and it will be interesting to try it on a ful
realistic and complete quantum measurement. The effec
decoherence has been shown to be a particularly intere
irreversible process, though only one such process from
standpoint of theory. This is an important epistemic findi
since it shows, as noted elsewhere@26#, that the discussions
about the ‘‘practical for all purposes’’ or ‘‘fundamental
meaning of decoherence@28–30# cannot be distinguished
from the similar problems that arose in statistical mechan
since Boltzmann.

One may add that decoherence had always been p
ously studied in rather special models, leading to similar
sults though an inability to explain these similarities. T
reason is that these results are in fact much more genera
they are now established on firm and precise foundation
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APPENDIX: THE PROOF
OF SOME INTERMEDIATE RESULTS

Straightforward, even if tedious, algebraic calculatio
will not be given explicitly. There are, however, some inte
mediate steps that may require some care and they are g
in the present Appendix.

1. Whyḃ does not affect decoherence (Sec. II)

Some terms involving the derivativeḃ of the inverse tem-
perature were neglected in Sec. II. This is justified wh
there exists a system of microstable observablesX as fol-
lows.

Deriving Eq.~1.7! with respect to time, one has

Ėe52ḃD25TrHeḊ52 iTr~He@H,D# !

52 iTr~He@H18 ,D# !, ~A1!

whereD25Tre(He
2re)2Ee

2 and the last equality is easily ob
tained by introducing a basisuxn&. One writes D5D0
1D1 . When there exists a system of microstable obse
r
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ablesX, the trace ofHe@H18 ,D# vanishes. One can then us
Eq. ~2.7! for D1 , using the fact thatA is negligible because
V, though depending uponD1 , is known to be a quantity of
second order. As for the first term2 i ḃ(Ee2He)D0 in A, it
would only give a negligible correction to Eq.~A1! for ḃ.
One is thus left with

iḊ 15@H,D1#1@H18 ,D0#,

from which it follows with Eq.~A1! that ḃ is a quantity of
second order. Another proof, using the approach by irrev
ibility, is a consequence of the calculations at the end of t
Appendix, showing that the assumption of a microstable
sis is not necessary.

2. The proof of Eq. (9.3)

One has obviously

ṖQD5ṖD2ṖPD. ~A2!

One cannot easily use Eq.~8.12! for computingṖ because
this would involve the unknown quantityṙc . One therefore
uses the definition~8.10! of P, which gives

ṖD5 ṡiTr~AiD!1siTrȦiD. ~A3!

This gives

ṖQD5 ṡi~TrAiD2TrAisjTrAjD!

1si~TrȦiD2TrȦisjTrAjD!. ~A4!

The identities~8.9! remove the term inṡi . The time deriva-
tives of operators are given byȦi5 i @H,Ai # and, using Eqs.
~8.2! and ~8.6!, one gets Eq.~9.3!.

3. The proof of Eq. (9.11)

In view of Eqs.~9.10! and ~8.12!, one has

TrePLD5~1/i !Tre@H,D#. ~A5!

This gives, in view of some vanishing traces,

TrePLPD05~1/i !@Hc1DHc ,rc#.

According to Eq. ~8.12!, one has TrePD5TreD so that
TreQD50. Therefore TreṖD05TreQ Ḋ050.

4. Derivation of the master equation from Eq. (9.11)

Using Eqs.~9.4! and ~8.6!, one finds

D25~1/i !@H,D0#2~1/i !reTre@H,D0#2A$Tr~HeḊ0!

2~1/i !Tr~He@H,D0# !%, ~A6!

with

A5D0~He2Ee!/D2 . ~A7!

It will be useful to show thatD2 is a quantity of first order in
H1 . This results from
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Tr~HeḊ0!5rcĖe ,

and

Ėe5Tr~HeḊ !5~1/i !Tr~He@H,D# !5~1/i !Tr~He@H18 ,D# !.

The coefficient of A in Eq. ~A6! is therefore
(1/i )Tr(He@H18 ,D1#). This gives

D25~1/i !@H18 ,D0#2~1/i !ATr~He@H18 ,D1# !, ~A8!

which implies

TreD250 ~A9!

and shows thatD2 is of first order inH18 .
One must now computeF(t)[Da(t)5W(t,t8)D2(t8). A

direct calculation gives

i Ḟ 5 iQLQF5@H,F#2reTre@H,F#2@H,reTreF#

1re@Hc1DHc ,TreF#2@H,A#Tr~H2Ee!F.

~A10!

This implies TreḞ50 and in view of Eq.~A9!,

TreF50. ~A11!

One is thus left with

i Ḟ 5@H,F#2reTre@H,F#2@H,A#Tr~HF !, ~A12!
-

B

N

which implies

i
d

dt
Tr~HF !52Tr~HreTre@H,F# !

52Trc$~Hc1DHc!Tre@H18 ,F#%

52Tr$~Hc1DHc!@H18 ,F#%, ~A13!

but from Eq.~A7!, one sees that TrHD2 is at least of first
order inH18 so that Tr(HF) is also at least of first order. On
the other hand, in view of Eq.~A10!, one has Tre@H,F#
5Tre@H18 ,F#. Equation~A10! becomes therefore

i Ḟ 2@H,F#52reTre@H,F#2@H,A#Tr~HF !52B,
~A14!

whereB is of first order inH18 . This equation can be solve
at first order to give

Da~ t !5U~ t,t8!D2~ t8!U†~ t,t8!

2~1/i !E
t8

t

U~ t,t9!B~ t9!U†~ t,t9!dt9. ~A15!

The end of the calculation is straightforward and it
convenient to use the expression~A6! for D2 . One finds that
the second term in Eq.~A15! gives a negligible contribution
to the master equation~of third order inH18!. Similarly the
contributions (1/i )Tre@H,Db# and (1/i )Tre@H,ṖQDa# to Eq.
~9.11! are negligible.
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