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In this paper we obtain a simple analytic formula for the photodetachment cross sectionifpidrallel
electric and magnetic fields. The three-dimensional semiclassical approximation predicts oscillations in the
spectrum and correlates these oscillations with closed classical orbits. The cylindrical symmetry of the Hamil-
tonian produces some interesting effects. In particular, at boundary energies the semiclassical approximation
fails as a focused cusp approaches the orig#i050-294{®7)03306-4

PACS numbd(s): 32.80.Gc

I. INTRODUCTION Bloch, and Berry and Tabdi7] provides a general theoreti-
cal framework for studying quantum manifestations of clas-
Experimental measurements of the photodetachment crosgcal chaos. Besides producing oscillations in absorption
section of H in strong static electric fields were made by spectra[8], periodic orbits produce scars in wave functions
Bryantet al.[1]. For energies above the threshold energy thg9], oscillations in the density of stat¢40], and real-time
resulting cross section was found to be a smooth backgroun@écurrences that have been observed in many atoms and mol-
upon which was superposed sinusoidal oscillations. Theoregcuyleq11]. [Similar phenomena are observed in microwaves
ical discussions of the measurements have been given byjg cavities [12(a)], in microjunctions[12(b)], and they are

number of authorf2,3]. The oscillations arise as an interfer- c5icylated to be consequences of certain models in nuclear
ence effect because the outgoing electron can move aga"Fﬁysics[lZ(c)].]

the electric force and then return to the atom. It was shown in
Ref.[3] that the cross section could be expressed in the folbif
lowing way:

Bifurcations of periodic orbits are of particular interest. A
urcation is defined as the creation of new periodic orbits
as a fixed parameter of the system is vaf®atch as the total
] energy or the magnetic field strenptiNew periodic orbits
o(E)=0o(E)+ C(E)sin®(E), may be created as a stable-unstable pair, or they may split
out of a periodic orbit that is already present in the system.
whereo is the cross section in the absence of any externaBifurcations are readily observable because they create new
fields andC(E) and®(E) are called the recurrence strength recurrences in absorption spectra. Very detailed studies of
and recurrence phase associated with the returning orbit. bifurcations of closed orbits of electrons in atoms in static
Theoretical calculationf4,5] show that analogous oscil- electric and/or magnetic fields are given in R¢fis3—16.
lations occur for photodetachment in crossed electric and Partly stimulated by these observations, the mathematical
magnetic fields, and that the oscillations are again associatadeory of bifurcations of periodic orbits in Hamiltonian sys-
with closed orbits. Quantum calculations have shown thatems is moving forward again. There is a huge literature on
very strong oscillations are present in parallel figll but  bifurcation theory, but only a tiny part of that literature deals
the relationship to closed orbits was not made clear. Ouwith the particular structures of bifurcations of periodic or-
original motivation in the present paper was to complete thidits in Hamiltonian systemgl7]. Meyer [18] showed that
subject by calculating the closed orbits and the resultinguch bifurcations typically fall into one of five characteristic
spectral oscillations for photodetachment of an electron fronpatterns, and later, each of these patterns was seen in the
H™ in parallel electric and magnetic fields. This is a systemdiamagnetic Kepler system. Two different characteristic se-
in which the recurrences are simple, strong, relatively easy tquences of bifurcations have been identified. Conservative
observe, and easy to understand. systems are known to have their own type of period-doubling
We found results which go far beyond this topic, andsequence; perhaps more important, a different sequence of
which are connected with many other problems of currenbifurcations was predicted and partially described math-
interest. We know from study of nonlinear dynamics thatematically by Churchill, Pecelli, and Rdd.9], and calcu-
even when long-time motion is chaotic, short-time motionlated and observed by Mait al. [20,14].
remains relatively simple and predictable. Periodic orbits Much more remains to be learned. Bifurcations under
play a central role: in Poincagewords, they offer “the only  variation of more than one parameter are being studied, the
opening through which we might try to penetrate the fortreseffects of symmetries and symmetry breaking are being ex-
(chaog which has the reputation of being impregnable.” amined, and the behavior of systems with three or more de-
This classical statement holds also in quantum mechanicgrees of freedom is under scrutiny.
wherein the periodic-orbit theory of Gutzwiller, Balian and At a bifurcation, observed recurrences are especially
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strong. In fact, semiclassical theory predicts that the recurphotodetachment of H in crossed electric and magnetic
rence amplitude diverges at every bifurcation, because a bfields. The active electron is initially loosely bound to the
furcation is correlated with a focus of classical orbits. Wehydrogen atom by a short-range, spherically symmetric po-
have seen many such cases in atomic spectra. This is a degtial. The Hamiltonian governing this electron is

problem for periodic-orbit theory, because every stable peri-

odic orbit produces such focusing effects, which in turn lead 2

to vanishing denominators in the periodic-orbit sum. @ H= 1 p;23+ L_; +o L+ 1 mw?p?+ 1 p2+eFyz
hoc repair was suggested by Gutzwillg21], and further 2m p 2 2m
examination of the problem was given j@2]. However, (1), 219

there remains a need for a general theory to repair diver-

gences in recurrence spectra caused by bifurcations of Clos%eree is the absolute value of the electron charge, is
orbits. In this set of papers we develop such a theory for WQhe Larmor frequency '

cases.

Electron detachment from a negative ion in the presence
of static parallel electric and magnetic fields is a key model _e_Ho (2.1b)
which opens the door to the solution of these problems. This “L 2mce’ ’

model has the following propertie€l) It is exactly soluble
[23]. (2) It admits a simple structure of closed orbits andFo and H, are the applied electric and magnetic field
their associated recurrences, and it possesses an orderly s&rengthsyV,(r) is the effective atomic potential energy that
guence of bifurcationg3) At each bifurcation a certain geo- binds the active electron to the hydrogen atom, dnd
metrical structure, a cylindrically focused cusp, passes=(Xpy,—Ypy) is thez component of the angular momentum.
through the origin. This causes the semiclassical approximasince its conjugate variable, the azimuthal angleis an
tion to fail. (4) The failure is repaired by a simple diffraction ignorable coordinatel,, is a constant of the motion, which
function, a Fresnel integral. The integral provides a uniformwe take to be zero.
approximation which is always finite and which behaves cor- The binding energy of the electron iEb=ﬁ2k§/2m,
rectly in all the known limits(5) The focused cusp is suffi- where E,, is approximately 0.754 eV and the mass of the
ciently similar to the structures found in excitation of neutralelectron is denoted byn. The valence electron absorbs a
atoms that it guided us in the derivation of appropriate for-photon of energyE,=E,+E and its quantum wave propa-
mulas for those more difficult cas¢€84(a)]. (6) Finally, the  gates outward in all directions. Within the atomic region the
model accurately represents a system on which experimentslectron moves on a straight line at constant speed. As it
measurements can test the predictions. enters the external region the trajectories “feel” the effects

A brief summary of this work was presented alreadyof the imposed electric and magnetic fields and the semiclas-
[24(b)], and here we give the details of the theory. We dividesical wave is distorted. The photodetachment cross section is
our presentation into two parts. In this paper we give theproportional to an oscillator-strength densBf(E) and is
semiclassical treatment. The general relationship between thggven by
closed orbits and the photodetachment cross section is given,
the closed orbits are described, and the photodetachment 02
cross section is shown, divergences included. In the follow- o=—— e’hDf(E). (2.2a
ing paper{25(a)] we analyze the focused cusp and derive an mc
integral representation of the wave function near the cusp. . .
This uniform wave function gives a corrected formula for the!t 1as been shown that the oscillator-strength density can be
photodetachment cross section. We compare that formulBUt in the form
with exact quantum calculationg25(a)], and find good
agreement. Experimental measurements on this system are 2mE, ~(4)
not yet available. Df(E)=~—> Im(DV|G"[DW;). (2.2

On the other hand, experimental measurements on excita-

tions of neutral atoms in electric fields are ava”able, and’rhe Outgoing free-partide Green’s function is denoted by
recurrences associated with bifurcations of closed orbits hav@u)_ The dipole operatob is equal to the projection of the

been measured. Calculations show that similar cusp stiUgsiectron coordinate onto the direction of polarization of the
tures arise in such systems. We expect therefore that a simisser field.

lar treatment may give a quantitative description of those Equation(2.2) can be interpreted in the following way.
recurrences. An important difference arises, however: for exrhe initial state is modified by the laser field to give the
citation of neutral atoms we have to take account of theyy ce function|DW
effect of the Coulomb field on the outer electron. The prob-
lem is addressed in the third pag@5(b)]. We find good
agreement between theory and measurements.

i). The outgoing Green’'s function
propagates these waves outward at a fixed energy. Asymp-
totically the outgoing wave is proportional ®*'/kr. At
5ay— 108, this asymptotic quantum wave is joined to a semi-
classical wave. The semiclassical wave is constructed from
classical trajectories which propagate through the external
region. The trajectories are eventually turned around by the
In this section we will closely follow the arguments pre- parallel electric and magnetic fields and some are returned to
sented in the paper by Peters and D€l who studied the origin. At around 18, the returning semiclassical wave

IIl. THE PHOTODETACHMENT CROSS SECTION



56 CLOSED-ORBIT THEORY AND THE PHOTODETACHMEN.. .. 333

is very nearly a cylindrical plane wave, so we join The only important difference between the present devel-
it to a quantum-mechanical cylindrical plane wave:opment and that given in Reff5] arises because of the cy-
Jo(k,p)exp(k,2). This cylindrical wave is expanded in lindrical symmetry that exists for parallel fields. In crossed
spherical partial waves and this expansion is used to calcdields, the returning waves are appropriately described by
late the overlap with the source functi¢p¥;|. Of all the plane waves, whereas for parallel fields, they are cylindrical
possible classical trajectories it will only be the returningwaves that propagate in to the origin while simultaneously
orbits which form any substantial overlap with the initial moving down thez axis. These waves are described by
state. Bessel functions, EGA17), and their overlap with the initial
We show in Appendix A that Eq2.2) can be reduced to state is found from the partial-wave expansion of these cy-
a very simple formula, which relates the photodetachmenlindrical waves(rather than the partial-wave expansion of a
cross section to closed orbits of the electron: the photodeplane wave as in Ref5]).
tachment cross section is given by the formula

Ill. THE CLASSICAL MOTION

U:UO+E C,(E)sind;(E). (2.3 In this section we discuss the classical quantities which
j appear in the photodetachment cross section given above.
The initial conditions for the electron trajectories follow
oo is the photodetachment cross section in the absence @fom the fact that upon detachment the electron emerges
fields. The other terms are oscillatory contributions arisingfrom the boundary sphere af{,;, o) moving radially out-
from the returning (_)rb|t$the rec_urrencesThe summationis ward with a speed such thatv?/2= E,—Ep=E. Outside
over all closed orbits that begln and end at the nucleus. Thﬁ“s boundary Sphere, the atomic potential ene{gy) can
phased;(E) of the oscillations is given by be neglected. The component of the angular momentum is
zero, and the Hamiltonian separates into motion alongzthe
T axis and motion in the perpendicubaty plane. Accordingly
PB)==Si(B)htditu; 5. (24 thez motion is uniform acceleration, and the motiorpiand
¢ is circular cyclotron motion. The azimuthal motion in

Si(E) is the classical action for the returning orbit evaluated®(t) is ignorable:

at its return time. The returning orbit passes through caustics

and foci on its way back to the origin and at each such 1eF, 1

“singular point” the phase undergoes a changemd®. The z(t)=— > m t?+ o V2mEcosot,

Maslov indexu; is equal to the total number of singular

points (including their multiplicity through which the elec-

tron passes on its journey. The semiclassical wave and its 1 . .

trajectories return to a spherical surface located=ar . a p(t)= MaoL V2mEsingo,{ sinw, t|,

few bohrs from the origin. The Maslov index is calculated

along the trajectory that ends at this surface. The semiclassi-

cal wave is joined to a quantum wave which is then propa- d() = oL t+ doy. 3.9
gated in to the origin. For parallel fields this wave is a cy- o

lindrical plane wave with a focus at the origin. This focus Notice we have expressed the initial momepfaandp, as
gives rise to an additional phase shift given #y. The functions of the total energy and the polar anglg;; this
action, Maslov index, and phase will be found to be indepenpolar angle defines the direction of the initial velocity of the

dent of the polarization. electron. The absolute value sign [®inw, t| occurs because
The coefficient<C;(E), or therecurrence amplitudesare  p can only be positive(However, we will draw our pictures
given by with p both positive and negative.
The equation of motion for(t) is the motion of an elec-
(+)] 112 tron in an electric field. If the initial momentunp,
[fout| 19j(to)] 0

Ci(E)=006|x(8))? (2.5  =.2mEcos,, is negative, thea(t) is less than zero for all

time and consequently there will be no returning orbits. On

. . . N . " the other hand, if the initial momentum, is positive the
This formula contains both “classical” and “quantum” fac- . . 0 .
tors. The recurrence amplitudes are proportional to the “di-lectron initially moves in the positivedirection against the
rect” photodetachment cross sectio. x(6,4) is another electric field and consequently returning orbits will exist for
quantum factor; it represents the angular distribution of outCertain initial conditions. For a given energy the maximum
going waves. We assume that the initial bound state of théistance reached along teaxis is given by the expression
electron is ars state, and that the light is linearly polarized Zmax=(E/€F;)COS oy (For the electric field strength consid-

on thez axis; it follows thaty( 6, #) =cosd/\/4w. The angle ered here typica7l values dmax for GOUﬁ:O are between
6, is the initial and final direction of th¢th returning orbit. 1% 10° and 310" a.u) The time at which the electron re-
The quantityJ;(to)/J;(t,ed| ¥ is related to the classical den- tUMS thex-y plane is easily shown to be

sity of the returning wave. The rat[d{")//f{;)1] is the ratio JBmE

of outgoing quantum wave to the returning quantum wave on z :22—mE cosd (3.2
the boundary sphere. et Fo out '

|f(re_t)j| |‘]j(tret)|l/2.



334 AARON D. PETERS, CHARLES JAFi:,EAND JOHN B. DELOS 56

The motion inp is that of a harmonic oscillator, and rep- moving in any direction. For low energies we have the fam-
resents cyclotron motion in the magnetic field. The period ofily of trajectories depicted in Fig. (). We see from the

the motion is the cyclotron time, figure that although the electron is confined ingtsotion it
is ultimately swept away from the region near the origin by
te=mlo =27l wc. (-3 the electric field. There is one returning orbit for this energy,
the parallel orbit, and its trajectory has been emphasized in

i —{P
The electron returns to thez axis whenevert=tf, .. figure.

=nmlw_, which is equivalent ton cyclotron times. The Caustics, or boundaries between classically allowed and
maximum distancemay is equal to (2mE/mw )sinbo-  forbidden regions, are apparent. These are known as “fold
Typical values range from £Go 10/ atomic units. _ _caustics”; in the upper part of the figure, the parallel orbit

We see from the above comments that for returning orbit§oches a fold at the top of its motion. Caustics are signifi-
the initial polar anglef,,; and therefore the magnitudes of cant hecause semiclassical approximations diverge at a caus-
Pz, andp, , must be such that when the electron returns tqjc. The approximations can be repaired locally by certain
thex-y plane in itsz(t) motion it also returns to theaxis in  diffraction integrals(such as Airy functions and these re-
its p(t) motion, i.e.tr=th. pairs produce additional phase shifts in semiclassical formu-

It follows that one returning orbit always exists: it lies on las (the Maslov index was invented to keep track of these
the positivez axis; the electron is affected only by the force phase shifts
of the electric field and this force returns it to the origin. At  In the lower part of the figure, caustics come together to
very low energies this is the only orbit that can exist. Theform an upward-pointing cusp, whose tip is locatedzat
return time forp motion is the fixed cyclotron time, indepen- —2x 10° a.u. Sinces is an ignorable coordinate this cusp is
dent of the energy and independent of the radius of the moactually a three-dimensional structure, which we call a fo-
tion. However, the return time far motion cannot exceed cused cusp, obtained by rotating the two-dimensional cusp

through 2r. This focused cusp is “unusual.” General prin-
t,(E)=2(2mE/eFy)'?, (3.9 ciples based upon catastrophe theory assert that only certain
structures of caustics commonly occur. For a “typical” or
which at smallE may be much less than the cyclotron time. “generic” two-dimensional family of trajectories only two
Therefore, for energies such thg{E)<m/w_, the only kinds of caustics occur: folds and cusps. In three dimensions
possible returning orbit lies on the positizeaxis. other types can be presefstwallowtails, butterflies, and el-

If we increase the electron’s energy, the return time of thdiptic umbilics), but a focused cusp is not on the generic list.
parallel orbit also increases until, at the first “bifurcation The reason is obvious: this focused cusp is present because
energy,” it is exactly equal to one cyclotron time. At this of the cylindrical symmetry of our system. “Generic” sys-
point, a new returning orbit is created. Increasing the energyems have no such special symmetries, and therefore do not
further, the return time of the parallel orbit continues to in-admit such phenomena. On the other hand, what is nonge-
crease. However, by “aiming” the electron at a different neric in mathematics can be very common in physics. In-
angle, we put less energy into thenotion and more into the deed, our motivation for studying this phenomenon arises
p motion. Above the first bifurcation energy there alwaysbecause we have already found many similar examples in
exists an initial direction that divides the energy between thether systemf25(b)]. The present case is the simplest one of
two modes in such a way that tlereturn time equals thp  its type.
return time,w/w, . Thus the orbit goes up and down in Most important, the focused cusp is directly connected
while simultaneously executing a single circle ). with the bifurcations of the parallel orbit. As we increase the

We may say that the new orbit is created out of the parenergy this cusp rises towards the origin, and there exists an
allel orbit, and it moves away as the energy is increased. Thignergy at which the tip of the cusp precisely touches the
phenomenon is what we define abifurcation of an orbit  origin [Fig. 1(b)]. This energy is the first bifurcation energy,
closed at the origin where a new closed orbit is created.

As we increase the energy further, a second “bifurcation In Fig. 1(c) we show the family of trajectories at an en-
energy” occurs, at which the return time of the parallel orbitergy above the first bifurcation energy but below the second,
is exactly twice the cyclotron period. At this point another where E,_;<E<E,_,. The new orbit created at the first
new returning orbit is created, which undergoes two cyclo-boundary energy is shown along with the initial parallel or-
tron circles in §,y) while simultaneously moving up and bit. One sees that this new orbit touches a caustig,gtand
down in z. Increasing the energy still further takes usreturns to a focus at the origin. The cusp which was previ-
through a discrete set of bifurcation energies, where at eaabusly located below thg-y plane in Fig. 2 has now risen to
such energy one new orbit is created. Tkie new orbit has a position where its tip is located at approximately
a return time equal tp cyclotron times, so at any energy, the +3.2x10% a.u. The parallel orbit goes up from the origin,
total number of returning orbits is equal to the smallest intetouches the caustic at its highest point, and then passes
ger greater thaty(E)/t. wheret,(E) is the return time of the through this cusp on its way back down. At the caustic, the
parallel orbit and. is the cyclotron time. Maslov index increases by 1, as usual, but at the focused

We need to know exactly what happens to the whole fame€usp, it increases by 2.
ily of outgoing trajectories at a bifurcation. In Fig. 1 we  Another cusp az~—4.2x 10° a.u. has appeared. As we
show families of trajectories in thep(z) plane for various increase the energy to the second bifurcation ené&gy,
energies. As stated earlier, each family is defined by the corthis cusp touches the orig{frig. 1(d)], and the second new
dition that the electron begins at the origin with fixed speedorbit is created.
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FIG. 1. The family of electron trajectories going out from the origin with fixed speed, andpyigositive. In every casel,=2T and
F,=100 V/cm. The trajectories are projected into cylindrical coordingtét),z(t) ], but they are drawn such thaft) alternates positive
and negativdthe absolute value in Eq3.1) is omitted. The units are 1Dbohrs. Note the changes of scale(dt and (f). (a) At low
energies, only the parallel orbit returns to the oridin. At the first bifurcation energy a cusp touches the origin and the neighbors of the
parallel orbit also return very close to the origis) The first “snake” (j=1) has bifurcated out of the parallel orbit, and another cusp is
approaching the origin from belowd) At the second bifurcation energy that cusp touches the originarttie “balloon” (j=2) appears.

(f) Above the third bifurcation energy another snake-8) has been created aig) above the fourth is the double ballooj=4).
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0.03 : : - : . : , : the origin. In the immediate vicinity of this cusp, the semi-
classical approximation for the wave function diverges, and
has to be repaired5) At the bifurcation, the Maslov index
of the parallel orbit increases by 2; the Maslov index of the
newly created orbit equals the Maslov index of the parallel
orbit just before the bifurcation. Therefore above thih
bifurcation the Maslov index of the parallel orbit is {2
+1). That for thejth of off-axis orbit is always (—1).
Further details and the analytic description of the phe-
nomena discussed above are given in Appendix B.

)
=3
S

G, (units of a;

o
2

b1 IV. THE PHOTODETACHMENT CROSS SECTION

0.00 J B Now we combine the results of the preceding sections to

J obtain the photodetachment cross section in parallel fields.

We recall from Sec. Il that the photodetachment cross sec-
S, Energy (cm’) tion is given by Eqs(2.3—(2.5); it is the no-field cross sec-

tion plus a sum of oscillatory terms. Each oscillatory term

FIG. 2. Semiclassical calculation of photoabsorption cross secyrises from a closed orbit. The closed orbits were described

tion near the detachment threshold in parallel fielés jy gec. I1I. However, we also need several more pieces of
=100 V/cm, Hy=2T. The cross section has oscillations super-information for Egs.(2.4 and (2.5 the classical density

posed on a smoothly rising background. In the semiclassical calcYyqiin of Jacobiansassociated with each closed orbit, the
lation each bifurcation is strongly marked by a diverging cross secy o angleq. for each orbit, the ratio of outgoing to return-
tion. Cross section is in units of boRrsenergy is in units of i

oL ing waves, the classical action, and the additional phase
' ¢; . These are derived in Appendix B, and combined into the

Increasing the energy beyoiiq_,~22.59 cm! the sec- final formula for the cross section. N . '
ond cusp moves upward through the origin and in Fig) 1 Let us collect the relevant quantities that will appear in
we see that there are now two cusps on the posiieis the answer. They are the Lafmor frequeiiy. (2.1b), the
and one cusp in the lower plane. All three returning orbits"€turn time on the parallel orbit,
are depicted, including the one new orbit, which is the sym-
metric balloon-shaped orbit. Along this trajectory the elec-

tron leaves the origin and reflects off the caustic on the right . . - S
passes through a focus at theaxis, and, reflecting off the the label of each returning orbit, as indicated in Fig. 1; the

left caustic, returns to the origin. Each of the two causticg " aamum number of returning orbits (besides the parallel

and the focus contribute 1 to the Maslov index. orb?t), given in Eq.(BS);_ the_ polar angle for each r_eturning
The “snake” orbit has grown longer in length, but stil orbit [Eq. (B7)], the action integral for each returning orbit

touches only one caustic. The parallel orbit, on the otheLEq'(B%b)]’
hand, now passes through two cusps, one on its outward (2mE)Y2
journey, and one on the returning journey; as before, each Si(E;Fo.Ho)=
cusp contributes two and the caustic at the top contributes Fo
one to the Maslov index. e L
As we increase the energy above the energy above thtge direct detgchmgnt cross section in the absenge of
third boundary energf,_ s [Fig. 1(f)] we find three cusps fields, og4i;= 0y, given in Eq.(A10); and one more quantity,
located on the positive axis and one more new orbit. This )
new orbit is another “snake” orbit, and it touches caustics or N(E;Ho)=E/2hw =El/hoc, 4.3
foci five times before returning to the origin. Increasing the
energy beyond the fourth boundary enefgy. , we see the
creation of the second “balloon” orb[tFig. 1(g)]. It passes
through two more caustics and two more foci than the firs
balloon orbit. At this high energy the parallel orbit in Fig.
1(g) now touches four focused cusps and one caustic.
In summary,(1) at the lowest energies, there is one and
only one orbit that returns to the origin, the parallel orbit, and

0 10 20 30 40 50 60 70 80 90 100

t,(E;Fo)=2(2mE)YZeF,, (4.1

codj(1-3cos;), (4.2

which is equal to the energy of the detached electron divided
by the spacing between Landau levels, or approximately the
tnumber of Landau levels that can be exited at the given
energy.

In terms of these quantities, the oscillatory part of the
photodetachment cross section for lingapolarized radia-
tion is

as the energy is increased there is a sequence of boundary b
energies at which new orbits bifurcate from () The nth o=0y +2 ol (4.49
boundary energy occurs when the return time of the parallel =

orbit equalsn cyclotron times.(3) Between thenth and

+1)st bifurcation energies there ameoff-axis closed orbits o 3 ) .
labeled by an index=1,...n. In (p,z) coordinates they Tt =~ 0dir 7 IN(EsHo)si{w ty(E;Fo) ]|

have the shape of “snakes” far odd and “balloons” for

j even.(4) At the bifurcation a focused cusp passes through X sin Sj—o(E;Fo)/hi— uoml/2], (4.4b
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. 3
j#0_ . . 11 .
I [N(E;Ho)j]™*cog6; quantum

o T . .
xXsin S;(E;Fq,Ho)/f— u; 577/ (4.49 full semiclassical

R

(a.u.)

Accordingly, the recurrence amplitudes are

N parallel orbit
Co=30aIN(E,Ho)siMw t(E;Fo)]| ™", (459 - \/\)W\mw
=
3 NN j=1 orbit
cjﬂ:‘z ol N(E,Ho)j| o, . (4.5 = \/\/\/V\NWW\MMW

j=2 orbit MWWWWWWWWAMMAIAA

The quantity co?sﬁj in Eq. (4.49 comes from the angular
distribution of outgoing waves fa-polarized light. Thg in
the denominator is related to the intensity of the returning b b b b b Lo beee b
wave associated with thgh orbit. For largerj, the orbits 0 5 10 15 20 25 30 35 40 45 50
travel longer before returning, arithis being a regular sys-
tem) on the average the classical density falls off inversely
with the time duration of the orbit. The quantitgin w t|~* T T T [T [T T T[T T[T T [T T [T T To 7T
in Eq. (4.4b comes from the classical density in the vicinity
of the parallel orbit. The neighbors of the parallel orbit are
oscillating about it with the cyclotron motion of the electron,

and they come together in a cusped focus at regular interval full semiclassical
The quantityN(E;Hy) was explained above; since it appears WMW

Energy (cm™ )

quantum

in the denominator, we may say that the size of the oscilla
tions associated with the parallel orbit is “of orde’” while
those associated with other orbits are “of ordéf?.”

(an.)

— N R
The extra term¢; = m/4 appearing in the phase of Eq. < L parallel orbit WJ

(4.40 arises from the fact that the returning quantum wave 9 W

Eq. (A17) has an additional phase which arises from the = . )

asymptotic expansion for the Bessel function. It is connecter s Jj=1 orbit

with the fact that returning waves associated with off-axis j=2 orbit

orbits are approaching a cylindrical focus. For the paralle WWWMWW
orbit, p is always zero; we do not use the asymptotic formula WA Bomvorvon ult

for the Bessel function and so we find that=0. The re-
turning wave associated with the parallel orbiexcept near
the bifurcationy a simple downward-moving plane wave,
not a circular wave.

Let us see the consequences of this formula. In Fig. 2 wi
show the photodetachment cross section calculated from Eq.
(4.4). (We used a Sun workstation, but a programmable cal- FIG. 3. Oscillatory part of the photoabsorption cross section
culator is sufficien). The cross section has smoothly rising based on guantum formulas given in Ref]. Oscillatory part of
background with small oscillations. At the lowest energies,photoabsorption cross section based on semiclassical formulas.
the only recurrence is associated with the parallel orbit, s@ontributions arising from each individual orbit are shown below.
the ripples are small and simple. Each bifurcation energy is
clearly marked by a divergence in the semiclassical formula.
At energies above each bifurcation, a new closed orbit pro- Thjs work was supported by the National Science Foun-
duces_ a new set of ripples th_at bgats against all the othersyation and the Office of Naval Research.

This is made more clear in Fig. 3, where we show the
oscillatory part of the cross section, subtracting the smooth
background. The uppermost curve comes from a fully quan- APPENDIX A: DERIVATION OF EQS. (2.3-(2.9
tum calculatior{4,6]. Below it is the complete semiclassical 1. The initial wave function and dipole operator
result, and the contribution of each individual orbit. As was
found in other casefb,8,13-16, the semiclassical result is
in excellent agreement with the full quantum result at al
energies that are not very close to a bifurcation. 1

A corrected semiclassical approximation that holds near Wi(r)=By =——R(r). (A1)
the bifurcations will be given in the following papg25(a)]. r Vam

j=4 orbit wwwwwwwd

IIII|IlII|IIII|IIIIlIIIIIIIII|IIII|IIII’IIII|IIII
50 55 60 65 70 75 8 8 90 95 100
Energy (cm™)
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We use the following approximation for the initial state of
Ithe active electron:
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B, is a “normalization” constan{3] and the appropriate and for/=1 we have[3,5]
value is 0.31552 in a.u. The constdqt is related to the

o : 2k
binding energy of the active electrcﬁb:ﬁzk§2m. | K =B /— A8
When the dipole operator(=a,x+a,y+a,z) acts on -1(k)=Bo k2+k%)2 (A8)

the initial state it produces p wave, ] o
The outgoing wave can now be evaluated and we find it to be

IDWi)=rR(r)x(6,¢), (A2)  equal to

and we consider only linear-polarized radiation, so

G|DW;)= — (kD1 (Kx(8). (A9)

1
Xx(0,¢)=x(6)= — cos. (A3)

Jan

The amplitude of this outgoing wave is proportional to the

radial dipole integral, and its angular distribution is given by

the functiony(6).

2. The Green function, outgoing waves, and the direct With these results it is possible to evaluate the direct con-
contribution to the cross section tribution to the photodetachment cross section:

In the photodetachment process we may say that the laser
prepares a “source functionDW¥;) the detached electron
[see Egs. (22D and (A2)]. The Green function
G)(qg,9';E) propagates the electron from the source point
atq’ to the field point afy. Since the initial state is localized G S (A10b)
in coordinate space, the relevant source points and field ©3hc O (kit+k3)®
points all lie within a few bohrs of the nucleus, i.e., within
the atomic region. o is the no-field cross section: Since the external fields only

The Green function propagates the disturbance from thaffect the large scale motion of the electrgnotion in the
source point afy’ to the field point afg along two or more  external regiohthe direct contribution to the cross section is
paths. The first path is associated with waves which propathe same as if there were no fields present.
gate fromq’ to g without ever leaving the atomic region. We
refer to this as the direct path. Additionally, there are waves 3. Returning waves and spectral oscillations
which propagate outward from the source pointgatand
enter the external region where they interact with the labo-
ratory fields. The electric and magnetic fields turn these Equation(A9) gave an expression for this outgoing wave,
waves around and some return to the vicinity of the nucleusand at fairly large distances the asymptotic form of the Han-
where they arrive at the field poimgt We refer to these as kel function can be used to obtain
returning paths. With this in mind we write the Green func-
tion in the following way:

G(+)(q q E) Gdlr (q q E)+Gret (q’q,;E)- (A4)
where we have defined the quantity

From Eg.(2.2) it follows that the cross section can be sepa-
rated in a similar manner, i.e5;= o gj;+ T gt () eikf

Since the atomic potential has a short range the waves four (kr)= (A12)
quickly propagate outside the influence of the atom and
through a region (8,<r<100a,) where neither the atomic
potential nor the applied fields have any significant effect.
We conclude that the appropriate Green function which
propagates these waves is the free-particle Green function To construct the semiclassical wave function we start
given by from a spherical surface centered at the origin with radius

rour~10ay. The spherical angleg,, and ¢oa§re chosen as
+ ., * ., two coordinates spanning this initial surfaag’). If the out-
G ):% 9 Arr)Y, m(0,9)Y7 n(6",67),  (AS) going wave evaluated on this surface is written as

8mmeE,
O 4ir= 0= Wkll(k) (A10a)

a. The direct part produces an outgoing wave

d.rlD\P.>~ a Kl 1K) X(OFS(kr),  (A1D)

b. The outgoing wave is joined to a semiclassical wave, which
propagates to large distances

where (g% =(G D)), (A13)
E. oo |7 (+) then the semiclassical approximation to the wat(g) out-
g/rr)= ﬁ2 ki A(kr hi " (k). (A8)  side this surface is given by

We define the radial dipole integral TS ()
PO IS V(@)= 3 V(@A @S, (A1)

— < ’ 13 ’ ’
I/(k)—JO j K" r"*R(r")dr (A7) where
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q 2im ) f(+)j J(t ) 1/2
S; :J da, A15 N TN i s A
(a) 0P dd (A15) Nj=| =7 ki -a(K)x(Oou) (1|3, (o)
AQ) [J(t=0,q? }1’2 X exliS;/h— ¢;— ujml2]. (A19)
ila)= It |
(t.;) Si(E) is the action integral evaluated over the full closed
Jq(t,o0) orbit starting and ending at the origin. We have placed an
J(t,q]@):de{—’g} absolute value on the rati})/f/, and put its relevant
a(t,q;) phase into expti¢;). If the approximations we have made

i o ) 0 are valid thenN; will be independent of the radius of the
The classical action is given 1(q), the Jacobiad(t,qi)  final spherer,,. We will find this to be the case, and in

measures the divergence of adjacent trajectories from a CeBarticular when we take the limit thag,=r .0 the prod-
tral trajectory, angy; is the Maslov index. The summation is ¢t of the two ratios
over all trajectories which arrive at the poupfrom different

pointsg® on the initial surface. FCH)I

out
flet”

JJ(IO) 1/2

Jj(tre

(A20)

c. The semiclassical wave returns )
As the trajectories are turned around by the electric and o o

magnetic fields, Eq(A14), describes their associated wave approaches a finite value. Th|§ limit will have to b(_a evalyated

function. Certain of the orbits return to the initial sphere, angS€Parately for the parallel orbit and for the off-axis orbits. It

there is a discrete set of trajectories that return exactly to th¥ill be evaluated in Appendix B 4.

origin. Each such closed orbit passes through the initial

sphere with coordinate o, 01, b1t and the kinetic mo-

mentum of the returning electron at that point sl The expansion of the cylindrical plane wave, E417),

=7k, Around each such closed orbit, or central trajectory,in spherical harmonics can be obtained from Grd@@gand

there is a family of trajectories which also returns to theis given by

sphere. These trajectories stay close to the central trajectory

and the ratio of Jacobians measures the classical density as- . .

sociated with this family of trajectories. d Wier) = NJ‘Z 2171 AKDY / m=0(0,$) Y meol Oi_p Pid_)s
The returning wave function associated with each return- (A21)

ing family evaluated on the sphere definedrhyis therefore

given by Egs.(A11)-(Al4).

d. The returning wave overlaps the initial state

Where{akies‘l’k‘}er} are angles defining the direction bfet,

_ im _ the direction in which the returning wave is propagating. We
‘I’Jret(fretﬁret,¢ret):[7 kI, —1(K)x (65 ) FSH (krou) would like to express this in terms of the anglég; and
¢t OF the direction from which the returning trajectory
12 ; — P _ .
% ‘]j(tO) el[Sj(tred/h — pjml2] (A16) comes. SinC&re=m ekjret and ¢re= -+ d)kjret’
Jj(tred '
j\tre

Inside the sphere, the external fields can be neglected, and qu‘et(r):sz/: 2(=1)J (KDY mo( 0, )
the waves are approximately free waves of the appropriate ’

symmetry.[We can still neglec¥y(r) for r>1ag.] XY% (O Bl (A22)
In our earlier study of perpendicular electric and magnetic '

fields, the returning quantum wave was approximated by & e gcillatory contribution to the cross sectian) can

plane wave. For parallel electric and magnetic fields, on the, . 1o calculated by evaluating the overlap of the returning

other hand, the returning wave near the origin must be CYivave with the function(DW,|, and taking the imaginary
lindrically symmetric, and so will be approximated by a "

. . t,
Bessel function. In this case then par
8me’2mE, . _
1 1 e Ore=—— g KIZ_ 1 DV || x(6L,) x* (Ble) SIND,
fret(PvZ)N Jo(kretp) e|kZ ) (Al?) ret Cﬁ3 /=1 ]_ | out ret |
\2ar p N2

At moderate distances, the Bessel function can be separated = 0082 |Ry|x (6L x* (Ble)sind; (A23)
into incoming and outgoing parts, and the incoming part of )
f , t match th iclassical returni &6):
el p,2) must match the semiclassical returning wé&é6) where
Wl ~=Nf(p,2). (A18)
ret( St ®J:_S]/ﬁ+¢J+,LLJ’IT/2
The normalization factolN; can be determined by letting
r—r e and combining Eqs(A16)—(A18), We have arrived at Eq$2.3—(2.5).
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APPENDIX B: 2. Initial conditions for closed orbits and the boundary orbits

RETURNING ORBITS—QUANTITATIVE THEORY In this section we will give quantitative conditions for

Here we give a quantitative analysis of the returning or-returning orbits, determine how many closed orbits exist at
bits. In particular, we will derivexi) A formula for the each energy, and determine the bifurcation energies where
boundary energies at which the new orbits appéar.A  new orbits are created.
formula for the Jacobian which gives the classical density From Eq.(B3) there can be no returning orbits fd,,
associated with the trajectories and therefore the amplitud& 7/2. Looking at Eq.(B3) we see that the time for the
of the returning wave. We will also verify our observations €lectron to return to th&-y plane ¢=0) is given by
concerning the number of singular points along a trajectory,

and will calculate the Maslov index for the two classes of 2. 2mE
trajectories.(iii) A formula for the classical action on an tr=2V2ECoS oy ?cosﬂout. (B5)
0

orbit. This determines the phase of the returning wave.

Here and below formulas after the arrow are in real units

(unscaled variablgs If the angle 6, is equal to zero the
Starting from our Hamiltonian in cylindrical coordinates, trajectory travels along the axis, p(t) =0, and it returns to

with L,=0, [Eq. (3.1)], we can eliminate unnecessary pa- the origin at the time,=2/2E (scaled units This is the

1. Hamiltonian equations of motion

rameters by using the scale change parallel orbit.
Consider now the other orbits that return to the origin.
wf Their z return time must be the same as theireturn time,
q’'=m oF, a, (Bla
tr=th=nr—nmwlo_, (B6)
YL . - -
P'=gE P (Blb)  so for a given energ¥, Eq. (B5) specifies the initial polar
0 angle for a returning orbit,
H [1 (eFoﬂlH (B19)
== ) C j eFylow)jm j
m | o COf, = COB= im__ (eRoloyjm | .
2\2E 2\2mg  oy(EiFo)
U=wt, (B1d) E7)
which gives Where_j isa pqsitiye integer from 1 to sonjg,,,. This maxi-
mum integer is given by
H=1p%+1p?+1ipi+z, (B2)
g’ ’ _ J2E 1 22mE
where we have dropped the primes and all variables are now b= jmax= Int —Int 7 (eFglwy)
in dimensionless form.
As stated previously, the initial speed is a constant and the =Intf w t;(E;Fo)/ 7] (B8)

initial direction is given by the polar anglé, ;. The initial
momentum is proportional to this velocity, i.ep,(t) and Infa) means “the largest integer less than or equal to
=dp(t)/dt and p,(t)=dz(t)/dt. With this in mind we re- «.” For each given energy there ate off-axis orbits to-
write Egs.(3.1) in their dimensionless form, gether with the parallel orbit.

What are the bifurcation energies? From Hg8)

1
z(t)y=— 5 t?+ 2EcoYt, 1 1
(BS) Ebzg (b’IT)z—)%

2
e—FO b’ﬂ} , (B9)

|

p(t) = 2Esinf,,sint.
where agairb is an integer labeling the bifurcation.

We can also relate the polar anglg,; to the initial energy In Fig. 4 we graphically display the results of the preced-
and momenta by ing two sections. For energies between zero and the first
bifurcation energyE,_;~1.23 we have one returning orbit,
the parallel orbit withe!°=0 or the vertical axis. As the
, total energy is increased throuf- ; a new orbit separates
V2E from the horizontal axis, its initial polar angle increasing

towards/2 with increasing energy. As the energy increases

to approximately 4.94 scaled units the second bifurcation
_ (B4) energyE,—, is reached, and another new returning orbit is
J2E created out of the parallel orbit.
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C

[ S—y
1}
A

(B13a

+1t cog Sinzaoutl
90

8 or in dimensional form

70
eFy
COHyyi— ——=1t

V2mE

0 sinw t coSyy

J,(t, 6 0= —
2( »You Mo,
50

Energy (cm™)

40

+ w, t SIMf 0y, Cosw t]. (B13b)

30

Equation(B13) represents the Jacobian for any trajectory at
any arbitrary time, i.e., the trajectory is not necessarily a
closed orbit.

The prefactop(t) in Eq. (B11) goes to zero at the begin-
ning and end of any closed orbit, and it is always exactly
zero for the parallel orbit. Therefore this quantity must be
handled with care. We will obtain the classical density for

FIG. 4. Initial angle of each bifurcated orbit as a function of the p_arallel orbit by takmg the limit ,asout%o' The classical
energy. density of the other orbits really diverges @s-0, and the
semiclassical approximation fails. Therefore the semiclassi-
cal wave function must be joined to a Bessel function, which

. . . . . remains finite ap—0.
The ratio of Jacobians appears in the semiclassical wave L

function as an amplitudé\;(q) and represents the diver-
gence of adjacent trajectories in time. As this ratio decreases,
the probability density of the wave function is spread out Let us construct the ratio of Jacobians fzet, andt
over a larger area. Near the caustics or foci where neighbor=t,,. Consider the Jacobian whéegis small (w to<1). In
ing trajectories converge to one another the ratio of Jacobithis case, expanding the trigonometric functions of @B4.3)
ans increases, eventually becoming infinite at the singulasind keeping only the lowest order, we find

point. At these points the semiclassical approximation fails.

Here we will calculate the Jacobian by evaluating the eX_J(tOvHLut):PO(ZE)tOZ J2Er2singl— (2E/m) Y2 2singl
pression (B14)

20

TT IIIIIIlIIIIIIIII[TIHIIllllII1I||III'IIII

Illl'lllllllllllllllllllllllllllli[lll\llllll

oL L1 [N RN AR O Y S S A L
0.0 0.1 0.2 0.3 04
©in units of 7

e
i

3. The Jacobian

4. The ratio of Jacobians andA(q)

a(X,Y,2) where we have used the fact thgt=ry/vy andvg is the
()= I, Oouts Bou) initial velocity of the emerging electron.
For the parallel orbitg! =0 andt,.= \2E. We evaluate

The coordinates(t, oy, doud are the coordinates for the J by assumingdl , is small but nonzero; then afy, Eq.
family of trajectories, i.e., for the Lagrangian manifold. The (B13) reduces to
intrinsic coordinates of the initial spherical surface centered
about the origin with radius,,; are{ 0,,t, dout,» Which define
the initial direction of motion of the electron. We relate the
three-dimensional Jacobian to a two-dimensional Jacobian

(B10)

I(trer, 0550 = — (2E)¥%singl - Osin?(22E). (B153

by [The factor si,° will cancel the corresponding factor in
Eq. (B14).]
For the oth bits, si =jmr, the Jacobi d
It Bgyts o) = p(1) Ia(t, o), (B11) N or the other orbits, sincg,=j, the Jacobian reduces
where
Itrer, 050°) = (= 1)12(2E) 3% pyein? Ol,) COSB by .
30t By = —2:P) (B12) (B15H
2T 0(t, Oow)

The two-dimensional determinant given in E(B12) is
evaluated using the equations of motijmee Eq.(B3)] and
the result is

Jo(t, Oou) =2E t|sint coshyy

1
CoOYyyi— —
( out \/E

The amplitude of the wave function involves the ratio of
Jacobians at=ty andt=t,.. Actually, however, referring
back to Eq.(A20), the ratio we need also involves the out-
going and returning quantum waves,

(+)]
out

fret”

1/2

Jilto) , (B16)

9{. = _ =
1%l Jj(trey
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where the outgoing and returning waves are, respectivelylhe additionaln/4 in Egs.(B19) and (B20) implies thatd;

given in Egs.(Al12) and (Al17), both of which are to be

= /4 for all off-axis orbits.

evaluated on the boundary sphere. This ratio must be consid-

ered separately for the parallel orbit or the off-axis orbits.

First we consider the parallel orbit. Sinpét) equals zero
for all time, the Bessel function in EqB16) should be set

equal to one, and the returning quantum wave is approx

mated by a plane wave directed down thaxis,

f( 1= 0=e 27 (B17)

After substituting Eqgs.(B15) we have for the limitrg
=r.—0 of Eq.(B16) that

2 1
lim |93, _ =(—) == B18
ro,fret—>0| J 0| k \/ESIHZ\/E ( a
2T L ‘
T K | 2EIm)TSin 2w, (2mE) Y e Ry ]|
(B18b)
2w (8
Tk (2E/m)¥sine t,(E;Fo)|”
(B180)

5. The Maslov index

Caustics and foci are singular points where the Jacobian

jgoes to zero and hence the coefficiéntq) goes to infinity.

Typically, as the electron passes through either a caustic or
focus, the Maslov index increases by one. More precisely,
however, the Maslov index not only includes the number of
singular points along the trajectory but also takes account of
the multiplicity of the singular point. For example, if the
Jacobian should have a second-order zero, then the Maslov
index would increase by two instead of one.

Consider the time dependence of the Jacobian associated
with the parallel orbit. From Eqg€B11) and(B13g we find
that

) . 1
J(t,0.50)=(2E)%? sing L 0 sir? t{ 1- N t].

(B23)

The factor sin?’ojto vanishes in the limi¥,,_.q, but this can-
cels. The factor sft is a second-order zero at each cusp.
Therefore every time the parallel orbit passes through a cusp
the Maslov index increases by two. If the energy lies be-

This expression is finite at af except when the sin passes tween two bifurcation energie€,<E<E,,,, then bz
through zero. That happens at the bifurcation energies, wheret < (b+ 1), so the parallel orbit passes througltusps
the focused cusp touches the origin, and the semiclassicah its journey back to the origin. This is the result we ob-
approximation fails. Examining also the phases, we see thained earlier by inspection of Fig. 1.

for the parallel orbit,¢y=0.

J also vanishes wheb=2E, and the term in square

For the off-axis orbits we use the asymptotic approxima-rackets in Eq(B23) is zero. The electron has reached the

tion to the zero-order Bessel functiokp(>1)

2 1/2
Jo(kpp)~( wop cogk,p—m/4) (B19)
and extract the incoming wave,
fﬁe_t )i = (2m)~ 3/2( kpp) — 125k, paikzgiml4. (B20)

[Here, as in Eqs(B17) and(B19), we are using the conven-
tion thatk,>0 andk,<0, so that this represents a wave

approaching the atom from positiyeandz. ]

Using our expressions for the Jacobian of the off-axis

orbits evaluated at,;, and using the fact that,=k sinfe
=k sinf,,;, we find that the ratigB16) reduces to

1/2
23/277 23/277,

lim Rl = RIE
10T ret—0

_ L—1/2
Tk J )

(B21)

2\2Ecost] |

where we have used E(B7) to evaluate cod . Multiply-
ing numerator and denominator fy> and converting back
to unscaled units, this quantity becomes

ﬁwL 1/2
lim |ml¢o|—>2’ﬂ(—) ]T?

= (B22)

ro.free—0

caustic at the top of its motion. For a given total energy it is
clear that the parallel orbit will pass throughsecond-order
cusps and one caustic; the Maslov index is equal tb (2
+1).

We now examine the time dependence of the Jacobian for
the off-axis orbits. In this case the zeros of the Jacobian
occur whenever the expression

J(t,0) )=p(t)2E t|sint cosd

. 1
coshl, — —
( out \/E

+1 cod sirfgl, (B24)

is equal to zero. The factgi(t) is equal to zero at the cy-
clotron times so the electron will pass through-(1) such

foci on its journey back to the origin. This does not include
the one focus that is at the origiwe always calculate the
Maslov index of the returning semiclassical wave before it
gets to the origin The Jacobian also goes to zero at the
caustics, when the bracketed expression is equal to zero. Af-
ter a slight rearrangement we obtain the following transcen-
dental equation for the times, at which the electron passes
through a caustic:

1 1 1
—|.  (B25

. 1
cott.,~=cotf |— - ———
e °”‘{ V2E (coshly)  tea
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Examining Eq(B25) and inspecting Fig. 1 we see that for tions. EquationgA18) and (A19) are the returning waves,
the off-axis orbits the electron will pass througttaustics.  with appropriate ratios evaluated in E&18h) or (B22) for
We find therefore that the off-axis returning orbits passthe parallel or other orbits, respectively. The resulting wave

through(j — 1) foci andj caustics; the Maslov index is equal functions are
to (2j —1). This result is consistent with the pictures in Sec.

. j—o_(2Im 0\ vrs m
\I,ret = 7 kl/zl(k)X(aout)eXp So/ﬁ_ﬂog
6. The classical action (w, 1K)
L _:
The classical actior5(q) appears in the phase of the (2E/m)sine, t,(E.Fg)] © ke (B279
semiclassical wave function and is defined in El5). The 2 ne
integrals are evaluated using E@®3) and the expressions ﬁ“’L) Jo(K! )eikaz (B27b)
for the conjugate momenta in the paragraph following Eg. 1= otpP ’

(B2). The integrals are straightforward and lead to
The contributions of these returning waves to the cross

i i ; 1 ; sections come from EqA23).
S(t‘ret,alout)=(2E)3’200519‘0u{1— §cos’-0'out}. 4AZ3)

(B269 =0 127w /k )
Oret —00 T o ; |x(6=0)|
This expression is valid for both the parallel orbits and the (2E/m) ™ sinw, t,(E;Fo)|
off-axis orbits. In the dimensional form the classical action is T
Xsinl —Sp+ uo =/, (B28a
3/2 2
. (2mE) : 1 _
S(tle, 01,0 = ——=—cof! | 1— = cogh! ,|.
meFo 3 ' th 1/2 - -
(B26b) O'f,:tOZ 0'012’77(1.—E) |X( 0j)|28in( —Sj + i > + Z) .
(B28b)

7. Returning waves and photodetachment cross section

We combine the results of all the preceding into formulasUsing k= (2mE)Y2, and using Eq(A3) for x(6), we ar-
for the semiclassical returning waves and for the cross secive at Eqs.(4.4) and(4.5).
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