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Three-body halos in two dimensions
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A method to study weakly bound three-body quantum systems in two dimensions is formulated in coordi-
nate space for short-range potentials. Occurrences of spatially extended structures~halos! are investigated.
Borromean systems are shown to exist in two dimensions for a certain class of potentials. An extensive
numerical investigation shows that a weakly bound two-body state gives rise to two weakly bound three-body
states, a reminiscence of the Efimov effect in three dimensions. The properties of these two states in the weak
binding limit turn out to be universal.@S1050-2947~97!06910-2#

PACS number~s!: 03.65.Ge, 02.60.Nm, 21.45.1v, 31.15.Ja
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I. INTRODUCTION

Characteristic properties of halo systems are binding
ergies much smaller than the typical energy of the interac
and spatial extensions much larger than the range of the
tential @1,2#. Three-body halos inthree dimensionsexhibit
many interesting features. Borromean systems, discov
now experimentally, are bound three-body structures wh
none of the two-body subsystems are bound@3–5#. The Tho-
mas and Efimov effects are anomalies due to a singula
that occurs in a three-body system when the ratio of sca
ing length and effective range is infinitely large@6–10#. Then
the effective three-body potential behaves as the inve
square of the distance, which results in infinitely many thr
body bound states.

The Thomas effect corresponds to an infinitely small
fective range. The Efimov effect is associated with an in
nitely large scattering length where the wave functions
excited states reside in the tail region of the effective thr
body potential. Physical examples of these might poss
exist in nature@10–12#.

The three-body halos intwo dimensionsare less studied
and the present investigations@13–16# are limited in various
ways. It has been proven@16# that the number of bound
states is always finite. However, the possibility of the ex
tence of a Borromean state has not been examined and t
fore the number of bound states is not established. Moreo
the properties of these states have not been investigate
detail.

In this Brief Report we shall for simplicity only conside
a system ofthree identical bosonsin two dimensions. The
purpose is to~i! formulate an efficient method to solve th
coordinate space Faddeev equations in two dimensions
plicable for arbitrary short-range two-body potentials,~ii ! de-
rive asymptotic equations for the effective three-body pot
tial that alleviate crucially the numerical investigations
weakly bound systems,~iii ! discuss the possible existence
561050-2947/97/56~4!/3287~4!/$10.00
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Borromean systems, halos, Efimov and Thomas effects,
~iv! illustrate numerically the universal properties of th
three-body halos.

II. THE METHOD

We shall use the method developed for three dimensi
@9#. Let r jk5(r j2r k) be the distance between particlesj and
k, r i ( jk)52r i1(r j1r k)/2 the distance between particlei and
the center-of-mass of particlesj andk. All particles have the
same massm. The Jacobi coordinates are then introduced
xi5r jk /A2, yi5r i ( jk)A2/3. The hyperspherical coordinate
in two dimensions are given by$r,V i%[$r,a i ,uxi ,uyi%,
r5Axi

21yi
2, a i5arctan(xi /yi), uxi anduyi are the azimuthal

angles ofxi and yi . The volume element in hyperspheric
coordinates isr3drduxiduyi sinai cosaidai and the kinetic
energy operator is

T5
\2

2mS 2r23/2
]2

]r2
r3/21

3/4

r2
1

L̂2

r2 D , ~1!

L̂252
]2

]a i
2

22 cot~2a i !
]

]a i
2

1

sin2~a i !

]2

]uxi
2

2
1

cos2~a i !

]2

]uyi
2

. ~2!

The total wave function is now expanded in a complete se
hyperangular functions

C~r,V!5
1

r3/2(n51

`

f n~r!Fn~r,V!, ~3!

whereFn(r,V) for eachr are chosen as eigenfunctions
the hyperangular part of the Schro¨dinger equation

S L̂21
2m

\2
r2(

i 51

3

V~r i !D Fn5ln~r!Fn . ~4!
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Here V is the two-body potential and the expansion coe
cients f n(r) satisfy the system of coupled equations

S 2
]2

]r2
1

ln13/4

r2
2Qnn2

2mE

\2 D f n~r!

5 (
n8Þn

S Qnn812Pnn8

]

]r D f n8~r!, ~5!

Qnn8~r!5E dVFn* ~r,V!
]2

]r2
Fn8~r,V! ~6!

Pnn8~r!5E dVFn* ~r,V!
]

]r
Fn8~r,V!. ~7!

The wave functionFn is written as a sum of three com
ponents, each expressed in the corresponding system o
cobi coordinates

Fn5(
i 51

3

fn
~ i !~r,V i !. ~8!

These components satisfy the three Faddeev equations

L̂2fn
~ i !1

2m

\2
r2V~r i !Fn5ln~r!fn

~ i ! , i 51,2,3. ~9!

The physical solutions are equivalent to the solutions of
Schrödinger equation in Eq.~4! but these equations are bett
suited for descriptions of subtle correlations.

The s-wave motion is responsible for both the long d
tance behavior and the Thomas and Efimov effects.
therefore restrict tos waves where the wave functionfn

( i )

only depends onr anda i . The Faddeev components in E
~9! must all be expressed in the same set of Jacobi coo
nates. This amounts forswaves to rewrite one set of coord
nates in terms of the other and a subsequent integration
the angular variablesux anduy , i.e.,

f~r,a8!→
1

2pE0

2p

f„r,a8~a,b!…db, ~10!

wherea8 is given bya and the variableb, describing the
rotation between two sets of Jacobi coordinates, given b

sin2 a85
1

4
sin2 a1

3

4
cos2 a6

A3

2
sin a cosa cosb, ~11!

where the choice of6 is independent ofb. For three iden-
tical bosons (f[fn

( i )) the Faddeev equations then reduce
the three identical equations

S 2
]2

]a2
22 cot~2a!

]

]a
2l D f~r,a!

52
2m

\2
r2V~A2r sin a!

3S f~r,a!1
1

pE0

2p

f~r,a8!db D . ~12!

III. LARGE-DISTANCE BEHAVIOR

We define an anglea0 such that

u2mr2V~A2r sin a0!/\2u5ul~r!u
-

Ja-

e

e

i-

er

and we assume that the potential is of short range, that isa0
approaches zero with increasingr. If a.a0 the potential is
then negligible for larger and Eq.~12! becomes

S 2
]2

]a2
22 cot~2a!

]

]a
2l D f~a!50. ~13!

The solution that satisfies the boundary condition of vani
ing derivative ata5p/2 is

f~a!5p cospnPn~cos 2a!22 sin pnQn~cos 2a!, ~14!

wherel[4n(n11) and P and Q are Legendre functions
At small a this solution behaves as

f~a!52 sin~np!@g1 ln a1c~11n!#1p cos~np!

1O~a2!, ~15!

wherec is the digamma function andg is Euler’s constant.
Without interactions the solution in Eq.~14! with the bound-
ary condition of zero derivative ata50 provides the quan-
tization rulen50,1,2,. . . ; see Eq.~15!.

For a nonzero short-range potential the integral in E
~12! can be expanded fora,a0!1 as

1

pE0

2p

f~r,a8!db52fS p

3 D1O~a2!. ~16!

Then Eq.~12! simplifies to a differential equation with an
inhomogeneous term

S 2
]2

]a2
22 cot~2a!

]

]a
1

2m

\2
r2V~A2r sin a!2l D f~a!

52
2m

\2
r2V~A2r sin a!2f~p/3!. ~17!

The homogeneous part of this equation reduces for smaa
by the substitutionr 5raA2 to the two-dimensional Schro¨-
dinger equation for two particles. Thus, assuming thatl can
be neglected compared to 2mr2V/\2, the large-distance
(a,a0!1) solutions to the homogeneous part of Eq.~17!
simply are the zero-energy two-body solutions. Th
for a.a0 the physical solution is approximatel
C ln(A2ra/a), whereC is an arbitrary constant anda is the
scattering length defined as the distance where the two-b
wave function for zero energy is zero. One solution to t
inhomogeneous part of the equation is now22f(p/3). The
complete physical solution to the inhomogeneous equatio
therefore (a.a0):

f~a!5C lnSA2ra

a D 22fS p

3 D . ~18!

Matching the two solutions, Eqs.~14! and ~18!, and their
derivatives ata5a0 gives the equation

2 sin~np!lnSA2r

a D 52 sin~np!@g1c~11n!#

1p cos~np!12fS p

3 D . ~19!

Both for r@a and for r!a the logarithm at the left-hand
side is large. The quantityn must therefore approach an in
tegerl to compensate for this divergence. The leading or
of an expansion in powers ofr for the lowestn gives

n'
3

2F lnS 4A2r

3a D G21

→0. ~20!
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Therefore this eigenvaluel[4n(n11) is approaching zero
in both these limiting cases in contrast to three dimensi
where a negative constant asymptotically is approac
when the scattering length is infinitely large. The effecti
radial potential in Eq.~5! has therefore a repulsive centrifu
gal term and no collapse of the wave function in the cente
possible.

Let us now consider diverging solutionsl(r) to Eq.~19!.
Then large imaginary values ofn}2 ir are necessary and
the outer function in Eq.~14! approaches

f~a!'
1

An
A 2p

sin 2a
sinF ~n1 1

2 !~2a2p!1
p

4 G , ~21!

which for larger is exponentially small ata5p/3 compared
to its value ata5a0. For large imaginaryn, Eq. ~19! then
becomes

lnSA2r

a D 5g1 ln n1
1

2n
2

1

12n2
1 i

p

2
, ~22!

which has the asymptotic solution

n52
1

2
2 ie2g

A2r

a
2

i

12S e2g
A2r

a D 21

1O~r22!, ~23!

l[4n~n11!52
4

3
2

8

e2g

r2

a2
1O~r22!. ~24!

This parabolic behavior ofl is the signature of a bound
two-body state with the binding energyB and wave number
k given by 4e22ga2252m* B/\2[k2, wherem* 5m/2 is
the reduced mass of the two particles. We can verify this
solving the two-body problem, where thes-wave radial so-
lution outside the potential isK0(kr)'2 ln(kr/2)2g, which
must be matched with the solution inside the potential
r 05ra0A2. For small binding we can use the zero-ener
solution, which atr .r 0 is ln(r/a). This matching gives the
aboveB andk and the result is accurate to the orderr 0 /a.
For attractive zero-range potential it is therefore exact.
the potentials without two-body bound state, wherer 0 /a is
not small, this particular solution does not exist.

The wave function is exponentially small everywhere e
cept in a small region close toa50; see Eq.~21!. In this
region the zero-range wave function obtained from Eq.~17!
is proportional toK0(kr5kra0A2) and after normalization
approximately given by

f~a!'2krK0~A2kra!. ~25!

The related diagonal part ofQ11 is then by use of Eq.~6!
computed to beQ1152(1/3)1/r2, which in combination
with Eq. ~24! gives the first diagonal equation in Eq.~5! as

S 2
]2

]r2
2

1

4r2
2

2m

\2
~E1B!D f ~r!50. ~26!

This is the characteristic large-distance behavior of a tw
body radial Schro¨dinger equation in two dimensions.

IV. EFIMOV AND THOMAS EFFECTS

The eigenvalue equation for large distances is inthree
dimensionsgiven by @9#
s
d

is

y

t
y

r

-

-

sinS ñ
p

2 DA2r

a
52 ñ cosS ñ

p

2 D1
8

A3
sinS ñ

p

6 D , ~27!

where l5 ñ224. For r@a the lowest solution isñ52
(l50) that is a regular free solution whereas forr!a,
l→l`525.012 . . . , which leads to a strongly attractiv
r22 potential in the radial equation. Physically ther22 be-
havior is limited at small distances by a finite rangeR of the
potential, and at large distances by a finite scattering len
a. However, in the limitR/a→0 such a potential gives ris
to the so-called ‘‘falling towards the center’’ phenomen
with infinitely many bound states. WhenR→0, the phenom-
enon is called the Thomas effect and whena→` it is called
the Efimov effect.

Equation~27! is in two dimensions replaced by Eq.~19!
and the Efimov effect is therefore not present in two dime
sions. Furthermore, the hyperradial potential has even
zero-range potentials a repulsive centrifugal barrier at sm
distance. Then the Thomas collapse is not possible and
three-body system must for zero-range potentials hav
finite number of bound states.

Equations~19! and ~27! can be formally written in terms
of hypergeometric function as one general equation fod
dimensions, whered is a real number. The asymptotic solu
tion l` of this equation leads to the Efimov and Thom
effects in the region 2.3,d,3.8.

V. BOUND STATES

The solutions to the zero-range potentials are similar
those of purely attractive weak potentials. The two-body s
tem has at least one bound state and for such interact
Borromean systems do not exist in two dimensions. T
three-body ground state is more bound and an excited sta
in addition always present. In Fig. 1 is shown the effect
radial potential together with the resulting two bound-st
wave functions. The corresponding root-mean-square r
are in units of the scattering length, respective
^(r /a)2&1/250.111, 0.927. Their large sizes are reminisce
of the three-dimensional Efimov states with an extens
comparable to the scattering length.

The energiesE3 of these states are given in terms of t

FIG. 1. The effective radial potential,U5a2$( 3
41l1)r

222Q11%,
as a function of hyperradius~logarithmic scale! for a zero-range
two-body potential. The scattering length isa. The two unnormal-
ized bound-state wave functions are also plotted.
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two-body bound-state energyE2 as E3 /E2516.52, 1.267.
We have numerically tried to find a third bound state w
weaker binding energy and larger radial extension by ca
lating the zero-energy wave function and looking at the nu
ber of nodes. Even a careful search to about 103 times the
scattering length did not reveal another bound state. T
strongly indicates that only two bound states exist. The la
proportionality factor for the ground-state energy can be c
sidered reminiscent of the Thomas effect. These relations
still valid for arbitrary weakly attractive, finite-range pote
tials. This is because weak binding corresponds to a sca
ing length much larger than the range of the potential, wh
is the limit of a zero-range potential.

In Fig. 2 we show the ratio (E32E2)/E2 as a function of
uE2u for different potentials. We first notice that there a
always two states that in the weak binding limit approach
results for zero-range potential~marked with small circles!.
The purely attractive potentials~solid lines! as well as repul-
sive core potentials~dashed lines! fall approximately on the
same universal curves. This is equivalent to the observa
in three dimensions that only low-energy scattering prop

FIG. 2. Ratio of three- to two-body energies as a function of
two-body energy for different two-body potentialsV(r )

5(\2/2mb2) @S1 exp(2 1
2 r 2/b2)1S2 exp(22r2/b2)#. The unspeci-

fied strength parameterSi is used to vary the two-body binding.
u

. B

.

s.
u-
-

is
e
-
re

er-
h

e

n
r-

ties like the scattering length are important in the weak bi
ing limit.

The potentials with a short-range repulsive barrier~dash-
dotted and dotted lines!, unlike the repulsive core, produc
energies deviating in the middle of the plot from the unive
sal curves. The reason is that a sufficiently large barrier
a sufficiently large attraction produce a three-body grou
state confined inside the barrier, which yields three bou
states in total. AsuE2u then decreases towards zero two ca
are possible. If the potential does not allow the spatially c
fined ground state the third bound state disappears and
first two approach the zero-range limit~dotted lines!. If,
however, the potential allows a spatially confined grou
state, all three states survive in the smalluE2u limit ~dash-
dotted lines!. Now the second and the third bound stat
approach the zero-range limit, while the ground state ene
remains finite. In this case the ground state persists even
the region where the two-body state is unbound, crea
thus a Borromean phenomenon. This is only possible wit
repulsive confining barrier which therefore also limits t
spatial extension of the three-body system. The propertie
Borromean systems are therefore different in two and th
dimensions.

VI. CONCLUSIONS

Based on the hyperspherical expansion of the Fadd
equations we have investigated the possible structure of t
weakly bound identical bosons in two dimensions. F
purely attractive two-body potentials and the potentials w
repulsive cores the Borromean systems do not exist. For t
body potentials with a short-range repulsive barrier the tw
body system may not have a bound state while a three-b
bound state exists. Borromean systems are therefore pos
in two dimensions.

We find numerically that a weakly bound two-body sta
is always accompanied by two bound three-body states
sembling the Efimov states in three dimension. If a B
romean state is present there are therefore in total th
bound three-body states. For all types of potentials, two
these three-body bound states have energies and radii fol
ing a universal curve in the weak binding limit. Their siz
scale with the two-body scattering length and can theref
become arbitrarily large in analogy tos-state halos in three
dimensions.
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