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A method to study weakly bound three-body quantum systems in two dimensions is formulated in coordi-
nate space for short-range potentials. Occurrences of spatially extended strdicalogsare investigated.
Borromean systems are shown to exist in two dimensions for a certain class of potentials. An extensive
numerical investigation shows that a weakly bound two-body state gives rise to two weakly bound three-body
states, a reminiscence of the Efimov effect in three dimensions. The properties of these two states in the weak
binding limit turn out to be universa] S1050-294{®7)06910-2

PACS numbsdis): 03.65.Ge, 02.60.Nm, 21.46yv, 31.15.Ja

I. INTRODUCTION Borromean systems, halos, Efimov and Thomas effects, and

- . . (iv) illustrate numerically the universal properties of the
Characteristic properties of halo systems are binding €Mhree-body halos.

ergies much smaller than the typical energy of the interaction
and spatial extensions much larger than the range of the po-
tential [1,2]. Three-body halos ihree dimensionxhibit We shall use the method developed for three dimensions
many interesting features. Borromean systems, discoverg@)]. Letr; =(r;—r,) be the distance between particjeand
now experimentally, are bound three-body structures wherg, r; = —r;+(r;+r,)/2 the distance between partiéland
none of the two-body subsystems are bo[®d5]. The Tho-  the center-of-mass of particl¢sandk. All particles have the
mas and Efimov effects are anomalies due to a singularitgame mass. The Jacobi coordinates are then introduced as
that occurs in a three-body system when the ratio of scattelxi=rjk/\/§, yi=ri(jk)\/2_/3. The hyperspherical coordinates
ing length and effective range is infinitely larg@-10]. Then  in two dimensions are given byp,Qi}={p,a;, by, by},
the effective three-body potential behaves as the inversp=/x?+y? a;=arctank ly,), 6; and 6,; are the azimuthal
square of the distance, which results in infinitely many threeangles ofx; andy;. The volume element in hyperspherical
body bound states. coordinates ip3dpd6,;dé,; sin a; cosade; and the kinetic
The Thomas effect corresponds to an infinitely small ef-energy operator is
fective range. The Efimov effect is associated with an infi- .
nitely large scattering length where the wave functions of h? _an 9 314 A2

IIl. THE METHOD

excited states reside in the tail regi f i - T=so —p =" —+— |, )
gion of the effective three 2m p? P2 p?
body potential. Physical examples of these might possibly
exist in naturg 10-12. A P P 1 72
The three-body halos itwo dimensionsre less studied A?=— ——2c02e) -~ ———— >
and the present investigatiofts3—16 are limited in various daj dai sir(a;) a6y
ways. It has been provefl6] that the number of bound _ 1 3_2 @
states is always finite. However, the possibility of the exis- co(a;) &0§i‘

tence of a Borromean state has not been examined and there-
fore the number of bound states is not established. Moreovérhe total wave function is now expanded in a complete set of
the properties of these states have not been investigated lityperangular functions
detail. .

In this Brief Report we shall for simplicity only consider V(p,0)= %z f(p)®(p,Q), 3)
a system ofthree identical bosoné two dimensionsThe 2
purpose is tdi) formulate an efficient method to solve the ) i
coordinate space Faddeev equations in two dimensions, aff"ereé ®n(p,(2) for eachp are chosen as eigenfunctions of
plicable for arbitrary short-range two-body potentidis), de- e hyperangular part of the Schifager equation

rive asymptotic equations for the effective three-body poten- om 2
tial that alleviate cruc[glly _the numerical investigations of A2+ _ZPZE V() | ®,=N(p) P, . (4)
weakly bound systemsiji ) discuss the possible existence of he i=1

1050-2947/97/5@4)/32874)/$10.00 56 3287 © 1997 The American Physical Society



3288 BRIEF REPORTS 56

HereV is the two-body potential and the expansion coeffi-and we assume that the potential is of short range, thagis,

then negligible for large and Eq.(12) becomes

pr L Mat34 0 2mE)f ) p ;
T 5> ~<nnT T, nlp v o _
ap p ) 2 2 cof2a) Y N | d(a)=0. (13
_ The solution that satisfies the boundary condition of vanish-
== /+2P [ f ’ y 5 . . . .
nrz;'n (an nn ﬁp) v (p) © ing derivative ata= /2 is
> ¢(a)=m cosmvP,(cos 2)—2 sin mvQ,(cos ), (14)

J
anr(P)Zf dQdT(p, Q) — Pni(p,Q) (6) wherex=4p(v+1) andP andQ are Legendre functions.
ap At small « this solution behaves as

¢(a)=2siNvm)[y+In a+ y(1+v)]+ 7 cofvm)

+0(a?), (15)

The wave function®,, is written as a sum of three com- \ynerey is the digamma function ang is Euler's constant.
ponents, each expressed in the corresponding system of Jgsithout interactions the solution in EL4) with the bound-

J
Pur(p)= | 40030, 0) 0000 (D

cobi coordinates ary condition of zero derivative at=0 provides the quan-
s tization rulev=0,1,2,. . . ; see Eq(15).
<I>n=z ¢§1')(p,ﬂi). (8) For a nonzero short-range potential the integral in Eq.
=1 (12) can be expanded far< ay<1 as
These components satisfy the three Faddeev equations 1 (2= -
= b(p,a’)dB=2¢| 5 +0(a?). (16)

- Lo2m i
A2+ 2 p2v(r)d.= ) M j=1,2,3. (9
¢n 72 P (1) ®n=Nn(p) én © Then Eq.(12) simplifies to a differential equation with an

The physical solutions are equivalent to the solutions of thénhomogeneous term

Schralinger equation in Eq4) but these equations are better 92 g 2m , )

suited for descriptions of subtle correlations. T e 2 co(2a) =+ 72P V(\2p sin @)=\ | ¢(a)
The s-wave motion is responsible for both the long dis- om

tance behavior and the Thomas and Efimov effects. We :—ﬁpzv(\/ip sin a)2¢(m/3). (17)

therefore restrict tas waves where the wave functiop

only depends op ande«;. The Faddeev components in Eq. The homogeneous part of this equation reduces for small
(9) must all be expressed in the same set of Jacobi coordby the substitution = pa+/2 to the two-dimensional Schro
nates. This amounts feawaves to rewrite one set of coordi- dinger equation for two particles. Thus, assuming haan
nates in terms of the other and a subsequent integration ovee neglected compared tonp?V/42, the large-distance

the angular variableg, and 6, i.e., (e<ag<l) solutions to the homogeneous part of ELy?)
1 (2n simply are the zero-energy two-body solutions. Then
¢(p,a')—>z ¢(p,a’ (a,B))dpB, (100 for a=aqy the physical solution is approximately
0

C In(\2pala), whereC is an arbitrary constant aralis the
wherea’ is given bya and the variablgd, describing the scattering length defined as the distance where the two-body
rotation between two sets of Jacobi coordinates, given by wave function for zero energy is zero. One solution to the
inhomogeneous part of the equation is nex2 ¢(m/3). The

si o' :lsinz a+ §c0§ at\/—§sin a cosa cosfB, (11) complete physical solution to the inhomogeneous equation is
4 4 2 therefore @r=ay):

where the choice of- is independent oB. For three iden- V2pa T

tical bosons ¢=¢{") the Faddeev equations then reduce to d(a)=CIn[——]—2¢| 3. (18)

the three identical equations Matching the two solutions, Eq¢l4) and (18), and their

derivatives ate= a gives the equation

7 J
— o3 2002a) 7o\ | d(p.a)

ZSir(VW)M(@):Z sifvam)[ v+ ¢(1+v)]
2m . a -
—T 2P V(2p sin a) + cogvm)+2¢ 5). (19

1 (2=
d(p,a)+ —f q&(p,a’)d,b’). (12 Both for p>a and for p<<a the logarithm at the left-hand
mJo side is large. The quantity must therefore approach an in-
tegerl to compensate for this divergence. The leading order
of an expansion in powers of for the lowestrv gives

We define an angle such that 3 4\/§p -1
In( 3a ” —0. (20)

X

Ill. LARGE-DISTANCE BEHAVIOR

VA o

12mp?V(\2p sin ag)/h?=|\(p)| 2
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Therefore this eigenvalue=4v(v+1) is approaching zero

10000

in both these limiting cases in contrast to three dimensions ' '
where a negative constant asymptotically is approached =
when the scattering length is infinitely large. The effective U 0 \\ -
radial potential in Eq(5) has therefore a repulsive centrifu- \ /
gal term and no collapse of the wave function in the center is \ /
possible. ~10000 — U v ]
Let us now consider diverging solutiongp) to Eq.(19). — — Ground

Then large imaginary values ofx—ip are necessary and -20000 + — — Excited 1
the outer function in Eq(14) approaches

Y LN P ™ I T R T I T T T

d(a)~ 7 Nsin 2asm (v+3)2a—m)+ it (21 ola

which for largep is exponentially small a&= 7/3 compared

: H H _A25(3 -2__
to its value ata= . For large imaginary, Eqg. (19) then FIG. 1. The effective radial potentialj =a*{(3+AJp "~ Quat,

as a function of hyperradiufogarithmic scalg for a zero-range

becomes two-body potential. The scattering lengthads The two unnormal-
\/zp 1 1 . ized bound-state wave functions are also plotted.
|H(T =vy+In V+Z_?Vz+i§' (22
T \/Ep - T 8 [_m
which has the asymptotic solution sm( VE)T =-v COE( v |t e sm( VE)’ 27
1. N2p i N2p\7t ,2
v=—goieV———g5{e 77— +0(p), (23)  where \=7%—4. For p>a the lowest solution isy=2
(A=0) that is a regular free solution whereas forca,
p? AN—\,=—5.012..., which leads to a strongly attractive
AN=4v(v+1)=—2—— —+0(p?). (24)  p~2 potential in the radial equation. Physically the? be-

3 g2r g2 e . >
e’ a havior is limited at small distances by a finite rarigef the

This parabolic behavior ok is the signature of a bound potential, and at large distances by a finite scattering length
two-body state with the binding ener@/and wave number a. However, in the limitR/a—0 such a potential gives rise
k given by 4 2Ya"?2=2m*B/#?=k? wherem*=m/2 is  to the so-called “falling towards the center” phenomenon
the reduced mass of the two particles. We can verify this byvith infinitely many bound states. Whét— 0, the phenom-
solving the two-body problem, where tisewave radial so- €non is called the Thomas effect and wleer < it is called
lution outside the potential i§y(kr)~—In(kr/2)—y, which  the Efimov effect. _ _
must be matched with the solution inside the potential at Equation(27) is in two dimensions replaced by E(L9)
ro=pagy2. For small binding we can use the zero—energya”d the Efimov effect is therefore not present in two dimen-
solution, which atr=r is In(r/a). This matching gives the SIOns. Furthermor.e, the hyperrad|al pptenual ha}s even for
aboveB andk and the result is accurate to the ordgéa. ~ Z€ro-range potentials a repulsive centrifugal barrier at small
For attractive zero-range potential it is therefore exact. Foflistance. Then the Thomas collapse is not possible and the
the potentials without two-body bound state, whegéa is t.hr.ee—body system must for zero-range potentials have a
not small, this particular solution does not exist. finite number of bound states. o

The wave function is exponentially small everywhere ex- Equations(19) and(27) can be formally written in terms
cept in a small region close ta=0; see Eq.(21). In this of hype_rgeometrlc f_unctlon as one general equanpnd‘or

is proportional toKo(kr=kpao\/§) and after normalization tion )\w.of this equation leads to the Efimov and Thomas
approximately given by effects in the region 283d<3.8.

B @) ~2kpKo(\2kpa). (25)

The related diagonal part @4 is then by use of Eq(6)
computed to beQ;;=—(1/3)1jp? which in combination
with Eq. (24) gives the first diagonal equation in E¢) as

V. BOUND STATES

The solutions to the zero-range potentials are similar to
those of purely attractive weak potentials. The two-body sys-
tem has at least one bound state and for such interactions

92 1 2m Borromean systems do not exist in two dimensions. The
T a ﬁ(EJF B) | f(p)=0. (26)  three-body ground state is more bound and an excited state is
P P in addition always present. In Fig. 1 is shown the effective
This is the characteristic large-distance behavior of a twoadial potential together with the resulting two bound-state
body radial Schrdinger equation in two dimensions. wave functions. The corresponding root-mean-square radii
are in units of the scattering length, respectively,
((r/a)?)¥2=0.111, 0.927. Their large sizes are reminiscent
of the three-dimensional Efimov states with an extension

The eigenvalue equation for large distances ighree  comparable to the scattering length.

dimensiongyiven by[9] The energie€; of these states are given in terms of the

IV. EFIMOV AND THOMAS EFFECTS
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. . ; . ties like the scattering length are important in the weak bind-

3
10" — s-0 AN 1 ing limit.
. 1T 8= N\ The potentials with a short-range repulsive barfaash-
100 o S*fl RS 1 dotted and dotted lingsunlike the repulsive core, produce
8= g energies deviating in the middle of the plot from the univer-
S5 10' T T~ sal curves. The reason is that a sufficiently large barrier and
o Zero—range .- a sufficiently large attraction produce a three-body ground
ul.i” 10° | limit ‘ state confined inside the barrier, which yields three bound
= states in total. A$E,| then decreases towards zero two cases
10" L T are possible. If the potential does not allow the spatially con-
: fined ground state the third bound state disappears and the
102 | ) Al first two approach t_he zero-range Iir_rﬂd:iotted I.ine$ If,
5 - L — however, the potential aIIc_)WS_a spatially co_nfl_ned ground
10 10 10 10 10 state, all three states survive in the snja}| limit (dash-

-E, 2mb /i dotted lines. Now the second and the third bound states
, approach the zero-range limit, while the ground state energy
) . _ remains finite. In this case the ground state persists even into
FIG. 2. Ratio of three- tq two-body energies as afunctlon of thethe region where the two-body state is unbound, creating
two-body energy for different two-body potentials/(r) b5 4 Borromean phenomenon. This is only possible with a
=(h?12mb?) [S; exp(~ 3r°/b?) +$S, exp(~2r4b?)]. The unspeci- repulsive confining barrier which therefore also limits the
fied strength paramet@ is used to vary the two-body binding.  spatial extension of the three-body system. The properties of

Borromean systems are therefore different in two and three

two-body bound-state energg, as Es/E,=16.52, 1.267. dimensions.

We have numerically tried to find a third bound state with VI. CONCLUSIONS

weaker binding energy and larger radial extension by calcu- . .
. N . : ~ Based on the hyperspherical expansion of the Faddeev

E:rngft?]igsgo I(Ea\?grr]gg \::v;/;ljrrs]gg?ghapod ;%%ﬁng matetsh(tehr;um equations we have investigated the possible structure of three

ing | h did | her bound Th.weakly bound identical bosons in two dimensions. For
scattering length did not reveal another bound state. Thig, ey attractive two-body potentials and the potentials with

strongly indicates that only two bound states exist. The larg epulsive cores the Borromean systems do not exist. For two-
proportionality factor for the ground-state energy can be conpody potentials with a short-range repulsive barrier the two-
sidered reminiscent of the Thomas effect. These relations aigydy system may not have a bound state while a three-body
still valid for arbitrary weakly attractive, finite-range poten- hound state exists. Borromean systems are therefore possible
tials. This is because weak binding corresponds to a scattejz two dimensions.
ing length much larger than the range of the potential, which  We find numerically that a weakly bound two-body state
is the limit of a zero-range potential. is always accompanied by two bound three-body states, re-
In Fig. 2 we show the ratioE3;—E,)/E, as a function of sembling the Efimov states in three dimension. If a Bor-
|E,| for different potentials. We first notice that there areromean state is present there are therefore in total three
always two states that in the weak binding limit approach théoound three-body states. For all types of potentials, two of
results for zero-range potenti@harked with small circles  these three-body bound states have energies and radii follow-
The purely attractive potentialsolid line9 as well as repul- ing a universal curve in the weak binding limit. Their sizes
sive core potential¢dashed linegsfall approximately on the scale with the two-body scattering length and can therefore
same universal curves. This is equivalent to the observatiobhecome arbitrarily large in analogy sstate halos in three
in three dimensions that only low-energy scattering properdimensions.
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