
PHYSICAL REVIEW A OCTOBER 1997VOLUME 56, NUMBER 4
Cooperative emission in the process of cascade and dipole-forbidden transitions
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In this paper the difference between two-photon dipole-forbidden and cascade transitions of an inverted
system of atoms is studied. It is shown that the fluctuations of the electromagnetic field~EMF! density in the
case of two-photon dipole-forbidden transitions are larger than the ones in the case of cascade emission. In the
process of the two-photon dipole-forbidden cooperative emission the photons are created in pairs and there
appears coherence between pairs of photons~biphotons!. In this situation the distribution of energy between the
photons in one pair may be random. For two-photon dipole-forbidden transitions the time-behavior of the
square density fluctuations of EMF is similar to those of the density of EMF in the case of cascade emission.
When the distance between two atoms excited relative to dipole-forbidden transitions is less than the radiation
wavelength, then the kinetics of such atoms is analogous to the cascade emission of a single atom.
@S1050-2947~97!09710-2#

PACS number~s!: 42.50.Ct, 42.50.Lc, 32.80.2t
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I. INTRODUCTION

The problem of quantum fluctuations and the genera
of the nonclassical electromagnetic field in two-photon a
multiphoton processes have recently been the subject
number of theoretical and experimental studies@1–6#. From
the physical point of view it is very interesting to study th
behavior of the inverted system of radiators~nuclei, atoms!
in the processes of the two-photon cooperative emissio
light. For instance, the phenomenon of the new coopera
emission for a dipole-forbidden transition of inverted rad
tors can be observed in the process of the two-photon s
taneous emission@7,8#. It has been shown that in the proce
of spontaneous emission the atoms enter the regime of
photon superradiance and the collective spontaneous ra
photon pairs ~biphotons! increases proportionally to th
square number of radiators. It has been demonstrated th
the process of spontaneous emission of hydrogen or hel
like atoms, the dipole-forbidden transitions 22S1/2-1

1S1/2 and
22S0-11S0 generate pairs of correlated photons~biphotons!.
The correlation function between the pairs of photons
comes larger than that of individual photons from differe
pairs. A similar effect has been proposed in Ref.@9# in which
the authors studied the exchange of the two-photon inte
between two identical atoms separated by distancer 12 ~large
compared to the atomic diameter, so the overlap is ne
gible!. Such atoms undergo two-photon cooperative tran
tions between their two levels~of the same parity! via the
nonresonant intermediate level~of the opposite parity!.

It is known that Dicke one-photon superradiance has
came the focus of extensive theoretical and experimenta
vestigations@10–12#. The cooperative two-photon decay
the two-level system, inverted relative to the dipo
forbidden transition, is a more difficult effect, because of
electromagnetic field~EMF! exchange between the radiato
taking place through biphotons. In this paper we study
difference between the two-photon dipole-forbidden co
erative emission of two atoms and the cascade emission
single atom using the quantum statistical description of
561050-2947/97/56~4!/3274~13!/$10.00
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radiation field. It is shown that in the case of cooperat
dipole-forbidden transitions the photons in the radiation fi
form time-correlated pairs that for a large number of ato
leads to superbunching phenomena. The chain of equat
for the atomic subsystem for the cases of both two-pho
and two one-photon emission has been obtained. The
change integral between the radiators through the EMF
analyzed in Secs. II and III. The kinetic characteristic f
cooperative emission of four photons by two atoms situa
at an arbitrary distance has been obtained. It has been sh
that in the case when the distance between the two ato
excited relative to the dipole-forbidden transition, is less th
the emission wavelength, then the kinetics of such atom
analogous to the cascade emission of two identical pho
by one atom. Therefore the fluctuations of the light intens
in the case of two-photon dipole-forbidden transitions a
larger than those of cascade emission.

The behavior of the inverted system of a large number
radiators has been analyzed too. It follows~from our results!
that for the cooperative two-photon dipole-forbidden tran
tion both the second- and the first-order correlation functio
of the light intensity are proportional to the emission rate.
this situation we neglect the fluctuations of the number
excited atoms in the process of dipole-forbidden transiti
which do not substantially change the fluctuation value of
EMF intensity. This approximation gives us the possibility
close the chain of equations for the atomic subsystem
enables us to study the time behavior of the quantum fl
tuations of the EMF intensity.

In the case of cascade emission the first- and the sec
order correlation functions for the light intensity of the c
operative emission are directly proportional to the emiss
rate and to the square emission rate operators of the ato
subsystem, respectively. In this situation neglecting the fl
tuations of a number of excited atoms in the chain of atom
subsystem equations strongly affects the quantum fluctua
of a number of emission photons. Here, it should be m
tioned that the relative fluctuations of the square intens
operator in the case of two-photon dipole-forbidden tran
3274 © 1997 The American Physical Society
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56 3275COOPERATIVE EMISSION IN THE PROCESS OF . . .
tions have a time behavior similar to the relative fluctuatio
of the intensity operator for the cascade emission.

This paper is organized as follows. In Sec. II we propo
a three-level Hamiltonian of inverted radiators for dipo
forbidden and cascade transitions. Using the method
eliminating operators of the EMF and the virtual state
electrons in the atoms we obtain master equations for
atomic subsystem. In Sec. III we express the correla
functions for the EMF intensity through the correlators of t
atomic subsystem operators. This representation of the
relation functions gives us the possibility to study the tim
behavior of the quantum fluctuations of the EMF in the p
cess of two-photon dipole-forbidden and cascade emissi
Such a time behavior of the inverted atomic subsystem
studied in Sec. IV.

II. MASTER EQUATION FOR THE ATOMIC SUBSYSTEM
DENSITY MATRIX

We consider an ensemble ofN three-level radiators in the
exited stateu2&. Since the transitions between theu2& andu3&
and u1& and u3& levels are allowed (d32,d31Þ0), while the
transition is forbidden betweenu2& and u1& (d2150), the
Hamiltonian of such a system takes the form

H5(
k

\vkak
†ak1 (

a51

3

(
j 51

N

\vaU j a
a

1 i (
b51

2

(
k

(
j 51

N

~dW 3b ,gW k!~ak
†e2 ikW•

Wr j2H.c.!~U j 3
b 1U j b

3 !.

~1!

Here \va(a51,2,3) is the energy of levela; d3b is the
dipole moment of the transition between the statesu3& and
ub&(b51,2) ak

† andak are the creation and annihilation op

erators for the photons with the momentum\kW , energy\vk ,
and polarizationl, gW k5(2p\vk /V)1/2eWl , eWl is the photon
polarization vectorl51,2 andV is the EMF quantization
volume,U j b

3 is the corresponding operator of the transiti
between statesu3& andub& of the j th atom. The operators o
the atomic subsystem and the EMF operators satisfy
commutation relations

@U j b
a ,Ula8

b8 #5d j ,l@dbb8U j a8
a

2daa8U j b
b8#,

@ak ,ak8
†

#5dkk8, @ak
† ,ak8

†
#5@ak ,ak8#50.

Here we shall discuss two types of three level systems:~a!
level u3& is situated higher than theu2& and u1& levels @see
Fig. 1~a!# and ~b! level u3& is situated between theu2& and
u1& levels @see Fig. 1~b!#.

Let us now analyze the first case~a! when the atomic
subsystem is inverted relative to the dipole-forbidden tran
tion u2& and u1&. As the unpopulated levelu3& is situated
higher than the populated levelu2& the real transition be-
tween levelsu2& and u3& do not take place due to the viola
tion of the conservation energy law (E22E32 \vk Þ 0, E2
andE3 are the energy of the levelsu2& andu3&, respectively,
\vk is the emitted photon energy!. In this situation only a
two-photon transition between the excited stateu2& and
s
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ground stateu1& is possible and takes place via the virtu
stateu3&. In such dipole-forbidden transitions the operato
that describe the transitions betweenu2& and u1& levels be-
long to su~2! algebra@13#.

Let us consider an operatorO(t), which describes the
transition between levelsu2& and u1&. The Heisenberg equa
tion for the operatorO(t) is given by the relation

d

dt
O~ t !5

i

\
@H~ t !,O~ t !#. ~2!

Using the Hamiltonian~1! one can obtain the following
Heisenberg equation for the mean value of the opera
O(t):

d

dt
^O~ t !&5

i

\ (
a51

3

(
j 51

N

\va^@U j a
a ~ t !,O~ t !#&

2(
k

(
j 51

N

(
b51

2
~dW 3b•gW k!

\

3^@U j b
3 ~ t !1U j 3

b ~ t !,O~ t !#

3~ak
1~ t !e2 ikW•rW j2H.c.!&, ~3!

where^ & is averaging over the initial state of the ‘‘atom plu
field’’ system C5uV&uA&uA& is the wave function of the
atomic subsystem fort50, uV& is the wave function of the
EMF vacuum!. Equation ~3! contains the EMF operator
ak(t) and ak

†(t). After integrating the Heisenberg equatio
for these operators we obtain the formal solution forak(t)
andak

†(t)

ak~ t !5ak
v~ t !1ak

s~ t !, ak
†~ t !5@ak~ t !#†, ~4!

whereak
v(t)5ak

v(0)e2 ivkt and

ak
s~ t !5(

l 51

N

(
r51

2
~dW 3r•gW k!

\
e2 i ~kW•rW l !E

0

t

dt

3e2 ivkt@Ulr
3 ~ t2t!1Ul3

r ~ t2t!#

are the vacuum and source parts of the operatorak(t). If we
substitute the expressions~4! for ak(t) andak

†(t) into Eq.~3!
we obtain the following equation for the mean value of t
operatorO(t):

FIG. 1. ~a! Initial state of theL-type three-level atomic system
(t50) in the case of two-photon dipole-forbidden transitions.~b!
Initial state of cascade three-level atomic system (t50) in the case
of two one-photon emission.
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d

dt
^O~ t !&5 i (

a51

3

(
j 51

N

va^@U j a
a ~ t !,O~ t !#&1(

k
(

j ,l 51

N

(
r,b51

2
~dW 3b•gW k!~dW 3r•gW k!

\2

3S eikW•~rW j 2rW l !E
0

t

dte2 ivkt$^@U j b
3 ~ t !,O~ t !#Ul3

r ~ t2t!&1^@U j b
3 ~ t !,O~ t !#Ulr

3 ~ t2t!&1^@U j 3
b ~ t !,O~ t !#Ulr

3 ~ t2t!&

1^@U j 3
b ~ t !,O~ t !#Ul3

r ~ t2t!&%1H.c.t.@O1~ t !→O~ t !# D . ~5!

Here the H.c.t.@O1(t)→O(t)# coincide with H.c. terms for the hermitian operators@O(t)5O1(t)#, and for the nonHermitian
operatorO(t) the notation H.c.t.@O1(t)→O(t)# is equivalent to H.c. terms in which theO1(t) operator is replaced byO(t).

It is not difficult to represent the operatorsU j a
b through Bose operators of the atomua& and ub& states

U j a
b 5Cj b

† Cj a , @Cj a ,Clb
† #5dabd j l , @Cj a ,Cj b#5@Cj a

† ,Cj b
† #50.

In terms of Bose operators Eq.~5! takes the form

d

dt
^O~ t !&5 i (

a51

3

(
j 51

N

va^@U j a
a ,O~ t !#&1$I 11I 21I 31I 41H.c.t.@O1~ t !→O~ t !#%, ~6!

where

I 15(
k

(
j ,l 51

N

(
r,b51

2
~dW 3b•gW k!~dW 3r•gW k!

\2
eikW•~rW j 2rW l !E

0

t

dte2 ivkt^Cj 3
† ~ t !@Cj b~ t !,O~ t !#Clr

† ~ t2t!Cl3~ t2t!&,

I 25(
k

(
j ,l 51

N

(
r,b51

2
~dW 3b•gW k!~dW 3r•gW k!

\2
eikW•~rW j 2rW l !E

0

t

dte2 ivkt^Cj 3
† ~ t !@Cj b~ t !,O~ t !#Cl3

† ~ t2t!Clr~ t2t!&,

~7!

I 35(
k

(
j ,l 51

N

(
r,b51

2
~dW 3b•gW k!~dW 3r•gW k!

\2
eikW•~rW j 2rW l !E

0

t

dte2 ivkt^Cj 3~ t !@Cj b
† ~ t !,O~ t !#Clr

† ~ t2t!Cl3~ t2t!&,

I 45(
k

(
j ,l 51

N

(
r,b51

2
~dW 3b•gW k!~dW 3r•gW k!

\2
eikW•~rW j 2rW l !E

0

t

dte2 ivkt^Cj 3~ t !@Cj b
† ~ t !,O~ t !#Cl3

† ~ t2t!Clr~ t2t!&.
f
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Account was taken that theO(t) operator is a combination o
Bose operators ofu2& and u1& states.

As level u3& is situated higher than the excited stateu2&
the population of this level is equal to zero in the process
two-photon spontaneous emission.

Using the Hamiltonian~1! and the Heisenberg equatio
for Cj 3

† (t) and Cj 3(t) operators it is very easy to represe
these operators throughCa(t), Ca

†(t) (a51,2), and their
free part

Cj 3~ t !5Cj 3
f ~ t !1Cj 3

s ~ t !,

Cj 3
† ~ t !5@Cj 3~ t !#1.
f

Here Cj 3
f and Cj 3

s are the free and source parts of opera
Cj 3, respectively:

Cj 3
f ~ t !5Cj 3~0!e2 iv3t, Cj 3

f u3&50,

Cj 3
s ~ t !5(

k
(
g51

2
~dW 3g•gW k!

\ E
0

t

dte2 iv3t

3@ak
†~ t2t!e2 ikW•~rW j !2H.c.#Cj g~ t2t!. ~8!

In this situation is necessary to exclude Bose operatorsCj 3

andCj 3
† from Eq. ~7!. For this purpose it is necessary to u

the following lemma:
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Lemma. If Bose operatorsCj 3 and Cj 3
† lie between the two operators of the atomic subsystemA(t1) and B(t2)

@A(t1),B(t2) do not contain the operatorsCj 3 and Cj 3
† # belonging to other times, the elimination of the free part of the

operators yields the following expression for the correlator:

^B~ t2!Cj 3~ t !A~ t1!&5^B~ t2!Cj 3
s ~ t !A~ t1!&2e2 iv3~ t2t1!^B~ t2!@Cj 3

s ~ t1!,A~ t1!#&,
~9!

^B~ t2!Cj 3
1 ~ t !A~ t1!&5^B~ t2!Cj 3

†s~ t !A~ t1!&1eiv3~ t2t2!^@Cj 3
1s~ t2!,B~ t2!#A~ t1!&.

The proof of this lemma forCj 3(t) andCj 3
† (t) operators is similar to the demonstration proposed in@7# for the EMF operators.

The commutators in Eq.~9! play the highest role in the two-photon spontaneous emission and only such commutators br
main contribution to the two-photon process.

Then, after removing the free part ofCj 3 andCj 3
† operators using the previous lemma~see Appendix! we can obtain the

following expressions forI 1 ,I 2 ,I 3 ,I 4 in the Born-Markoff approximation:

I 1' (
k1k2

(
j ,l 51

N ~dW 32•gW k1
!2~dW 31•gW k2

!2

\4~vk1
1v32!

2
ei ~kW11kW2!•~rW j 2rW l !z~vk2

1vk1
2v21!^Cj 2

† ~ t !@Cj 1~ t !,O~ t !#Cl1
† ~ t !Cl2~ t !&,

I 2' (
k1k2

(
j ,l 51

N ~dW 31•gW k1
!~dW 32•gW k1

!~dW 31•gW k2
!~dW 32•gW k2

!

\4~vk1
1v32!~vk1

2v31!
ei ~kW11kW2!•~rW j 2rW l !z~vk2

1vk1
2v21!

3^Cj 2
† ~ t !@Cj 1~ t !,O~ t !#Cl1

† ~ t !Cl2~ t !&,

I 3' (
k1k2

(
j ,l 51

N ~dW 31•gW k1
!~dW 32•gW k1

!~dW 31•gW k2
!~dW 32•gW k2

!

\4~vk1
1v32!~vk1

2v31!
ei ~kW11kW2!•~rW j 2rW l !z~vk2

1vk1
2v21!^@Cj 2

† ~ t !,O~ t !#Cj 1~ t !Cl1
† ~ t !Cl2~ t !&,

I 4' (
k1k2

(
j ,l 51

N ~dW 31•gW k1
!2~dW 32•gW k2

!2

\4~vk1
2v31!

2
ei ~kW11kW2!•~rW j 2rW l !z~vk2

1vk1
2v21!^@Cj 2

† ~ t !,O~ t !#Cj 1~ t !Cl1
† ~ t !Cl2~ t !&. ~10!

Here z(vk1
1vk2

2v21)5pd(vk1
1vk2

2v21)1P@ i /(vk1
1vk2

2v21)#, P indicates Cauchy principal value@14#, v31, v32,

v21 are the transition frequences between statesu3&→u1&, u3&→u2&, u2&→u1&, respectively.
At last taking into account the fact thatUl2

1 5Cl1
† Cl2 , U j 1

2 5Cj 2
† Cj 1 , the final expression for the mean value ofO(t)

operator is

d

dt
^O~ t !&5

i

\
^@Heff~ t !,O~ t !#&1 (

j ,l 51

N

$F~ j ,l !^@U j 1
2 ~ t !,O~ t !#Ul2

1 ~ t !&1H.c.t.@O1~ t !→O~ t !#%, ~11!

where

Heff~ t !5H0~ t !1Hi~ t !, H0~ t !5(
j 51

N

(
a51

2

\vaU j a
a ~ t !,

Hi~ t !5
d31

2 d32
2

4p2\c6 (
j ,l 51

N E
0

`

dvk1
vk1

3 E
0

`

dvk2
vk2

3 P
1

vk1
1vk2

2v21
S 1

v312vk1

1
1

v321vk1
D 2

x j l ~vk1
!x j l ~vk2

!U j 1
2 ~ t !Ul2

1 ~ t !,

F~ j ,l !5
d31

2 d32
2

4p2\2c6E0

v21
vk

3~v212vk!
3dvkx j l ~vk!x j l ~v212vk!S 1

v312vk
1

1

v321vk
D 2

and



3278 56N. ENAKI AND M. MACOVEI
x j l ~X!5~12cos2u!
sin~Xr jl /c!

Xr jl /c
1~123cos2u!S cos~Xr jl /c!

~Xr jl /c!2
2

sin~Xr jl /c!

~Xr jl /c!3 D .
o
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Hereu is the angle between the direction of the dipole m
mentdW 3b and rW j l , Hi(t) describes the two-photon cooper
tive Lamb shift of two level states of atoms in the process
the spontaneous decay of the excited stateu2&, F( j ,l ) is the
spontaneous cooperative emission rate forj and l atoms of
the system in the process of two-photon dipole-forbidd
transitions,rW j l 5rW j2rW l , r j l 5urW j l u is the distance between th
j and l atoms.

Now we can easily obtain the equation for the dens
matrix r(t). As

TrS d

dt
O~ t !r~0! D5TrS d

dt
r~ t !O~0! D , ~12!

from Eq. ~11! we get

d

dt
r~ t !5

i

\
@r~ t !,Heff#1 (

j ,l 51

N

$F~ j ,l !@Ul2
1 r~ t !,U j 1

2 #1H.c.%.

~12a!

From Eqs. ~11! and ~12a! follows that cooperation take
place between the photon pairs~biphotons!. The energy of
the biphotons is fixed,\v215\vk11\vk2. The common
phases of such photon pairs~biphotons! are in phase in spite
of the fact that the photons in the pair may have differ
energies~for example,\vk1 may be> than\vk2). In other
words the two-photon dipole-forbidden cooperative dec
has a broad band emission spectrum of biphotons\vk
P(0,v21) and the spectral generation rate is determined
marily by the multiplevk

3(v212vk)
3. Such behavior of the

cooperative radiation field is not specific for the two on
photon cascade emision.

Now let us consider the second case~b! when theu3&
level is situated betweenu2& andu1& levels@see Fig. 1~b!#. If
-

f

n

y

t

y

i-

-

the transition frequences and the dipole moments of the t
sitions between the statesu2&→u3& andu3&→u1& are respec-
tively equal,v23 5 v31 5 v0, d23 5 d31 5 d0, the Hamil-
tonian of such an inverted system takes a simpler form:

H~ t !5(
j 51

N

\v0Dz j~ t !1(
k

\vkak
†ak

1 i(
j 5 i

N

(
k

~dW 0•gW k!

21/2
@D j

1~ t !ak~ t !eik•

W rW j2H.c.#.

~13!

Here the operatorsD j
1(t), D j

2(t) are the transition operator
betweenu2& and u1& states via the realu3& state and they
differ from the U1 j

2 (t), U2 j
1 (t) operators defined for the

dipole-forbidden case~a!:

Dz j~ t !5U2 j
2 ~ t !2U1 j

1 ~ t !,

D j
1~ t !521/2@U3 j

2 ~ t !1U1 j
3 ~ t !#,

D j
2~ t !521/2@U2 j

3 ~ t !1U3 j
1 ~ t !#,

and satisfy the following commutation relations

@D j
1~ t !,Dk

2~ t !#52Dz~ t !d jk ,

@Dz j~ t !,Dk
6~ t !#56D6~ t !d jk .

Using Heisenberg representation for theQ(t) operator be-
longing to the atomic subsystem and removing thea(t) and
a†(t) Bose operators of the EMF we can obtain the follo
ing equation for̂ Q(t)&:
ic
d

dt
^Q~ t !&5 iv0(

j 51

N

^@Dz j~ t !,Q~ t !#&1
d0

2v0
3

2\c3 (
j ,l 51

N

x j l ~v0!$^@D j
1~ t !,Q~ t !#Dl

2~ t !&1H.c.t.@Q1~ t !→Q~ t !#%

2 i
d0

2

2p\c3 (
j ,l 51

N

PE
0

` v3dv

v2v0
x j l ~v!^@D j

1~ t !Dl
2~ t !,Q~ t !#&. ~14!

Following the transformations similar with those in Eq.~12a!, we obtain from Eq.~14! the next master equation for the atom
subsystem:

d

dt
r~ t !5

i

\
@r~ t !,Heff#1

3

8tA
(

j ,l 51

N

x j l ~v0!$@D j
2r~ t !,Dl

1#1H.c.%, ~15!

where 1/tA54v0
3d0

2/3\c3 and

Heff5\v0(
j 51

N

Dz j~ t !2
d0

2

2pc3 (
j ,l 51

PE
0

` v3dv

v2v0
x j l ~v!D j

1~ t !Dl
2~ t !.
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From master equations~12a! and ~15! follows that the dissipation rate of the excited energy in the case of the two-ph
spontaneous emission is proportional to the product of the two exchange integralsx j l (x)x j l (v212x) but in the case of the two
one-photon cascade emission the dissipation rate is proportional only tox j l (v).

In the next section we study the photon correlation functions in these two cases.

III. PHOTON CORRELATION

The general photoelectron counting correlation functions can be represented by the positive@EW 2(rW,t)# and negative

@E1(rW,t)# frequency parts of theEW (rW,t) operator@14–18#.

G1~rW,t !5^@EW 2~rW,t !,EW 1~rW,t !#&, ~16a!

G2~rW,t !5^:@EW 2~rW,t !,EW 1~rW,t !#@EW 2~rW,t !,EW 1~rW,t !#:&, ~16b!

G4~rW,t !5^:@EW 2~rW,t !,EW 1~rW,t !#@EW 2~rW,t !,EW 1~rW,t !#@EW 2~rW,t !,EW 1~rW,t !#@EW 2~rW,t !,EW 1~rW,t !#:&. ~16c!

HereG2(rW,t) andG4(rW,t) are respectively the intensity and the square intensity correlation functions for the samet,

EW 2~rW,t !5(
k

gW kak
†~ t !e2 i •WkrW, EW 1~rW,t !5@EW 2~rW,t !#†,

: f (rW,t): indicates normal ordering. The functions

L2~rW,t !5G2~rW,t !2G1
2~rW,t !,

L4~rW,t !5G4~rW,t !2G2
2~rW,t !

~168!

take into account the EMF density and the square EMF density fluctuations.
Let us consider the first case~a! when the unpopulated levelu3& is situated higher than the levelsu2& andu1&. After partial

elimination of the photon operators we obtain the following expressions forG1 andG2 correlation functions:

G1~rW,t !5 (
k1k2
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! (
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3 ~ t2t2!#&e2 i ~kW12kW2!•rW, ~17!
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3 ~ t2t2!#&e2 i ~kW11kW32kW22kW4!•rW. ~18!

We observe that it is difficult to exclude the EMF operatorsak3

† (t) andak4
(t) from Eq. ~18! because the atomic subsyste

operators@U j a1

3 (t2t1)1U j 3
a1(t2t1)# and@Ula2

3 (t2t2)1U3l
a2(t2t2)# belong to other time moments. In this situation one c

exclude the boson operators from these expressions using the similar lemma for the boson operators of EMF@7#.
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The first- and second-order correlation functions for the EMF intensity are proportional to the similar correlation functi
the atomic subsystem̂U1 j

2 (t2t1)U2l
1 (t2t2)&. Thus, after integrating overk1, k2, k3, k4, t1 ,t2 and using the vector identity

(
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one obtains the following expression for theG1(rW,t), G2(rW,t) correlation functions:
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~22!

HereQ(t2urW2rW j ,l u/c) is the Heaviside step function, andz is the angle between the direction of the vectorsrW anddW 3a .
The retardation of the EMF in pointrW is taken into account in Eqs.~21! and ~22!. Markoff approximation allows us to

ignore the retardation relative to the center of the atoms mass.
For the square intensity correlation functionG4(rW,t) we obtain the following expression:

G4~rW,t !5
d31

4 d32
4 ~12cos2z1!2~12cos2z2!2

16p2c16
~v311v32!

4F E
0

v21 x2~v212x!2dx

~x2v31!~x1v32!
G4

(
j ,l 51

N
cos~v21urW2rW j u/c!cos~v21urW2rW l u/c!

urW2rW j u2urW2rW l u2

3 (
m,n51

N
cos~v21urW2rWmu/c!cos~v21urW2rWnu/c!

urW2rWmu2urW2rWnu2
K U1 j

2 S t2
urW2rW j u

c
DU1m

2 S t2
urW2rWmu

c
DU2n

1 S t2
urW2rWnu

c
D

3U2l
1 S t2

urW2rW l u
c

D L QS t2
urW2rW j u

c
DQS t2

urW2rW l u
c

DQS t2
urW2rWmu

c
DQS t2

urW2rWnu
c

D . ~23!

Let us now express the correlation functions for the EMF intensity through the atomic subsystem correlation function
case of the cascade emission . At first, as the method of exclusion of the EMF operators in this case is not difficult,
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Here one can introduce the notationsGI(rW,t) andGII(rW,t) for the first- and second-order correlation functions, respectively
the two one-photon casade emission.

After summation over the polarization and integration over all directions ofkW we get forGI(rW,t),
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and forGII(rW,t)
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Here the first- and second-order correlation functions are
rectly proportional to the emission rate and the square em
sion rate operators of the atomic subsystem, respectivel
is not difficult to observe thatGIV(rW,t) correlation function
is proportional to the same order of the atomic correlat
functionsD1(t)D2(t):

GIV~rW,t !;^Dk
1~ t rk!Dl

1~ t rl !Dm
1~ t rm!Dn

1~ t rn!

3Di
2~ t ri !D j

2~ t r j !D f
2~ t r f !Ds

2~ t rs!&.

Here t ri 5t2urW2rW i u/c is the retardation time for the EMF
generated by thei th atom.

It follows from Eqs.~21!–~27! that for two-photon dipole-
forbidden transitions the second- and fourth-order correla
functions of the EMF are proportional to first- and secon
order correlators of theU1

2(t)U2
1(t) atomic operator product

respectively. For the two one-photon cascade emission
EMF correlation functions are of the order of the atom
correlation functions@see Eqs.~26!, ~27!#. In other words the
product of two negative frequency parts of the EMF stren
E2(t)E2(t) in the correlation function for the EMF is pro
portional to the transition operatorU1

2(t) in the case of two-
photon dipole-forbidden transitions, while for the two on
photon cascade emission the negative frequency part o
EMF strength is proportional to the transition operators
tween the ground and excited stateD1(t).
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In the next section we shall analyze the time behavior
the functions G1(rW,t), G2(rW,t), G4(rW,t), and GI(rW,t),
GII(rW,t) for one and two atoms.

IV. THE COOPERATIVE BEHAVIOR OF THE ATOMIC
SUBSYSTEM IN THE PROCESS OF TWO-PHOTON

AND TWO ONE-PHOTON COOPERATIVE EMISSION

From the master equation~12a! it is easy to obtain the
following chain of equations for two-photon dipole
forbidden cooperative transitions:

d

dt
^Rz j~ t !&52(

i
F~ i , j !@^Ri

1~ t !Rj
2~ t !&1^Rj

1~ t !Ri
2~ t !&#,

~28!
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dt
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l
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2~ t !&1F~ j ,l !

3^Ri
1~ t !Rz j~ t !Rl

2~ t !&#,

and so on.
Here Rz j , Rj

1, and Rj
2 are respectively the inversion

creation, and annihilation operators for the atomic subsys

Rz j~ t !5@U j 2
2 ~ t !2U j 1

1 ~ t !#/2,

Rj
1~ t !5U j 1

2 ~ t !,Rj
2~ t !5U j 2

1 ~ t !,
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which satisfy the commutation relations

@Rj
1~ t !,Ri

2~ t !#52d i j Rzi~ t !, @Rz j~ t !,Ri
6~ t !#56d i j Ri

6 .

We are going to study the cooperative emission of two ato
situated at the distancer 21. It is possible to obtain a close
system of equations for two atoms at the second step of c
~28!:

d

dt
Z~ t !52

1

t0
@11Z~ t !#2

1

t1
V~ t !,

d

dt
V~ t !52

1

t0
V~ t !1

1

t1
Z~ t !1

4

t1
Y~ t !,

d

dt
Y~ t !52

2

t0
Y~ t !2

1

2t0
Z~ t !1

1

2t1
V~ t !.

~29!

Here we introduce variables:Z(t)5^Rz1(t)&1^Rz2(t)& is
the inversion of atoms, V(t)5^R2

1(t)R1
2(t)&

1^R1
1(t)R2

2(t)& is the cooperative rate of emission,Y(t)
5^R1z(t)R2z(t)& is the correlation function of inversions fo
the first atom and the second one. The spontaneous an
operative emission timet0, t1 can be found from the rela
tions

1

t0
5

8d31
2 d32

2 ~v311v32!
2

9p\2c6 E
0

v21
dx

x3~v212x!3

~v312x!2~v321x!2

1

t1
5

2d31
2 d32

2 ~v311v32!
2

p\2c6 E
0

v21
dx

3
x3~v212x!3x12~x!x12~v212x!

~v321x!2~v312x!2
.

Using the initial conditions for variables,Z(t50)51,
V(t50)50, Y(t50)51/4 we obtain the following solution
of the system~29!:

Z~t!52
4n2

12n2
e22t1

12n

11n
e2~12n!t1

11n

12n
e2~11n!t21,

V~t!52
4n

12n2
e22t2

12n

11n
e2~12n!t1

11n

12n
e2~11n!t,

~30!

Y~t!5
11n2

12n2
e22t2

12n

2~11n!
e2~12n!t

2
11n

2~12n!
e2~11n!t11/4,

wheren5t0 /t1 , t5t/t0 .
To estimate the dependence of the two-photon coop

tive exchange integral between the atoms at a distancer 12 we
make the following approximation in the expression for t
s

in

co-

a-

cooperative parametern. First we average the exchange ke
nel x12(x) over the directions of the dipole momentumdW and
then one can approximatex2(v212x)2'(v21/2)4. In this
case we obtain the following relation for parametern:

n53S c

r 12v12
D 2H c

r 12v12
sinS v21r 12

c D2cosS v21r 12

c D J .

We observe that at a big distance relative to param
c/v21 the exchange integraln oscillates as a function o
distancer 12 @n;2cos(v21r 12/c)/r 12

2 #. In other words the
two-photon cooperative exchange between the two ato
can inhibit or enhance the spontaneous emission as a f
tion of the distance between the atoms and decrease
1/r 12

2 .
Let us suppose that all the atoms are located within

volume whose linear dimensions are small compared
lmin52pc/v21. In this casen'1 and the solution of the
system of equations~29! takes the form

Z~t!52~11t!e22t21,
~31!

V~t!52te22t,Y~t!5 1
4 ~124te22t!.

Now we consider a more general case, when the numbe
atoms in the concentrated system is large. If we neglect
fluctuation of the number of excited atoms when the num
of atomsN@1, we obtain from Eq.~28! the well-known
Dicke equation for the atomic subsystem@7,12#:

d

dt
Z~ t !52

1

t0
@Z~ t !1N/2#1

1

t0
@Z2~ t !2N2/4#, ~32!

the solution of which is

Z~ t !52
N

2
th

t2t0

2tR
,

wheret05tRlnN is the delay of the collective radiation puls
of the photon pair andtR5t0 /N is the collectivization time
of the ensemble of atoms from the two-photon spontane
decay of theu2& excited state.

The time behavior of one atom inversion in the process
the two one-photon cascade emission is similar to the co
erative emission of two atoms in the case of the dipo

FIG. 2. ~a! The detector is placed perpendicular to the axis
tween two atoms.~b! The detector is placed along to the axis b
tween two atoms.
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forbidden transition@see Eq. ~31!#. Indeed, from maste
equation~15! we obtain the following system of equation
for one atom:

d

dt
^Dz~ t !&52

1

2tA
^D1~ t !D2~ t !&,

~33!

d

dt
^D1~ t !D2~ t !&5

2

tA
~11^Dz~ t !&2^D1~ t !D2~ t !&!.

Taking into account the initial conditions,^Dz(t50)&51
and ^D1(t50)D2(t50)&52 we obtain the following time
dependence of the atom variables
th

or
r
r

e

^Dz~ t !&52e2t/t
A1

t

tA
e2t/t

A21
~34!

^D1~ t !D2~ t !&52e2t/tA1
2t

tA
e2t/tA.

Next we shall study the behavior of the fluctuations of t
EMF intensity at a distancer from the center of mass of two
atoms, excited relative to the dipole-forbidden transition.

In the case when the detector is situated perpendicula
the distance between the atoms@see Fig. 2~a!# we obtain the
following dependence of the EMF fluctuations on time a
distancer 1252r 0:
e

G1~rW,t !5
d31

2 d32
2 ~v311v32!

2~12cos2z!

p\c7urW1rW0u2
Q2~ t r !E

0
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~v321x!2~v312x!2
$ 2

3 @Z~ t r !11#1x21~x!V~ t r !%, ~35!
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d31

2 d32
2 ~v311v32!

2~12cos2z!2
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Q2~ t r !S E

0

v21 x2~v212x!2dx

~x2v31!~x1v32!
D 2

@Z~ t r !1V~ t r !11#, ~36!

wheret r5t2r /c.
In the case when the detector is situated along the distance between the atoms@see Fig. 2~b!#, the time dependence of th

EMF correlation functions is

G1~rW,t !5
d31

2 d32
2 ~v311v32!

2~12cos2z!

p\c7urW1rW0u2
Q2~ t r !E

0
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$ 2
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~37!
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2 d32
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0

v_21 x2~v212x!2dx
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D 2

@Z~ t r !1cos~2v21r 0/c!V~ t r !11#. ~38!

Here the time dependence ofZ(t r) andV(t r) is given in Eqs.~31!.
For the estimation of functionsG1(rW,t) andG2(rW,t) we approximatex3(v212x)4 ' (v21/2)7; x2(v212x)2 ' (v21/2)4

andv312x ' v312v21/2; v321x ' v312v21/2. From Eqs.~35!, ~36! in this approximation we obtain

L'5G2~rW,t !2@G1~rW,t !#2;
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A similar expression can be obtained for the case when
detector is situated along the vectorr 12.

It follows from these relations that the second-order c
relation functionG2(rW,t) is much greater than the first-orde
correlation function G1(rW,t), because the paramete
(t0v21)

21;1027. The photons in the radiation field form
time-correlated pairs. One can obtainL2(rW,t) time depen-
dence for a large number of excited atoms in the conc
trated system.

L2~rW,t !5
7\2v21

3 N2

15327pc2r 4t0

sech2S t r2t0

2tR
D

3H 12
9N2

7v21t0
sech2S t r2t0

2tR
D J .
e

-

n-

However, one can observe that the second-order correla
function remains much greater than the square first-or
correlation function, when the number of cooperative ra
ated photons increases. This superbunching phenome
@18# may be distorted when the cooperative two-phot
width (N2/t0) of the levels achieves the value ofv21. But
this is impossible, because the dimension of the concentr
system of atoms is less than the minimum radiation wa
lengthlmin52pc/v12. In this situation the number of atom
inside the volumeV is less thanlmin

3 /r3 ~herer is the mean
distance between the atoms!. The superbunching phenom
enon occurs in the two-photon dipole-forbidden superra
ance because the photons in the coherence pairs~biphotons!
belong to the broadband radiation fieldvkPv21. We ob-

serve that at the point of observationrW the density of the
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photon pairs is inversely proportional to the fourth power
the distance between the source and the detector.

It is very interesting to study the behavior of quantu
fluctuations of the square intensity operator of the EMF:

«45
G4~rW,t !2G2

2~rW,t !

G2
2~rW,t !

. ~39!

When the distance from the system to the point of obse
tion is much larger than the dimension of the atomic s
system, and the dimension of the atomic subsystem is
than the radiation wavelength, the relative fluctuations of
square intensity correlation function is

«4'
^U1

2~ t r !U1
2~ t r !U2

1~ t r !U2
1~ t r !&

^U1
2~ t r !U2

1~ t r !&
2

21. ~40!

From this expression it follows thatG4(rW,t) has the same
value asG2

2(rW,t) and using the solutions for the correlato
~31! we obtain the following time dependence of«4 in the
case of two atoms:

«45
e2t

~112t!2
21. ~41!

Heret5t r /t0.
From the equation forL and Eq.~41! it follows that the

relative fluctuations of the EMF density operator«2

5$G2(rW,t)2G1
2(rW,t)%/G1

2(rW,t) remain larger than unity with
the increase in the number of atoms in the system, but
relative fluctuations of the square intensity correlation fu
tion is approximately equal to zero, because by increas
the number of atoms we can decouple the four particle c
relator in the following manner:

^U1
2~ t r !U1

2~ t r !U2
1~ t r !U2

1~ t r !&'^U1
2~ t r !U1

2~ t r !&

3^U2
1~ t r !U2

1~ t r !&.

In the second case, for the cascade emission we get

GI~rW,t !5
d0

2v0
4~12cos2z!

c4r 2 S t r

tA
e2tr /tA1e2tr /tADQ2~ t r !,

~42!

GII~rW,t !5
d0

4v0
8~12cos2z!2

c8r 4
Q2~ t r !e

2tr /tA. ~43!
f
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We observe that for the cascade emission of two photons
a single atom the relative time fluctuation of the EMF de
sity is

«5
GII~rW,t !2@GI~rW,t !#2

@GI~rW,t !#2
5

etr /tA

~ t r /tA11!2
21

and it changes from a negative to a positive value in the t
momentumt r52.513tA . In other words the fluctuation dis
tribution changes from sub-Poisson to super-Poisson. Sim
time behavior takes place for the relative fluctuations«4 in
the case of two-photon dipole-forbidden transitions@see Eq.
~41!#. For a large number of atomsN@1 the first-order cor-
relation function@GI(rW,t)#2 is approximately equal to the
second-order correlation functionGII(rW,t) and in this situa-
tion the two one-photon cooperative cascade emission
quasicoherent,«'0.

V. CONCLUSION

These results on the collective two-photon spontane
decay for dipole-forbidden transitions may be applied to
extended system of atoms with low concentration. The tw
atoms approximation can be taken into account here. A
follows from our results the two-photon interaction betwe
radiators through virtual photon pairs changes significan
in extended media.

In the case of the two-photon dipole-forbidden transitio
the product of the operatorsE1(t)E1(t) ' U2

1(t) and
E2(t)E2(t) ' U1

2(t) represented the amplitude of the tra
sitions between the excited and ground states, and the co
ence appears only for these operators. In other words
relative fluctuations of the square intensity operator decre
with increasing the number of atoms«4→0. The same be-
havior has the relative fluctuations of the EMF intensity o
erator in the two one-photon cascade emission.

APPENDIX

Below we shall show in what mode we get the relatio
~10! from ~7! using the lemma and the relations~8!. The
exclusion of the free part for operatorsCj 3

† (t) and Cl3(t
2t) in the expression forI 1 can be obtained without usin
the lemma. If we substitute the relations~8! for Cj 3

† (t) and
Cl3(t2t) operators in the correlatorI 1 one obtains
I 15 (
kk1k2

(
j ,l 51

N

(
r,b,g,d51

2 ~dW 3b•gW k!~dW 3r•gW k!~dW 3g•gW k1
!~dW 3d•gW k2

!

\4
eikW•~rW j 2rW l !E

0

t

dte2 ivktE
0

t

dt1eiv3t1E
0

t2t

dt2e2 iv3t2

3^@ak1
~ t2t1!eikW1•rW j2H.c.#Cj g

† ~ t2t1!@Cj b~ t !,O~ t !#Clr
† ~ t2t!@ak2

† ~ t2t2!e2 i ~kW2•rW j !2H.c.#Cld~ t2t2!&. ~A1!

If we decouple the operators of the EMF and take into account that^ak1
ak2

† &'dk1k2
in the Born-Markoff approximation we

obtain the following expression from Eq.~A1!:
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I 1' (
k1k2

(
j ,l 51

N ~dW 32•gW k1
!2~dW 31•gW k2

!2

\4~vk1
1v32!

2
ei ~kW11kW2!•~rW j 2rW l !z~vk2

1vk1
2v21!^Cj 2

† ~ t !@Cj 1~ t !,O~ t !#Cl1
† ~ t !Cl2~ t !&. ~A2!

After the substitution of the free and source parts of operatorCj 3
† in the expression forI 2 we get

I 25(
kk1

(
j ,l 51

N

(
r,b,g51

2 ~dW 3b•gW k!~dW 3r•gW k!~dW 3g•gW k1
!

\3
eikW•~rW j 2rW l !E

0

t

dte2 ivktE
0

t

dt1eiv3t1^@ak1
~ t2t1!eikW1•rW j2H.c.#Cj g

† ~ t2t1!

3@Cj b~ t !,O~ t !#Cl3
† ~ t2t!Clr~ t2t!&. ~A3!

Here the exclusion of the free part of theCl3
† (t2t) operator is more difficult, because the free part of this operator is situ

in the right-hand part of theI 2 correlator. In this case it is necessary to use the lemma. In what follows we purpos
notations

B~ t2t1!5$ak1
~ t2t1!eikW1•rW j2H.c.%Cj g

† ~ t2t1!,

D~ t !5@Cj b~ t !,O~ t !#

for the permutation of the free part ofCl3
† (t2t) operator from the right hand part to the left one.

After doing these notations we consecutively permute the free part ofCl3
† (t2t) according to the lemma

^B~ t2t1!D~ t !Cl3
1~ t2t!Clr~ t2t!&

5^B~ t2t1!D~ t !$Cl3
s1~ t2t!1Cl3

f 1~ t2t!%Clr~ t2t!&

5^B~ t2t1!D~ t !$Cl3
s1~ t2t!1Cl3

f 1~ t !e2 iv3t%Clr~ t2t!&

5^B~ t2t1!D~ t !Cl3
s1~ t2t!Clr~ t2t!&1^B~ t2t1!D~ t !$Cl3

1~ t !2Cl3
s1~ t !%Clr~ t2t!&e2 iv3t

5^B~ t2t1!D~ t !Cl3
s1~ t2t!Clr~ t2t!&1^B~ t2t1!$Cl3

1~ t !D~ t !2D~ t !Cl3
s1~ t !%Clr~ t2t!&e2 iv3t

5^B~ t2t1!D~ t !Cl3
s1~ t2t!Clr~ t2t!&1^B~ t2t1!$Cl3

f 1~ t !1Cl3
s1~ t !%D~ t !Clr~ t2t!&e2 iv3t

2^B~ t2t1!D~ t !Cl3
s1~ t !Clr~ t2t!&e2 iv3t

5^B~ t2t1!D~ t !Cl3
s1~ t2t!Clr~ t2t!&1^B~ t2t1!$Cl3

s1~ t !D~ t !2D~ t !Cl3
s1~ t !%Clr~ t2t!&e2 iv3t

1^B~ t2t1!Cl3
f 1~ t !D~ t !Clr~ t2t!&e2 iv3t

5^B~ t2t1!D~ t !Cl3
s1~ t2t!Clr~ t2t!&1^B~ t2t1!@Cl3

s1~ t !,D~ t !#Clr~ t2t!&e2 iv3t

1^B~ t2t1!Cl3
f 1~ t2t1!D~ t !Clr~ t2t!&e2 iv3t1 iv3t1

5^B~ t2t1!D~ t !Cl3
s1~ t2t!Clr~ t2t!&1^B~ t2t1!@Cl3

s1~ t !,D~ t !#Clr~ t2t!&e2 iv3t1^B~ t2t1!

3$Cl3
1~ t2t1!2Cl3

s1~ t2t1!%D~ t !Clr~ t2t!&e2 iv3t1 iv3t1

5^B~ t2t1!D~ t !Cl3
s1~ t2t!Clr~ t2t!&1^B~ t2t1!@Cl3

s1~ t !,D~ t !#Clr~ t2t!&e2 iv3t

1^@Cl3
s1~ t2t1!,B~ t2t1!#D~ t !Clr~ t2t!&e2 iv3t1 iv3t1 ~A4!

Now we can write that

I 25(
kk1

(
j ,l 51

N

(
r,b,g51

2 ~dW 3b•gW k!~dW 3r•gW k!~dW 3g•gW k1
!

\3
eikW•~rW j 2rW l !E

0

t

dte2 ivktE
0

t

dt1eiv3t1^$B~ t2t1!D~ t !Cl3
s1~ t2t!Clr~ t2t!

1B~ t2t1!@Cl3
s1~ t !,D~ t !#Clr~ t2t!e2 iv3t1@Cl3

s1~ t2t1!,B~ t2t1!#D~ t !Clr~ t2t!e2 iv3t1 iv3t1%&. ~A5!

After the Born-Markoff approximation and using the fact that^ak1
ak2

† &'dk1k2
it is not difficult to obtain the relation forI 2

from Eq. ~10!.
In a similar way@Eqs.~A1!–~A5!# we have obtained the expressions forI 3, I 4 correlators.
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