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Cooperative emission in the process of cascade and dipole-forbidden transitions
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In this paper the difference between two-photon dipole-forbidden and cascade transitions of an inverted
system of atoms is studied. It is shown that the fluctuations of the electromagnetitEfiék density in the
case of two-photon dipole-forbidden transitions are larger than the ones in the case of cascade emission. In the
process of the two-photon dipole-forbidden cooperative emission the photons are created in pairs and there
appears coherence between pairs of photbipthiotons. In this situation the distribution of energy between the
photons in one pair may be random. For two-photon dipole-forbidden transitions the time-behavior of the
square density fluctuations of EMF is similar to those of the density of EMF in the case of cascade emission.
When the distance between two atoms excited relative to dipole-forbidden transitions is less than the radiation
wavelength, then the kinetics of such atoms is analogous to the cascade emission of a single atom.
[S1050-294®@7)09710-2

PACS numbgs): 42.50.Ct, 42.50.Lc, 32.80t

I. INTRODUCTION radiation field. It is shown that in the case of cooperative
dipole-forbidden transitions the photons in the radiation field

The problem of quantum fluctuations and the generatioriorm time-correlated pairs that for a large number of atoms
of the nonclassical electromagnetic field in two-photon andeads to superbunching phenomena. The chain of equations
multiphoton processes have recently been the subject of far the atomic subsystem for the cases of both two-photon
number of theoretical and experimental studies6]. From  and two one-photon emission has been obtained. The ex-
the physical point of view it is very interesting to study the change integral between the radiators through the EMF is
behavior of the inverted system of radiatgmiclei, atoms  analyzed in Secs. Il and Ill. The kinetic characteristic for
in the processes of the two-photon cooperative emission afooperative emission of four photons by two atoms situated
light. For instance, the phenomenon of the new cooperativat an arbitrary distance has been obtained. It has been shown
emission for a dipole-forbidden transition of inverted radia-that in the case when the distance between the two atoms,
tors can be observed in the process of the two-photon spomxcited relative to the dipole-forbidden transition, is less than
taneous emissiofv,8]. It has been shown that in the processthe emission wavelength, then the kinetics of such atoms is
of spontaneous emission the atoms enter the regime of twanalogous to the cascade emission of two identical photons
photon superradiance and the collective spontaneous rate by one atom. Therefore the fluctuations of the light intensity
photon pairs (biphotong increases proportionally to the in the case of two-photon dipole-forbidden transitions are
square number of radiators. It has been demonstrated that larger than those of cascade emission.
the process of spontaneous emission of hydrogen or helium- The behavior of the inverted system of a large number of
like atoms, the dipole-forbidden transition$3,,-11S;,and  radiators has been analyzed too. It follof®m our results
22S,-11S, generate pairs of correlated photdbéphotons.  that for the cooperative two-photon dipole-forbidden transi-
The correlation function between the pairs of photons betion both the second- and the first-order correlation functions
comes larger than that of individual photons from differentof the light intensity are proportional to the emission rate. In
pairs. A similar effect has been proposed in Ref.in which  this situation we neglect the fluctuations of the number of
the authors studied the exchange of the two-photon integraxcited atoms in the process of dipole-forbidden transition,
between two identical atoms separated by distangéarge  which do not substantially change the fluctuation value of the
compared to the atomic diameter, so the overlap is negliEMF intensity. This approximation gives us the possibility to
gible). Such atoms undergo two-photon cooperative transielose the chain of equations for the atomic subsystem and
tions between their two level@f the same parityvia the  enables us to study the time behavior of the quantum fluc-
nonresonant intermediate lev@lf the opposite parily tuations of the EMF intensity.

It is known that Dicke one-photon superradiance has be- In the case of cascade emission the first- and the second-
came the focus of extensive theoretical and experimental inerder correlation functions for the light intensity of the co-
vestigationg10-12. The cooperative two-photon decay of operative emission are directly proportional to the emission
the two-level system, inverted relative to the dipole-rate and to the square emission rate operators of the atomic
forbidden transition, is a more difficult effect, because of thesubsystem, respectively. In this situation neglecting the fluc-
electromagnetic fieldgEMF) exchange between the radiators tuations of a number of excited atoms in the chain of atomic
taking place through biphotons. In this paper we study thesubsystem equations strongly affects the quantum fluctuation
difference between the two-photon dipole-forbidden coop-of a number of emission photons. Here, it should be men-
erative emission of two atoms and the cascade emission ofteoned that the relative fluctuations of the square intensity
single atom using the quantum statistical description of th@perator in the case of two-photon dipole-forbidden transi-
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tions have a time behavior similar to the relative fluctuations 3 >
of the intensity operator for the cascade emission. 2> —o e — 2> o
This paper is organized as follows. In Sec. Il we propose i !

a three-level Hamiltonian of inverted radiators for dipole-

forbidden and cascade transitions. Using the method of 13>
eliminating operators of the EMF and the virtual state of + ¢
electrons in the atoms we obtain master equations for the > 1>
atomic subsystem. In Sec. Ill we express the correlation (@) (b)

functions for the EMF intensity through the correlators of the
atomic subsystem operators. This representation of the cor-
relatio_n functions gives us the p_OSSibi"ty to StUd_y the time FIG. 1. (a) Initial state of theA-type three-level atomic system
behavior of the quantum fluctuations of the EMF in the pro-(;_ o) in the case of two-photon dipole-forbidden transitiofts.
cess of two-photon dipole-forbidden and cascade emissiongitial state of cascade three-level atomic systém@) in the case
Such a time behavior of the inverted atomic subsystem i$f two one-photon emission.
studied in Sec. IV.
ground statd1) is possible and takes place via the virtual
Il. MASTER EQUATION FOR THE ATOMIC SUBSYSTEM state|3). In such dipole-forbidden transitions the operators
DENSITY MATRIX that describe the transitions betweé) and|1) levels be-
long to si2) algebra[13].
Let us consider an operat@(t), which describes the
transition between level®2) and|1). The Heisenberg equa-
tion for the operato(t) is given by the relation

We consider an ensemble Wfthree-level radiators in the
exited staté2). Since the transitions between 2 and|3)
and|1) and|3) levels are allowedds,,d3;#0), while the
transition is forbidden betweef2) and |1) (d,;=0), the
Hamiltonian of such a system takes the form

d i

s N 3P =7 [H®,0M)]. ()

H=>, fioajact how UL
; Pk o;l 121 Paja Using the Hamiltonian(1l) one can obtain the following

Heisenberg equation for the mean value of the operator

2 N
. - - —iKkTr O(t):
+',321 p) le (g0 (afe K Ti—H.c)(UE+ U3, (t)

d .3 N
O HOW)=;3 ko (UL0.00])
-2
k

=1j=1
Here iw,(a=1,2,3) is the energy of levek; d;; is the
dipole moment of the transition between the sta@sand
|BY(B=1,2) al anda, are the creation and annihilation op-
erators for the photons with the momentirk, energyh wy,
and polarization\, g,= (27hw,/V)¥%, , €, is the photon
polarization vecton=1,2 andV is the EMF quantization X(a;(t)efnz.;j_H_C.», 3)
volume, Ufﬂ is the corresponding operator of the transition
between statel8) and|B) of the jth atom. The operators of where( ) is averaging over the initial state of the “atom plus
the atomic subsystem and the EMF operators satisfy thfield” system ¥'=|V)|A)|A) is the wave function of the

N 2 - -

(d3g 9w
22

j=1 p=1

X([UF4(t)+Uf(1),0(1)]

commutation relations atomic subsystem far=0, |V) is the wave function of the
, / EMF vacuum. Equation (3) contains the EMF operators
[UfB,U,ﬁa,]=6]-,|[533,Ufa,—5aa,uj"’ﬁ], a,(t) and al(t). After integrating the Heisenberg equation
for these operators we obtain the formal solution #Q¢t)
[acal]=du,  [af.a,]1=[aa0]=0. andaj(t)
Here we shall discuss two types of three level systdias: a(t)=ap(t)+ag(t), al(t)z[ak(t)]’r, (4)

level |3) is situated higher than th@) and|1) levels[see _

Fig. 1(@] and (b) level |3) is situated between th@) and  Whereai(t)=a;(0)e ' and

|1) levels[see Fig. 1)]. N2 -
Let us now analyze the first caga) when the atomic s (ds,- Ok) Siken) t

subsystem is inverted relative to the dipole-forbidden transi- ak(t)=§l 21 5 © ' f

tion [2) and |1). As the unpopulated leveB) is situated :

higher than the populated levé?) the real transition be- xe*i‘“kf[ufp(t—T)+Uf’3(t—r)]

tween levelg2) and|3) do not take place due to the viola-

tion of the conservation energy lae{—E;— hwy, # 0,E,  are the vacuum and source parts of the operatt). If we

andE; are the energy of the levelg) and|3), respectively, ~substitute the expressiot®) for a,(t) andaj(t) into Eq.(3)

fhwy is the emitted photon energyin this situation only a we obtain the following equation for the mean value of the

two-photon transition between the excited st@®® and  operatorO(t):

dr
0
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d iy S N N2 (a3ﬁ'§k)(a3p'§k)
FOM)=i 2 2 0 U0+ X X 2
a=1j=1 k j.I=1p,8=1 A
.. - [t .
% elk.urr.)f dre "W {([U3(1),0()JUf(t— 7)) +([U34(1),0() JUE (t— 7)) +([UL(D),0(1) TUP (t— 7))
0
+([U£3(1),0(1)JUf3(t— )} +H.etfOF () —O(1)] . (5)

Here the H.c.fO ™ (t)— O(t)] coincide with H.c. terms for the hermitian operatp@(t)=0"(t)], and for the nonHermitian
operatorO(t) the notation H.c.EO " (t)— O(t)] is equivalent to H.c. terms in which tf@* (t) operator is replaced b@(t).
It is not difficult to represent the operatdtqﬁa through Bose operators of the atgm) and|gB) states

Ufu=ClsCiur [Cia:Clgl=0updy. [Cju.Cipl=[C],.C] 1=0.

In terms of Bose operators E(b) takes the form

d 3 N
G0)=1 2 X w0 [Uf, O] +{l1+ 1+ 15+ 1+ Het[0F () -0}, (6)

a=1j=1

where

S~ (a3ﬁ'ék)(aa 00 - - [t .
=2 j,|2:1 pﬁzzl Pra e'k'(”_”)fodfe_'“’kT<CjT3(t)[C,-B(t),O(t)]cﬁp(t—T)cls(t_T)>,

N 2 (dag G (A3, O ¢ - - [t -
=2 > ﬁEzl £ 7 el fodre*'“’kwcj*a(t)[cm(t),0<t>]cra<t—r)qp(t—T)>,
' (7)

. 2 (asﬁ'ék)(aa 'ék) .. Lt .
I3:2kj,|2:1 p,ﬁzl Py ) e'k'(”'_”)Jodfe"“Wst(t)[C,-*B(t),O(t)]cﬁp(t—T)cl3(t_T»,

N 2 (dag Qi) (A3, G ¢ - - [t -
=2 > > B Tk f dre 1 7(Ci3(1)[ Cl4(1),0()ICHH(t— 7)Cy (1= 1)).
k jI=1p,p=1 fi 0

Account was taken that th@(t) operator is a combination of Here CJ-f3 and stg are the free and source parts of operator
Bose operators df2) and|1) states. Cjs, respectively:
As level |3) is situated higher than the excited st#2e¢
the population of this level is equal to zero in the process of '
two-photon spontaneous emission. Cla()=Cja(0)e '3,  C4l3)=0,
Using the Hamiltonian(1l) and the Heisenberg equation
for CJ-Tg(t) and Cj3(t) operators it is very easy to represent

these operators througB ,(t), Cl(t) (a=1,2), and their 2 (dsy- G0 [t
free part C}sg(t)sz ;1 ;'L jodre iwgT

x[af(t— e D—H.c]C, (t-7). (8
_f s
Cia(t) = Cja(t) + Cjs(1), In this situation is necessary to exclude Bose operaigss

: . and C;r3 from Eq. (7). For this purpose it is necessary to use
Cis(H=[Cja()]". the following lemma:
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Lemma If Bose operatorsC;; and cl i3 lie between the two operators of the atomic subsys#(ty) and B(t,)
[A(t;),B(t,) do not contain the operato@ 3 and C]3] belonging to other times, the elimination of the free part of these
operators yields the following expression for the correlator:

(B(t2)Cja(DA(t)) =(B(t2) Ci3(DA(ty)) — e s TW(B(t)[Ca(ty), Alty)]), )

(B(t2)C3(HA(t)) =(B(t) C5(DA(t)) + €' s C (1), B(t) JA(ty)).

The proof of this lemma fo€;(t) andCfs(t) operators is similar to the demonstration proposdd]ror the EMF operators.
The commutators in Eq9) play the highest role in the two-photon spontaneous emission and only such commutators bring the
main contribution to the two-photon process.

Then, after removing the free part Gf; and CJ-T3 operators using the previous lemr(s®e Appendixwe can obtain the
following expressions fot,1,,13,1, in the Born-Markoff approximation:

N (daz Q) H(darGi,)®
|1~k2k “21 o To? &K1k (17 ¢ wy + oy, — 050)(CH(HICj1(1),0(H]CT(HCiaA1)),
12 L= kT @3

(da- Ok, ) (daz O, ) (da1- O ) (dap Gk) = - - .
: - 2 2 e'(kﬁkz)'(rrr')s“(wkﬁ“’kl_wzl)

N
k1k2 J'z:l ﬁ4(wk +w32)(wk1_w31)
><<C L(D[Cj1(1),0()]C (1) Ca(1)),

(a1 Gie))(daz G ) (Ao O, (daz G) - o , T
ekt (71 ¢ (@ + wy — 0, {[Co(1),0(1) ]C;1 (1) ClL (1) Cpp(1)),

>

T it 1wy, w3 (0k, — w31)

S EN: (da1- ) *(daz- G,)?

kikp j.I=1 ﬁA(a)kl—w31)2

&2 (¢ (wy+ i~ w2)([ChH(1),0()]C(HCHMC(D). (10

Here {(wy, + 0y, — 021) = T80k, + ok, — wa1) + Pli/(wy + wy,— wp1)], P indicates Cauchy principal vali4], ws;, w3y,
w,, are the transition frequences between stf@¢s+|1), |3)—|2), |2)—|1), respectively.

At last taking into account the fact thm|12=C,T1C|2, Uj21=CjT2CJ-1, the final expression for the mean value @(t)

operator is

d i eff . i 2 1 +

a(o(t»:g([H (t),O(t)]>+“2:1{F(J,|)([Ujl(t)-o(t)]Ulz(t)>+H-C-t[o (=01}, 11
where

N 2
He(t)=Ho(t) +Hi(1), Ho(t)=j§1 2, o Ui (),
dgldgz " * 3 [~ 35 1 / 1 1 ? 2 1
M= e S SIS f dwklwklfo dwkakZkal*‘wkz_wzl\ w31~ wlir w3zyt Wy, Xin( @)X V(D Ui,

. dgldgz @21 4
F(JJ):mL wk(wzl_wk)3dkaj|(wk)Xj|(w21_wk)(

1 1 \?
+
w31~ Wk w3zt oy

and
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sin(Xr; /c cogXry/c) sin(Xr;/c
n( jl )+(1—3C0§0) 5( jl )_ n( jl )
erllc (Xr“/C)Z (er|/C)3

Xji(X)=(1-cos'6)

Here 6 is the angle between the direction of the dipole mo-the transition frequences and the dipole moments of the tran-

mentds, andr;;, H;(t) describes the two-photon coopera- Sitions between the staté)—|3) and|3>—>|l> are respec-
tive Lamb shift of two level states of atoms in the process oftively equal,wys = w31 = wg, dpz = d3; = do, the Hamil-
the spontaneous decay of the excited stajeF(j,1) is the tonian of such an inverted system takes a simpler form:
spontaneous cooperative emission ratejfand| atoms of N
the s'y'stema in Ehe »processaof.two—ph.oton dipole-forbidden H(t)=2 ﬁwoDzj(tHE ﬁwkalak
transitionsrj=r;—r, r;=|r;| is the distance between the =1 K
j andl atoms. N (.-

Now we can easily obtain the equation for the density . 0' 9k . K
matrix p(t). As +iY, > [D (t)ae(t)e* i—H.cl].

d d (13
Tr| 0(0p(0) | =Tr| 7p(HO(0) |, (12)
Here the operatorBJ (t), Dj (t) are the transition operators
from Eq. (11) we get between|2) and |1> states via the redi3) state and they

N differ from the U i(1), Uzj(t) operators defined for the

d [ i dipole-forbidden caséa):
atPO=7lpOHT+ 2 {F(L.D[ULA(D,Uf]+H.e).

| (124 D.j(1)= U3~ U3(1),
From Egs.(11) and (128 follows that cooperation takes D/ (t)=2Y4U3,(t) + U3 (1],
place between the photon paifsiphotons. The energy of
the biphotons is fixedf w,1=%h wy+Aw,. The common Df(t)=21’2[U§j(t)+U§j(t)],

phases of such photon paitsiphotons$ are in phase in spite
of the fact that the photons in the pair may have differentand satisfy the following commutation relations
energieqfor example i w,; may be= thanfiw,,). In other

words the two-photon dipole-forbidden cooperative decay [Df(t),D[(t)]zZDZ(t)ﬁjk,
has a broad band emission spectrum of biphotéms
e (0,w,7) and the spectral generation rate is determined pri- [Dzj(t),D,f(t)]z + Di(t)b‘jk.

marily by the multiplew:(w,,— wi)3. Such behavior of the

cooperative radiation field is not specific for the two one-Using Heisenberg representation for t@¢t) operator be-

photon cascade emision. longing to the atomic subsystem and removing di) and
Now let us consider the second cad® when the|3) a'(t) Bose operators of the EMF we can obtain the follow-

level is situated betwed2) and|1) levels[see Fig. )]. If  ing equation foKQ(t)):

23
0®o

N
E Xl (@o){([Dj (1),Q(1)ID (1)) +H.ctfQ* () —Q(D)]}

d N
—(Q(1)=iwy, (D40, +
dt =1

a2 XN © widw
S S R [  (@)(D] (0D (0. (9

2mhcdii=1
Following the transformations similar with those in Efj2a, we obtain from Eq(14) the next master equation for the atomic
subsystem:

d i . 3 < _ N
P (0= 7lPOH"+ g2 Xi(wof[Dj p(t).D T+ Hel, (15

where 1#,=4w3d3/3%c® and

N 2

dg © w3dw
Heff= ﬁon D,j(t) — 2 F’J —— xji(@)D; (H)Dy (1).
N 0 W— g
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From master equationd2a and (15) follows that the dissipation rate of the excited energy in the case of the two-photon
spontaneous emission is proportional to the product of the two exchange integf®)s; (w21—X) but in the case of the two
one-photon cascade emission the dissipation rate is proportional ogly(to).

In the next section we study the photon correlation functions in these two cases.

IIl. PHOTON CORRELATION

The general photoelectron counting correlation functions can be represented by the chsTt(v?et)] and negative
[E*(r,t)] frequency parts of th&(r,t) operator14—18§.

Ga(r,)=([E"(r,H),E*(r,0)]), (163
(N D) =CIE~(r,t),ET(r,)][E~(r,t),ET(r,1)]:), (16b)
Gu(r,t)=CIE(r,t),EX(r,HIE~(r,0),ET(r,H)[E~(r,t),ET(r,) ][E~(r,t),ET(r,1)]:). (160

Herer(F,t) and G4(F,t) are respectively the intensity and the square intensity correlation functions for the sante time
E-(r=> gaje v, EXr.H=[E (r.n],
k

:f(F,t): indicates normal ordering. The functions

Ap(rH)=Gy(r,) = Gi(r 1),
(16')
A4(r,)=Gy(r,) = GH(r,b)
take into account the EMF density and the square EMF density fluctuations.

Let us consider the first caga) when the unpopulated levi8) is situated higher than the levé) and|1). After partial
elimination of the photon operators we obtain the following expression&faand G, correlation functions:

(daa, " Ok,) (A3, Gk,)

N2
a(r t)—E (9k,9k,) 2 >
=1 ay,a

T L ) t .
e—|k2~r|+|k1~er dTlelwlelj dee—Iwkz’rz
0 0

h2
X([Ujsal(t )+ U3 (t—m)][Ug? — )+ U5, J(t—=m)])e” ko), 17
) N (d3ay Ok (a0, Ok) -~ - - -t o
Galfi)= 2, (G, Gig)(G G) 2 2 — e'<k1-frkz-n>J drle'wkmf drye ik
Kp--- =1 ap,ap=1 f 0 0
X([U3, (t— )+ Ut = rp)]af (Day (D[USAt— 1)+ U}, (t—7p)]he itk ke ko, (18)

We observe that it is difficult to exclude the EMF operataig(t) and ak4(t) from Eq. (18) because the atomic subsystem

operatoriu (t )+ U 3(t—71)] and[U (t 7))+ Ug‘ﬁ(t— 7,) ] belong to other time moments. In this situation one can
exclude the boson operators from these expressmns using the similar lemma for the boson operator§7f EMF
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- (day gkl)(d3l gkz)(d32 9k3

) t .
(F0= 3 (G- : s dryglen e f drye (oh,* oy 022
kqkoks h jI=1 0

<U11(t T)Uip(t= 7)) (03t 039 i (K1 —K) T —i(Ky+ ) +i(ky 1)) kg (F; 1))

19
(gt ) (03— @)
- 1 e s s s t . t )
7%y kg 0 0
(daz O)(da1-Gk,)  (da- Gx)(daz- Gk,) ((632' Ok,)(ds1-Gk,)  (da-Gi,)(dgz- Gk,)
X — —
Wy, ~ ©31 i, T 03 Wy, ~ ©31 wy, T 03
N
x> g i(Kytkg)-(r=r))g=i(KpHKg)- ()~ r)<U t—r)Ug(t—72)). (20
j, =1

The first- and second-order correlation functions for the EMF intensity are proportional to the similar correlation functions for
the atomic subsysten(rufj(t— Tl)U%|(t— 7,)). Thus, after integrating oveéq, ky, ks, ks, 71,75 and using the vector identity

20 (8,,°6,)(N-6,)(n-€,) =1 (Ky M= (ke )+ (Ky k) (k1) (- 1),
1h2

(n[lds,,a=1,2)

one obtains the following expression for tﬁq(F,t), GZ(F,t) correlation functions:

X3 _v\4 oo _ e
R e N R R e L
wsz"‘x) (w31—X) [r+ril[r+r
r+r r+r r+r. r+r
><<U§j(t——| | U%,(t—' ! >®(t—| 1 @(t—' ) 21)
c c c c
Gy t) d§1d§2(1_0052§1)(1_00§§2)( . 2)2§ f‘”zl X (wp—Xx)? )2
b= w w X
2 47ct stn s = 0 (X— w3 (X+ wzp)
CO oI — T /c)coqd w F—F/c) r—r r—r, r—r; r—r,
e T T Y | R O R R 1
|f—fj| Ir—ri| ¢ ¢ ¢ ¢
(22)

Here®(t—|r—r;,|/c) is the Heaviside step function, agds the angle between the direction of the vectoandds, .

The retardation of the EMF in poinjc is taken into account in Eq$21) and (22). Markoff approximation allows us to
ignore the retardation relative to the center of the atoms mass.

For the square intensity correlation functim(F ,t) we obtain the following expression:

67 D d3,d%,(1—cof¢)3(1— coge,)? o fwzl X2( w1~ X)2dX 4% O way|F —T|/C)cOg wqy|F — )| /C)
)= (O] (O] O O
* 16m2c1® s (X—w3) (X+w3z)) | jT=1 Ir=r|%[r=ry|?
N - - - - - - - - - -
cos(amlr—rm|/c>cos(w21|r—rn|/c>< 2( |r—r,-|) 2( |r—rml) 1( |r—rnl)
X e U2l t—-—2X1|u? [t Ul t—
s [V =Tl 7 =2 S R A DY R S
P P, P i P
x U, - '|)>®(t—| ’|)®<t—| '|)®(t—| m|)®(t—| ”l). (23
C C C C C

Let us now express the correlation functions for the EMF intensity through the atomic subsystem correlation functions in the
case of the cascade emission . At first, as the method of exclusion of the EMF operators in this case is not difficult, we get
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. _ . (do- 9k )(do-gy,)
G'(r, )= > (9w -Gk, . -
K, 19K

E —|k2 r|+|k1rfd7 el(@k— wO)Tlf dre” i(wy,= @)
2h? =1 0 0

X(Djf (t=1)Dy (t—rp))e kK, (24)
. (ao'dkl)(ao'ékz)(ao'dkg)(a0'§k4)

N
el F,t — 5 o.A J . e~ iy r|+|k1r —iKg-rn+ikg T
(r,t) k12k4 (9k, - 9k,) (9k, " 9k,) Y j,I,mE,n::L

t t t t
i(w — —i(wy.— (w0 — —i(wy — + +
X J'OdTlel(a)k1 wo)rlfodee i(wy, wo)ﬂ'zfodq.sel(wk3 wO)TgfodT“e i(wg, wo)r4<Dj (t—7)D:(t—73)

XDy (t=7)Dy (t=rp))e (i sloka) T, (25

Here one can introduce the notatidEE(F,t) andG“(F,t) for the first- and second-order correlation functions, respectively, of
the two one-photon casade emission.

After summation over the polarization and integration over all directioris wé get forG'(F,t),

L 2wl N gliwolor=r=Ir=rj) r—r; r—r, r—r, r—r
Gl(r=——0r> ——————(1-cod{){ D t—% D/ . . ! 0 t—% gl

2ct =1 fr—r)||r—rj] c
(26)

and forG'"(r t)

48 N gliog/e)(Ir=ri+|r=rl=|r=rj|=|r=rg}) F_f PLr
G“(r )_ : E > 5 .5 5.5 5 .5 o (1_0032§)2 DJ+ t_% D; t—| n|

4¢® jrmn=1  |r=rj||r—r[r—rgl[r—r|

-, -t F—r, F—r, F—r, -t
B ")D;(t—' m|)>®(t_| ,|)(t_| n|>®(t_ .|)®<t_| m|>_ -
C C C C C C

XDy

Here the first- and second-order correlation functions are di- In the next section we shall analyze the time behavior of

rectly proportional to the emission rate and the square emishe functions G,(r,t), G,(r,t), Ga(r.,t), and G'(r,t),
sion rate operators of the atomic subsystem, respectively. E—:”(r t) for one and two atoms

is not difficult to observe tha®'V(r,t) correlation function
is proportlonal to the same order of the atomic correlation |, THE cOOPERATIVE BEHAVIOR OF THE ATOMIC
functionsD ™ ()D ™ (t): SUBSYSTEM IN THE PROCESS OF TWO-PHOTON

NP " 4 i n AND TWO ONE-PHOTON COOPERATIVE EMISSION
G (rut)~<Dk (trk)DI (trI)Dm(trm)Dn (trn) ) o )
From the master equatiofi2g it is easy to obtain the

XDy (4;)Dj (t;)) Dy (t;1)Dg (trs)). following chain of equations for two-photon dipole-
o forbidden cooperative transitions:
Heret,;=t—|r—r;|/c is the retardation time for the EMF
generated by théth atom. + +(

It follows from Eqgs.(21)—(27) that for two-photon dipole- a<RZj(t)> 2 FOLDIR (DR (1) >+<R DR (D)1,
forbidden transitions the second- and fourth-order correlation (28
functions of the EMF are proportional to first- and second- d )
order correlators of th&)2(t)U3(t) atomic operator product, dt<R (DR (D)= 22 [F(LD(RTRAMDR (1)) +F(j,1)
respectively. For the two one-photon cascade emission the
EMF correlation functions are of the order of the atomic X(RT (DR (DR ()],
correlation functiongsee Eqs(26), (27)]. In other words the
product of two negative frequency parts of the EMF strengtrand so on.

E™(t)E" (1) in the correlation function for the EMF is pro- Here R;;, Rf, and R;" are respectively the inversion,
portional to the transition operattt?(t) in the case of two- ~ creation, and annihilation operators for the atomic subsystem
photon dipole-forbidden transitions, while for the two one- 5 1

photon cascade emission the negative frequency part of the Rej()=[Uja(1) —Uja(1)]/2,

EMF strength is proportional to the transition operators be- . 5 B 1

tween the ground and excited st@é (t). Ry (1)=Uj1(1),R; (1) =Uj,(1),



3282 N. ENAKI AND M. MACOVEI 56
which satisfy the commutation relations cooperative parameter. First we average the exchange ker-

nel x15(x) over the directions of the dipole momentuhand
then one can approximabe’(w,;—X)?~(w,,/2)*. In this

We are going to study the cooperative emission of two atom§2S€ We obtain the following relation for parameter
situated at the distanae;. It is possible to obtain a closed
?ys)tem of equations for two atoms at the second step of chain ( c )2[ c ( Worl 12) s(ler 12) ]
28): n= S -

[R(1),R(D]=28R,i(1), [Ry(H),RI(D]I==6;R.

F1o012) (1012 c

We observe that at a big distance relative to parameter
c/w,, the exchange integrat oscillates as a function of
distancer, [N~ — cos(yir1,/C)/r3,]. In other words the

two-photon cooperative exchange between the two atoms

d B 1 1
az(t)— - 7_0[1+Z(t)]_r_1v(t)’

%V(t)= - iV(t)+ iZ(t)+iY(t), (29) can inhibit or_enhance the spontaneous emission as a func-
7o 1 1 tion of the distance between the atoms and decreases as
12,
Let us suppose that all the atoms are located within a
aY(t)=—T—OY(t)—2—7_OZ(t)+2—TlV(t). volume whose linear dimensions are small compared to

Amin=27Clw,1. In this casen~1 and the solution of the

Here we introduce variableZ(t) =(R,;(t))+(Ry(t)) is system of equation€29) takes the form

the inversion of atoms, V(t)=(R; ()R (1))
+(R; ()R, (t)) is the cooperative rate of emissio¥(t) Z(1)=2(1+7e -1,
=(R1,(t)R,,(t)) is the correlation function of inversions for
the first atom and the second one. The spontaneous and co-
operative emission timey, 7, can be found from the rela-

(31)

V(r)=27e 2"Y(1)=;(1—47e 27).

tions
Now we consider a more general case, when the number of
1 8d§1d§2(w31+ w3)? (w21 x3(wp—X)3 atoms i_n the concentrated syste_m is large. If we neglect the
—= " X 5 > fluctuation of the number of excited atoms when the number
o 9mhec 0 (w31 X) (w3t X) of atomsN>1, we obtain from Eq(28) the well-known

Dicke equation for the atomic subsystéim12):
1 2d§1d:232( (1)31+ (1)32)2 w21
—= dx
T1 h2c® 0

%Z(t)= - i[Z(t)+ N/2]+ i[ZZ(t)— N?/4], (32
Xg(w21_ X)3X12(X)X12(w21_ X) To 7o

(03 X)X (03— %)? ' the solution of which is

Using the initial conditions for variablesZ(t=0)=1, N t—t
V(t=0)=0, Y(t=0)=1/4 we obtain the following solution Z(t)=— =th——2,
of the systen{29): 2 2

wherety= 7rINN is the delay of the collective radiation pulse

2 . . . . .
Z(r)=— 4n “ory 1-n o--mry l+ne*(””>f— 1 of the photon pair andg=1,/N is the collectivization time
1—n? 1+n 1-n ' of the ensemble of atoms from the two-photon spontaneous
decay of thg2) excited state.
The time behavior of one atom inversion in the process of
V(r)=— 4n o2 1-n e,(l,n)f+1+ﬂ Rt the two one-photon cascade emission is similar to the coop-
1—n2 1+n 1—-n ' erative emission of two atoms in the case of the dipole-
(30)
1+n? 1-n e
— 27 _ —(1-n)
Y(7) 2 T 2(1+n) ’
det. rig  det. <} o ®
1+n ~(1+mry 4 r r T12
21— ° '

@) i (b)
wheren=rq/7, 7=t/7g.

~ To estimate the dependence of the two-photon coopera- FIG. 2. (a) The detector is placed perpendicular to the axis be-
tive exchange integral between the atoms at a distaj3oge  tween two atoms(b) The detector is placed along to the axis be-
make the following approximation in the expression for thetween two atoms.
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forbidden transition[see Eq.(31)]. Indeed, from master / )

equation(15) we obtain the following system of equations (DA1))=2e"" TAJFT—'ft a1

for one atom: A (34)

2t

d 1 D (t)D (t))=2e YA+ —e U7,
G (D40) == 5 (D" (VD" (1), (DHHD () TA
(33 Next we shall study the behavior of the fluctuations of the

d . B 2 N _ EMF intensity at a distance from the center of mass of two

a<D (D™ ()= T_A(1+<Dz(t)>_<D (HD™(1)). atoms, excited relative to the dipole-forbidden transition.

In the case when the detector is situated perpendicular to

Taking into account the initial conditiongD,(t=0))=1 the distance between the atofisee Fig. 2a)] we obtain the
and(D"(t=0)D~(t=0))=2 we obtain the following time following dependence of the EMF fluctuations on time and
dependence of the atom variables distancer 1,=2r:

. d2d3(wst w3)?(1—CcoY) w1 X3(wo— X)*dX
Gy(F 1) = 22 w;flic;;);+;|2 02 tf)fo 21(w i“)’(Z)lz(w _X)z{%[z(tr)+1]+X21(X)V(tr)}’ (35
0 32 31
. d5,0%(wgt w3)?(1—Cc0L)? 021 X2(wp—X)2dx \?
Galf )= 2 23;20‘;’} — @%)( | S v+ (36)
—lo

wheret,=t—r/c.
In the case when the detector is situated along the distance between thd seerfig. 2o)], the time dependence of the

EMF correlation functions is

-~ dgldgz(w31+w32)2(1_0052§) w21 X3(wy—X)*dx X
Gy(r,t)= EPYCEREAT ®2(tr)fo (w32+x)2(w31_x)2{§[z(tr)+1]+X21(X)Cos{zro(w2l_X)/C]V(tr)},
(37
- 5,054 w31+ w3y *(1—cogY)? 0_21 X?(wy—Xx)2dx |2
Gy(r,t)= PP AT @2(tr)(f (X_wgl)(stz)) [Z(t,)+cog 2w, ro/C)V(t,)+1]. (39

Here the time dependence &tt,) andV(t,) is given in Eqs(31).
For the estimation of function§,(r,t) and G(r,t) we approximatex®(w-;—X)* ~ (01/2)7; X2(wxn—X)2 ~ (w,1/2)*
and wg;— X =~ w31~ wy1/2; wzpt X =~ w3z1— wy/2. From Egs(35), (36) in this approximation we obtain

3h2w3,04(1,)

27 mréc?s,

gz . _8@2(tr)ﬂ- 3V(t,) ez 2
A =Gy(r,t)—[Gy(r, )] Z(t)+V(t,)+1 —Z(tr)+1+2w217_0 . Xor(X)dx| |.

30)2170

A similar expression can be obtained for the case when thelowever, one can observe that the second-order correlation
detector is situated along the vectqp. function remains much greater than the square first-order
It follows from these relations that the second-order cor-correlation function, when the number of cooperative radi-
relation functionG,(r,t) is much greater than the first-order ated photons increases. This superbunching phenomenon
correlation function G,(r,t), because the parameter [18] may be distorted when the cooperative two-photon

(roway) 1~10"7. The photons in the radiation field form Width (N% 7o) of the levels achieves the value @b, . But
time-correlated pairs. One can obtalrh(Ft) time depen- this is impossible, because the dimension of the concentrated

dence for a large number of excited atoms in the concerSyStém of atoms is less than the minimum radiation wave-
trated system. length in=27c/wq;. In this situation the number of atoms

inside the volumeV is less than\ 3. /p® (herep is the mean
7ﬁ2wglN2 t,— 1o distance between the atommdhe superbunching phenom-
15% 277702r470S H( ) enon occurs in the two-photon dipole-forbidden superradi-
ance because the photons in the coherence fi@photong
Xl 9N? (tr—to)} belong to the broadband radiation fielg € w,;. We ob-

serve that at the point of observationthe density of the

Ao(r t)=

ZTR
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photon pairs is inversely proportional to the fourth power of We observe that for the cascade emission of two photons by

the distance between the source and the detector. a single atom the relative time fluctuation of the EMF den-
It is very interesting to study the behavior of quantumsity is

fluctuations of the square intensity operator of the EMF:

(39) SZG“(F,'E)—[G'(F,t)]Z: atr /7a

Gy(r,t) = G3(r 1) 1
- : [G'(r,1)]? (t, /7p+1)2

GA(r t)

€4

When the distance from the system to the point of observa- | . . . . .
tion is much larger than the dimension of the atomic Sub_and it changes from a negative to a positive value in the time
omentumt, =2.513r, . In other words the fluctuation dis-

system, and the dimension of the atomic subsystem is led8

than the radiation wavelength, the relative fluctuations of thdPution changes from sub-Poisson to super-Poisson. Similar
square intensity correlation function is time behavior takes place for the relative fluctuatiensin

the case of two-photon dipole-forbidden transitigase Eq.
(U2(t)U3(t,)U3(t)UL(t,)) (41)]. For a large number of atoné>1 the first-order cor-

847 (Uz(t NET ))2 : (40 relation function[G'(F,t)]2 is approximately equal to the
A second-order correlation functid®"(r,t) and in this situa-
From this expression it follows thaB,(r,t) has the same tion the two one-photon cooperative cascade emission is

value asG3(r,t) and using the solutions for the correlators quasicoherent; ~O0.
(31) we obtain the following time dependence ©f in the

case of two atoms: V. CONCLUSION
e’ These results on the collective two-photon spontaneous
842—(1+27_)2 -1 (41) decay for dipole-forbidden transitions may be applied to an
extended system of atoms with low concentration. The two-
Here r=t, / 7. atoms approximation can be taken into account here. As it

From the equation foA and Eq.(41) it follows that the ~ follows from our results the two-photon interaction between
relative fluctuations of the EMF density operater, radiators through virtual photon pairs changes significantly

={Gz(r,t)—Gi(r,t)}/Gi(r,t) remain larger than unity with " ?r)w(ttehr:adce:s?g?mé two-photon dipole-forbidden transitions
the increase in the number of atoms in the system, but thﬁ] duct of th torET (NE* (1) ~ ULt d
relative fluctuations of the square intensity correlation func- € product o 5 € operatork " ()E (1) . 2(t) an

tion is approximately equal to zero, because by increasinff (DE (1) ~ Ui(t) represented the amplitude of the tran-

the number of atoms we can decouple the four particle corsitions between the excited and ground states, and the coher-
relator in the following manner: ence appears only for these operators. In other words the

relative fluctuations of the square intensity operator decrease

(U2(t)U3(t)U3(t ) U(t)) = (U%(t,)U2(t,)) with increasing the number of atonas— 0. The same be-
L L havior has the relative fluctuations of the EMF intensity op-
X(Ua(t)Ux(t,)). erator in the two one-photon cascade emission.

In the second case, for the cascade emission we get

APPENDIX
. dfwg(1-cos) [t R _ .
Gl(r,t)= — —e Wit e k") @4(t,), Below we shall show in what mode we get the relations
cr A (10) from (7) using the lemma and the relatio8). The
(42) exclusion of the free part for operatoGJTS(t) and C5(t
dwf(1— cog¢)? —7) in the expression fof; can be obtained without using
G“(F t)= 0™0 2(tr)e—tr/TA' (43 the lemma. If we substitute the relatiof® for Cj*g(t) and

cBré C,3(t—7) operators in the correlatdy one obtains

N 2 (a3ﬁ'§k)(a3p'§k)(a3y'dk )(dss- Oy,
S (G,

. L[t _ t _ t—r _
. 7 e""“i’”)f dre*"”kff dTle'“’371f dre @
kkiky j,1=1 p,B,y,0=1 fi 0 0 0

X ([a,(t—r)e*rli—H.c]C] (t— m)[C) (1), O(H) IC] (t— laj (t- r)e T —Hc]C (t—1)).  (AL)

If we decouple the operators of the EMF and take into account(m@ak}% Ok, in the Born-Markoff approximation we
obtain the following expression from E¢AL):
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Fo a2 (b G )2
-S % (d32 9k, ) “(d31- Qi)

2 e o S e 0~z (CLOLCH.001ChN (). (A2)
172 0= Ky 3

After the substitution of the free and source parts of oper@f@rin the expression fof, we get

N2 (dapr00(dsy 00 dayOe) - - - vt L
=2 > 2 ’ o e'k'(ri"')j dre*""kfj dre'“sm([ay (t—r)e*rli—H.c]Cl (t— )
Kk iT=1 0.8 %3 0 0 1 Y
X[Cjp(1), O(t)]C/5(t— 7)Cj,(t—1)). (A3)

Here the exclusion of the free part of th?@(t— 7) operator is more difficult, because the free part of this operator is situated
in the right-hand part of thé, correlator. In this case it is necessary to use the lemma. In what follows we purpose the
notations

B(t—m)= {ak (t— Tl)elkl I~ H. C}C —T1),

D(t)=[Cj(1),0(1)]

for the permutation of the free part Gf,Tg(t— 7) operator from the right hand part to the left one.
After doing these notations we consecutively permute the free p£f3()f— 1) according to the lemma

(B(t—m1)D(1)C5(t—7)C,(t— 1))

=(B(t—r)D(D){C; (t—7)+Cl3 (t—7)}Cy (t— 7))

=(B(t—1)D(1){C}3 (t— 1)+ Cf5 (e '*3}C, (t— 7))

=(B(t—71)D()C (t—7)Cy,(t— 7)) +(B(t—71)D(){C/3(t) — Ci5 (1)} Cy,(t—7))e™ 3"
=(B(t—7)D()C5 (t— 1)Cy,(t— 1)+ (B(t— 1){C/5(1)D(t) — D(1)C5 (1)}Cy,(t— 7))~ @37
=(B(t=1)D()C (t=7)Cy,(t— 7)) +(B(t—7){C{3 (1) + C{3 ()}D(1)C (t—7))e '3
—(B(t=7)D(t)Ci5 (1)C,(t—7))e 3"

=(B(t=7)D(t)Ci5 (t—7)C,(t— 7)) +(B(t—7){C¥ ()D(t) = D()CP5 (1)}C;(t—7))e 137
+(B(t—7;)Cl3 ()D(1)Cy, (t—7))ye 3"

=(B(t—1)D()Cf5 (t—7)Cy,(t— 7)) +(B(t—7)[Cf5 (1), D(D]C,(t— 7)) '3
+(B(t—1,)Cl5 (t—7)D(1)Cy, (t—7))e T@s7Hiwan

=(B(t—7)D(t)C5 (t—7)Cy,(t— ) +(B(t—71)[C5 (1), D(1)]C,(t—7))e 3"+ (B(t—7y)
X{C5(t=71) = C5 (t—7)}D(1)C (t—7))e@a7Hiwsn

=(B(t—7)D(t)C (t— 7)Cy,(t— 7)) +(B(t—7)[C3 (1),D(1)]Cy,(t—7))e '3

+([C3 (t=71),B(t=7)ID(1)C,(t—7))e @37 1w3n (A4)

Now we can write that

N 2 (a35'§k)(a3p'§k)(a3y'§k) .
1 | —r) i, T lw37y _ _
=2 ]; sz:l 3 'J'dre kfdre 3 ({B(t—7)D(1)CPy (t—7)C,(t—7)
+B(t—)[C (1),D(D]C,(t—7)e "+ [Cf5 (t— m1),B(t= 1) ID(1)Cy(t—7)e o7 Iwsm}), (A5)

After the Born-Markoff approximation and using the fact thaplalz)~5klk2 it is not difficult to obtain the relation fol,
from Eq. (10).
In a similar way[Egs.(A1)—(A5)] we have obtained the expressions ffgrl, correlators.
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