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The study of the fluorescence phenomenon by near-field optical techniques requires one to describe precisely
the spontaneous emission change occurring when the fluorescing particle is placed in a complex optical
environment. For this purpose, the field susceptibiléiso called the field propagajoof a planar junction
formed by a cavity bounded by two semi-infinite bodies with arbitrary optical constant is derived within the
framework of linear-response theory. The field propagator associated with the junction is then modified in a
self-consistent manner to account for the presence of any arbitrary object inside the junction. As a first
illustration the alteration of the fluorescence lifetime of a molecule by two subwavelength-sized dielectric
spheres, placed inside the junction, is preser{®8i050-294®7)06710-3

PACS numbes): 42.50.Ct, 32.70.Cs, 32.70.Jz, 07.79.Fc

[. INTRODUCTION dipolar solutions that fulfill the boundary conditiopE2]. In
the efficient approach described in REL1], the numerical
The interaction of electromagnetic radiation with matter isiterative scheme begins from a knowledge of the vacuum
a cornerstone of modern physics, and a considerable body fitld susceptibility. Nevertheless, as already proposed in a
literature exists on the subject. Generally, the way of adecent study devoted to electrostatic field computat|dd
dressing a problem in which an atom or a molecule couple#) order to schematize the complete dielectric surroundings
to the electromagnetic fieldEMF) is not unique. The choice Properly, it is more realistic to start the calculation with the
of an adequate formalism depends on the nature of the magtarded field susceptibility of a less symmetrical system. In
terial system, and on which aspect of the interaction is to b&at case, the field susceptibility associated with two surfaces
studied. When the interaction takes place in free space se¢f®MPOSINg a plane cavity is a prerequisite of any calculation

eral approaches, both classical and quantum mechanical, e|>r(1_voIV|ng more cqmplex structures. Howeyer, in REE3]
ist where expressions for the EMF stem from Maxwell's the calculations did not account for retardation effects. When

equations in free spadé—4]. On the other hand, the devel- the atom is located in the vicinity of a single plane mte_zrface
opment of near-field opticéNFO) entailed an increasing de- (or moreh get? era:jly a Igl%/fered half-spamvgral thfor:et'ci/l”:
mand for theoretical approaches in which the effect of arbiapproac esbased on different representations of the B

. . have been proposefd4-21. The framework of some of
trary geometries on the EMF is accounted fig]. A these theories has been enlarged to allow a second semi-

description of the interaction of the EMF with matter in jyqnite body to be introduced6,22—26. Related works
t_erms of flelq §gsceptlbll|ty is extremely frunfgl, since the dealing with other geometries were reported in R27]. It is
field susceptibility not only accounts for the field changesy,orth noting that in all these work&@xcepting the second
induced by a point source but also relates to fundamentaﬁaper in Ref[21]), it was assumed that either there was a
guantities such as level shifts, transition rates, and dispersi0§1n9|e particle or in the case where more than one particle
energieg6,7]. Until recently theoretical works able to couple were considered that there was no interaction between them.
microscopic compoundgatoms or moleculgswith the ex-  With these assumptions, all that was needed was the electric
perimental configurations used in scanning near-field microsfield at the location of the particle. This was possible because
copy (SNOM) had been scarce because of the difficulty ofthe interfaces around the particle were supposed to be free.
matching the boundary conditions for the EMF in an arbi-Nevertheless, if more than one partigla any polarizable
trary geometny{8—10]. As described in Refl11], these usual objech is inside the cavity, the knowledge of the field every-
difficulties can be overcome, for instance, by solving thewhere in the cavity becomes essential since all the objects
Dyson equation associated with the surroundings of the flucare coupled to each other. Therefore the purpose of the
rescing particle, from a pure self-consistent numerical procepresent work is twofold. First, we derive the field suscepti-
dure. Another alternative consists in discretizing the entirebility of a realistic junction formed by a cavity bounded by
surface of the object by a dipolar distribution. The responsewo media with arbitrary optical constants. This first step
field lying outside the object is then expanded by applyingconsists of finding the response field of the bare junction to a
fluctuating dipole moment. From this response function it
will be possible to explore the fluorescence lifetime changes
*Electronic address: arahmani@u-bourgogne.fr with respect to the position of the particle inside the cavity.
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In a second step, we will account for the presence of other z
additional objects inside the junction by dressing, in a self- A
consistent manner, the propagator of the bare junction. To §§§§§33_§$555$§
the best of our knowledge, such a calculation including re- ¢ medium 2;
tardation effects and based on the concept of dressed junc- d
tion is not yet available in the literature. The organization of o medium 0
the paper is as follows. In Sec. Il we first recall some basic
notions of linear response theory merely to relate lifetime o r

and field susceptibility. Physical considerations show that a = i e Podo vy AN
fully quantum-mechanical description of the interaction can medium 15797
be achieved through classical calculations. Once this is :
pointed out, we derive the field susceptibility of a junction by
calculating the EMF, due to a dipolar source, located at an

arbitrary position inside the cavity. For computational pur- . .
: : P which the quantum systeffor which we adopt the two-level
lit th oy : .

poses, we split the propagator into two contributions, associ ode) changes ts state from axcited(b) to a ground (a)

ated with propagating waves and evanescent ones. In ordS ate. This rate. aiven by Fermi's golden rule. reads
to lend credence to our calculation we study, in Sec. lll, the : 9 y 9 ’

modifications of spontaneous emission for an atom or a mol- 2

ecule placed inside the junction. Starting from the field- o= 7% > mlul? IM[S;, (Fo.To,@)] 3
susceptibility propagator of the bare junction, we consider, in a.p

Sec. IV, the problem of the presence inside the junction of an . ) -

object with arbitrary shape and nature. We show how avhereSy(r,r’,») is the Fourier transform d(r,r’,7). We
dressed propagator accounting for the presence of the objed@ve notedu®” the off-diagonal element of the dipole mo-
can be derived self-consistently from the knowledge of thenent operatoj between the states andb. Im(X) denotes
“bare propagator_” As a first Study we Compute the field the imaginary part oK. In view of the results for the free-
propagator of two subwavelength-sized dielectric spherespace field susceptibility, we guess that we should proceed
and this new propagator is finally used to illustrate how a@long the preceding lines with the replacem&pt- S+ Sin

FIG. 1. Geometry of the junction. The particle is located @t

fluorescing particle can act as a near-field probe. order to find levels shifts and transition rates in the junction.
However, as it is correct to think that all that is needed is the
Il. FIELD SUSCEPTIBILITY susceptibility of the junction(S), it remains to find how to
calculate it quantum mechanically. Indeed, if we look at Eq.
A. Linear-response theory (2) we might think that we first have to derive the figltie

Before dealing with the problem of the susceptibility ten- _electric_field, for_ ins_tancjeoperator that inter\(enes in the
sor of the junction we might briefly recall some basic resultsntéraction Hamiltonian, and then calculate its two-space-
of linear-response theof8,29. When the field can be con- imeé commutator to obtain the e§{r,r’,«). Such a proce-
sidered as a reservdihis is particularly the case with a field dure assumes field quantization, which we wish to avoid.
in thermal equilibriumh and when the calculation is per- The solution lies in the physical nature of the field suscepti-
formed up to second order in the interaction Hamiltonian, theility. The field susceptibility is a classical quantit§,2g,
interaction between radiation and an atomic system can band the way the calculation is done—by considering classi-
described by statistical quantities. Let us consider an atorf@! Or quantum mechanical sources—has no consequence on
located atr in an infinite medium. The only assumption we the consistency of the result with respect to quantum me-
make on the field is that it should kstationary i.e., the chanics.
character of the fluctuations of the field does not change with

time. We assume the interaction between radiation and the B. Source and response fields in a bare junction
atom to take the form In order to derive the field susceptibility that accounts for
Ho——F.A 1) the presence of media 1 and 2, we consider a classical oscil-
int— AT

lating dipole placed within the junctioFig. 1). The calcu-
whereF (A) is an hermitian observable associated with thelation of the fields in the junction follows that by Agarwal
field (atomic system The (free-spacklinear susceptibility ~[6], and here we will only give the main steps.

of the field, that is, théaveragg response of the field to a  From Maxwell's equation in vacuum we can deduce both
small excitation is given by the source and the response fields in the cavity:

. i V2E+KE=—47[kiP+V(V-P)], (4)
So(r,r', 1) =2 ([F(r0),F(r',t=n))ed(7). (2

H=V X E/iko, (5)

The brackets denote an average over the initial state of the

field (as if the atom were not presgnand®(7) is the Heavi-  With ko= w/c and the polarizatiorP(r, ») = p(w) 5(r —r)
side step function. In the problem we are investigating in thign our case. On the other hand, the fields in mediuii
paper, namely the modification of fluorescence properties by 1 or 2 obey the following homogeneous equations:
NFO architectures, the level energy shifts are negligible. 5 )
Therefore, we shall only be interested in the transition rate at V°E+kp6 E=0, (6)
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V.E=0, 7) The tensorG(*)(k, k) (respectively G (ky,ky)) can
be viewed as thelementanyfield susceptibility which gives
H=V XxElikg. (8)  the contribution of the dipole to th€*) upward (respec-

tively, £7) downward mode of the angular spectrum char-
On using an angular spectrum representafidnof the  acterized by K«.ky), i.e., we have
fields in the cavity, we obtain

g(t):G(t).M_ (18
E(l)(r,w)=f f £<1)(kx,ky,w)eX[{iKl-r]dkxdk ,

9 The elements of th& tensors are given in Appendix A.

K,-EV=0, (10) _ .
C. Analytical form of the field

K=Ky, Ky, —Wy), Wi= e k§—kZ—kJ (12) In the following we derive in some detail t1%, element
. of the field susceptibility; the other elements stem from a
for medium 1, similar algebra, and only the final result is given in Appendix

B. LetAg; andAp; be the Fresnel reflection coefficient fer

) _ (2) e (electric field perpendicular to the plane of incidenead

EP(rw) f f E7 (ko ky, 0)exiliKy-r]dkdky, p-polarized(electric field parallel to the plane of incidence
(12 plane or evanescent waves falling onto the interface between
medium 0 and medium 1. Similarly we defide, andA ,

K, E2=0, (13  for the z=d interface:
Ko= (ke Ky, Wp), Wo=e,ki—ki—K? (14) AW EeWo _ Wy~ €W
pl_W1+ 61WO, p2_W2+ €2W0’
for medium 2, and
£ _ £ (k. k iK A —NimWo o _W2mWo (19)
(rvw)_ ( X 1 y!w)equ Or] sl W1+Wo, s2 W2+W0.
i
+E7)(ky ky , w)ex iKg- r]dkedk, + pye The modulusk, of the wave vector in medium 0 is given

by k3=k?+wj (k, being the component parallel to the inter-
dkdky . faces. For thezz element of the spectrum mode susceptibil-
Xf f Wy [kop+V(p-V)lexdik«(X—Xo) ity we have, from Egs(A16) and (A25),

+iky(y—yo) +iwo|z—2z0|], (15 2

G+——ﬂD_1 exp(—iKg-ro)—
zz Wo p o''o

exp(—iK(’)~ro—2iw0d)}

and Aps

(20)
Ko E7=0, Kg-E7=0, Ko=(ky,ky,Wp),
ki

Ko=(Kx.Ky, —Wo), Wi=ki—ki—kZ (16) G;Z:W_Drjl
0

eXF(_|KO ro)
A

—exp(—iK{)-ro)}. (21
pl
for medium O.
As it can be seen, the field inside the cavity is treated at |f we replace Eqs(20) and(21) in Eq. (17), we find
once rather than considering the infinite sum of the modes
undergoing multiple reflection at the interfaces. The last term .
in Eqg. (15) represents the source term, and is put into this S,(I\To,0)= o f dk
form with the help of Weyl's transformatioi#]. Expressing no 27 !
the boundary conditions for the electric and magnetic fields
at the two interface$z=0 andz=d of the junction, after _
some straightforward though tedious calculations \ggobtain a Ap2 Aps
relation between the angular plane-wave amplitu@s, i .
=1,2+) and the dipole momeifi6]. For our present purpose xexliky-(r—ro)]. (22)
we only need the field inside the cavity from which the field
susceptibility can be put in form Since the junction is invariant under rotation about the
_ axis, we will work with polar coordinates rather }han Carte-
| + : sian coordinates. Replacingk, by kdkdé, D, - by its
S(rro,@) =52 f f (G (ki ky)exp(iKo-1) value(A7) and performing the angular integratign introduces
B o, the zeroth-order Bessel function of the first kind, so as to
+G (ke ky)expiKg-r)]dkdk, . (17 yield [30]

2 -1
kiD,
Wo

[ eiwo(zfzo) + efiwo(zfzo)

eiwo(z+zo—2d) e—iwo(z+zo)]
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_.J+wdk k3 Jo(kR) 23— . . — ' '
S, Ar,rg,w)=i . 1Wo Bpihp,—e 290 i

X{eiwo(z+ ZO_Zd)Apl-I- e—iwo(z+ zO)Ap2 1.5

—AA eiwo(zfzo)_i_efiwo(zfzo) ,
pl p2( )} (23)

R=(X—X0)*+(Y—Yo)%.

Further simplification can be gained by integrating Eq. o5
(23) over thenormal component of the wave vector, leading

Normalized lifetime
e
!

to
Ko o % 200 400 600 ?60) 1000 1200 1400 1600
. Z (hm,
szgr,ro,m:u(J —f )dwO
0 0
FIG. 2. Normalized lifetime as a function of the position of the
(k%—wg)Jo(R\/kg—Wg) atom inside a junction between silver and glags=2.25). The
X A A 2_e—2|wod height of the cavity is 1600 nm. Solid line: perpendicular dipole;
_ PP _ dashed line: parallel dipole. Except when indicated otherwise, the
x{e'Wo(Z+Zo—2d>Ap1+ e—'Wo(Z+Zo)Ap2 normalization is done with respect to an atom in free space.

—ApApy(eolz7%0) e Wol2720)) identify with the quantum mechanical transition ratae

(24) lifetime is given by7=1/T"). If the solutions are sought in
the formA, ex —iQt] with O complex, the damping rate is
Equation(24) is our final result forS,,. We see that the found by identifying from Eq(25) the imaginary part of).
radiative and nonradiative contributions to the field suscepThe lifetime of the atominormalized with respect to the free
tibility come out naturally. The first integral extends over thespace valugis given by[24,27]
propagatingmodes of the field, while the second one obvi-
ously involves imaginary values of the normal component of T Ty 3 c3EOjunct -1
the wave vector and hence relates évanescenimodes. T
Chance, Prock, and SilbéZP3 discussed a similar separa-
tion for the caséR=0, although their calculation was based If we assume that medium O is a'm({: l), and introduce
on a different methog24]. They used a representation of the k = w/c and the field susceptibility, we find, in the case of a
electromagnetic field based on the Hertz potential vector ijjipole aligned with thez axis,
an approach similar to Sommerfeld’s treatment of radio-

1+ =Im

5 (26)

3
Now™ g

wave propagation above the eafl]. In their work, the T 3 (S Aro.fo.@)| ]t

separation between radiative and nonradiative decay rates —| =1+ FIm| ——5— (27)
. . . TO 2 kO

was achieved by computing the flow of electromagnetic en- z

ergy (Poynting’s vector through planes placed below and ) . . _ . .

above the dipole. The other elements of the field susceptibillt Might be worth noting that in this classical picture, the
ity stem from similar algebra. Further simplification of Eq. fluorescing particle is seen as an oscillator damped by its
(24) will depend on the exact nature of the media 1 and scoupling with the field, leading to an irreversible decay with
involved. In the case where one of the media recedes tg characteristic timewe call the lifetime(this is is related to
infinity, one might check that the field susceptibility of a the fact that the coupling betweer_1 the particle and the field is
single surface is recovered. Now that we have derived th¥/€2k; on the other hand, had this coupling been strong our

field susceptibility, we consider, in Sec. Ill, the case of aPerturbative approach, based on Fermi's golden rule, would
particle (atom or moleculk placed inside the junction for Nave failed. The correspondence between “this lifetime
which we study the evolution of the lifetime. and the one given by quantum mechanics will be discussed
at the end of this section.
L. LIFETIME MODIFICATION We now turn back to our dipole placed inside the junc-

tion. In the following we consider only dipoles parallel and
In this section we treat the particle aslassicaloscillat- ~ perpendicular to the axis for any other orientation can be
ing dipole whose oscillations are inhibited or enhanced byderived from a combination of these two. The emission
the electric field at its location. The equation of motion for wavelength (2r/k,) is chosen to be 612 nm. In Fig. 2 we
such a dipole reads plot the normalized lifetime of an atom as a function of its
position in the junction. The cavity height is 1600 nm, and
unless it is indicated otherwise all the optical constants for
the metals are taken from Rdf32]. In the middle of the
cavity, far from the interfaces, we observe the well-known
Ejunct is the projection along the dipole direction of the re- oscillations in the lifetime due to the interaction with the
sponse field of the junction at the particle’s location, &nd  long-rangepropagatingfield reflected by the junction. Typi-
a phenomenological damping coefficient we shall formallycal near-field effects, involvingevanescenimodes of the

2
. . e
AFT pt 0= —Ejng (25)
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field, can be observed for shorter distan¢gsbwavelength
range from the interfacgsSince in this section we consider 2
a single particle inside the cavity, a direct comparison with N
the work of CPS is possible. Let us consider a dipole lying 2, 57} :
along thez axis located at (0,8) in the junction. According 5 P
to the CPS theorjEgs.(2.47) and(2.48 of Ref.[24]] and if § P
we adopt the notation of the present paper, the normalized & 1 )
decay rate is E | B e
z | et et T )
(F 3 i fo jix . 05y
= =zIm— + dwg(kg—w :
Lo/, 2 k3 Ko 0) otko=wo)
Apleziwozo i ApzeZiwo(d—zo)_ 1-Ay ApZeZiwod % 200 00 om *° 800 1000
1_Ap1A p2e2|W0d . (a)
(29 0.8——
On the other hand, on using Eq&4) and (27), our cal- o7y T -
culation leads to 20.6
E
( r ) 3 i fo fioc . %0-5‘
= =1+5Im= + dwp(kg—w &
Iy , 2 kg ke Jo ) o(ko—wo) §0.4~
Aple2iwozo+ ApzeZiWO(d_Zo)—2Ap1ApzeziW0d ‘z)0_3_
1- Ap]_A pzeZIWOd ) 0.2
(29) 0.10 260 460 d (om) 600 860 1000
This last form is also the one given by the Green’s- (b)

function method described i24] [Egs. (3.37 and (3.38)].
With little algebra it is straightforward to show that the two  FIG. 3. Normalized lifetime for a dipole on a glass substrate as
results are identicdl34]. Hence the cas®=0 of our field  a function of the gap height. Medium 2 (&) aluminum,(b) glass;
propagator leads to the CPS theory for lifetime modificationsolid line: perpendicular dipole; dashed line: parallel dipole.

in a three-media junction. Here we will not comment further
upon these curves for the physical effects involygdrticu-
larly the excitation of plasmon resonance in metdiave

refractive index (,=1.5), as the gap is shortened the junc-
tion tends toward a bulk and homogeneous medium with

been extensively discussed in the literati88]. In near-field (rz?l) tlhnéjefi( g?éslge?]légh|'?e?%rgogfr;ﬁgu;g?§gu|1:1 svt\wlg lfgog"e
optics experiments, the fluorescent particles are generally a&h u : retime -cu u
sorbed on a substrate and a probe tip which can either b[T /n. A]fti“lg!ly' lthlsdvalue IS |ndeedbthehult|lTaFe va;lue ;or

) . . . : e parallel dipole ad goes to zero, but the lifetime for the
totally dielectric or covered with metal is brought into the . : ;
near);ield of the particle. The actual shape of tr?e tip plays gerpendlculsar dipole ObVI-OUSIy tends toward a much smaller
' alue (ro/n3). To reconcile these two remarks let us con-

role in its interaction with the paf“"'e' but a qualitative pip- sider a dipole parallel to the interfaces. As the gap between
ture of the influence of the material placed above the particle . 4ia 1 and 2 decreases. the electric field emitted by the

can be ob_tained with this model of the junction. We _ConSiderdipole and arriving at the interfaces 0/1 and 0/2 becomes
a fluorescing molecule placed on a glass surface with refragsrely tangential Therefore it is continuous across the inter-
tive indexn=1.5 (¢;=2.25). When the gap distancebe-  taces(E, =E, for the 0/1 interfack Conversely, in the case
tween media 1 and 2 is reduced, the EMF reflected by thgt dipole perpendicular to the interfaces, for small values of
junction at the molecule’s position changes and so does thg the electric field generated at the interfaces is punely
fluorescence lifetime. The cases of a dielectric medium 1 anghal and thus we have,Ey=€,E;. The normalized decay
a dielectric or metallic medium 2 are shown in Fig. 3. Therate " in an infinite medium 1 represents the normalized
observed behavior as the metallic medilatuminum in Fig.  power emitted by the dipole and it is proportional to the
3(a)] is brought close to the fluorescing molecule stronglysquare ofE,; at the dipole’s locatiorr,. In the case of a
resembles that observed in Fig. 2. We find again the standaxipole in a thin layefmedium 0 in the limitd— 0), the field
features already described: far-field induced oscillations, lifeatr is given byEq(rq) =E1(ro) andEq(rq) = €,E1(rg) for
time enhancement, and decrease as the metal reaches th@arallel and a perpendicular dipole, respecti@he take
fluorescing particle. The influence of the substrate consistso=1). Therefore the decay rat@’), for the dipole in me-
merely in renormalizing the lifetime with respect to the free-dium 0, equald™’ for a parallel dipole an@3T"’ (=n3T"") for
space value leading, for large separations between the paa- perpendicular dipole. Once we replate by its value
ticle and medium 2, to the values for a vacuum-glass intern;I"; the correct limiting values for the lifetime (7,
face[34]. =I"y/T") are found. The reader interested in a different but
The dielectric case described in FighBmight deserve more formal derivation of this property is referred to Ref.
further attention. When both media 1 and 2 have the samg25].
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We might note for completeness that since all the relevanthe resulting(dressed field susceptibility S, verifies the
information concerning the interfaces are contained in théollowing self-consistent equation:
Fresnel coefficients, the case of a stratified environment can
be addressed through the replacement of the Fresnel coeffi- Sp(r'.r,w)=S(r',r,)+S(r',r,0) +[S(r',rs,w)
cients (19) by the ones relative to a multilayer system ,
[18,25. Before addressing the problem of many-body inter- +S(r'rs,0)] dw)-S(rs.rw), (34

action inside the junction we return to the question Ofwhere the tensog, is the (three dimensionalfield suscepti-
whether the assumption that the atom or the molecule can bxﬁlity in free spacd1]

seen as a classical dipole is appropriate when calculating the For lifetime calculations, the knowledge 8§ at the mol-

lifetime changes. , . ; .
: ' : le's | ion is n ry. In th we wri
In Sec. Il, we mentioned the fact that the field s:usceptl-ecLI e's location o) is necessary. In that case we write

bility is a classical quantity. Therefore we understand that g (1, vy w)=S(rq,rg,®)+[So(ro,ls,®)

the classical calculation of Sec. Il gives a field susceptibility

valid in a quantum approach. However, the curves presented +S(rg,rs,0) ] ) Sp(rs,ro,),

in the last paragraph were obtained with a classical expres- (35)

sion for the lifetime and not from Ed3). We might briefly

check that the transition rate given by Fermi's golden rU'QNhereSD(rs,ro,w) can be deduced by solving E(4). If
leads exactly to Eq(27) for the normalized lifetime. From  an additional object is inserted, we proceed along the preced-

Eq. (3) we infer that ing lines with the replacemens(r’,r,w)—Sy(r',r,w).
2 Hence, for an arbitrary object, with a dielectric functig),
r. == ab ba | Foulg. 30 a discretization procedure makes it possible to construct the
a7 aZB o tp [Soaﬁ( 0.0 @)] 30 field susceptibility of the dressed junction “piece by piece.”

_ The object is thus considered as a collectioMNgfolarizable
for the decay rate in free space, and units (dipoles placed on gusually cubic lattice. When the
) size of the discretization cefbize of one polarizable units
_ ab, ba much smaller than the wavelength of the incident field, one
=— + . . S '
Ta=7 ;,,; Patg IMLSo ,(Fo,M0, @)+ Sap(Vo.T0, )] can use the discrete dipole approximation introduced by Pur-
(31)  cell and PennypackdB8]. Let | be the size of the discreti-

_ _ _ ) ) _zation cell; the polarizability of a dipolar subunit then reads
for the decay rate in the junction. Since we are interested in

normalized values, we write 31% e(w)—1
a(w)=— @) +2 " (36)
Tha ), 2 S 4203 mIS (rg.re,@)]. (32)
Foba hl"obaa,ﬁ Katp apll0:m 0 where | is the unit tensor. We might note that unlike the
definition
If we now replacel“Oba by the common value for the a(w)=1%e(w)—1)]I/47 used in Refs[11,37] the present
decay of an atom in free spaf@5], definition of the polarizability includes at once depolariza-
tion effects.
4k8 baa An alternate procedure consists in computing the propa-
3_h|” 1%, (33  gators:

N
and take the reciprocal of E€32), we recover, in the case of _ _ _ _ L
a dipole moment aligned along tleaxis, the result given by So(li:To,@) =Sl Fo, ) + (1 ,ro,w)+]§=:1 [Solriary )
Eq. (27). This correspondence between the classical and the
quantum-mechanical results arises from the fact that the +3(ri 1y, 0)]- @j()-Sp(r.ro, @) (37)
boundaries(media 1 and 2 modify in the same way the

effect on the particle of radiation reaction and of vacuumfor'zl’N' The solution of this set of linear equations is then

used to calculate

fluctuations[ 36].
N
IV. FIELD PROPAGATOR OF A DRESSED JUNCTION SD(rO,ro,w):S(rO,ro,w)+El [So(ro.ri, o)
=
The relation between the field susceptibility and the life-
time of an atom or a molecule placed inside a planar junction +8(ro.ri, )] ai(w)-Sp(ri,ro, ).
was discussed in Sec. lll. However, if we introduce any ob- (38)

ject inside the junction the field susceptibility will be modi-

fied, and will differ significantly from that associated with a  While the two methods give the same result and require
simple bare junction. Actually, it is possible to build the field the same amount of computer memory, the latter is faster, a
susceptibility tensor of an arbitrary system by solving a sefeature that must be borne in mind whisih the number of
guence of Dyson’s equatiori87]. For instance let us con- dipoles inside the junction, becomes large. However, some
sider a small polarizable object locatedrat (xs,Ys,Z5) in care must be given to the matrix inversion procedure used to
medium 0, and its dynamical polarizability is notedw). solve Eq.(37).
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FIG. 4. Geometry of the dressed junction. The sample consists 2 4.5 A

of two spheres with refractive index 1.5 deposited on a substrate -75
(medium 1. Both media 1 and 2 have the same index as the

spheres. The diameter of the spheres is 20 nm, and the distance
between their centers is 40 nm.

To illustrate this approach let us consider two dielectric

spheres, with diametera2=20 nm, deposited 20 nm apart
on a substrate. The fluorescing molecule is deposited on the /,"\\
second medium. The spheres and both media have the same 2 441 1,"0’\\\\ /ii.\\\\
refractive index fi=\es=1.5). The molecule now plays the 4 ,’/’Jmm.\,//j’lh’\\\
role of a nanoprobe used to image a same spheres S a3 ,//I’liiﬁ,',l’l;’ﬁv’”,!w‘\\
The dynamical polarizability of the sphere is given by S ; 41’1"5’:','#:':’:’1”””’0?0’“\“\‘}%\\
8 .2l hini \
afw)=a® 27 (39) - %’?Z%%ﬁ&%%%w 75
wherel is the unit tensor. If we introduce this expression -75 i )
into Eq. (34), we obtain the field susceptibility, which ac- 4)\*‘

counts for the presence of the sphere inside the jun¢kmn X(n,n) 80 .7 75
4). Each sphere is coupled to the junction thro®tdress-
ing of the sphere polarizability by the junctiopand to the
other sphere througl$, (direct coupling and S (junction
mediated coupling Similarly, the effect of the spheres on

the molecule includes both the direct and cavity-mediated

contributions. Although this example might seem far from ®

the situation where the molecule would be attached to a 8 *%% \\

probe with finite lateral dimensions, it includes all the main T 354 “\:

physical effects. For different values of the distarizebe- § gv‘\ \

tween the moleculéthe prob¢ and the top of the spheres Q 348+ ,& %

(the samplg in Fig. 5 we have plotted the normalized decay % 4 ,m\g}\i{i\\\\\\

rate (reciprocal of the normalized lifetimeas the molecule g 3461 i, ,,,t'.,,,t..;,o;,s,\o:,‘:\“:%‘f;‘;,g;\ 75
scans a 158 150-nnt area. When the molecule is scanned RS 50
at 10 nm[Fig. 5a)] above the top of the spheres, the modi- s T ) S
fication of the fluorescence is well localized in space, and the =50 s = 25 (&

influence of the two spheres can be unambiguously separated
(the maxima are located 40 nm apart and the width of the
peaks is 22-nm full width at half maximumAs the distance

of the gap is increased from 10 to £Big. 5b)] and ulti- _ FIG. 5. Three-dimensional plots of the decay ratermalized
mately to 40 nn{Fig. 5(c)], the individual contributions are with respect to the freg space values the molecule scans a 150
merged, giving a single global bump in the decay rate. If the™ 150-nnf area at a distancd from the top of the spheresa)
distance is further increased, the amplitude of the bump wilP =10 nm- (b)) D=20 nm. (c) D=40 nm.

decrease. We recover here a common feature of SNOM,

where the near-field nature of the interaction makes it pos-

sible to increase the resolution by decreasing the distanadipole and/or other nature for the sampéeg., metallic par-
between the probe and the sample, without decreasing thi&les smaller than the wavelength of the fluorescence)light
wavelength, as is the case in conventional “far-field” optics. are considered, the observed behavior for the decay(oate
However, one must not believe that the gap distance is thihe lifetime is much more complex and subtle and will not
only relevant parameter. Indeed when other orientation of thée detailed here.
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V. CONCLUSION

We have used the linear-response theory to derive the
field susceptibility of a junction formed by two plane inter-
faces separating three media with arbitrary optical constant.
The validity of such a derivation is justified by the weak
interaction between the EMF and the source. This propagator
allowed us to describe the modification of spontaneous emis-
sion for an atom or a molecule inside the junction. In order to
address some nontrivial situations that might be encountered
in near-field optics experiments, we have constructed self-

consistently a dressed propagator accounting for the presence Dp=1—

inside the junction of one or more polarizable objects. In-

stead of being the sample, the fluorescing particle could then
act as a probe illustrating the potential of near-field fluores-
cence imaging. In the application proposed in this paper, the
sample consisted of two dielectric sphe(éameter 20 n
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exp —iKg-r
’:Mntexp(—iK(’)-ro), (A4)
Apy
exp(—iKg-r
’ZD(—OO)—exp(—iK(yro), (A5)
Asl
exp(—iKg-r
‘=M—exp(—iK{)-ro), (A6)
Aps
exp( — 2iwgd) . exp(—2iwed)
AplApZ ’ S AgAg '
(A7)

1. Upward modes:k,=w,

For the modes whose tlrecomponent of the wave vector

The fact that the response of each of the two spheres couid positive, we have

be separated, at least when the molecule was not too far from
them, is a reflection of the confinement of the EMF around
them[39]. Thus in confined geometries the gradient of the
EMF depends not only on the wavelength but also on the
environment. Near objects such as our spheres one should
expect a strong gradient of the EMF leading to an increase of
the contribution of multipoles higher than the dipole; particu-
larly, in the case where no dipole transition is allowed, a high
sensitivity may be achieved by exploiting the quadrupolar
transition of the probe particle, as was demonstrated by the
recent work of Klimov and Letokhoy40]. On the other
hand, this strong gradient of the EMF also suggests some
interesting issues related to the forces that might be experi-
enced by the particle. The experimental study of this class of
near-field effects presupposes an understanding of the main
physical interactions that play a role in a confined geometry.
As we have done in this paper, it is always interesting to start
with rather simple geometries and then evolve toward more
complex ones.
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APPENDIX A: FIELD SUSCEPTIBILITIES OF THE
MODES OF THE ANGULAR SPECTRUM

For convenience we introduce the variables

exp(—iKg ro—2iwgd)

Af=exp —iKg-ro)+ A , (A1)
p2
exp(—iKg-ro—2iwgd)
B+:exq_iKo'r0)_ F( OA 0 ° ’ (AZ)
s2
exp(—iKy ro—2iwgd)
Ct=exp —iKg-ro)— K vo (A3
p2

;r=—vﬁf§D;%A+}—§%%D;ﬁB+L
Gyy=— WOI':;ky D, A1+ kkz'fvyV:‘z’ D, '[B*],
Gy=kdD,'[C],
= ﬁfﬁ%%Aﬂ+?ZstﬁWL

o = Wolk§ 7k

—1Irp+
E‘QWODS [B™],

-z Dy '[A"]-
Gy,=kDy '[C"],
G,=kDy TAT],
G,,=k,D,[A"],

2

kH _
G;Z=—W—ODD1[C+].

2. Downward modes:k,= —w

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)
(A14)

(A15)

(A16)

For the modes whose tlrecomponent of the wave vector

is negative, we have

_ W0k>2< —1r A — )2/k(2) “1rp—
Gom =47 Oy [A ]+E”2WODS [B7],
- Wkaky —1r p— kxkyk(z) “1r s —
Xy kﬁ Dp [A ] kao DS [B ]1

Gy=k{D, {C],
kyk KykyK3
_ 0 _ _ xRyRo __ _
yx— k2X prl A"]- K2w Ds 1[B 1,

l 1Yo

(A17)

(A18)
(A19)



- WOky -1 k)z( (2) 71 —
ny——kT” o [A 1+ 12 2w, D.YB7], (A21)
G,,=k/D,'[C], (A22)
=—kD,AT], (A23)
G,,=—k,D,[A], (A24)
2
G,~—D,[C]. (A25)

APPENDIX B: FIELD SUSCEPTIBILITY
IN THE JUNCTION

As it can be seen in Appendix A, the symmetry of the

junction suggests some relations between the elements of the
field propagator. Hence five integrals are needed to derive all

the elements of the propagator. Létthe angle defined by
(X—Xp)=R cos¢, we have

Six=11—1, cos 2p,
Sy=Syx=—12 sin 2¢,
S;=13 COS ¢,
Syy=11+1, cos 2, (B1)
Sy, =I5 sin ¢,
Sex=14 COS &,
S,y=14 sin ¢.

S,, is calculated directly from Eq24).
The integrals of Eq(B1) are given by

i ko oo
e I B G AT

2
Wo

iwg(z+2z9—2d)
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_|_Apze—iwo(z+zo)+AplApz(eiwo(z—zo)+e—iwo(z_zo))]

2
0

i —-2d
_ (A lA Z_e—ZIWod) [Aslelwo(z+zo 2d)
sl4s

+Asze_iwo(z+zo)_AslAsg(eiWO(Z_Zo)—i—e_iWO(Z—Zo))] ,

(B2)

i ko [i= NZ_o72
_E(fo —fo )dWO‘]Z(R kO_WO)

wg
(AplApZ_e

+ Apze*iWO(ZJrZO)-I- AplApz(eiwo(zfzo)_,_ e*iWO(Z*ZO))]

iwg(z+2zp—2d)

X

- 2|w0d) [A ple

Ko

i -2d
+ Aa 2_e*2|Wod) [Aslelwo(z+zo )
s1Rs

+ Aszefiwo(uzo)_ AslAsz(eiwo(zsz)_,_ efiwo(zfzo))] ,

(B3)

Wo ko

p1dp2—€

Uko f )(A 2.W0d) Ji(RYKZ—w2)

X{Apzefiwo(ﬁzo) _ Apleiwo(erzond)

+ApApy(eWolz %) —e”

fko f )(A —2lwod) J1(RVKE—wd)

X{Apzefiwo(ﬁzo) _ Aplelwo(erzofzd)

iWO(Z_ZO))}dWO, (B4)

Wq k0
p1dpa—

— A 1A pp(e™0lZ7%0) — g~ Wo(z=20)) k. (B5)

The last integral to be calculated is given by E2g).
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