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Field propagator of a dressed junction: Fluorescence lifetime calculations
in a confined geometry
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The study of the fluorescence phenomenon by near-field optical techniques requires one to describe precisely
the spontaneous emission change occurring when the fluorescing particle is placed in a complex optical
environment. For this purpose, the field susceptibility~also called the field propagator! of a planar junction
formed by a cavity bounded by two semi-infinite bodies with arbitrary optical constant is derived within the
framework of linear-response theory. The field propagator associated with the junction is then modified in a
self-consistent manner to account for the presence of any arbitrary object inside the junction. As a first
illustration the alteration of the fluorescence lifetime of a molecule by two subwavelength-sized dielectric
spheres, placed inside the junction, is presented.@S1050-2947~97!06710-3#

PACS number~s!: 42.50.Ct, 32.70.Cs, 32.70.Jz, 07.79.Fc
is
y

ad
le

m
b

se
l,
l’s
l-
-
rb

in
e
e
nt
si
le

ro
o
bi

he
u
c
tir
ns
in

um
n a

ngs
e

. In
ces
ion

en
ce
l
F

emi-

a
icle
em.
ctric
use
free.

y-
ects
the
ti-
y
ep
o a
it

ges
ty.
I. INTRODUCTION

The interaction of electromagnetic radiation with matter
a cornerstone of modern physics, and a considerable bod
literature exists on the subject. Generally, the way of
dressing a problem in which an atom or a molecule coup
to the electromagnetic field~EMF! is not unique. The choice
of an adequate formalism depends on the nature of the
terial system, and on which aspect of the interaction is to
studied. When the interaction takes place in free space
eral approaches, both classical and quantum mechanica
ist where expressions for the EMF stem from Maxwel
equations in free space@1–4#. On the other hand, the deve
opment of near-field optics~NFO! entailed an increasing de
mand for theoretical approaches in which the effect of a
trary geometries on the EMF is accounted for@5#. A
description of the interaction of the EMF with matter
terms of field susceptibility is extremely fruitful, since th
field susceptibility not only accounts for the field chang
induced by a point source but also relates to fundame
quantities such as level shifts, transition rates, and disper
energies@6,7#. Until recently theoretical works able to coup
microscopic compounds~atoms or molecules! with the ex-
perimental configurations used in scanning near-field mic
copy ~SNOM! had been scarce because of the difficulty
matching the boundary conditions for the EMF in an ar
trary geometry@8–10#. As described in Ref.@11#, these usual
difficulties can be overcome, for instance, by solving t
Dyson equation associated with the surroundings of the fl
rescing particle, from a pure self-consistent numerical pro
dure. Another alternative consists in discretizing the en
surface of the object by a dipolar distribution. The respo
field lying outside the object is then expanded by apply
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dipolar solutions that fulfill the boundary conditions@12#. In
the efficient approach described in Ref.@11#, the numerical
iterative scheme begins from a knowledge of the vacu
field susceptibility. Nevertheless, as already proposed i
recent study devoted to electrostatic field computations@13#,
in order to schematize the complete dielectric surroundi
properly, it is more realistic to start the calculation with th
retarded field susceptibility of a less symmetrical system
that case, the field susceptibility associated with two surfa
composing a plane cavity is a prerequisite of any calculat
involving more complex structures. However, in Ref.@13#
the calculations did not account for retardation effects. Wh
the atom is located in the vicinity of a single plane interfa
~or more generally a layered half-space! several theoretica
approaches~based on different representations of the EM!
have been proposed@14–21#. The framework of some of
these theories has been enlarged to allow a second s
infinite body to be introduced@6,22–26#. Related works
dealing with other geometries were reported in Ref.@27#. It is
worth noting that in all these works~excepting the second
paper in Ref.@21#!, it was assumed that either there was
single particle or in the case where more than one part
were considered that there was no interaction between th
With these assumptions, all that was needed was the ele
field at the location of the particle. This was possible beca
the interfaces around the particle were supposed to be
Nevertheless, if more than one particle~or any polarizable
object! is inside the cavity, the knowledge of the field ever
where in the cavity becomes essential since all the obj
are coupled to each other. Therefore the purpose of
present work is twofold. First, we derive the field suscep
bility of a realistic junction formed by a cavity bounded b
two media with arbitrary optical constants. This first st
consists of finding the response field of the bare junction t
fluctuating dipole moment. From this response function
will be possible to explore the fluorescence lifetime chan
with respect to the position of the particle inside the cavi
3245 © 1997 The American Physical Society
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3246 56RAHMANI, CHAUMET, de FORNEL, AND GIRARD
In a second step, we will account for the presence of ot
additional objects inside the junction by dressing, in a s
consistent manner, the propagator of the bare junction.
the best of our knowledge, such a calculation including
tardation effects and based on the concept of dressed j
tion is not yet available in the literature. The organization
the paper is as follows. In Sec. II we first recall some ba
notions of linear response theory merely to relate lifeti
and field susceptibility. Physical considerations show tha
fully quantum-mechanical description of the interaction c
be achieved through classical calculations. Once this
pointed out, we derive the field susceptibility of a junction
calculating the EMF, due to a dipolar source, located at
arbitrary position inside the cavity. For computational pu
poses, we split the propagator into two contributions, ass
ated with propagating waves and evanescent ones. In o
to lend credence to our calculation we study, in Sec. III,
modifications of spontaneous emission for an atom or a m
ecule placed inside the junction. Starting from the fie
susceptibility propagator of the bare junction, we consider
Sec. IV, the problem of the presence inside the junction o
object with arbitrary shape and nature. We show how
dressed propagator accounting for the presence of the o
can be derived self-consistently from the knowledge of
‘‘bare propagator.’’ As a first study we compute the fie
propagator of two subwavelength-sized dielectric sphe
and this new propagator is finally used to illustrate how
fluorescing particle can act as a near-field probe.

II. FIELD SUSCEPTIBILITY

A. Linear-response theory

Before dealing with the problem of the susceptibility te
sor of the junction we might briefly recall some basic resu
of linear-response theory@28,29#. When the field can be con
sidered as a reservoir~this is particularly the case with a fiel
in thermal equilibrium! and when the calculation is pe
formed up to second order in the interaction Hamiltonian,
interaction between radiation and an atomic system can
described by statistical quantities. Let us consider an a
located atr 0 in an infinite medium. The only assumption w
make on the field is that it should bestationary, i.e., the
character of the fluctuations of the field does not change w
time. We assume the interaction between radiation and
atom to take the form

Hint52F•A, ~1!

whereF ~A! is an hermitian observable associated with
field ~atomic system!. The ~free-space! linear susceptibility
of the field, that is, the~average! response of the field to a
small excitation is given by

Ŝ0~r ,r 8,t!5
i

\
^@F~r ,t !,F~r 8,t2t!#&FQ~t!. ~2!

The brackets denote an average over the initial state o
field ~as if the atom were not present!, andQ~t! is the Heavi-
side step function. In the problem we are investigating in t
paper, namely the modification of fluorescence properties
NFO architectures, the level energy shifts are negligib
Therefore, we shall only be interested in the transition rat
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which the quantum system~for which we adopt the two-leve
model! changes its state from anexcited~b! to a ground ~a!
state. This rate, given by Fermi’s golden rule, reads

G0ba
5

2

\ (
a,b

ma
abmb

ba Im@S0ab
~r0 ,r0 ,v!# ~3!

whereS0(r ,r 8,v) is the Fourier transform ofŜ0(r ,r 8,t). We
have notedmab the off-diagonal element of the dipole mo
ment operatorm between the statesa andb. Im(X) denotes
the imaginary part ofX. In view of the results for the free
space field susceptibility, we guess that we should proc
along the preceding lines with the replacementS0→S01S in
order to find levels shifts and transition rates in the junctio
However, as it is correct to think that all that is needed is
susceptibility of the junction~S!, it remains to find how to
calculate it quantum mechanically. Indeed, if we look at E
~2! we might think that we first have to derive the field~the
electric field, for instance! operator that intervenes in th
interaction Hamiltonian, and then calculate its two-spa
time commutator to obtain the endS(r ,r 8,v). Such a proce-
dure assumes field quantization, which we wish to avo
The solution lies in the physical nature of the field susce
bility. The field susceptibility is a classical quantity@2,28#,
and the way the calculation is done—by considering cla
cal or quantum mechanical sources—has no consequenc
the consistency of the result with respect to quantum m
chanics.

B. Source and response fields in a bare junction

In order to derive the field susceptibility that accounts
the presence of media 1 and 2, we consider a classical o
lating dipole placed within the junction~Fig. 1!. The calcu-
lation of the fields in the junction follows that by Agarwa
@6#, and here we will only give the main steps.

From Maxwell’s equation in vacuum we can deduce bo
the source and the response fields in the cavity:

“

2E1k0
2E524p@k0

2P1“~“•P!#, ~4!

H5“3E/ ik0 , ~5!

with k05v/c and the polarizationP(r ,v)5p(v)d(r2r0)
in our case. On the other hand, the fields in mediumi ( i
51 or 2! obey the following homogeneous equations:

“

2E1k0
2e iE50, ~6!

FIG. 1. Geometry of the junction. The particle is located atr0 .
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56 3247FIELD PROPAGATOR OF A DRESSED JUNCTION: . . .
“•E50, ~7!

H5“3E/ ik0 . ~8!

On using an angular spectrum representation@4# of the
fields in the cavity, we obtain

E~1!~r ,v!5E E E~1!~kx ,ky ,v!exp@ iK1•r #dkxdky ,

~9!

K1•E~1!50, ~10!

K15~kx ,ky ,2w1!, w1
25e1k0

22kx
22ky

2 ~11!

for medium 1,

E~2!~r ,v!5E E E~2!~kx ,ky ,v!exp@ iK2•r #dkxdky ,

~12!

K2•E~2!50, ~13!

K25~kx ,ky ,w2!, w2
25e2k0

22kx
22ky

2 ~14!

for medium 2, and

E~0!~r ,v!5E E E~1 !~kx ,ky ,v!exp@ iK0•r #

1E~2 !~kx ,ky ,v!exp@ iK08•r #dkxdky1
i

2p

3E E dkxdky

w0
@k0

2p1“~p•“ !#exp@ ikx~x2x0!

1 iky~y2y0!1 iw0uz2z0u#, ~15!

and

K0•E~1 !50, K08•E~2 !50, K05~kx ,ky ,w0!,

K085~kx ,ky ,2w0!, w0
25k0

22kx
22ky

2 ~16!

for medium 0.
As it can be seen, the field inside the cavity is treated

once rather than considering the infinite sum of the mo
undergoing multiple reflection at the interfaces. The last te
in Eq. ~15! represents the source term, and is put into t
form with the help of Weyl’s transformation@4#. Expressing
the boundary conditions for the electric and magnetic fie
at the two interfaces~z50 andz5d of the junction!, after
some straightforward though tedious calculations we obta
relation between the angular plane-wave amplitudes~E( i ), i
51,2,6! and the dipole moment@6#. For our present purpos
we only need the field inside the cavity from which the fie
susceptibility can be put in form

S~r ,r0 ,v!5
i

2p E E @G~1 !~kx ,ky!exp~ iK0•r !

1G~2 !~kx ,ky!exp~ iK08•r !#dkxdky . ~17!
t
s

s

s

a

The tensorsG(1)(kx ,ky) ~respectively,G(2)(kx ,ky)! can
be viewed as theelementaryfield susceptibility which gives
the contribution of the dipole to theE(1) upward ~respec-
tively, E(2) downward! mode of the angular spectrum cha
acterized by (kx ,ky), i.e., we have

E~6 !5G~6 !
•m. ~18!

The elements of theG tensors are given in Appendix A

C. Analytical form of the field

In the following we derive in some detail theSzz element
of the field susceptibility; the other elements stem from
similar algebra, and only the final result is given in Append
B. Let Ds1 andDp1 be the Fresnel reflection coefficient fors
~electric field perpendicular to the plane of incidence! and
p-polarized~electric field parallel to the plane of incidence!
plane or evanescent waves falling onto the interface betw
medium 0 and medium 1. Similarly we defineDs2 andDp2
for the z5d interface:

Dp15
w12e1w0

w11e1w0
, Dp25

w22e2w0

w21e2w0
,

Ds15
w12w0

w11w0
, Ds25

w22w0

w21w0
. ~19!

The modulusk0 of the wave vector in medium 0 is give
by k0

25ki
21w0

2 ~ki being the component parallel to the inte
faces!. For thezz element of the spectrum mode susceptib
ity we have, from Eqs.~A16! and ~A25!,

Gzz
152

ki
2

w0
Dp

21Fexp~2 iK0•r0!2
exp~2 iK08•r022iw0d!

Dp2
G

~20!

Gzz
25

ki
2

w0
Dp

21Fexp~2 iK0•r0!

Dp1
2exp~2 iK08•r0!G . ~21!

If we replace Eqs.~20! and ~21! in Eq. ~17!, we find

Szz~r ,r0 ,v!5
i

2p E dki

ki
2Dp

21

w0
H eiw0~z2z0!1e2 iw0~z2z0!

2
eiw0~z1z022d!

Dp2
2

e2 iw0~z1z0!

Dp1
J

3exp@ iki•~r2r0!#. ~22!

Since the junction is invariant under rotation about thez
axis, we will work with polar coordinates rather than Cart
sian coordinates. Replacingdki by kidkidu, Dp

21 by its
value~A7! and performing the angular integration introduc
the zeroth-order Bessel function of the first kind, so as
yield @30#
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Szz~r ,r0 ,v!5 i E
0

1`

dki

ki
3

w0

J0~kiR!

Dp1Dp22e22iw0d

3$eiw0~z1z022d!Dp11e2 iw0~z1z0!Dp2

2Dp1Dp2~eiw0~z2z0!1e2 iw0~z2z0!!%,
~23!

R5A~x2x0!21~y2y0!2.

Further simplification can be gained by integrating E
~23! over thenormalcomponent of the wave vector, leadin
to

Szz~r ,r0 ,v!5 i S E
0

k0
2E

0

i` D dw0

3
~k0

22w0
2!J0~RAk0

22w0
2!

Dp1Dp22e22iw0d

3$eiw0~z1z022d!Dp11e2 iw0~z1z0!Dp2

2Dp1Dp2~eiw0~z2z0!1e2 iw0~z2z0!!%.

~24!

Equation~24! is our final result forSzz. We see that the
radiative and nonradiative contributions to the field susc
tibility come out naturally. The first integral extends over t
propagatingmodes of the field, while the second one ob
ously involves imaginary values of the normal componen
the wave vector and hence relates toevanescentmodes.
Chance, Prock, and Silbey~CPS! discussed a similar separa
tion for the caseR50, although their calculation was base
on a different method@24#. They used a representation of th
electromagnetic field based on the Hertz potential vecto
an approach similar to Sommerfeld’s treatment of rad
wave propagation above the earth@31#. In their work, the
separation between radiative and nonradiative decay r
was achieved by computing the flow of electromagnetic
ergy ~Poynting’s vector! through planes placed below an
above the dipole. The other elements of the field suscept
ity stem from similar algebra. Further simplification of E
~24! will depend on the exact nature of the media 1 and
involved. In the case where one of the media recede
infinity, one might check that the field susceptibility of
single surface is recovered. Now that we have derived
field susceptibility, we consider, in Sec. III, the case o
particle ~atom or molecule! placed inside the junction fo
which we study the evolution of the lifetime.

III. LIFETIME MODIFICATION

In this section we treat the particle as aclassicaloscillat-
ing dipole whose oscillations are inhibited or enhanced
the electric field at its location. The equation of motion f
such a dipole reads

m̈1Gṁ1v2m5
e2

m
Ejunct. ~25!

Ejunct is the projection along the dipole direction of the r
sponse field of the junction at the particle’s location, andG is
a phenomenological damping coefficient we shall forma
.
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identify with the quantum mechanical transition rate~the
lifetime is given byt51/G!. If the solutions are sought in
the formA0 exp@2iVt# with V complex, the damping rate i
found by identifying from Eq.~25! the imaginary part ofV.
The lifetime of the atom~normalized with respect to the fre
space value! is given by@24,27#

t

t0
5

G0

G
5F11

3

2
ImS c3E0junct

n0v3m0
D G21

. ~26!

If we assume that medium 0 is air (n051), and introduce
k05v/c and the field susceptibility, we find, in the case o
dipole aligned with thez axis,

S t

t0
D

z

5F11
3

2
ImS Szz~r0 ,r0 ,v!

k0
3 D G21

. ~27!

It might be worth noting that in this classical picture, th
fluorescing particle is seen as an oscillator damped by
coupling with the field, leading to an irreversible decay w
a characteristic timet we call the lifetime~this is is related to
the fact that the coupling between the particle and the fiel
weak; on the other hand, had this coupling been strong
perturbative approach, based on Fermi’s golden rule, wo
have failed!. The correspondence between ‘‘this lifetime
and the one given by quantum mechanics will be discus
at the end of this section.

We now turn back to our dipole placed inside the jun
tion. In the following we consider only dipoles parallel an
perpendicular to thez axis for any other orientation can b
derived from a combination of these two. The emissi
wavelength (2p/k0) is chosen to be 612 nm. In Fig. 2 w
plot the normalized lifetime of an atom as a function of
position in the junction. The cavity height is 1600 nm, a
unless it is indicated otherwise all the optical constants
the metals are taken from Ref.@32#. In the middle of the
cavity, far from the interfaces, we observe the well-know
oscillations in the lifetime due to the interaction with th
long-rangepropagatingfield reflected by the junction. Typi-
cal near-field effects, involvingevanescentmodes of the

FIG. 2. Normalized lifetime as a function of the position of th
atom inside a junction between silver and glass (e52.25). The
height of the cavity is 1600 nm. Solid line: perpendicular dipo
dashed line: parallel dipole. Except when indicated otherwise,
normalization is done with respect to an atom in free space.
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56 3249FIELD PROPAGATOR OF A DRESSED JUNCTION: . . .
field, can be observed for shorter distances~subwavelength
range from the interfaces!. Since in this section we conside
a single particle inside the cavity, a direct comparison w
the work of CPS is possible. Let us consider a dipole ly
along thez axis located at (0,0,z0) in the junction. According
to the CPS theory@Eqs.~2.47! and~2.48! of Ref. @24## and if
we adopt the notation of the present paper, the normal
decay rate is

S G

G0
D

z

5
3

2
Im

i

k0
3 S E

k0

0

1E
0

i` D dw0~k0
22w0

2!

3
Dp1e2iw0z01Dp2e2iw0~d2z0!212Dp1Dp2e2iw0d

12Dp1Dp2e2iw0d .

~28!

On the other hand, on using Eqs.~24! and ~27!, our cal-
culation leads to

S G

G0
D

z

511
3

2
Im

i

k0
3S E

k0

0

1E
0

i` D dw0~k0
22w0

2!

3
Dp1e2iw0z01Dp2e2iw0~d2z0!22Dp1Dp2e2iw0d

12Dp1Dp2e2iw0d .

~29!

This last form is also the one given by the Green
function method described in@24# @Eqs. ~3.37! and ~3.38!#.
With little algebra it is straightforward to show that the tw
results are identical@34#. Hence the caseR50 of our field
propagator leads to the CPS theory for lifetime modificat
in a three-media junction. Here we will not comment furth
upon these curves for the physical effects involved~particu-
larly the excitation of plasmon resonance in metals! have
been extensively discussed in the literature@33#. In near-field
optics experiments, the fluorescent particles are generally
sorbed on a substrate and a probe tip which can eithe
totally dielectric or covered with metal is brought into th
near field of the particle. The actual shape of the tip play
role in its interaction with the particle, but a qualitative pi
ture of the influence of the material placed above the part
can be obtained with this model of the junction. We consi
a fluorescing molecule placed on a glass surface with ref
tive indexn51.5 (e152.25). When the gap distanced be-
tween media 1 and 2 is reduced, the EMF reflected by
junction at the molecule’s position changes and so does
fluorescence lifetime. The cases of a dielectric medium 1
a dielectric or metallic medium 2 are shown in Fig. 3. T
observed behavior as the metallic medium@aluminum in Fig.
3~a!# is brought close to the fluorescing molecule stron
resembles that observed in Fig. 2. We find again the stan
features already described: far-field induced oscillations, l
time enhancement, and decrease as the metal reache
fluorescing particle. The influence of the substrate cons
merely in renormalizing the lifetime with respect to the fre
space value leading, for large separations between the
ticle and medium 2, to the values for a vacuum-glass in
face @34#.

The dielectric case described in Fig. 3~b! might deserve
further attention. When both media 1 and 2 have the sa
h
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refractive index (n151.5!, as the gap is shortened the jun
tion tends toward a bulk and homogeneous medium w
~real! index n1 . In such a homogeneous medium we kno
that the fluorescence lifetime of the molecule should
t0 /n1 . Actually, this value is indeed the ultimate value f
the parallel dipole asd goes to zero, but the lifetime for th
perpendicular dipole obviously tends toward a much sma
value (t0 /n1

5). To reconcile these two remarks let us co
sider a dipole parallel to the interfaces. As the gap betw
media 1 and 2 decreases, the electric field emitted by
dipole and arriving at the interfaces 0/1 and 0/2 becom
purely tangential. Therefore it is continuous across the inte
faces~E15E0 for the 0/1 interface!. Conversely, in the case
of dipole perpendicular to the interfaces, for small values
d the electric field generated at the interfaces is purelynor-
mal and thus we havee0E05e1E1 . The normalized decay
rate G8 in an infinite medium 1 represents the normaliz
power emitted by the dipole and it is proportional to t
square ofE1 at the dipole’s locationr0 . In the case of a
dipole in a thin layer~medium 0 in the limitd→0!, the field
at r0 is given byE0(r0)5E1(r0) andE0(r0)5e1E1(r0) for
a parallel and a perpendicular dipole, respectively~we take
e051!. Therefore the decay rate~G!, for the dipole in me-
dium 0, equalsG8 for a parallel dipole ande1

2G8(5n1
4G8) for

a perpendicular dipole. Once we replaceG8 by its value
n1G0 the correct limiting values for the lifetime (t/t0
5G0 /G) are found. The reader interested in a different b
more formal derivation of this property is referred to Re
@25#.

FIG. 3. Normalized lifetime for a dipole on a glass substrate
a function of the gap height. Medium 2 is~a! aluminum,~b! glass;
solid line: perpendicular dipole; dashed line: parallel dipole.
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3250 56RAHMANI, CHAUMET, de FORNEL, AND GIRARD
We might note for completeness that since all the relev
information concerning the interfaces are contained in
Fresnel coefficients, the case of a stratified environment
be addressed through the replacement of the Fresnel co
cients ~19! by the ones relative to a multilayer syste
@18,25#. Before addressing the problem of many-body int
action inside the junction we return to the question
whether the assumption that the atom or the molecule ca
seen as a classical dipole is appropriate when calculating
lifetime changes.

In Sec. II, we mentioned the fact that the field susce
bility is a classical quantity. Therefore we understand t
the classical calculation of Sec. III gives a field susceptibi
valid in a quantum approach. However, the curves prese
in the last paragraph were obtained with a classical exp
sion for the lifetime and not from Eq.~3!. We might briefly
check that the transition rate given by Fermi’s golden r
leads exactly to Eq.~27! for the normalized lifetime. From
Eq. ~3! we infer that

G0ba
5

2

\ (
a,b

ma
abmb

ba Im@S0ab
~r0 ,r0 ,v!# ~30!

for the decay rate in free space, and

Gba5
2

\ (
a,b

ma
abmb

ba Im@S0ab
~r0 ,r0 ,v!1Sab~r0 ,r0 ,v!#

~31!

for the decay rate in the junction. Since we are intereste
normalized values, we write

Gba

G0ba

511
2

\G0ba

(
a,b

ma
abmb

ba Im@Sab~r0 ,r0 ,v!#. ~32!

If we now replaceG0ba
by the common value for the

decay of an atom in free space@35#,

4k0
3

3\
umbau2, ~33!

and take the reciprocal of Eq.~32!, we recover, in the case o
a dipole moment aligned along thez axis, the result given by
Eq. ~27!. This correspondence between the classical and
quantum-mechanical results arises from the fact that
boundaries~media 1 and 2! modify in the same way the
effect on the particle of radiation reaction and of vacuu
fluctuations@36#.

IV. FIELD PROPAGATOR OF A DRESSED JUNCTION

The relation between the field susceptibility and the li
time of an atom or a molecule placed inside a planar junc
was discussed in Sec. III. However, if we introduce any o
ject inside the junction the field susceptibility will be mod
fied, and will differ significantly from that associated with
simple bare junction. Actually, it is possible to build the fie
susceptibility tensor of an arbitrary system by solving a
quence of Dyson’s equations@37#. For instance let us con
sider a small polarizable object located atr s5(xs ,ys ,zs) in
medium 0, and its dynamical polarizability is noteda~v!.
nt
e
an
ffi-

-
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ed
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The resulting~dressed! field susceptibilitySD verifies the
following self-consistent equation:

SD~r 8,r ,v!5S0~r 8,r ,v!1S~r 8,r ,v!1@S0~r 8,r s ,v!

1S~r 8,r s ,v!#•a~v!•SD~r s ,r ,v!, ~34!

where the tensorS0 is the~three dimensional! field suscepti-
bility in free space@1#.

For lifetime calculations, the knowledge ofSD at the mol-
ecule’s location (r0) is necessary. In that case we write

SD~r0 ,r0 ,v!5S~r0 ,r0 ,v!1@S0~r0 ,r s ,v!

1S~r0 ,r s ,v!#•a~v!•SD~r s ,r0 ,v!,

~35!

whereSD(r s ,r0 ,v) can be deduced by solving Eq.~34!. If
an additional object is inserted, we proceed along the prec
ing lines with the replacementS(r 8,r ,v)→SD(r 8,r ,v).
Hence, for an arbitrary object, with a dielectric functione~v!,
a discretization procedure makes it possible to construct
field susceptibility of the dressed junction ‘‘piece by piece
The object is thus considered as a collection ofN polarizable
units ~dipoles! placed on a~usually! cubic lattice. When the
size of the discretization cell~size of one polarizable unit! is
much smaller than the wavelength of the incident field, o
can use the discrete dipole approximation introduced by P
cell and Pennypacker@38#. Let l be the size of the discreti
zation cell; the polarizability of a dipolar subunit then rea

a~v!5
3l 3

4p

e~v!21

e~v!12
I , ~36!

where I is the unit tensor. We might note that unlike th
definition
a(v)5 l 3@e(v)21)]I /4p used in Refs.@11,37# the present
definition of the polarizability includes at once depolariz
tion effects.

An alternate procedure consists in computing the pro
gators:

SD~r i ,r0 ,v!5S0~r i ,r0 ,v!1S~r i ,r0 ,v!1(
j 51

N

@S0~r i ,r j ,v!

1S~r i ,r j ,v!#•aj~v!•SD~r j ,r0 ,v! ~37!

for i 51,N. The solution of this set of linear equations is th
used to calculate

SD~r0 ,r0 ,v!5S~r0 ,r0 ,v!1(
i 51

N

@S0~r0 ,r i ,v!

1S~r0 ,r i ,v!#•ai~v!•SD~r i ,r0 ,v!.

~38!

While the two methods give the same result and requ
the same amount of computer memory, the latter is faste
feature that must be borne in mind whenN, the number of
dipoles inside the junction, becomes large. However, so
care must be given to the matrix inversion procedure use
solve Eq.~37!.
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To illustrate this approach let us consider two dielect
spheres, with diameter 2a520 nm, deposited 20 nm apa
on a substrate. The fluorescing molecule is deposited on
second medium. The spheres and both media have the
refractive index (n5Aes51.5). The molecule now plays th
role of a nanoprobe used to image a sample~the spheres!.
The dynamical polarizability of the sphere is given by

a~v!5a3
es~v!21

es~v!12
I . ~39!

where I is the unit tensor. If we introduce this expressi
into Eq. ~34!, we obtain the field susceptibility, which ac
counts for the presence of the sphere inside the junction~Fig.
4!. Each sphere is coupled to the junction throughS ~dress-
ing of the sphere polarizability by the junction! and to the
other sphere throughS0 ~direct coupling! and S ~junction
mediated coupling!. Similarly, the effect of the spheres o
the molecule includes both the direct and cavity-media
contributions. Although this example might seem far fro
the situation where the molecule would be attached t
probe with finite lateral dimensions, it includes all the ma
physical effects. For different values of the distanceD be-
tween the molecule~the probe! and the top of the sphere
~the sample!, in Fig. 5 we have plotted the normalized dec
rate ~reciprocal of the normalized lifetime! as the molecule
scans a 1503150-nm2 area. When the molecule is scann
at 10 nm@Fig. 5~a!# above the top of the spheres, the mo
fication of the fluorescence is well localized in space, and
influence of the two spheres can be unambiguously separ
~the maxima are located 40 nm apart and the width of
peaks is 22-nm full width at half maximum!. As the distance
of the gap is increased from 10 to 20@Fig. 5~b!# and ulti-
mately to 40 nm@Fig. 5~c!#, the individual contributions are
merged, giving a single global bump in the decay rate. If
distance is further increased, the amplitude of the bump
decrease. We recover here a common feature of SNO
where the near-field nature of the interaction makes it p
sible to increase the resolution by decreasing the dista
between the probe and the sample, without decreasing
wavelength, as is the case in conventional ‘‘far-field’’ optic
However, one must not believe that the gap distance is
only relevant parameter. Indeed when other orientation of

FIG. 4. Geometry of the dressed junction. The sample cons
of two spheres with refractive index 1.5 deposited on a subst
~medium 1!. Both media 1 and 2 have the same index as
spheres. The diameter of the spheres is 20 nm, and the dis
between their centers is 40 nm.
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dipole and/or other nature for the sample~e.g., metallic par-
ticles smaller than the wavelength of the fluorescence lig!
are considered, the observed behavior for the decay rate~or
the lifetime! is much more complex and subtle and will n
be detailed here.

ts
te
e
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FIG. 5. Three-dimensional plots of the decay rate~normalized
with respect to the free space value! as the molecule scans a 15
3150-nm2 area at a distanceD from the top of the spheres.~a!
D510 nm. ~b! D520 nm. ~c! D540 nm.
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V. CONCLUSION

We have used the linear-response theory to derive
field susceptibility of a junction formed by two plane inte
faces separating three media with arbitrary optical const
The validity of such a derivation is justified by the wea
interaction between the EMF and the source. This propag
allowed us to describe the modification of spontaneous em
sion for an atom or a molecule inside the junction. In orde
address some nontrivial situations that might be encount
in near-field optics experiments, we have constructed s
consistently a dressed propagator accounting for the pres
inside the junction of one or more polarizable objects.
stead of being the sample, the fluorescing particle could t
act as a probe illustrating the potential of near-field fluor
cence imaging. In the application proposed in this paper,
sample consisted of two dielectric spheres~diameter 20 nm!.
The fact that the response of each of the two spheres c
be separated, at least when the molecule was not too far
them, is a reflection of the confinement of the EMF arou
them @39#. Thus in confined geometries the gradient of t
EMF depends not only on the wavelength but also on
environment. Near objects such as our spheres one sh
expect a strong gradient of the EMF leading to an increas
the contribution of multipoles higher than the dipole; partic
larly, in the case where no dipole transition is allowed, a h
sensitivity may be achieved by exploiting the quadrupo
transition of the probe particle, as was demonstrated by
recent work of Klimov and Letokhov@40#. On the other
hand, this strong gradient of the EMF also suggests so
interesting issues related to the forces that might be exp
enced by the particle. The experimental study of this clas
near-field effects presupposes an understanding of the m
physical interactions that play a role in a confined geome
As we have done in this paper, it is always interesting to s
with rather simple geometries and then evolve toward m
complex ones.
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APPENDIX A: FIELD SUSCEPTIBILITIES OF THE
MODES OF THE ANGULAR SPECTRUM

For convenience we introduce the variables

A15exp~2 iK0•r0!1
exp~2 iK08•r022iw0d!

Dp2
, ~A1!

B15exp~2 iK0•r0!2
exp~2 iK08•r022iw0d!

Ds2
, ~A2!

C15exp~2 iK0•r0!2
exp~2 iK08•r022iw0d!

Dp2
, ~A3!
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A25
exp~2 iK0•r0!

Dp1
1exp~2 iK08•r0!, ~A4!

B25
exp~2 iK0•r0!

Ds1
2exp~2 iK08•r0!, ~A5!

C25
exp~2 iK0•r0!

Dp1
2exp~2 iK08•r0!, ~A6!

Dp512
exp~22iw0d!

Dp1Dp2
, Ds512

exp~22iw0d!

Ds1Ds2
.

~A7!

1. Upward modes:kz5w0

For the modes whose thez component of the wave vecto
is positive, we have

Gxx
1 52

w0kx
2

ki
2 Dp

21@A1#2
ky

2k0
2

ki
2w0

Ds
21@B1#, ~A8!

Gxy
1 52

w0kxky

ki
2 Dp

21@A1#1
kxkyk0

2

ki
2w0

Ds
21@B1#, ~A9!

Gxz
1 5kxDp

21@C1#, ~A10!

Gyx
1 52

w0kxky

ki
2 Dp

21@A1#1
kxkyk0

2

ki
2w0

Ds
21@B1#,

~A11!

Gyy
1 52

w0ky
2

ki
2 Dp

21@A1#2
kx

2k0
2

ki
2w0

Ds
21@B1#, ~A12!

Gyz
1 5kyDp

21@C1#, ~A13!

Gzx
1 5kxDp

21@A1#, ~A14!

Gzy
1 5kyDp

21@A1#, ~A15!

Gzz
152

ki
2

w0
Dp

21@C1#. ~A16!

2. Downward modes:kz52w0

For the modes whose thez component of the wave vecto
is negative, we have

Gxx
2 52

w0kx
2

ki
2 Dp

21@A2#1
ky

2k0
2

ki
2w0

Ds
21@B2#, ~A17!

Gxy
2 52

w0kxky

ki
2 Dp

21@A2#2
kxkyk0

2

ki
2w0

Ds
21@B2#,

~A18!

Gxz
2 5kxDp

21@C2#, ~A19!

Gyx
2 52

w0kxky
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2 Dp

21@A2#2
kxkyk0

2

ki
2w0

Ds
21@B2#,

~A20!
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Gyy
2 52

w0ky
2

ki
2 Dp

21@A2#1
kx

2k0
2

ki
2w0

Ds
21@B2#, ~A21!

Gyz
2 5kyDp

21@C2#, ~A22!

Gzx
2 52kxDp

21@A2#, ~A23!

Gzy
2 52kyDp

21@A2#, ~A24!

Gzz
25

ki
2

w0
Dp

21@C2#. ~A25!

APPENDIX B: FIELD SUSCEPTIBILITY
IN THE JUNCTION

As it can be seen in Appendix A, the symmetry of t
junction suggests some relations between the elements o
field propagator. Hence five integrals are needed to deriv
the elements of the propagator. Letf the angle defined by
(x2x0)5R cosf, we have

Sxx5I 12I 2 cos 2f,

Sxy5Syx52I 2 sin 2f,

Sxz5I 3 cosf,

Syy5I 11I 2 cos 2f, ~B1!

Syz5I 3 sin f,

Szx5I 4 cosf,

Szy5I 4 sin f.

Szz is calculated directly from Eq.~24!.
The integrals of Eq.~B1! are given by

I 152
i

2 S E
0

k0
2E

0

i` D dw0J0~RAk0
22w0

2!

3H w0
2

~Dp1Dp22e22iw0d!
@Dp1eiw0~z1z022d!
n

-

the
all

1Dp2e2 iw0~z1z0!1Dp1Dp2~eiw0~z2z0!1e2 iw0~z2z0!!#

2
k0

2

~Ds1Ds22e22iw0d!
@Ds1eiw0~z1z022d!

1Ds2e2 iw0~z1z0!2Ds1Ds2~eiw0~z2z0!1e2 iw0~z2z0!!#J ,

~B2!

I 252
i

2 S E
0

k0
2E

0

i` D dw0J2~RAk0
22w0

2!

3H w0
2

~Dp1Dp22e22iw0d!
@Dp1eiw0~z1z022d!

1Dp2e2 iw0~z1z0!1Dp1Dp2~eiw0~z2z0!1e2 iw0~z2z0!!#

1
k0

2

~Ds1Ds22e22iw0d!
@Ds1eiw0~z1z022d!

1Ds2e2 iw0~z1z0!2Ds1Ds2~eiw0~z2z0!1e2 iw0~z2z0!!#J ,

~B3!

I 352S E
0

k0
2E

0

i` D w0Ak0
22w0

2

~Dp1Dp22e22iw0d!
J1~RAk0

22w0
2!

3$Dp2e2 iw0~z1z0!2Dp1eiw0~z1z022d!

1Dp1Dp2~eiw0~z2z0!2e2 iw0~z2z0!!%dw0 , ~B4!

I 45S E
0

k0
2E

0

i` D w0Ak0
22w0

2

~Dp1Dp22e22iw0d!
J1~RAk0

22w0
2!

3$Dp2e2 iw0~z1z0!2Dp1eiw0~z1z022d!

2Dp1Dp2~eiw0~z2z0!2e2 iw0~z2z0!!%dw0 . ~B5!

The last integral to be calculated is given by Eq.~24!.
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