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Generalized complex Swift-Hohenberg equation for optical parametric oscillators
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A generalized complex Swift-Hohenberg equation including diffraction and nonlinear resonance terms is
derived for spatially extended nondegenerate optical parametric oscill@B@s with flat end mirrors. For
vanishing pump detuning this equation becomes the complex Swift-HohefBygequation valid also for
lasers. Nevertheless the similarities between OPOs and lasers are limited, since the diffractive character of
OPOs is lost when the diffraction coefficients of signal and idler fields are equal. This manifests, e.g., in the
absence of advection by traveling wav@$Vs), a clear difference with lasers. When pump detuning is nonzero
a nonlinear resonance develops, as it occurs in degenerate OPOs. This nonlinear resonance is essential in order
to properly describe the TWs that OPOs support, and describes the bistability between TWs. This leads to the
appearance of localized structures, which we also report [81€50-294{®7)05710-7

PACS numbe(s): 42.65.5f, 42.65.Yj, 47.32.Cc

[. INTRODUCTION sers [8,9], drift-type photorefractive oscillator§10], and
nondegenerate optical parametric oscillati@11]. In all
In spite of the complexity of most spatially extended non-cases, these equations are valid for small values of the de-
linear systems, many of them have been shown to be deuning (either positive or negative As indicated in[3] the
scribed, to a given degree of approximation, by a single variGL equation can be understood as a limiting case of the SH
able(e.g., the electric-field amplitude in the case of optics equation, and thus one can regard this equation as a model
governed by a single partial differential equation, the so-equation for pattern formation in nonlinear optics.
called order parameter equatiofOPE (see, e.g., Ref.1]). In the present paper we derive a generalized complex SH
Prototypes of such OPEs are the Ginzburg-Landau and thequation for nondegenerate optical parametric oscillation
Swift-Hohenberg(SH) equations, among othefd]. These (OPO. Our result generalizes previous derivations of OPEs
equations play the role of paradigms since they describe thier this system6,11] since we take explicitly into account
very basic mechanisms of pattern formation in many systhe crucial influence of pump detuning.
tems. Hence, the reason for finding OPEs is twofold. First, Pattern formation in OPOs has been studied in the recent
they capture the main properties of the system under studyast, both in the degenerate and nondegenerate Gasbe
thus allowing a simplified treatment of complex phenomenafollowing, when speaking about OPOs it should be under-
Second, they can reveal the connections between very diffestood that we mean nondegenerate OPOs, unless otherwise
ent pattern forming systems. specified. Concerning the degenerate OPO the leading role
In the field of nonlinear optics, only two classes of OPEsof the roll (standing-wavgpattern in the spatiotemporal dy-
have been obtained up to now, since Couéletl. [2] de- namics of the system has been shddg,13, as well as the
rived acomplexGinzburg-Landau equation for a two-level appearance of more complicated structures involving oscilla-
laser model near its first threshold. They evidenced the intertions through a Hopf bifurcation for positive signal detuning
play between diffractiorand diffusion in the laser system, [14], and the existence of localized structufé$,16]. The
which is essential, for instance, for producing stable opticakxistence of a nonlinear resonance for large pump detuning
vortices, structures very similar to the spiral waves ofterwas demonstrated and analyzed in detail in R&f. Various
observed in Belusov-Zhabotinsky reactigesy., Ref[1]). A OPEs for this system were derived[#h,5,6,17 for different
real Ginzburg-Landau equation was derived for optical bi-limiting cases.
stability [3], for a singly resonant optical parametric oscilla- The nondegenerate OPO has been studied previously in
tor [4], and for degenerate optical parametric oscillafibh  [4,6,11,13,18,1P Longhi [18] has shown that OPO equa-
In all cases, these Ginzburg-Landau equations were obtaingibns admit a family of traveling wavedWs) that are exact
for values of the cavity eigenfrequency exceeding the linesolutions of the model. In this type of solution, signal and
center frequency. idler fields are each described by a TW. These two TWs are
The second class of OPE that has been found in nonlineappositely directed along the transverse plémging to mo-
optics is the SH equation or some of its generalizations. Thenentum conservation and have frequencies equally de-
real SH equation has been derived for degenerate opticalined, in opposite sides, from their reference frequencies
parametric oscillatiofi5,6] and degenerate four-wave mixing (owing to energy conservatipnLong-wavelength(phase
[5]. Also that equation, with an additional constant term, hasnstabilities of the TWs were analyzed through a phase equa-
been derived for one-photdi8] and two-photor{7] optical  tion, and a numerical linear stability analysis of the TWs
bistability. ThecomplexSH equation has been found in la- evidenced the existence of amplitude instabilities that affect
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OPO TWs for low cavity losses for the pump field. Longhi A=(y1A1+ v28) 1 (y1+ v2). (20)
has also shown, through the analysis of amplitude equations

[19], that TWSs are the winners in a TW-roll competition and  In terms of the new variables the OPO model reads
that OPOs near threshold can support stable structures com-

posed by the superposition of two perpendicularly oriented dX=7yo[ = (1+iAo)(X+Y2Z)+ia,V?X],  (3a)

out-of-phase rolls, a state that gives rise to square intensity o 5 . ) .

patterns. WY =yi[—Y—ia(A=VI)Y+PZ* +i(1—iAg)XZ*],
The rest of this paper is organized as follows. In Sec. I (3b)

the OPO model is presented and the linear stability analysis o = o2 oL ioa .
of the below-threshold solution is discussed briefly. In Sec. HL= ol =Z=18(A=VIZFPY* +i(1=140)XY ]('30)
[ll the generalized complex SH equation is derived in the

case of small effective cavity detuning. We comment on thg,nereX. Y. andZ are functions of timg and of the coor-

analogy that exists between OPOs and lasers, and considerdihatesr = (x,y) on the plane transverse to the resonator
detall the different limits of the equation. In Sec. IV some axis,V2=r7§+a§ is the transverse Laplacidapatial coordi-

e o ot st IS haue besh romalzed), andi an/a. Ve vl
quity 9 P consider the case of uniform driving fieRl and will take it

made, and we consider the mechanism for the diffraction I -
. . as real and positive for definiteness.
disappearance in the OPE.

The solution that characterizes OPO below signal and
idler generation threshold ¥=Y=2Z=0. Its linear stability
Il. OPO MODEL AND LINEAR STABILITY ANALYSIS analysis against perturbations of the form [éfp r + wt)]
OF THE BELOW THRESHOLD SOLUTION shows that the trivial solution becomes unstablePatP,

We consider a nonlinear® medium inside a plane reso- being the largest growth perturbatioftsitical mode$ those

nator driven by a coherent field of amplitude and fre- verifying kzzk(zi with [13]
guencyw, that propagates along the resonator axisThe —
crystal converts the intracavity field of frequenay and Pe=v1+4%
amplitudeA, (pump into two fields of frequencieb,w, and
fow (f1+f,=1) and amplituded\; (signa) andA, (idler),
respectively. Three longitudinal modes of the cavity with
frequenciesw,,(m=0,1,2) are assumed to be close to the Ill. ORDER PARAMETER EQUATIONS FOR OPO
frequenciest ,,w (fo=1). The parameters of the model are
the driving amplitude E, the detunings A,=(wn
—fmo )/ vm, the cavity decay rateg,,, and the diffraction
coefficientsa,,= c?/2y,,fmw,, Wherec is the velocity of
light.

ki=0 for A=0,

Pc=1, ki=-A for A<O. 4

In this section we derive the OPE for OPOs, an equation
that captures the basic space-time nonlinear dynamics of that
system close to threshold, without limiting to any specific
type of solution. We apply the same techniques that have

The classical microscopic equations that describe thi llowed one to derive OPEs for other nonlinear optical sys-

OPO system in the mean-field limit, in the paraxial and the ems, like optical bistability3,7] lasers[9], degenerate opti-

single-longitudinal-mode approximations for each field areC"’?I parametric oscillatorg5,6,17 and degenerate four-wave

given in [4,13). In order to make derivations simpler we mixing [5]. In particular, we basically follow the same lines
define the following fields: as in[5], which showed the necessity of explicitly consider-

ing the limit of large pump detuningd in order to properly

E=(1+iAg)P, Ag=P+(1—iAg)X, describe a degenerate OPO through an OPE.
A1:(1+Ag)1lzeiwctY, A2:(1+Ag)1lze—iwctz, (1) A. Scalings and order-parameter equation

In order to derive OPEs one has to deal with “slow”
where space and time scal€,20]. These scalings are suggested by
the linear stability analysis of the bifurcating solution in the

oc=(a;4,—aA)/a, (2a)  vicinity of which the behavior of the system is analyzgul
our case, the trivial solutignin the OPO case slow space

a=(yia1+ yoa5)/(y1+y,). (2b)  scales arise either in the positive detunihgide (where the

most unstable modes are centered aroksd)) or in the

The inclusion of the pump detuning, in definitions(1)  small negativeA side (where the most unstable modes have
is similar to that used in the study of degenerate OF%)s a small|k|), see Eq(4). In order to give a unified treatment
This rescaling largely simplifies the derivation of the OPE ofof both situations we will thus consider small valuegther
the system in the limit of largd,, which is crucial in order positive or negativeof A, sayA=0(e) with £ a smallness
to properly describe the dynamics of the system, as we showarameter. Moreover, in this small detuning limit, the thresh-
below. We also performed a change in the reference freelds of instability of the trivial solution are close to each
quency (- w¢) in A; and (— we) in A, that just corresponds  other[see also Eq4)], their difference bein@(£2). On the
to eliminating the frequency shift of signal and idler fields atother hand, slow time scales occur when the pump parameter
their generation threshold for a negative value ofdffective  is varied in a small amourisayO(e2)] around its threshold
detuning parametef18] value. Thus we adopt the scalings



k= \/;K,

the latter defining a “‘slow” space, leading to the substitution

A=es, P=1+g2p, (5

V2-eV2 (6)

in Egs.(3). In terms of the scaling&), the eigenvalua with
the largest real pafthat which governs the instability of the
trivial solution) reads, to the leading orders in the smallnes
parameteg,

Yy IN=[(P-1)—3(A+K)*]-i[d(A+K»], (7
where we have defined the parameters
2y172 a,—a;

=— d=—""". 8

Y Y1t v2 2 ®

Thus\ has anO(&?) real part and a©(e) imaginary part.
These two contributions ta suggest the definition of two
slow time scalesT;=st, T,=¢%t, which using the chain
rule for differentiation lead to the substitution

9

d—edr +e’dr,

in Egs. (3) [21]. As occurs in the degenerate OPO cisk
the scaling of the pump detunidyy, is not fixed by the linear
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y 1o Y=(P-1)Y—|Y]?Y—id(A—V?)Y—-3(A-V?
—Ao|Y[?)2Y+ FAY(Y*V2Y—YV2Y*)

+Aqd Yl [Y2V2Y* 4+ Y* (VY)-(VY)
2

+2Y(VY)-(VY*)], (13

where the parameterg andd are given in Eq(8). Notice

Yhat the fourth term on the right-hand side of Ef3), (A

—V2=A4|Y|??2Y, expands as X—VZ—Ao|Y|?)[(A—V?
—AolY)Y].

Let us just point out that in the OPE3) Y=¢y,+ 2y,
is the signal field amplitude up to second ordeejrand that
the OPE contains all terms up to the third ordet,ms in the
laser casg9].

B. Case of small pump detuning: Relationships between
OPOs and lasers

Before commenting on the general structure of @) it
is worth considering the limit of moderai@r null) pump
detuningA,. If Ayg=0, Eq.(13) becomes

y 1o Y=(P-1)Y—|Y|?Y=id(A—V?)Y—3(A—V?)?Y,
(14

which is a complex Swift-Hohenberg equation, formally
equivalent to that obtained for las€8,9]. This evidences
the strong similarities existing between the space-time dy-

stability analysis. In principle, one would consider the casd'@mics of OPOs and lasers when the OPO cavity is exactly

Ay=0(1) as has been done i6,11]. Nevertheless, this
scaling forA, is unable to reproduce the well known bista-
bility of the OPO solutions that affects, e.g., the uniform
(space independentsteady state, forA,A>1 (see, e.g.,
[18]). Thus, sinceA is assumed to b®(e), Ay must be
considered to b©(e 1) in order to cover this case. So we
will further adopt the scaling

Aozzsiléb. (l@

Finally, we expand the fields as

X=2 &"%,, Y=2, &, Z=2 &"Z,, (11
n=1 n=1 n=1

and substitute these expressions together with Ex)s(6),
(9), and(10) into Egs.(3). This leads to an infinite hierarchy
of linear problems at increasing ordersithat can be easily,

resonant with the pump. I[A;=0(1) we obtain the same
Eq. (14) since in this case all terms containiag in Eq. (13)
areO(e*) or smaller, and thus can be ignorftbte thatY
=0(e), A=0(¢e), andV2=0(¢)]. This complex SH equa-
tion (14) for OPOs has been previously obtained by 1],
making use of the same techniques described here, but con-
sidering the scaling\,=0(1), andalso independently by
Longhi and Geradi6]. Thus the generalized complex SH Eq.
(13), although derived in the limit of larg&, also describes
OPO dynamics for smalh.

Let us remark, however, that, even having been derived
for Ag=0(1), Eq.(14) cannot be considered as a good de-
scription for OPOs in that limit, since the solutions given by
it do not contain information or . [Note that the OPE for
OPOs derived in Ref6] is isomorphic to Eq(14) with the
substitution Y — ¢/\/1+A02. Thus Ay appears only in a
trivial way in the OPE derived by Longhi and Geraci, not
affecting the OPO solutions’ properti¢sThis is a serious
defect since the traveling waves obtained from the original
microscopic equation$3) always depend om, [18] (and

although nastily, solved. For the sake of brevity we do nothot only through a scaling factpras we discuss in the fol-
give details of the derivation here, but only quote the mostowing subsection.

relevant results: With respect to the analogy between lasers and OPOs
(strictly valid in the caseAy=0), there is a fundamental
difference between Eq14) and the corresponding equation
for lasers. In the latter case, the diffractive contributitre

one corresponding to the third right-hand sides) term in

Eq. (14)] is always preser8,9], whereas in the OPO case it
vanishes if the diffraction coefficients of signal and idler
fields are equal, since in this cade=0 [see EQq.(8)] [this

X==-YZ

Z=Y*—i(A—V)Y* +iAg|Y|2Y*, (12

andY is governed by the OPE
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also applies, obviously, to the complete ORB)]. This im- IV. NUMERICS
plies that one can deal with OPOs with or without diffractive

features(we will come back to this effect in Sec.)VOne of )
: Eqg. (13) are to be remarked upon. On the one hand, diffrac-
these features concerns the advection procg@&grought tion is absent in OPOs when the diffraction coefficients of

about by TWs: if diffraction is present, any perturbation of a__.

i ; : nal and idler fields are equé,=a,; d=0), which is a
TW (e.g. an optical vortex2]) moves(is advectefl with a S19 . 1=
velocity proportional tad; in the case thatl=0 vortices are clear difference between OPOs and lasers. On the other

at rest, and this results in a clear difference between Iase%anq{ the presence of.a. nonIingar resonance Ie:_;\ds to the bi-
and OPOs, which we will discuss in Sec. IV A. sablllty petwe_en the tnwgl solution and TWSs, yvhlch, in par-
ticular gives rise to localized structures. We illustrate these
two properties by numerical calculations in the following
C. The general case: Nonlinear resonance and traveling waves subsections.

We have numerically integrated the original microscopic
Egs. (3) by using the split-step technique. In this technique
the local termgpump, losses, nonlinear couplingsre cal-

As evidenced in the previous section two main features in

If we do not impose limitations on the values of the dif-
fraction coefficientd and on the pump detuning parameter

Bo, E.q‘ ('j&?’) is_ ad%;aneralizid compltra]x SWift-IHtheHnberg culated in the spatial domain and the nonlocal tetdiffrac-
equation. A major difference between the complex €quagye spreading of the three waveare calculated in the re-

tion (l? a?r? th'(lts) IS _theE p;esserlls:ﬁ-_ Otf a n_onllnelar reso- ciprocal wave-number domain. A fast Fourier transform is
nanceffourth r.n.s. term in Eq(13)]. This term is analogous <0 14 shift from the real space to the wave-number domain,

to tgat .fou?r:j intde(t;;ener?tti O_F\%_ﬂ a}ngpisocapadblg of r?_- andvice versain every integration step. Periodic boundary
lpro tﬁc!n%_ tebsl':uc l.Jtrhetﬁ t?' | Slot' |fs a_lr_]W’ n lp?r ICUonditions have been used in all the calculations. The spatial
ar, their bistability wi e trivial solution. If a solution grids used involved 6464 pixels.

of the formY=|Y|exdi(wt+k-r)] is inserted into Eq(13)

one easily obtains
A. Test of the diffractive character of OPOs:

[(A+k?)2=2(P—1)]+2[1-Ao(A+k?)]|Y|? Motion of vortices

+AS|Y|4:0' (15) An exceptional property of the generalized complex SH
equation(13) for OPOs is its “adjustable” diffractivity. In
the adiffractive limit(equal diffraction coefficients, i.ea,
which is a fairly good approximation to the exact TW solu- =a,) diffraction vanishes and the OPO behaves purely dif-
tion following from the original Egs(3). In terms of the fusively. This limit can be achieved, e.g., by adjusting cavity
variables used here, the intensjty|? of the exact TWs is losses. It can also be achieved in the case when both signal

given by[18] and idler fields are degenerated in frequency but not in po-
larization. Far from this limit diffraction can be relatively
2y2_ (p2_ _ 2 2 strong.
[(A+kD*=(P*=1)]+2[1-Ag(A+KI)]]Y| We have checked the effect of diffraction through the
+(1+A2)|Y[*=0, (16)  humerical analysis of the motion of a vortex pair. As follows

from the OPE(13), any spatially inhomogeneous structure

y(x,y,t) on the top of a TW such asY(x,y,t)
which in the limit of P close to 1 and largd (the scalings =y(x,y,t)exdi(wt+k-r)] propagates, with or without re-
used herggives rise to Eq(15). We see now the importance shaping, with a group velocityy=2ydk (that propagation
of the correct scaling10) in order to capture the nonlinear manifests itself in the resulting amplitude equation through a
resonance: had we used the scaling= O(1) the final result  term v,- V). Physically this means that the perturbation is
would have been Eql4), and consequently, the equation advected by the mean flotthe underlying TW in this cage
giving the TW intensity would be Eq15), makingA,=0.  Since the group velocity is proportional to the diffraction
This last equation(with Ay=0), however, cannot be re- parameterd, a numerical study of the motion of perturbed
trieved from the exact Eq(16) in the limit P=1+O(e?) TWs could be a good check of this analytical prediction.
and A;=0(1), andthus the OPE derived with the scaling However, since reshapin@nd eventually complete disap-
Ay=0(1) is unable to give sensible results in general, as wg@earance of the perturbatijponan in principle occur due to
already pointed out. diffusion, sufficiently long lived perturbations must be used.

Up to here we have shown that the generalized compleSuch a “stable” structure is, e.g., an optical vor{&. Con-

SH equation(13) correctly describes the TWs of OPOs. sequently we have chosen the vortex motion for checking the
However, it is important to notice that when TWs are in-resulting diffractivity of the OPE. Since the periodic bound-
serted into Eq(13), the fifth and sixth r.h.s. terms of that ary conditions used in the calculations require that the total
equation vanish. Thus in order to investigate the role playedopological charge be zero in the calculation region, we con-
by these terms, some solutions different from TWs should bsidered the motion of a vortex pair with opposite topological
used. As will be reported elsewhere, the fifth r.h.s. term incharges.
Eq. (13 is responsible for the destabilization of TWs to- Nevertheless the use of vortices can give rise to several
wards rolls, and the fifth and sixth terms determine the struceomplicated motiongradial, tangential, and advectijprin
ture and stability of rolls. These predictions are in goodorder to isolate the advective motion we have located both
agreement with numerical integrations of the original equavortices in such a wagfFig. 1) that the vortices together with
tions[22]. their images(due to the periodic boundary conditigrferm
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FIG. 2. Velocity of propagation of the vortex pair as a function
of a;—a, following from numerical calculationgsymbolg and
from theory(straight ling. Parameters as in Fig. 1.

terms of the unnormalized quantities the velocity ug
=(a;—ak.

The dependence af; on (a;—ay) is shown in Fig. 2.
Clearly, in the adiffractive limit &;=a,) the vortices are at
rest. We also observe that the numerical results closely re-
produce the theoretical linear dependencevgfon (a;
—a,), except for very small values of{—a,). Also evi-
dent is a nearly constant vertical sHiftith the same sign of
(a;—ay)] that the velocity exhibits not very close to the
origin. The behavior close to the origin shows that there
exists an additional mechanism for diffraction suppression
(the actual velocity is smaller than that predicted by the
OPBE beyond that following from the OPE approach.

FIG. 1. Snapshots of a moving vortex pair in the sigiab) and
idler (bottom) fields. The underlying TWs have a wave numiger
=57v2 and are directed towards the upper-rigsigna) and -left

(idler) corners. The parameters agg=y;=7y,=1, Ag=0, A; B. Localized structures via the nonlinear resonance
=A,;=-1(A=-1), 2,=0.001, a;=0.0035,2,=0.0005, andP Another outstanding characteristic of the ORIB) is the
=2. The size of the space domain i 1. presence of a nonlinear resonance. This phenomenon is

present as well in the exact TW solution of the OPO equa-

a square lattice with alternating charges in space. Then thgons as we have stated and gives rise to bistability between
mutual interactions between vortices and images compenhe trivial solution(the OPO solution below signal and idler
sate, and only the basic motion of vortices is due to advecgeneration threshoJdand a TW.
tion. Such a vortex lattice, although being unstable, is long We plot in Fig. 3 the intensity of the signal TW versus its
lived and can *“ride” for a sufficiently long time on top of wavenumbek as given by Eq(16) in order to illustrate the
the traveling wave. phenomenon. The pump detuningAg=>5. In Fig. 3a) a

Figure 1 shows a snapshot of such a vortex pair movingegative value of the effective signal detunifig- — 1.5 has
along the diagonal in the up-right direction. As the diffrac- been chosen and consequently the TWs are roughly centered
tion parameted has been chosen to be positive in this cas&roundk= k.= \/1_5 see Eq(4). In Fig. 3b) A=1.0 and
(see caption motion results along the direction of tilt of the T\s exist aroundk= ke=0. Due to the nonlinear resonance
signal TW. The vortices of the idler wave are captured by thenhe |argest intensity corresponding to a TW does not occur
signal wave and move in the same direction, although thgor the linearly resonant wave numbles but for a different
underlying TW is oppositely tiltedin agreement with Eq. one, as it happens with roll patterns in degenerate OBDs
(10)]. Note that the vortices are stretched along the direction a|| cases, the lower branches of the curves correspond to
of propagation. . . unstable solution§18]. Another remarkable consequence of

Due to the periodic boundary conditions used in the calhe nonlinear resonance is the possibility of bistability be-
culations the vortex pair repeatedly passed through th@yeen the trivial and TW solutions. It is easy to show from
middle of the integration region. The motion of a vortex pair gq. (16) that the two conditions for bistabilitgi.e., for the

was then followed during typically ten passages, in order tQyistence of TWs for pump values below the critical Ghe
calculate the velocity ; with sufficient accuracy. In orderto 4re

make a comparison with the theoretical prediction the space
normalization used in Eq$3) must be taken into account. In Ao(A+Kk?)>1, (173
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06 . . are not giving here information about the stability of the
TWs but there exist parameter settings for which those solu-
tions are stable in the bistability regidm8].

But a most important fact related with the nonlinear reso-
nance in Eq(13) consists in that it affects not only the TW
solutions but all spatial structures that may develop in the
system. In particular, some of us have recently shpbhj
that the nonlinear resonance in degenerate OPOs leads to the
appearance of localized structurgsss). This suggests that
- this phenomenon could also be present in nondegenerate
OPOs. The mechanism of the formation of LSs in this case,
- as well as in the degenerate OPO, is the bistability between
the trivial solution and a spatial structuf€Ws in this case,

0.0 although other structures such as rolls can also be present as
@) k g we have stated aboyeNevertheless, this bistability must be
absolute in the sense we have defined above. According to
our previous discussion following conditioii$7) the abso-
lute bistability is only produced for positive values of the
effective detuning parametekX and requires a sufficiently
large (and positive value of the pump detuning,.

Figure 4 displays a series of snapshots showing the devel-
opment of LSs foA=1, A,=10, andP= 1.2 (which is be-
low the critical pump value, in this case-=v2, but larger
than the lowesPy,,,, which is 114101~1.095. The initial
conditions were “random”(i.e., generated by a Gaussian
distribution of Fourier components, band limited up to some
k). In the calculation each sufficiently strong intensity maxi-

. , mum of the random field evolved to a LS. Neighboring LSs
oL annihilated each other during the subsequent evolution, and
00 | x B IR | the number of LSs decreased until eventually a single LS
‘ 1.0 00 1.0 remained(not shown in the figune

(b) k This LS is stable in a relatively large range of pump pa-
rameter values, as shown in Fig. 5 where the intensity and
width of the LS is plotted as a function &f. Notice that the
stability domain of the LS roughly coincides with the domain
of bistability between the trivial solution and the TWsom

p= Pim=1.095 up toP=P-=1.414, as we indicated

04—

D

02

0.6 :

FIG. 3. TW intensity as a function of its wave numbeffor
Ay=5,A=-15() andA=1 (b). In (8 P/v2=1.1. In(b) P/V2
=0.9, 1.0, and 1.1 from the inner to the outer curves. Dashed line
indicate unstable branches.

Ao+ (A+K?) V. DISCUSSION: WHY SWIFT-HOHENBERG EQUATIONS
—m =Pjm<P<P¢. (17b IN NONLINEAR OPTICS?
0

Let us go back to the OPEL3) and compare it with the
For A<0, conditions(17) cannot be fulfilled simultaneously. OPE describing the space-time dynamics of degenerate
Contrarily, for A>0 it is possible to verify condition&l7?): OPOs, derived in Ref5]:
in particular since the lowed®|,,, corresponds tk=0, a
sufficient condition for the fulfillement of Eq.17) is AgA
>2, and in this case, at least the on-axis wake-Q) is
bistable with the trivial solution in the range given by Eg.
(17b). These facts are also illustrated in Fig. 3. The trivialwhere all symbols keep the same meaning as in(Eg), vy
solution is unstable against thok®s lying between the cuts =1v;, and the fieldY is real. Note that Eq(18) can be
of the curves with the horizontal axi®’|=0, and stable mathematically obtained from EL3) by equalizing the pa-
against all othek’s. Thus in Fig. 3a) (A<O0) the trivial rameters of signal and idler field&n the degenerate case
solution is unstable with respect to some TWs and stabléoth fields are just the samewhich leads tod=0 and y
with respect to others, which leads to the instability of the= vy, [see Eq(8)], and imposing the reality of.
trivial solution. In Fig. 3b) (A>0) the trivial solution is For the sake of clarity let us concentrate on the cage
also unstable for pumps larger than or equaPto(the two =0, in which the equations for both degenerate and nonde-
outer curves, see captiprbut stably coexists with TWs for generate OPOs are the real and complex SH equation, re-
pump values belowP. (the inner curvg It is in cases like spectively. Taking into account that these two equations have
the latter one that one can speak ofabsolute bistability been derived for many optical systems, as stated in the In-
since the trivial solution is locally stable against any spatiattroduction, the central role played by the SH equation in the
perturbation at the time spatial structures exist. For sure weescription of pattern formation in nonlinear optics is evi-

y 1o Y=(P—1)Y-Y3-1(A—-V2-A,Y?)2Y, (19



56 GENERALIZED COMPLEX SWIFT-HOHENBER . . . 3243

°

0.5
S - 0.085
> - O
f 0.50 | 7 fﬁ
> £
é» - o.osoqs
4 o451 =
a2 | B
&= I B
g 040
L I 0075

1 | 1 | 1
1.05 1.15 125 135

FIG. 5. Intensity at the centre of the L@8lled circles and its
width (open squargsas a function of the pump parameter The
parameters are as in Fig. 4.

dent, and the following question naturally emerges: why the
SH equation in nonlinear optics?

The universal character of the complex SH equatfibf)
in optics can be understood by noticing that the terms ap-
pearing in it describe, in the lowest-order approximation, all
the relevant physical phenomena present in most nonlinear
optical systems: the first and second terms account for the
linear gain and gain saturation, respectively; the (ashlo-
cal) terms account for the diffraction and the spatial fre-
quency selection, respectively. The role of the nonlocal
terms can be understood in the following way: linearization
of Eq. (14) around the trivial solutionY=0) with the ansatz
Y(r,t)=y exp(t+ik-r) leads just to Eq(7). The real part
of A actually corresponds to a parabolic approximation to the
usual Lorentzian gain line profile in the frequency or trans-
verse wave number domains. This phenomenon is well
known in nonlinear optics as tHeansversemode selection.
This approximation of the gain profile has a maximum at
k?=—A for negativeA, which can be understood as the
transverse wave number corresponding to a tilted wave,
which fits the cavity longitudinal resonance condition. For
positive A the real part ofA is maximal fork=0, and the
mechanism of spatial frequency selection cannot take place
since the wavelength of the radiation is larger than that of the
nearby cavity longitudinal mode23]. The imaginary part of
the growth exponent will be analyzed later.

However, in many cases it is not the complex but the real
SH equation[Eq. (18) with Ay=0], the one describing a
nonlinear optical system. It is evident that somepriori
relevant ingredients of nonlinear optics are missing here: the
originally complex field amplitude has become real, and dif-
fraction has dissappeared. The analysis of all the terms re-
mains as before. In the cases of optical bistab[l&y7] the
SH equation also contains a constant term, which accounts
for the absence of the inversion symme¥y- —Y, due to
bistability. Which are thus the physical mechanisms leading
to the “strange” transformation of the initial microscopic
equations of some nonlinear optical systems, and which are

FIG. 4. Ensemble of LSs in the signal field evolving from an complex and diffractive, to the real and purely diffusive SH
initial random field at(from top to bottom t=0, 15, 30, and 90. equation? The problem of the vanishing of diffraction has
Parameters are,=y;=7y,=1, A;=10, A;=A,=1(A=1), a, been already pointed out {i8]. There has also been an at-
=0.001,a,=0.0025,a,=0.0015, andP=1.2. tempt to explain this if24], but the actual physical reason
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for the dissappearance of diffraction remains unclear. +B(Y*)" (with 8 a constant coefficient, and=1,2, . . .).

In order to understand the vanishing of diffraction, we Nevertheless in this last case phase locking would not appear
return to the interpretation of the imaginary partoflt can  at threshold even fon=1. Thus, when a system displays
be seen from Eq.7) that diffraction is related to the fact that phase locking at thresholds is the case of, e.g., DOPO and
waves characterized by transverse wave numbers with diffeeptical bistability the order parameter must be real.
ent modulik have different eigenfrequencies, governed by Thus we can understand the role played by the SH equa-
the dispersion relatiom=d(A +k?), with o=Im(\). Thus, tion in nonlinear optics and, in particular, how diffractive
for d=0 (which occurs in the real SH equation, and also incharacteristics are lost when a frequency locking exists and
the complex SH equation for OPOs whap=a,) all the  how the system can be described by a single real variable
perturbations of the trivial solution evolve with the samewhen phase locking occurs. Of course, the SH equdgén
frequency. This means that in the initial system a frequencyher real or complexis a skeleton. In each particular case,
locking mechanism must exist. Of course, the concretghat equation is generalized in order to accommodate to the
mechanism of frequency locking will depend on the particu-specific characteristics of the optical system: inclusion of an
lar system. For example, in optical bistability the frequencyadditional constant term in optical bistability, inclusion of a
locking is due to the driving of the injected field, and in the nonlinear resonance in degenerate and nondegenerate OPOs,
degenerate OPO and degenerate four-wave mixing it is duetc.
to energy conservation in the parametric process.
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