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Generalized complex Swift-Hohenberg equation for optical parametric oscillators
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A generalized complex Swift-Hohenberg equation including diffraction and nonlinear resonance terms is
derived for spatially extended nondegenerate optical parametric oscillators~OPOs! with flat end mirrors. For
vanishing pump detuning this equation becomes the complex Swift-Hohenberg~SH! equation valid also for
lasers. Nevertheless the similarities between OPOs and lasers are limited, since the diffractive character of
OPOs is lost when the diffraction coefficients of signal and idler fields are equal. This manifests, e.g., in the
absence of advection by traveling waves~TWs!, a clear difference with lasers. When pump detuning is nonzero
a nonlinear resonance develops, as it occurs in degenerate OPOs. This nonlinear resonance is essential in order
to properly describe the TWs that OPOs support, and describes the bistability between TWs. This leads to the
appearance of localized structures, which we also report here.@S1050-2947~97!05710-7#

PACS number~s!: 42.65.Sf, 42.65.Yj, 47.32.Cc
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I. INTRODUCTION

In spite of the complexity of most spatially extended no
linear systems, many of them have been shown to be
scribed, to a given degree of approximation, by a single v
able ~e.g., the electric-field amplitude in the case of optic!,
governed by a single partial differential equation, the
calledorder parameter equation~OPE! ~see, e.g., Ref.@1#!.
Prototypes of such OPEs are the Ginzburg-Landau and
Swift-Hohenberg~SH! equations, among others@1#. These
equations play the role of paradigms since they describe
very basic mechanisms of pattern formation in many s
tems. Hence, the reason for finding OPEs is twofold. Fi
they capture the main properties of the system under st
thus allowing a simplified treatment of complex phenome
Second, they can reveal the connections between very di
ent pattern forming systems.

In the field of nonlinear optics, only two classes of OP
have been obtained up to now, since Coulletet al. @2# de-
rived a complexGinzburg-Landau equation for a two-lev
laser model near its first threshold. They evidenced the in
play between diffractionand diffusion in the laser system
which is essential, for instance, for producing stable opt
vortices, structures very similar to the spiral waves of
observed in Belusov-Zhabotinsky reactions~e.g., Ref.@1#!. A
real Ginzburg-Landau equation was derived for optical
stability @3#, for a singly resonant optical parametric oscill
tor @4#, and for degenerate optical parametric oscillation@5#.
In all cases, these Ginzburg-Landau equations were obta
for values of the cavity eigenfrequency exceeding the li
center frequency.

The second class of OPE that has been found in nonlin
optics is the SH equation or some of its generalizations.
real SH equation has been derived for degenerate op
parametric oscillation@5,6# and degenerate four-wave mixin
@5#. Also that equation, with an additional constant term, h
been derived for one-photon@3# and two-photon@7# optical
bistability. ThecomplexSH equation has been found in la
561050-2947/97/56~4!/3237~8!/$10.00
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sers @8,9#, drift-type photorefractive oscillators@10#, and
nondegenerate optical parametric oscillation@6,11#. In all
cases, these equations are valid for small values of the
tuning ~either positive or negative!. As indicated in@3# the
GL equation can be understood as a limiting case of the
equation, and thus one can regard this equation as a m
equation for pattern formation in nonlinear optics.

In the present paper we derive a generalized complex
equation for nondegenerate optical parametric oscillat
~OPO!. Our result generalizes previous derivations of OP
for this system@6,11# since we take explicitly into accoun
the crucial influence of pump detuning.

Pattern formation in OPOs has been studied in the rec
past, both in the degenerate and nondegenerate cases~in the
following, when speaking about OPOs it should be und
stood that we mean nondegenerate OPOs, unless othe
specified!. Concerning the degenerate OPO the leading r
of the roll ~standing-wave! pattern in the spatiotemporal dy
namics of the system has been shown@12,13#, as well as the
appearance of more complicated structures involving osc
tions through a Hopf bifurcation for positive signal detunin
@14#, and the existence of localized structures@15,16#. The
existence of a nonlinear resonance for large pump detun
was demonstrated and analyzed in detail in Ref.@5#. Various
OPEs for this system were derived in@4,5,6,17# for different
limiting cases.

The nondegenerate OPO has been studied previous
@4,6,11,13,18,19#. Longhi @18# has shown that OPO equa
tions admit a family of traveling waves~TWs! that are exact
solutions of the model. In this type of solution, signal a
idler fields are each described by a TW. These two TWs
oppositely directed along the transverse plane~owing to mo-
mentum conservation!, and have frequencies equally d
tuned, in opposite sides, from their reference frequenc
~owing to energy conservation!. Long-wavelength~phase!
instabilities of the TWs were analyzed through a phase eq
tion, and a numerical linear stability analysis of the TW
evidenced the existence of amplitude instabilities that aff
3237 © 1997 The American Physical Society
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OPO TWs for low cavity losses for the pump field. Long
has also shown, through the analysis of amplitude equat
@19#, that TWs are the winners in a TW-roll competition an
that OPOs near threshold can support stable structures
posed by the superposition of two perpendicularly orien
out-of-phase rolls, a state that gives rise to square inten
patterns.

The rest of this paper is organized as follows. In Sec
the OPO model is presented and the linear stability anal
of the below-threshold solution is discussed briefly. In S
III the generalized complex SH equation is derived in t
case of small effective cavity detuning. We comment on
analogy that exists between OPOs and lasers, and consid
detail the different limits of the equation. In Sec. IV som
numerical results are reported. Finally in Sec. V a discussion
about the ubiquity of the SH equation in nonlinear optics
made, and we consider the mechanism for the diffract
disappearance in the OPE.

II. OPO MODEL AND LINEAR STABILITY ANALYSIS
OF THE BELOW THRESHOLD SOLUTION

We consider a nonlinearx (2) medium inside a plane reso
nator driven by a coherent field of amplitudeE and fre-
quencyvL that propagates along the resonator axisz. The
crystal converts the intracavity field of frequencyvL and
amplitudeA0 ~pump! into two fields of frequenciesf 1vL and
f 2vL ( f 11 f 251) and amplitudesA1 ~signal! andA2 ~idler!,
respectively. Three longitudinal modes of the cavity w
frequenciesvm(m50,1,2) are assumed to be close to t
frequenciesf mvL( f 051). The parameters of the model a
the driving amplitude E, the detunings Dm5(vm
2 f mvL)/gm , the cavity decay ratesgm , and the diffraction
coefficientsam5c2/2gmf mvL , where c is the velocity of
light.

The classical microscopic equations that describe
OPO system in the mean-field limit, in the paraxial and
single-longitudinal-mode approximations for each field a
given in @4,13#. In order to make derivations simpler w
define the following fields:

E5~11 iD0!P, A05P1~12 iD0!X,

A15~11D0
2!1/2eivCtY, A25~11D0

2!1/2e2 ivCtZ, ~1!

where

vC5~a1D22a2D1!/a, ~2a!

a5~g1a11g2a2!/~g11g2!. ~2b!

The inclusion of the pump detuningD0 in definitions~1!
is similar to that used in the study of degenerate OPOs@5#.
This rescaling largely simplifies the derivation of the OPE
the system in the limit of largeD0 , which is crucial in order
to properly describe the dynamics of the system, as we s
below. We also performed a change in the reference
quency (1vC) in A1 and (2vC) in A2 that just corresponds
to eliminating the frequency shift of signal and idler fields
their generation threshold for a negative value of theeffective
detuning parameter@18#
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D5~g1D11g2D2!/~g11g2!. ~2c!

In terms of the new variables the OPO model reads

] tX5g0@2~11 iD0!~X1YZ!1 i ã0¹2X#, ~3a!

] tY5g1@2Y2 i ã1~D2¹2!Y1PZ* 1 i ~12 iD0!XZ* #,
~3b!

] tZ5g2@2Z2 i ã2~D2¹2!Z1PY* 1 i ~12 iD0!XY* #,
~3c!

whereX, Y, andZ are functions of timet and of the coor-
dinates r5(x,y) on the plane transverse to the resona
axis,¹25]x

21]y
2 is the transverse Laplacian~spatial coordi-

nates have been normalized toAa!, andãm5am /a. We will
consider the case of uniform driving fieldP and will take it
as real and positive for definiteness.

The solution that characterizes OPO below signal a
idler generation threshold isX5Y5Z50. Its linear stability
analysis against perturbations of the form exp@i(k•r1vt)#
shows that the trivial solution becomes unstable atP5Pc
being the largest growth perturbations~critical modes! those
verifying k25kC

2 with @13#

PC5A11D2, kC
2 50 for D>0,

PC51, kC
2 52D for D<0. ~4!

III. ORDER PARAMETER EQUATIONS FOR OPO

In this section we derive the OPE for OPOs, an equat
that captures the basic space-time nonlinear dynamics of
system close to threshold, without limiting to any speci
type of solution. We apply the same techniques that h
allowed one to derive OPEs for other nonlinear optical s
tems, like optical bistability@3,7# lasers@9#, degenerate opti-
cal parametric oscillators@5,6,17# and degenerate four-wav
mixing @5#. In particular, we basically follow the same line
as in@5#, which showed the necessity of explicitly conside
ing the limit of large pump detuningD0 in order to properly
describe a degenerate OPO through an OPE.

A. Scalings and order-parameter equation

In order to derive OPEs one has to deal with ‘‘slow
space and time scales@1,20#. These scalings are suggested
the linear stability analysis of the bifurcating solution in th
vicinity of which the behavior of the system is analyzed~in
our case, the trivial solution!. In the OPO case slow spac
scales arise either in the positive detuningD side~where the
most unstable modes are centered aroundk50! or in the
small negativeD side ~where the most unstable modes ha
a smalluku!, see Eq.~4!. In order to give a unified treatmen
of both situations we will thus consider small values~either
positive or negative! of D, sayD5O(«) with « a smallness
parameter. Moreover, in this small detuning limit, the thres
olds of instability of the trivial solution are close to eac
other@see also Eq.~4!#, their difference beingO(«2). On the
other hand, slow time scales occur when the pump param
is varied in a small amount@sayO(«2)# around its threshold
value. Thus we adopt the scalings
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D5«d, P511«2p, k5A«k, ~5!

the latter defining a ‘‘slow’’ space, leading to the substituti

¹2→«¹1
2 ~6!

in Eqs.~3!. In terms of the scalings~5!, the eigenvaluel with
the largest real part~that which governs the instability of th
trivial solution! reads, to the leading orders in the smallne
parameter«,

g21l5@~P21!2 1
2 ~D1k2!2#2 i @d~D1k2!#, ~7!

where we have defined the parameters

g5
2g1g2

g11g2
, d5

ã12ã2

2
. ~8!

Thusl has anO(«2) real part and anO(«) imaginary part.
These two contributions tol suggest the definition of two
slow time scalesT15«t, T25«2t, which using the chain
rule for differentiation lead to the substitution

] t→«]T1
1«2]T2

~9!

in Eqs. ~3! @21#. As occurs in the degenerate OPO case@5#
the scaling of the pump detuningD0 is not fixed by the linear
stability analysis. In principle, one would consider the ca
D05O(1) as has been done in@6,11#. Nevertheless, this
scaling forD0 is unable to reproduce the well known bist
bility of the OPO solutions that affects, e.g., the unifor
~space independent! steady state, forD0D.1 ~see, e.g.,
@18#!. Thus, sinceD is assumed to beO(«), D0 must be
considered to beO(«21) in order to cover this case. So w
will further adopt the scaling

D05«21d0 . ~10!

Finally, we expand the fields as

X5 (
n51

`

«nxn , Y5 (
n51

`

«nyn , Z5 (
n51

`

«nZn , ~11!

and substitute these expressions together with Eqs.~5!, ~6!,
~9!, and~10! into Eqs.~3!. This leads to an infinite hierarch
of linear problems at increasing orders in« that can be easily
although nastily, solved. For the sake of brevity we do
give details of the derivation here, but only quote the m
relevant results:

X52YZ,

Z5Y* 2 i ~D2¹2!Y* 1 iD0uYu2Y* , ~12!

andY is governed by the OPE
s

e

t
t

g21] tY5~P21!Y2uYu2Y2 id~D2¹2!Y2 1
2 ~D2¹2

2D0uYu2!2Y1 1
2 D0Y~Y* ¹2Y2Y¹2Y* !

1D0d
g

g2
@Y2¹2Y* 1Y* ~¹W Y!•~¹W Y!

12Y~¹W Y!•~¹W Y* !#, ~13!

where the parametersg and d are given in Eq.~8!. Notice
that the fourth term on the right-hand side of Eq.~13!, (D
2¹22D0uYu2)2Y, expands as (D2¹22D0uYu2)@(D2¹2

2D0uYu2)Y#.
Let us just point out that in the OPE~13! Y5«y11«2y2

is the signal field amplitude up to second order in«, and that
the OPE contains all terms up to the third order in«, as in the
laser case@9#.

B. Case of small pump detuning: Relationships between
OPOs and lasers

Before commenting on the general structure of Eq.~13! it
is worth considering the limit of moderate~or null! pump
detuningD0 . If D050, Eq. ~13! becomes

g21] tY5~P21!Y2uYu2Y2 id~D2¹2!Y2 1
2 ~D2¹2!2Y,

~14!

which is a complex Swift-Hohenberg equation, forma
equivalent to that obtained for lasers@8,9#. This evidences
the strong similarities existing between the space-time
namics of OPOs and lasers when the OPO cavity is exa
resonant with the pump. IfD05O(1) we obtain the same
Eq. ~14! since in this case all terms containingD0 in Eq. ~13!
are O(«4) or smaller, and thus can be ignored@note thatY
5O(«), D5O(«), and¹25O(«)#. This complex SH equa-
tion ~14! for OPOs has been previously obtained by us@11#,
making use of the same techniques described here, but
sidering the scalingD05O(1), andalso independently by
Longhi and Geraci@6#. Thus the generalized complex SH E
~13!, although derived in the limit of largeD0 , also describes
OPO dynamics for smallD0 .

Let us remark, however, that, even having been deri
for D05O(1), Eq. ~14! cannot be considered as a good d
scription for OPOs in that limit, since the solutions given
it do not contain information onD0 . @Note that the OPE for
OPOs derived in Ref.@6# is isomorphic to Eq.~14! with the
substitution Y→c/A11D0

2. Thus D0 appears only in a
trivial way in the OPE derived by Longhi and Geraci, n
affecting the OPO solutions’ properties.# This is a serious
defect since the traveling waves obtained from the origi
microscopic equations~3! always depend onD0 @18# ~and
not only through a scaling factor!, as we discuss in the fol
lowing subsection.

With respect to the analogy between lasers and OP
~strictly valid in the caseD050!, there is a fundamenta
difference between Eq.~14! and the corresponding equatio
for lasers. In the latter case, the diffractive contribution@the
one corresponding to the third right-hand side~rhs! term in
Eq. ~14!# is always present@8,9#, whereas in the OPO case
vanishes if the diffraction coefficients of signal and idl
fields are equal, since in this cased50 @see Eq.~8!# @this
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also applies, obviously, to the complete OPE~13!#. This im-
plies that one can deal with OPOs with or without diffracti
features~we will come back to this effect in Sec. V!. One of
these features concerns the advection processes@20# brought
about by TWs: if diffraction is present, any perturbation o
TW ~e.g. an optical vortex@2#! moves~is advected! with a
velocity proportional tod; in the case thatd50 vortices are
at rest, and this results in a clear difference between la
and OPOs, which we will discuss in Sec. IV A.

C. The general case: Nonlinear resonance and traveling wave

If we do not impose limitations on the values of the d
fraction coefficientd and on the pump detuning paramet
D0 , Eq. ~13! is a generalized complex Swift-Hohenbe
equation. A major difference between the complex SH eq
tion ~14! and Eq.~13! is the presence of a nonlinear res
nance@fourth r.h.s. term in Eq.~13!#. This term is analogous
to that found in degenerate OPOs@5# and is capable of re
producing the structure of the TWs of OPOs and, in parti
lar, their bistability with the trivial solution. If a TW solution
of the formY5uYuexp@i(vt1k•r )# is inserted into Eq.~13!
one easily obtains

@~D1k2!222~P21!#12@12D0~D1k2!#uYu2

1D0
2uYu450, ~15!

which is a fairly good approximation to the exact TW sol
tion following from the original Eqs.~3!. In terms of the
variables used here, the intensityuYu2 of the exact TWs is
given by @18#

@~D1k2!22~P221!#12@12D0~D1k2!#uYu2

1~11D0
2!uYu450, ~16!

which in the limit of P close to 1 and largeD0 ~the scalings
used here! gives rise to Eq.~15!. We see now the importanc
of the correct scaling~10! in order to capture the nonlinea
resonance: had we used the scalingD05O(1) the final result
would have been Eq.~14!, and consequently, the equatio
giving the TW intensity would be Eq.~15!, makingD050.
This last equation~with D050!, however, cannot be re
trieved from the exact Eq.~16! in the limit P511O(«2)
and D05O(1), andthus the OPE derived with the scalin
D05O(1) is unable to give sensible results in general, as
already pointed out.

Up to here we have shown that the generalized comp
SH equation~13! correctly describes the TWs of OPO
However, it is important to notice that when TWs are i
serted into Eq.~13!, the fifth and sixth r.h.s. terms of tha
equation vanish. Thus in order to investigate the role pla
by these terms, some solutions different from TWs should
used. As will be reported elsewhere, the fifth r.h.s. term
Eq. ~13! is responsible for the destabilization of TWs t
wards rolls, and the fifth and sixth terms determine the str
ture and stability of rolls. These predictions are in go
agreement with numerical integrations of the original eq
tions @22#.
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IV. NUMERICS

As evidenced in the previous section two main features
Eq. ~13! are to be remarked upon. On the one hand, diffr
tion is absent in OPOs when the diffraction coefficients
signal and idler fields are equal~a15a2 ; d50!, which is a
clear difference between OPOs and lasers. On the o
hand, the presence of a nonlinear resonance leads to th
stability between the trivial solution and TWs, which, in pa
ticular gives rise to localized structures. We illustrate the
two properties by numerical calculations in the followin
subsections.

We have numerically integrated the original microscop
Eqs. ~3! by using the split-step technique. In this techniq
the local terms~pump, losses, nonlinear couplings! are cal-
culated in the spatial domain and the nonlocal terms~diffrac-
tive spreading of the three waves! are calculated in the re
ciprocal wave-number domain. A fast Fourier transform
used to shift from the real space to the wave-number dom
and vice versain every integration step. Periodic bounda
conditions have been used in all the calculations. The spa
grids used involved 64364 pixels.

A. Test of the diffractive character of OPOs:
Motion of vortices

An exceptional property of the generalized complex S
equation~13! for OPOs is its ‘‘adjustable’’ diffractivity. In
the adiffractive limit ~equal diffraction coefficients, i.e.,a1
5a2! diffraction vanishes and the OPO behaves purely d
fusively. This limit can be achieved, e.g., by adjusting cav
losses. It can also be achieved in the case when both si
and idler fields are degenerated in frequency but not in
larization. Far from this limit diffraction can be relativel
strong.

We have checked the effect of diffraction through t
numerical analysis of the motion of a vortex pair. As follow
from the OPE~13!, any spatially inhomogeneous structu
y(x,y,t) on the top of a TW such asY(x,y,t)
5y(x,y,t)exp@i(vt1k•r )# propagates, with or without re
shaping, with a group velocityvg52gdk ~that propagation
manifests itself in the resulting amplitude equation throug
term vg•“!. Physically this means that the perturbation
advected by the mean flow~the underlying TW in this case!.
Since the group velocity is proportional to the diffractio
parameterd, a numerical study of the motion of perturbe
TWs could be a good check of this analytical predictio
However, since reshaping~and eventually complete disap
pearance of the perturbation! can in principle occur due to
diffusion, sufficiently long lived perturbations must be use
Such a ‘‘stable’’ structure is, e.g., an optical vortex@2#. Con-
sequently we have chosen the vortex motion for checking
resulting diffractivity of the OPE. Since the periodic boun
ary conditions used in the calculations require that the to
topological charge be zero in the calculation region, we c
sidered the motion of a vortex pair with opposite topologic
charges.

Nevertheless the use of vortices can give rise to sev
complicated motions~radial, tangential, and advection!. In
order to isolate the advective motion we have located b
vortices in such a way~Fig. 1! that the vortices together with
their images~due to the periodic boundary conditions! form
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a square lattice with alternating charges in space. Then
mutual interactions between vortices and images comp
sate, and only the basic motion of vortices is due to adv
tion. Such a vortex lattice, although being unstable, is lo
lived and can ‘‘ride’’ for a sufficiently long time on top o
the traveling wave.

Figure 1 shows a snapshot of such a vortex pair mov
along the diagonal in the up-right direction. As the diffra
tion parameterd has been chosen to be positive in this ca
~see caption!, motion results along the direction of tilt of th
signal TW. The vortices of the idler wave are captured by
signal wave and move in the same direction, although
underlying TW is oppositely tilted@in agreement with Eq.
~10!#. Note that the vortices are stretched along the direc
of propagation.

Due to the periodic boundary conditions used in the c
culations the vortex pair repeatedly passed through
middle of the integration region. The motion of a vortex p
was then followed during typically ten passages, in orde
calculate the velocityvg with sufficient accuracy. In order to
make a comparison with the theoretical prediction the sp
normalization used in Eqs.~3! must be taken into account. I

FIG. 1. Snapshots of a moving vortex pair in the signal~top! and
idler ~bottom! fields. The underlying TWs have a wave numberk
55p& and are directed towards the upper-right~signal! and -left
~idler! corners. The parameters areg05g15g251, D050, D1

5D2521(D521), a050.001, a150.0035,a250.0005, andP
52. The size of the space domain is 131.
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terms of the unnormalized quantities the velocity isvg
5(a12a2)k.

The dependence ofvg on (a12a2) is shown in Fig. 2.
Clearly, in the adiffractive limit (a15a2) the vortices are at
rest. We also observe that the numerical results closely
produce the theoretical linear dependence ofvg on (a1
2a2), except for very small values of (a12a2). Also evi-
dent is a nearly constant vertical shift@with the same sign of
(a12a2)# that the velocity exhibits not very close to th
origin. The behavior close to the origin shows that the
exists an additional mechanism for diffraction suppress
~the actual velocity is smaller than that predicted by t
OPE! beyond that following from the OPE approach.

B. Localized structures via the nonlinear resonance

Another outstanding characteristic of the OPE~13! is the
presence of a nonlinear resonance. This phenomeno
present as well in the exact TW solution of the OPO eq
tions as we have stated and gives rise to bistability betw
the trivial solution~the OPO solution below signal and idle
generation threshold! and a TW.

We plot in Fig. 3 the intensity of the signal TW versus i
wavenumberk as given by Eq.~16! in order to illustrate the
phenomenon. The pump detuning isD055. In Fig. 3~a! a
negative value of the effective signal detuningD521.5 has
been chosen and consequently the TWs are roughly cent
aroundk5kC5A1.5; see Eq.~4!. In Fig. 3~b! D51.0 and
TWs exist aroundk5kC50. Due to the nonlinear resonanc
the largest intensity corresponding to a TW does not oc
for the linearly resonant wave numberkC but for a different
one, as it happens with roll patterns in degenerate OPOs@5#.
In all cases, the lower branches of the curves correspon
unstable solutions@18#. Another remarkable consequence
the nonlinear resonance is the possibility of bistability b
tween the trivial and TW solutions. It is easy to show fro
Eq. ~16! that the two conditions for bistability~i.e., for the
existence of TWs for pump values below the critical onePC!
are

D0~D1k2!.1, ~17a!

FIG. 2. Velocity of propagation of the vortex pair as a functio
of a12a2 following from numerical calculations~symbols! and
from theory~straight line!. Parameters as in Fig. 1.



.

q.
ia

b
he

r

tia
w

e
olu-

o-

the

o the
t
rate
se,
een

nt as
e
g to

e

vel-

n
e

xi-
Ss
and
LS

a-
and

in

rate

e

de-
, re-
ave
In-

the
vi-

in
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D01~D1k2!

A11D0
2

[Plim,P,PC . ~17b!

For D,0, conditions~17! cannot be fulfilled simultaneously
Contrarily, for D.0 it is possible to verify conditions~17!:
in particular since the lowestPlim corresponds tok50, a
sufficient condition for the fulfillement of Eq.~17! is D0D
.2, and in this case, at least the on-axis wave (k50) is
bistable with the trivial solution in the range given by E
~17b!. These facts are also illustrated in Fig. 3. The triv
solution is unstable against thosek’s lying between the cuts
of the curves with the horizontal axisuYu50, and stable
against all otherk’s. Thus in Fig. 3~a! (D,0) the trivial
solution is unstable with respect to some TWs and sta
with respect to others, which leads to the instability of t
trivial solution. In Fig. 3~b! (D.0) the trivial solution is
also unstable for pumps larger than or equal toPC ~the two
outer curves, see caption!, but stably coexists with TWs fo
pump values belowPC ~the inner curve!. It is in cases like
the latter one that one can speak of anabsolute bistability,
since the trivial solution is locally stable against any spa
perturbation at the time spatial structures exist. For sure

FIG. 3. TW intensity as a function of its wave numberk for
D055, D521.5 ~a! andD51 ~b!. In ~a! P/&51.1. In ~b! P/&
50.9, 1.0, and 1.1 from the inner to the outer curves. Dashed l
indicate unstable branches.
l

le

l
e

are not giving here information about the stability of th
TWs but there exist parameter settings for which those s
tions are stable in the bistability region@18#.

But a most important fact related with the nonlinear res
nance in Eq.~13! consists in that it affects not only the TW
solutions but all spatial structures that may develop in
system. In particular, some of us have recently shown@15#
that the nonlinear resonance in degenerate OPOs leads t
appearance of localized structures~LSs!. This suggests tha
this phenomenon could also be present in nondegene
OPOs. The mechanism of the formation of LSs in this ca
as well as in the degenerate OPO, is the bistability betw
the trivial solution and a spatial structure~TWs in this case,
although other structures such as rolls can also be prese
we have stated above!. Nevertheless, this bistability must b
absolute in the sense we have defined above. Accordin
our previous discussion following conditions~17! the abso-
lute bistability is only produced for positive values of th
effective detuning parameterD and requires a sufficiently
large ~and positive! value of the pump detuningD0 .

Figure 4 displays a series of snapshots showing the de
opment of LSs forD51, D0510, andP51.2 ~which is be-
low the critical pump value, in this casePC5&, but larger
than the lowestPlim , which is 11/A101'1.095!. The initial
conditions were ‘‘random’’~i.e., generated by a Gaussia
distribution of Fourier components, band limited up to som
k!. In the calculation each sufficiently strong intensity ma
mum of the random field evolved to a LS. Neighboring L
annihilated each other during the subsequent evolution,
the number of LSs decreased until eventually a single
remained~not shown in the figure!.

This LS is stable in a relatively large range of pump p
rameter values, as shown in Fig. 5 where the intensity
width of the LS is plotted as a function ofP. Notice that the
stability domain of the LS roughly coincides with the doma
of bistability between the trivial solution and the TWs~from
P5Plim51.095 up toP5PC51.414, as we indicated!.

V. DISCUSSION: WHY SWIFT-HOHENBERG EQUATIONS
IN NONLINEAR OPTICS?

Let us go back to the OPE~13! and compare it with the
OPE describing the space-time dynamics of degene
OPOs, derived in Ref.@5#:

g21] tY5~P21!Y2Y32 1
2 ~D2¹22D0Y2!2Y, ~18!

where all symbols keep the same meaning as in Eq.~13!, g
5g1 , and the fieldY is real. Note that Eq.~18! can be
mathematically obtained from Eq.~13! by equalizing the pa-
rameters of signal and idler fields~in the degenerate cas
both fields are just the same!, which leads tod50 and g
5g1 @see Eq.~8!#, and imposing the reality ofY.

For the sake of clarity let us concentrate on the caseD0
50, in which the equations for both degenerate and non
generate OPOs are the real and complex SH equation
spectively. Taking into account that these two equations h
been derived for many optical systems, as stated in the
troduction, the central role played by the SH equation in
description of pattern formation in nonlinear optics is e

es
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FIG. 4. Ensemble of LSs in the signal field evolving from
initial random field at~from top to bottom! t50, 15, 30, and 90.
Parameters areg05g15g251, D0510, D15D251(D51), a0

50.001,a150.0025,a250.0015, andP51.2.
dent, and the following question naturally emerges: why
SH equation in nonlinear optics?

The universal character of the complex SH equation~14!
in optics can be understood by noticing that the terms
pearing in it describe, in the lowest-order approximation,
the relevant physical phenomena present in most nonlin
optical systems: the first and second terms account for
linear gain and gain saturation, respectively; the last~nonlo-
cal! terms account for the diffraction and the spatial fr
quency selection, respectively. The role of the nonlo
terms can be understood in the following way: linearizati
of Eq. ~14! around the trivial solution (Y50) with the ansatz
Y(r ,t)5y exp(lt1ik•r ) leads just to Eq.~7!. The real part
of l actually corresponds to a parabolic approximation to
usual Lorentzian gain line profile in the frequency or tran
verse wave number domains. This phenomenon is w
known in nonlinear optics as the~transverse! mode selection.
This approximation of the gain profile has a maximum
k252D for negativeD, which can be understood as th
transverse wave number corresponding to a tilted wa
which fits the cavity longitudinal resonance condition. F
positive D the real part ofl is maximal fork50, and the
mechanism of spatial frequency selection cannot take p
since the wavelength of the radiation is larger than that of
nearby cavity longitudinal mode@23#. The imaginary part of
the growth exponent will be analyzed later.

However, in many cases it is not the complex but the r
SH equation@Eq. ~18! with D050#, the one describing a
nonlinear optical system. It is evident that somea priori
relevant ingredients of nonlinear optics are missing here:
originally complex field amplitude has become real, and d
fraction has dissappeared. The analysis of all the terms
mains as before. In the cases of optical bistability@3,7# the
SH equation also contains a constant term, which acco
for the absence of the inversion symmetryY→2Y, due to
bistability. Which are thus the physical mechanisms lead
to the ‘‘strange’’ transformation of the initial microscopi
equations of some nonlinear optical systems, and which
complex and diffractive, to the real and purely diffusive S
equation? The problem of the vanishing of diffraction h
been already pointed out in@3#. There has also been an a
tempt to explain this in@24#, but the actual physical reaso

FIG. 5. Intensity at the centre of the LS~filled circles! and its
width ~open squares! as a function of the pump parameterP. The
parameters are as in Fig. 4.
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for the dissappearance of diffraction remains unclear.
In order to understand the vanishing of diffraction, w

return to the interpretation of the imaginary part ofl. It can
be seen from Eq.~7! that diffraction is related to the fact tha
waves characterized by transverse wave numbers with di
ent moduli k have different eigenfrequencies, governed
the dispersion relationv5d(D1k2), with v5Im(l). Thus,
for d50 ~which occurs in the real SH equation, and also
the complex SH equation for OPOs whena15a2! all the
perturbations of the trivial solution evolve with the sam
frequency. This means that in the initial system a freque
locking mechanism must exist. Of course, the concr
mechanism of frequency locking will depend on the partic
lar system. For example, in optical bistability the frequen
locking is due to the driving of the injected field, and in th
degenerate OPO and degenerate four-wave mixing it is
to energy conservation in the parametric process.

The second restriction that transforms the complex
equation into the real one is that the order parameter mus
real. This restriction means the breaking of the symme
Y→Y exp(if), with f an arbitrary phase, in Eq.~14!, which
corresponds to the phase locking of the solutions. Obviou
phase locking can be incorporated into the complex
equation through the addition of terms of the ty
L

A
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po
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y
e
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y
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H
be
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ly
H

1b(Y* )n ~with b a constant coefficient, andn51,2, . . .!.
Nevertheless in this last case phase locking would not ap
at threshold even forn51. Thus, when a system display
phase locking at threshold~as is the case of, e.g., DOPO an
optical bistability! the order parameter must be real.

Thus we can understand the role played by the SH eq
tion in nonlinear optics and, in particular, how diffractiv
characteristics are lost when a frequency locking exists
how the system can be described by a single real varia
when phase locking occurs. Of course, the SH equation~ei-
ther real or complex! is a skeleton. In each particular cas
that equation is generalized in order to accommodate to
specific characteristics of the optical system: inclusion of
additional constant term in optical bistability, inclusion of
nonlinear resonance in degenerate and nondegenerate O
etc.

ACKNOWLEDGMENTS

We gratefully acknowledge S. Longhi for sharing with u
Refs. @6# and @16# prior to their publication. This work has
been supported by the Spanish DGICYT through Proj
PB96-0600-C03-01, and by the German Deutsche F
schungsgemeinschaft.
o

ce

cs

ys-
he
ich
.
in
ng
-

sic.
@1# M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@2# P. Coullet, L. Gil, and F. Rocca, Opt. Commun.73, 403
~1989!.

@3# P. Mandel, M. Georgiou, and T. Erneux, Phys. Rev. A47,
4277 ~1993!.

@4# K. Staliunas, J. Mod. Opt.42, 1261~1995!.
@5# G. J. de Valca´rcel, K. Staliunas, E. Rolda´n, and V. J. Sa´nchez-

Morcillo, Phys. Rev. A54, 1609~1996!.
@6# S. Longhi and A. Geraci, Phys. Rev. A54, 4581~1996!.
@7# V. J. Sánchez-Morcillo and G. J. de Valca´rcel, Quantum Semi-

classic. Opt.8, 919 ~1996!.
@8# K. Staliunas, Phys. Rev. A48, 1573~1993!.
@9# J. Lega, J. W. Moloney, and A. C. Newell, Phys. Rev. Lett.73,

2978 ~1994!; Physica D83, 478 ~1995!.
@10# K. Staliunas, M. F. H. Tarroja, G. Slekys, C. O. Weiss, and

Dambly, Phys. Rev. A51, 4140~1995!.
@11# K. Staliunas, G. J. de Valca´rcel, V. J. Sa´nchez-Morcillo, and

E. Roldán ~unpublished!.
@12# G. L. Oppo, M. Brambilla, and L. A. Lugiato, Phys. Rev.

49, 2028~1994!.
@13# G. L. Oppo, M. Brambilla, D. Camesasca, A. Gatti, and L.

Lugiato, J. Mod. Opt.41, 1151~1994!.
@14# M. Brambilla, D. Camesasca, L. A. Lugiato, and G. L. Op
.

~unpublished!; M. Brambilla, D. Camesasca, and G. L. Opp
~unpublished!.

@15# K. Staliunas and V. J. Sa´nchez-Morcillo, Opt. Commun.139,
306 ~1997!.

@16# S. Longhi, Phys. Scr.~to be published!.
@17# S. Longhi, J. Mod. Opt.43, 1089~1996!.
@18# S. Longhi, Phys. Rev. A53, 4488~1996!.
@19# S. Longhi, J. Mod. Opt.43, 1569~1996!.
@20# P. Manneville,Dissipative Structures and Weak Turbulen

~Academic Press, San Diego, 1990!.
@21# Note that Eq.~9! is equivalent to considering that the dynami

of the system only depends on the two slow time scalesT1 and
T2 , but not on the ‘‘normal’’ time scalet. This means that we
are just describing the relevant long-time behavior of the s
tem, dropping all ‘‘fast’’ transients that are governed by t
rest of eigenvalues given by the linear stability analysis, wh
areO(1) and negative. See@7# for a more extended discussion

@22# In Ref. @17# it was concluded that rolls were always unstable
OPOs. This negative result is related to the implicit scali
D05O(1) used in that work~the details will be reported else
where!.

@23# W. J. Firth and A. J. Scroggie, Europhys. Lett.26, 521~1994!.
@24# M. Le Berre, E. Ressayre, and A. Tallet, Quantum Semiclas

Opt. 7, 1 ~1995!.


