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Theoretical modeling of vertical-cavity surface-emitting lasers with polarized optical feedback

P. Besnard, F. Robert, M. L. Chare`s, and G. M. Ste´phan*
ENSSAT, Laboratoire d’Optronique associe´ au CNRS (UPRESA6082), GISO2, 6 rue de Ke´rampont, 22305 Lannion, France

~Received 21 March 1997!

Vertical-cavity surface-emitting lasers have two preferential polarization states related to the crystal axes of
the quantum wells. In this work, we consider such a laser extended by means of a polarizer inserted in an
external cavity. When the phase of the external-cavity field is modulated, the laser switches from one polar-
ization state to the other. Experimental and theoretical results in which spin interactions are inserted are
presented and discussed. A linear stability analysis is applied to the two linearly polarized stationary states in
the case of structures with small amplitude anisotropies. It shows how the phase of the reinjected field affects
the stability of the mode. Coefficients for gain compression and spontaneous noise are mandatory to obtain
polarization flips in the simulations.@S1050-2947~97!02810-2#

PACS number~s!: 42.60.Mi, 42.65.2k, 42.55.Px, 42.55.Sa
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I. INTRODUCTION

Polarization properties of laser light have been a topic
research since the discovery of the laser@1#. Until now it has
not been used in coherent communication systems bec
the polarization state is lost during the propagation along
fiber. Nevertheless, a polarization-bistable laser diode co
have some advantages over direct bias modulation suc
less power dissipation, a high contrast ratio, or less
quency chirp. Chen and Liu@2# have already proposed suc
a scheme for optical logical gates@3# which could present
better suitability for cascading@4# ~see Fig. 1!. Unfortu-
nately, components used in this study were not reproduc
Seemingly, identical structures do not always exhibit bis
bility. Later, reliable bistable devices have been p
duced. ~1! Klehr et al. @5# obtained TE-TM modulation up
to 8 GHz with a strained ridge waveguide in InGaAsP I
lasers. ~2! Ouchi et al. @6# fabricated bielectrode
Al xGa12xAs GaAs distributed feedback lasers with TE-T
polarization switching between two longitudinal mode
Control of the bias current in each electrode enables the
larization state to switch and moreover to tune the las
wavelength.

In these studies, the polarization state was switched
changing the bias current. Some researchers proposed
ways to control the TE-TM switching: ~1! use of an exter-
nal electric field@7# in a tensile-strained quantum-well lase
~2! use of a saturable absorbing layer@8#, ~3! use of injection
from an external radiation@9,10#, and~4! use of an extended
cavity @11–13#. In this last case, the modulation wa
brought by an electro-optic modulator. Toda, Ogasawa
and Ito@14# explained this setup by analyzing the net gain
the two orthogonal modes. Choquetteet al. @15# and Pan,
Jiang, and Dagenais@16# proposed to use cruciform vertica
cavity laser diodes. One difference between vertical-ca
surface-emitting laser~VCSEL! and conventional laser struc
tures rests on their respective anisotropies. The latter ge
ally have a large anisotropy between the TE and TM mo
because of the asymmetry of the active zone. They alw
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work on the same polarization and this is why one can ch
acterize them by the expression ‘‘scalar laser.’’ This anis
ropy could be compensated using an antireflection coa
laser submitted to optical polarized feedback@14#. In fact,
there are different origins to anisotropies:~1! the host me-
dium ~due to macroscopic stress, temperature effects, or
profiles, etc.!, ~2! the geometry of the optical waveguide,~3!
the linear microscopic properties of the physical system
teracting with light~optical dipoles!, ~4! the saturation effect,
and ~5! the feedback light or external constraint. In a VC
SEL, the light is emitted along a direction perpendicular
the junction or to the quantum wells of the gain region. T
anisotropy is very weak and the polarization is along
preferential axes@110# or @11̄0# for components grown on
~001! substrates. These nearly degenerate orthogonal line
polarized eigenstates lead to a certain randomness in th
rection of polarization which is not well defined~along@110#
or @11̄0#! from one component to another. It could be a ma
drawback as the control of the polarization properties is
portant for polarization-sensitive applications. It can also
turned into an advantage if we know how to control it. T
sum up, VCSELs are lasers with weak anisotropies and a
to work on several polarization states. One could thus sp
of vectorial lasers. This vectorial nature is the cause of a
intensity noise increase@17,18# or polarization instabilities
@19#. Several techniques have been proposed to control

FIG. 1. Simple image showing how to modulate a signal us
bistability.
3191 © 1997 The American Physical Society
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3192 56BESNARD, ROBERT, CHARE` S, AND STÉPHAN
VCSEL polarization state. Most of the schemes rely
breaking the symmetry in the plane of the quantum we
during the process of fabricating the lasers:~1! use of po-
larization properties of VCSELs which depends upon
gain @20#, ~2! use of an anisotropic laser mirror@21,22#, ~3!
use of a misoriented substrate@23#, ~4! use of an anisotropic
gain distribution in @110#-oriented strained quantum-we
structures@24#, and~5! use of asymmetric structures@25,26#.

The other way to control the polarization of the laser lig
is the polarized optical feedback~POF! method. Here, one
takes advantage of the weak anisotropy of the VCSELs
breaking the symmetry from the outside. Previous wo
have shown@27–30# that in the case of a single-frequenc
laser with weak anisotropies, it is possible to control t
polarization state by changing the phase difference betw
the laser field and the external field. In the case of VCSE
this phase can be scanned by changing the external-c
length or the laser frequency. This last parameter can
modulated through the bias current~chirp effects!.

In Sec. II we describe our experimental results using
VCSEL submitted to polarized optical feedback. In Sec.
the model introduced in@31# is used to understand the effe
of an extended cavity. In order to describe theoretically th
experiments, the vectorial nature of the laser should be ta
into account. Both orthogonal modes with a detailed desc
tion of the associated quantum transitions@27,31# are in-
cluded. In this model, the laser works at line center a
anisotropies originating from the gain profile are not tak
into account. With these assumptions, in most cases, t
are two stationary states which are linearly polarized.
develop a linear stability analysis of these states in orde
study the effect of a weak feedback in the case of VCSE
The optical feedback can make the laser bistable with
optical phase of the external field as the control para
eter. In Sec. IV numerical investigations indicate that o
one linearly polarized mode will survive in the bistable r
gime. These results show that the control of polarizat
state of the laser can be well simulated.

II. EXPERIMENT

A. Experimental arrangement

We use commercially available components emitting
850 nm. The devices have one wavelength cavity with f
GaAs quantum wells. Their threshold currents are 2.3–
mA and operate at a single frequency for normalized b
currents between 1.0 and>1.8. Commercial drivers are use
for the temperature stabilization and the injection curre
Modulation of the current was performed by an uhf genera
when needed. Two Fabry-Pe´rot interferometers@one with
10-GHz free spectral range~FSR! and a finesse of 150 an
another with variable FSR and a finesse greater than 50#, a
fast oscilloscope, an optical spectrum analyzer, and a rf s
trum analyzer allow for signal analysis.

Figure 2 shows the experimental arrangement. A polar
Pf is inserted in the extended cavity. The feedback ligh
polarized along the direction (Y) perpendicular to the polar
ization of the free-running laser~mode X!. Pa controls its
amplitude. A piezoelectric ceramic~PZ! can change the
lengthL of the external cavity. A polarizing cube beam spl
ter Pd and a half-wave plate allow for the detection of t
n
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signal along the two eigenaxes of the bare laser.

B. Numerical values

We have summed up the parameter values of the VCS
in Table I. If the surfaceS of the four quantum wells is equa
to 78.5310212 m2 and the thickness of a quantum wellLQW

is equal to 10 nm, then the theoretical currents at trans
encyJ0 and at thresholdJth are given by

J05
e4LQWS

r ite
N051.26 mA, Jth5

e4LQWS

r ite
Nth52.75 mA,

wheree is the electron charge andr i the internal quantum
efficiency.te is relaxation time of the total carrier numbe
The carrier density at threshold is then given byNth5N0
11/GGNtp wheretp is the photon lifetime andN0 the car-
rier density at transparency.G is the confinement factor
(50.05) including the weak thickness of the quantum we
GN is the differential gain~m3 s21!. Some parameters, suc
as Henry’s factora, were deduced by different measur
ments ~linewidth versus bias current, oscillation frequen
versus bias current using modulation techniques, freque
shift versus feedback strength!. Other parameters were re
ported from the literature@32#. As the polarization state ca
be controlled, the frequency splitting between orthogo
modes is easily measured@30#: it is in the range 10–20 GHz
for our lasers. No switching between the two polarizati
states, as described in@33# and in @34#, is observed in the
light-intensity curves. This is in agreement with theoretic
results given in@34#.

C. Control of the polarization state

The description of our results has already been given
@35#. Feedback phenomena could give rise to numerous
fects in conventional lasers@36# and this optical perturbation
is known to affect the laser properties@37,38#. Several stud-
ies have been made to understand the dynamics of s

FIG. 2. Schematic representation of the experimental setup.
mirror is mounted on a piezoelectric ceramic. The polarizerPf is
oriented along the directionY, perpendicular to the polarization o
the laser without feedback (X).
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TABLE I. Parameter values used in the theoretical analysis.

Meaning Parameter Numerical value

Laser cavity length Ld 1 mm
Diameter 10 mm
Output coupling laser mirror r 2(r 1599.95%) 99.75%
Internal quantum efficiency r i 0.7
Cavity lifetime tc 26.6 fs
Phase index nf 3.6
Group index ng 4
Absorption losses aa 10 cm21

Mirror losses aM5(Ld)21 ln@(r1r2)
21# 30 cm21

Photon lifetime tp5(Vga t)
21 3.3 ps

Differential gain GN 2.9310212 m3 s21

Confinement factor G 0.05
Carrier density at transparency N0 1.7531024 m23

Carrier density at threshold Nth5N01(GGNtp)21 3.831024 m23

Carrier lifetime te 1 ns
Spin relaxation lifetime ts 10 ps
Linewidth enhancement factor a 3.8
Spontaneous emission factor b 231023
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coupled cavities@39,40#. Different regimes are defined ac
cording to the power of the reinjected light. Therefore o
would usually try to design feedback-insensitive lasers@41#.

In our case, one has to consider the vectorial nature
VCSELs. The solitary laser oscillates on a single transve
longitudinal mode (X) for any value of the injection current
The inherent anisotropy of the free-running laser is sm
The laser submitted to the feedback field which is linea
polarized alongY oscillates alongY or X following the
phase of this field.

The feedback strength does not need to be strong in o
to compensate for the internal anisotropy. The effective
flectivity r 3 of the external cavity has been deduced from
measurements of the shift of the optical frequency.r 3 is
between 1023 and a few 1022 in the experiment. It follows
that the laser oscillates in the first or second region of
Tkach-Chraplyvy classification@42#.

The effective losses of the perpendicular modeY are de-
pendent upon the phasec of the external field.c governs the
interference between the internal laser field and the feedb
field. When this interference is positive the laser tends
oscillate with theY polarization. Two control parameter
may be used to commandc54pL/l5vt: the lengthL of
the external cavity@29# or the frequencyn5v/2p. Here we
focus on the second method, which is based on the freque
chirp, linked to a variation of the injection currenti m . The
laser frequency chirp produces a change in the phase o
feedback light (Df54p(L/c)Dn). Figure 3 shows the cur
rent of the VCSEL~upper tracei m! and the output intensitie
I X and I Y as a function of time. The pump parameteri m is
modulated at 1 MHz. During a scan of the order ofp, there
is a polarization flip andI Y is complementary toI X . Switch-
ing between theX and Y modes has been obtained up
30–50 MHz depending on the laser component. Above
value, the modulation depth has to be increased so much
the laser reaches values of the bias current where se
transverse modes exist@35#. The polarization switches ar
e

of
e-

l.
y

er
-

e

e

ck
o

cy

he

is
at
ral

then driven by partition noise and mode competition. T
change of behavior can be explained by the transition fr
thermal effects towards carrier effects in the curre
frequency transfer function@43#. In semiconductor lasers,
first plateau~thermal band! is in the range 1–100 MHz~Fig.
6 in Ref.@35#!. The chirp for static measurements is higher
VCSELs (2320 GHz/mA) than in conventional lasers~23
to 210 GHz/mA!. It indicates the major importance of tem
perature effects in VCSEL~greater thermal resistance!.
Above the thermal band, the chirp is due to the electron-h
pairs ~electronic band! so that in this region, the response
the same as the one encountered in conventional laser
the thermal band, this transfer function explains why a sm
voltage amplitude could control the polarization as a sm
value is sufficient to let the phase scan a complete cy
@0:2p#. At 1 MHz, this voltage amplitude is as small a
220.5 dBm. On the contrary, in the electronic band, t
chirp is smaller and the modulation depth has to be increa

FIG. 3. Polarization switchings when bias current~upper trace!
is modulated at 1 MHz with a modulation depth of220.5 dBm.
The optical power~lower trace! detected alongx is off and on
depending on the value of the phase. The complementary sign
obtained alongy. The external cavity length is equal to 5 cm;r 3

51%.
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with the consequences already mentioned.
The duration of the transition from one polarization sta

to another depends onf m . Typical values are 10–30 ns for
modulation frequency of 1 Mhz. Note that with this metho
the polarization state of the laser can be chosen for any
current.

III. THEORY

In this paper we will focus the theoretical study on t
influence of the external phase on the polarization stability
VCSELs. The other parameters will be considered as fix

A. Two-population model

A vectorial analysis of the field and the medium has be
detailed in@34#. In this analysis, four levels have been tak
into account as shown in Fig. 4. Transitions between
conduction band (Jz56 1

2 ) and the heavy-hole band (Jz5
6 3

2 ) are considered. In a first approximation, the light-ho
band is considered out of resonance as the quantum-
structure lowers its energy. The dipole moment which lin
the sublevelsJz5

1
2 to 3

2 ~Jz52 1
2 to 2 3

2! is coupled with the
left ~right! circularly polarized light. The two systems a
coupled through spin relaxation. As the value of the ass
ated time constantts ~10 ps! lies between the carrier relax
ation timets ~1 ns! and the photon lifetimetp ~3 ps!, the
equation for the population difference between the suble
with opposite value ofJz cannot be adiabatically eliminated
The right and left circular fields are coupled to the mediu
through the total carrier densityN and the differenceS be-
tween the carrier densities with positive and negative val
of Jz . At line center, these carrier density variables obey t
following equations:

dN

dt
5P2

N

te
2GGN~12b2I 22u2I 1!~N2S2N0!I 2

2GGN~12b1I 12u1I 2!~N1S2N0!I 1 , ~1!

dS

dt
52

S

ts
1GGN~12b2I 22u2I 1!~N2S2N0!I 2

2GGN~12b1I 12u1I 2!~N1S2N0!I 1 . ~2!

P is the pump rate per unit volume~P5hJ/ed with J the
bias-current density,d the thickness of the active zone,e the

FIG. 4. Four-level model used in the theory.
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electron charge,h the quantum efficiency!. ts(gs51/ts) is
the relaxation time associated with spin relaxation.I 1(2) is
the photon density of the right~left! circular wave. Two
slight modifications~see Appendixes A and B! have been
brought to equations of Ref.@34#. The first one is the intro-
duction of the carrier number at transparencyN0 as the no-
tion of holes has been introduced. The second one is
insertion of self- and cross-gain-compression coefficie
b1 , u1 , b2 , u2 . We have chosen to name them ‘‘gain
compression’’ factors instead of ‘‘saturation’’ factors
make a clear distinction with the saturation parameters u
ally defined in gas lasers and which are obtained by the a
batic elimination of the population inversion variable. The
compression terms are obtained in the scalar case by m
of an exact elimination procedure for the polarization@44#.
They may be derived from theoretical calculations@45#. In
semiconductor lasers, the equation for the carriers~or the
inversion! cannot be eliminated so that the saturation is c
tained in Eq.~1! without gain-compression terms. In th
paper, the usual symbols for semiconductor lasers have b
used.

Two equations will describe the evolution of the circul
componentsE6 of the field:

Ė652
E6

2tp
2 i ~v2v t!E62~ga1 igb!E71

1

2
GGN

3~12b6I 62u6I 71 ia!~N6S2N0!E6 , ~3!

with uE6u25I 6 , a is the linewidth enhancement factor.tp is
the photon lifetime. It is related to the internal (aa) and
reflection losses (aM):1/tp5vga t5(c/ng)(aa1aM) where
aM5(1/Ld)ln(1/r 1r 2). r 1(599.95%), r 2(599.75%) are
the reflectivities of the laser mirrors.Ld is the effective laser-
cavity length which is different from the geometrical lengt
as one should consider the penetration depth into the Br
reflectors@46#. v is the optical angular frequency resultin
from the transition between the two bands,v t the angular
frequency at transparency.gb is the birefringence andga the
anisotropic amplitude loss. 2(gb2aga) is the frequency
splitting between thex̂- ~@110# or @11̄0#! and ŷ-polarized so-
lutions @34#. As has been shown in@34# for a free-running
laser, many of the interesting phenomena of polarizat
switching can be explained as a consequence of biref
gence and saturable dispersion. Conditions of bistabi
monostability, and dynamical instabilities have been dem
strated@34# for the free-running laser. In our experiment,the
solitary laser is monostablefor one component, the polariza
tion is locked onto a main axis by the anisotropy due to
residual stress. The saturable dispersion maintains emis
onto one of the linear polarized states. The components h
a small ~often negligible! gain anisotropy together with th
residual birefringenceDn which causes the two linear pola
izations to have different frequencies. Typically, the splitti
is 12 GHz ~between 10 and 13 GHz!, which givesDn57
31025 or gb537.5 GHz~between 31.4 and 41 GHz! if the
amplitude anisotropy is taken equal to zero. However,
study will be devoted to the whole range of phase aniso
pies. The different causes of the anisotropies are taken
account: the macroscopic host through its dichroism and
refringence~which will be represented, respectively, byga
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56 3195THEORETICAL MODELING OF VERTICAL-CAVITY . . .
and gb!, the microscopic medium through the spin intera
tion variableS, the compression of the gain~only in the
numerical simulations! throughb6 , u6 , and the feedback
as developed in the next section.

B. Modeling the external cavity

The extended cavity is taken into account by replacing
scalar reflectivityr 2 of the output laser mirror by an equiva
lent reflectivity r̂ eff @47#. Due to the vectorial nature of th
problem, r̂ eff is no longer a scalar symbol but becomes
vector:

S r 2eff1E1

r 2eff2E2
D5r 2S E1

E2
D1r 2X(

n51

1`

~2r 2r 3!n21

3M c
ne2 invtS E1~ t2nt!

E2~ t2nt! D , ~4!

where t52L/c is the round-trip time,L is the external-
cavity length, andM c5(c2 m2

m1 c1) is the Jones matrix@48# of

the polarizer, expressed in the circular basis.r 2eff6 represent
the effective reflectivities of each polarized component of
field. We have assumed that the output mirror and the ex
nal mirror ~reflectivity r 3! are isotropic and thatX
5(r 3 /r 2)(12r 2

2)50.005r 3 . For simplicity, diffraction
losses are included inr 3 . The second matrix term in Eq.~4!
represents the total anisotropy induced by the external ca
Its Hermitian part is associated with amplitude losses and
anti-Hermitian part with linear~birefringence! and circular
phase anisotropies~circular dichroism!.

After one round-trip, the matrix for anX polarizer is in
the x,y basis: (0

1
0
0), whereas in the circular basis12 (1

1
1
1).

We will take in the following aY polarizer and thus

M c5
1

2 S 1 21

21 1 D .

The equivalent reflectivity will give rise to two comple
photon lifetimes, one for each polarized mode:

1

tp6
5vgFaa1

1

Ld
lnS 1

r 1r 2eff6
D G5

1

tp
2

2

tc
lnS r 2eff6

r 2
D .

~5!

In Eq. ~3!, the following term becomes

E6

2tp6
5

E6

2tp
2

E6

tc
lnS r 2eff6

r 2
D .

In this study iXi,1025 and ir 2r 3M ce
2 ivti,531022 so

thatonly one round-trip term will be considered. ln(r2eff6 /r2)
may be expanded intor 2eff6 /r221 as long asE1(2)(t2t)
are of the same order of magnitude as the delayed te
E1(t), E2(t):
-

e

e
r-

ty.
ts

s

1

tc S E1 lnS r 2eff1

r 2
D

E2 lnS r 2eff2

r 2
D D '

1

r 2tc
S r 2eff1E12r 2E1

r 2eff2E22r 2E2
D

5
X

tc
M ce

2 ivtS E1~ t2t!

E2~ t2t! D .

Then Eq.~3! becomes

Ė65
1

2
GGN~11 ia!~N6S2Nth!E6

2
1

2
GGN~b6I 61u6I 7!~N6S2N0!E6

2~ga1 igb!E71
X

tc
m6E6~ t2t!e2 ivt

1
X

tc
c6E7~ t2t!e2 ivt, ~6!

where, when the anisotropies are discarded, the carrier
sity and the angular frequency become at threshold

N5Nth5N01
1

GGNtp
and

v5v05v t1
a

2
GGN~Nth2N0!5v t1

a

2tp
.

The differencev02v t5a/2tp is the frequency shift from
transparency~the medium does not absorb atN5N0! to
threshold. This definition gives a reference frequency eq
to zero at threshold, as we assume that above it, the ca
density and the laser frequency are clamped atN5Nth and at
v5v0 .

C. Linear stability analysis

1. Solutions without feedback

We will look for stationary solutions for the field of th
form E65e6ei (Dv6t6w) with Dv65v62v0 . Stationary
values for Eqs.~1!, ~2!, and~6! are denotedNs , Ss , vs , and
e6 . A stationary solution will implyv15v25vs with
Dv65Dvs the deviation from the optical angular frequen
v0 . The possibility of solutions with two frequencies ha
been discussed in@34#. In this analysis, we will ignore the
gain-compression terms. In the absence of gain anisotr
and feedback, solutions are written for the carrier densi
and the field:

Ns
x5Nth1

2ga

GGN
, Ns

y5Nth2
2ga

GGN
, Ss50,

e6
2 5

P2Ns /te

2GGN~Ns2N0!
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3196 56BESNARD, ROBERT, CHARE` S, AND STÉPHAN
for the anglec and the difference frequency:

wx50, Dvs
x5vs

x2v052gb1aga

for x-linear polarized light~first solutionx!,

wy5p/2, Dvs
y5gb2aga

for y-linear polarized light~second solutiony!. Two ellip-
tical solutions could exist~see Appendix C!.

In the following, we will analyze the stability of the lin
early polarized modes with weak polarized feedback.

2. Linearly polarized solutions with polarized optical feedback

If the polarizer makes an angleu with respect to the lase
axes (0°,u,90°), thenc1Þc2 and nsÞ0, e1Þe. The
stability of elliptical solutions should be studied. This la
case is not trivial as one should find the phase condition fr
coupled nonlinear equations. Recall that in this studym
5m15m25 1

2 and c15c252 1
2 ~or 1

2! for the matrix ele-
ments in Eq.~6!. The diagonal termsm modify the gain and
the frequency of the stationary solutions and the cross te
c1 affect the anisotropy of the linearly polarizedmodes.
They can be taken away by introducing a new amplitu
anisotropy:

ga85ga2
X

tc
c1 cos~vst! ~7!

and a phase anisotropy

gb85gb1
X

tc
c1 sin~vst!, ~8!

where the stationary phasevst may have different expres
sions vs

xt, vs
yt for the x and y modes as shown in th

following. These terms are now frequency dependent.
With this slight modification brought by polarized optic

feedback, one can write the new stationary solutions for
two polarizationsx(wx50) andy(wy5p/2). The stationary
spin carrier densityS is equal to zero. The intensity has th
same form as in the preceding section:

e6
2 5

P2Ns /te

2GGN~Ns2N0!
. ~9!

Two conditions will be obtained for the phase and the ga
The gain condition gives the value of the stationary car
densityNs :

Ns
x5Nth1

2

GGN
ga , ~10!

Ns
y5Nth2

2

GGN
S ga1

X

tc
cos~vs

yt! D . ~11!

The phase condition is also written for each mode:
t
m

s

e

e

.
r

Dvs
xt5vs

xt2v0t52gbt1agat, ~12!

Dvs
yt5vs

yt2v0t

5gbt2agat2X
t

tc
A11a2 sin@vs

yt1A tan~a!#.

~13!

From Eqs.~10!–~13!, one can see that only the gain an
phase conditions on modeY are affected because the optic
feedback is applied to this mode.

Equation~13! is similar to the usual one obtained for co
ventional lasers with optical feedback@39#. Modes and anti-
modes are obtained. The frequency separation between
stationary solutions isc/4L @39#. They are located on an
ellipse along the gain versus frequency chart:

FDG~X!

2 G2

1FDv~X!2
a

2
DG~X!G2

5S X

tc
D 2

, ~14!

with DG(X)5GGN(Ns2Nth)12ga , Dv(X)5vs2v02gb
1aga .

Only the solutions on the lower part of the ellipse, whi
are called modes, are stable@39#. They are separated by th
free spectral range of the passive external cavityc/2L. In the
case of an extended cavity with a quarter-wavelength p
~ECQW!, one could observe Fabry-Pe´rot spectra with
external-cavity modes separated byc/4L @49#. As a matter of
fact, the FSR between stable modes is alwaysc/2L in this
case, but along new eigenaxes of the coupled cavity.
c/4L range comes from the beating between two differen
polarized combs of modes@49# as already demonstrate
theoretically@50#.

Equation~13! indicates that the frequency shifts when o
tical feedback is applied. This shift is extremely useful as
allows for the measurement of feedback strengths. The
term in Eq.~13! is responsible for this shift. Its amplitude i
written C:5X(t/tc)A11a2554.6Lr 3 whenL is expressed
in cm. It has been demonstrated@40# that only one external-
cavity mode is the solution if C5X(t/tc)A11a2

554.6L(cm)r 3<1. The number of solutions of the phas
Eq. ~13!, is given by value ofC. For instance, to have on
solution, if L is equal to 3 cm,r 3 has to be lower than 6.1
31023; if L515 cm, r 3,1.231023. One should keep in
mind that a VCSEL has a very short cavity~a few microme-
ters long! with high reflectors@51# so that the feedback rat
~proportional to the ratio ‘‘power transmitivity’’ over ‘‘the
laser-cavity length’’! is usually the same as in convention
lasers~with lower reflectivities but with longer laser cavity!.

It explains why the shorter the cavity is, the more sta
the system is. In the POF case, if one wants to avoid in
bilities due to feedback, one tries to get one or very f
external-cavity modes, by controlling the feedback streng
One or three modes are obtained ifC<4.6 ~r 352.8% if
L53 cm! @40#. This last condition has always been check
in the experiment. The linear stability analysis will be pe
formed for C,1, a condition for which only a single
external-cavity mode is stable.
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3. Linear stability analysis

A small complex perturbationa6(t) is applied to each
stationary solution and the perturbed fields are writ
E6(t)5@e61a6(t)#ei (Dvst6w). The perturbed variables ar
written, with D, d, N5Ns1D, S5Ss1d. The new linear
system is decoupled into two sets of three equations~see
Appendix E and@34#! and has solutions of the forma6(t)
5a60elt, D(t)5D0elt, d(t)5d0elt. A first set will give
the stability of a polarized solution with respect to the sa
polarization. In this first set, the equation for the state wi
out feedback~x for u50° or y for 0590°! gives a solution
which is always stable~as it is similar to the equation for
single-frequency and monopolarized free-running laser!. The
other state is subject to optical feedback. Its stability depe
on the feedback conditions. The equations are the sam
those for scalar lasers with feedback and a similar anal
could be done. The conditions of our study are taken to b
the first feedback regime such that only one external-ca
mode is stable and able to oscillate (C,1). However, for
relatively strong feedback, one has to keep in mind that
stability of different external-cavity modes should be an
lyzed. Within our conditions, the first set of equations
always stable. The stability is then determined by the sec
set which describes the interaction between orthogo
modes, due to optical feedback and spin relaxation coupl

FIG. 5. Stability diagram for thex-polarized andy-polarized
mode in the steady state approximation. Thex-polarized mode is
stable under the straight line which almost does not depend on
amplitude anisotropies~for low anisotropyugau,0.4 Ghz!. The sta-
bility of the y-polarized mode is greatly dependent on the value
the amplitude anisotropy.
n

e
-

ds
as
is
in
ty

e
-

d
al
g.

We first recall the stability analysis without feedback. T
results are shown in Fig. 5 for three values of the amplitu
anisotropy, in the normalized current~m!-phase anisotropy
(gb) chart as proposed by Martin-Regaladoet al. @34#. The
scale of the phase anisotropy is linear and the normali
current is defined asm5P/Pth with respect to the pump a
thresholdPth5Nth /te .

LinesLx andLy in Fig. 5 border the stability region of the
x and y modes: they are given~see Appendix! for the
x-polarized mode by Lyapounov exponents which are re
and for they-polarized mode by the real part of Lyapouno
exponents which are complex conjugate. Setting the real
of these exponents to zero, the equations forLx , Ly give the
pump parameterP as a complex function of the lase
(ga ,gb ,a,...) @and in our case of feedback paramete
(X,t)#. It is this function which allows us to draw the borde
between stable and unstable regions in Figs. 5 and 6.

We can divide this phase diagram into four regions. F
example, at the left~right! of the Ly curve, modey is stable
~unstable!. At the left ~right! of the Lx curve, modex is
unstable~stable!. One sees that forgb515 GHz, both modes
are stable ifga50.1 GHz andm,1.5. For the same values
modex is stable and modey unstable ifga<0. For higher
values of the phase anisotropygb(.25 GHz), only the mode
x is stable.

When an optical feedback is applied along theY axis of
the laser, we obtain new expression for the border lin
Lx ,Ly .

For thex-polarized mode,P is given by

he

f

FIG. 6. Stability diagram with feedback for different values
the stationary phasevs

yt ~from 0 to 7p/8!. Whenvs
yt5p/2, 3p/2,

the stability diagram is almost the same as in Fig. 5.
P5Ns
x1

te

ts

3

~Ns
x2N0!F S 2ga1

X

tc
cos~vs

xt! D 2

1S 2gb2
X

tc
sin~vs

xt! D 2G
GGN~Ns

x2N0!S 2~agb1ga!1
X

tc
@cos~vs

xt!2a sin~vs
xt!# D2F S 2ga1

X

tc
cos~vs

xt! D 2

1S 2gb2
X

tc
sin~vs

xt! D 2G ,

~15!

with Ns
x5Nth12ga /GGN , Dvs

xt5vs
xt2v0t52gbtDvs

xt5vs
xt2v0t52gbt1agat @relations~10! and ~12!#.
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For they-polarized mode,P is given in a second-order polynomial expression:

GGN

tc
~Ns

y2N0!yS 1

ts
1

y

tc
12~ga2agb!1

X

tc
@cos~vs

yt!1a sin~vs
yt!# D12S 1

ts
1

y

tc
D S 2ga1

X

tc
cos~vs

yt! D
3F 1

ts
1

y

tc
12S 2ga1

X

tc
cos~vs

yt! D G12F S 2ga1
X

tc
cos~vs

yt! D 2

1S 22gb1
X

tc
sin~vs

yt! D 2G
3S 2ga1

X

tc
cos~vs

yt! D50, ~16!
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with y5(P2Ns
y)/(Ns

y2N0) and relations~11! and ~13!.
Expressions~15! and ~16! enable us to drawLx ,Ly in

different charts~m2gb , m2vst, m2v0t or r 32v0t! as
one has to find roots of a polynomial of order varying from
to 3 ~3 if X is the variable!. These separatrixes are frequen
dependent and will change with the phase of the feedb
light. In the first example, we will takega50.1 GHz, gb
515 GHz or higher. Without feedback, the amplitude anis
ropy will yield a gain difference at threshold for modesx and
y, which is 4ga /GGN ~50.073%Nth if ga50.1 GHz!.

In the second example, we will take a stronger amplitu
anisotropy ga524 GHz and weak phase anisotropygb
50.2 GHz.
When optical feedback is applied, both phase and amplit
anisotropies are modified, leading to a change in the stab
diagram given in Fig. 5.

(1) Weak amplitude anisotropies. This study is devoted
to the influence of the spin interaction on polarization pro
erties of VCSELs under external feedback at line center,
weak amplitude anisotropies.

The amplitude anisotropyga , as long as it remains sma
(,1 GHz), has mainly an influence on the stability of t
mode y ~Fig. 5!. When it is equal to zero,Ly is almost a
vertical straight line~at gb51/2ats , see Appendix E!. For
positive amplitude anisotropy, bistable operation could e
for low current. But if the amplitude anisotropy is taken
positive and small, one can consider that only one mod
stable for high birefringence (.25 GHz).

We can give many representations of the effect of po
ized feedback on the stability of each polarized mode.
will first focus on the influence of the external phase. Figu
6 sums up the influence of optical feedback in the sa
parameter representationm2gb as in Fig. 5. The stationary
phasefs5vs

yt which is related to the phasec5v0t of the
external feedback light, will change the stability of the p
larized modes, as shown forr 350.005,ga50.1 GHz. Sev-
eral curves forLx and Ly are drawn in Fig. 6 forfs5vs

yt
5np/4 with 0<n<7. Curves labeledLy are very well sepa-
rated, showing a strong influence of the phase on the stab
of y modes. Curves labeledLx remain straight lines with a
small shift. The effect of feedback is similar to the effect
the amplitude anisotropy so that the stability of t
x-polarized mode is slightly affected. This effect can be u
derstood if, as outlined in the following, the feedback effe
is taken proportional to cos(vst). When vst5p/2, 3p/2,
ck

-

e

e
ty

-
r

t

is

r-
e
e
e

-

ity

f

-
t

this factor is equal to zero and the lines are close to th
obtained without feedback~compare with theLy line ob-
tained without feedback forga50.1 GHz in Fig. 5!. For
vst50, 7p/4, and p/4, and cos(vst) is positive and the
effect of POF will be equivalent to a greater internal amp
tude anisotropy. Forvst53p/4, 5p/4, andp, cos(vst) is
negative and the total effect of amplitude anisotropy a
POF will be similar to a case where the amplitude anisotro
ga is negative~see theLy line obtained forga520.1 GHz in
Fig. 5!. Similar diagrams have been obtained for negat
amplitude anisotropy. Thus when the stationary phase
modulated, the stability lines will move according to the re
resentation given in Fig. 6.

It is then convenient to give the stability diagram in th
chart normalized current-stationary phase as shown in Fi
for different values of the phase anisotropy. Modey is un-
stable between two lines which are symmetric to each o
aroundp. In other words, as the system is periodic and sy
metric with the stationary phase~equations for the stability
contain only expressions of the formeifs!, the calculations
could be limited to values of the phase between 0 andp. The
full chart is obtained by mirroring the restricted diagram w
respect to the linevst5p. If the phase anisotropy is in
creased, the domain of stability of modey in the chartm
2vst will shrink as the operating point moves away fro
the modulatedLy line ~as can be seen in Fig. 6!. For com-
parison, curves are drawn forgb515 GHz andgb530 GHz

FIG. 7. Stability diagram with feedback in the phase-bias c
rent chart for different values of the birefringence and of the a
plitude anisotropy~ga50.1 GHz; ga520.1 GHz!. r 350.5%.
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with ga520.1 GHz. For instance, if we look at the two se
of curves forgb515 GHz, the stability domain of modey is
smaller whenga520.1 GHz than whenga50.1 GHz. Con-
sidering the case without feedback in Fig. 5 and fixing
operating point at 25 GHz, 1.5 in this chart show that t
operating point is closer from the stability line when t

FIG. 8. Stationary phase versus external-cavity phase for t
values ofC.
n
s

amplitude anisotropy is positive, so that when the opti
feedback is applied, the excursion for the phase has to
shorter to reach the stable region.

In summary, Fig. 7 shows the stability diagram drawn
the plane (m,vst). However, in the experiment, the contro
parameter is the phase of the external-cavity fieldc5v0t
and notvst. Stability diagrams can be easily sketched in t
plane (m,v0t) because the stationary phasevst is a func-
tion of the phasev0t of the external-cavity field, as a solu
tion of the transcendental equation~13!. Figure 8 gives a
classical representation ofvs

yt2v0t versus v0t. vs
yt

2v0t remains single valued as long as the feedback stren
is weak (C,1). For higher values, the stationary pha
could be multivalued. In any case, the stationary phase
nonlinear function of the phase of the external-cavity fie
v0t5p is no longer a mirror point and as shown in Fig.
the dependency on the external phasev0t will break the
symmetry aroundv0t5p. In Fig. 9~a!, the scale for normal-
ized current has been enlarged in order to see the curve s
rating the stability regions of thex-polarized mode. It is al-
most a straight horizontal line atm52.4. Under this line
modex is stable. Other curves crossing the phase axis in
9~a! and all curves in Figs. 9~b!–9~d! are stability lines for

ee
FIG. 9. Stability diagram with feedback in the optical phase-bias current chart:~a! for different values ofr 3 with ga520.1 Ghz,gb

515 Ghz,m51.3. ~b! For different values ofr 350.1 Ghz,gb515 Ghz,m51.3. In the phase-external reflectivity chart:~c! for different
values of the bias current withga520.1 Ghz,gb515 Ghz. ~d! For different values of the bias current withga50.1 Ghz,gb515 Ghz.
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modey. Then thex-polarized mode always remains stab
for the experimental range ofm (,1.8). Note that in Fig. 7,
theLx curve is not seen as it is located at higher values of
normalized current.

Figures 9~a! and 9~b! show for several values of the feed
back strengthr 3 the lines separating the stability region
modey. The feedback strength should be high enough to
able to change the stability of modey. For high r 3 , the
stability lines Ly are almost straight lines located atp/2,
3p/2. In this case, the exact positions are dependent onl
the amplitude anisotropy. One should stress the very dif
ent stability diagram when the sign of the amplitude anis
ropy is changed@compare Figs. 9~a! and 9~b!#. Then the
mode y is stable for low values of the bias current as e
pected~Fig. 5, gb515 GHz, ga50.1 GHz). In Figs. 9~c!
and 9~d!, the lines separating they-stability regions are
drawn in the plane~external-cavity reflectivityr 3 , phase of
the external-cavity fieldv0t!. When the amplitude anisot
ropy is positive ~negative! and if the bias current is in
creased, the external reflectivity at which the modey be-
comes stable decreased~increased!. This property gives an
easy way to characterize the sign of the amplitude ani
ropy.

For stronger feedback regimes (C.1), the switching is
dependent on the initial mode and bistable behavior betw
external-cavity modes could be observed@52# as outlined in
the next section and observed in the experiment.

We may question whether the stability is mainly infl
enced by gain effects or dispersion properties of the mate
Taking Henry’s coefficienta equal to zero will have a ten
dency to severely shrink the unstable domain of
y-polarized mode as in this case both modes are stable
the bare cavity. We mentioned that optical feedback could
taken into account by considering new birefringence and
plitude anisotropy@relations~7! and~8!#. If we consider that
the birefringence is not influenced by optical feedback an
we setgp85gp in all the characteristic equations, all resu
presented up to now will remain essentially the same.
order words, the stability of modey is mostly affected by the
amplitude anisotropy. This could be understood as the c
tribution due to feedbackX/tc is of the order of 0.25 GHz
when r 351023 and is of the same order as the internal a
plitude anisotropy. Changing the external-cavity phase w
change the external-cavity anisotropy, then the total am
tude anisotropy, and it will greatly alter theLy line. This is
why in this first example, optical feedback has mainly
influence on amplitude anisotropy and then on thresh
Both quantities are related to the gain. The difference
tween losses of the two polarized modes is 4ga and should
be compensated for by the frequency-dependent losseg f
52r 3cos(vst), which are introduced by optical feedbac
The sign ofg f is inverted when the phase of the feedba
light moves fromp/2 to 3p/2. Then, modey could become
stable. This interpretation is confirmed by Figs. 7 and
Recall that withga.0, the modey has lower losses@rela-
tions ~10! and~11!# so that it will be easier to make it stab
as described by Fig. 5. In fact, the main features of the
sults could be interpreted by the following simple image:
stronger mode will survive, the weaker mode will die. Ne
e
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ertheless recall that in this analysis, the stability of the mo
y is influenced by the interaction with the modex through
the parameterS.

However, for lower values of the birefringencegb and
strong amplitude anisotropyga , the stability of the
x-polarized mode changes. This is discussed in the next p
graph.

(2) Strong amplitude anisotropies.In this paragraph we
will discuss the influence of a high amplitude anisotropyga
(.1 GHz) on the stability properties. Change of stabil
could be observed forga equal to a few-GHz andgb
536 GHz. In this case one has to increase the value of
external-mirror reflectivityr 3 to a few percent to compensa
for the higher value of the amplitude anisotropy. The ana
sis remains correct as long as the feedback is weakC
,1). If the birefringence is low (,1 GHz) andga equal to
a few-GHz, it is possible to change the stability of bo
modes when the effective reflectivity is increased to a f
percent ~for instance: ga523.1 GHz and gb50.1 GHz;
r 350.03!. Results given by Eq.~8! indicate that in this case
the system could cross the stability linegb50 GHz. Then
the stability ofx and y modes is interchanged. Note that
this case, the stability fory (ga!0) could be given by rea
Lyapounov exponents.

D. Numerical results

We used standard algorithm~Gear! to integrate the system
of Eqs. ~1!, ~2!, and ~6! with noise. In order to ensure
temporal Gaussian distribution of the spontaneous field
time step of 10 ps was taken. The gain-compression co
cientsb6 ,u6 in Eq. ~6! are needed to describe the expe
ment. When these terms are omitted, the signal becomes
tremely noisy when there is a polarization switching. W
took b15b25u15u2510223 m23. The values of self-
and cross-gain-compression coefficients are not importan
the case of external cavity with quarter-wavelength plate@49#
as the feedback strength is strong, while they will favor
annihilate the modulation of the polarization state in the P
case. It is not surprising that those parameters could e
have an effect on the stability of the polarized modes@53#.
Further investigations will be necessary to know what
influence of b1 ,u1,... ~see Appendix C! really is and to
discriminate the role of the spin-interaction variableS from
the one of the gain-compression terms. In all the simulatio
the external-cavity phase is directly modulated~at f f!. When
the external-cavity length is varied over a wavelength,
round-trip time and other parameters remain unchanged.
the other hand, when the laser frequency is changed by d
current modulation, some parameters such as the differe
gain could also be modulated. However, the modulat
depth is so weak in the experiment~220.5 dBm at 1 MHz!
that all parameters may also be considered constant, inc
ing the bias current, which is fixed at 1.3.

No polarization switching is obtained without noise term
This could be the signature of the bistable behavior. Wh
there is no spontaneous emission, the system stabilizes e
the x-polarized mode or they-polarized mode after a tran
sient period. With noise, the two modes are in perman
competition and the system is able to switch to anot
mode. Switching is obtained for positive and negative am
tude anisotropy. However, switching disappears forgb
.25 GHz with ga520.1 GHz, and forgb.35 GHz with
ga50.1 GHz. Figure 10~a! describes the polarization-sta
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control with ga50.1 GHz, gb532 GHz, f f53 MHz, t
5500 ps (L55 cm), r 351%. In the inset, one sees that th
intensity of the mode with optical feedback (y) is slightly
amplified in comparison to the output of modex. In agree-
ment with the linear stability analysis~LSA!, no control of
the polarization is obtained for too low values of the feed
back strength. Similar results were obtained for shorter ca
ity lengths and different values of the anisotropies.

Figure 10~b! illustrates the situation for higher feedback
strength~r 352%, C53.27! where the transition becomes
noisy. In Fig. 10~a!, only one external-cavity mode will op-
erate while in Fig. 10~b!, three external-cavity modes will
exist @49#, generating partition noise which will disturb the
phase. Another question is to know whether the standa
equations~without inclusion of spin interaction! will give
correct results. When the carrier difference between spin le
els is removed, identical results are obtained~the results were
also obtained for POF and extended cavity with quarte

FIG. 10. Simulation of polarization switchings. Upper grap
represents the modulation of the phase at 3 MHz and 300 times
variation of the normalized carrier difference between the spin le
els. It is no longer equal to zero when the laser changes its po
ization. gp532 GHz,ga50.1 GHz,m51.3, and~a! r 351%, ~b!
r 352%. In this last case, several external-cavity modes could ex
depending on the value of the phase. This trend could explain
noisy trace~see text!.
-
v-

rd

v-

r-

wavelength plate by settingS50!. At this point, the precise
role of the carrier difference between spin levels and whet
it is important or not is not yet clear. In Figs. 10~a! and
10~b!, the normalized coupling parameter (3300) between
spin levelsS has been sketched, in order to show that
spin relaxation is not equal to zero during the polarizat
switch.

IV. CONCLUSION

We have described the main effects of inserting a po
izer in a VCSEL-extended cavity. The control of the intern
anisotropy with an external anisotropy enables us to co
mand the polarization state of a VCSEL. The control para
eter is the phase of the external cavity field. It can be var
with the external cavity length or the laser frequency. T
chirp effect can be used up to 50 MHz, due to large therm
effects. For higher frequencies, thermal following is n
adiabatic and modulation depths should be increased. Tr
verse modes are excited and partition noise makes
switching erratic. One could imagine reaching very hi
modulation frequencies by modulating the external phase
ing electro-optical components based on Kerr or Pockels
fects or by modulating the feedback strength by electro
sorption~via Stark effects in multiple quantum wells!.

Polarization control with polarized feedback is compl
to analyze. We have limited our study to the particular si
ation where the laser emits at line center. The linear stab
analysis shows that the stability of they-polarized mode is
greatly affected when the bare cavity is coupled to an ex
nal cavity. In fact, a free laser which is monostable~with one
mode and one polarization! could become bistable in polar
ization when polarized optical feedback is applied. Howev
numerical studies show that the insertion of noise and g
compression coefficients is necessary to describe the ex
mentally observed polarization switching. The primary ro
of noise is to induce the flip onto the mode with lower loss
This feature is by far different from the situation encounter
in He-Ne lasers@27#.

Future studies will be necessary to clarify the respect
influence of gain-compression coefficients and spin rel
ation. As one could generate switching when modulating
optical frequency through chirp in the thermal band, th
setup could give future prospects to measure and theo
cally characterize the dynamical influence of temperat
@54#.
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APPENDIX A: INSERTION OF THE CARRIER DENSITY
AT TRANSPARENCY

Standard analysis@55# ~semiclassical analysis, adiabat
elimination of the polarization, rotating-wave approxim
tion! yields the following set for the fieldsE6 ~I6 the inten-
sities! and the variablesn,s:
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]n

]t
5L2g in2

1

2\
l ~12j22I22j21I1!~n2s21!I2

2
1

2\
l ~12j11I12j12I2!~n1s21!I1 ,

]s

]t
52g is22gss1

1

2\
l ~12j22I22j21I1!~n2s

21!I22
1

2\
l ~12j11I12j12I2!~n1s21!I1 ,

Ė652
E6

2tp
2 i ~V62v6!E61

v6

2«
l ~12j66I62j67I7

2 ia!~n6s21!E6 ,

where

g i5
1

te
, n5

1

2
~n11n211n31n23!,

s5
1

2
~2n12n31n211n23!, I65uE6u2,

l 5
1

\
umhhu2

g'

g'
2 1~v62vcv!2 ,

g'5
1

2
~ge1gh!'10– 20 ps21

is the relaxation time for the polarization~coherent term for
the dipoles!. vcv5(Ec2Ev)/\ is the frequency associate
with the energy transition.mhh is the dipole element betwee
the conduction and the valence band.n15r11 is the density
of electrons withJz5

1
2 , n215r2121 the density of elec-

trons with Jz52 1
2 , n3512r33 the density of holes with

Jz5
3
2 , n23512r2323 the density of holes withJz52 3

2 .
r i j $ i j 51,23,1,3% is the generic density matrix element.a is the
phase-coupling parameter.L is the pump parameter.j21,...
are the gain-compression parameters.v is the optical angular
frequency andv65v. Here we haveV65v t . Summing
over the electron momentum gives the macroscopic v
ables:

P5h
J

ed
5

1

V (
k¢

L

~L5Le1Lh5hV J/ed, h is the quantum efficiency,V is
the volume of the active zone,d the thickness of the active
zone!,

N5
1

2V (
k¢

~n1,k¢1n21,k¢1n3,k¢1n23,k¢!,

S5
1

2V (
k¢

„2n1,k¢2n3,k¢1n21,k¢1n23,k¢),

and the carrier density at transparencyN05(1/2V)(k¢1. We
assume that the gain depends linearly on the carrier den
i-

ty:

1

2
GGN~N6S2N0!E65

1

2V (
k¢

v6

2«
l k¢~nk¢1sk¢21!E6 .

The optical fieldA«/2\v6E6* is written E6 . The photon
density uE6u2 is given by I 65«I6/2\v6 where « is the
permittivity.

APPENDIX B: NORMALIZED EQUATIONS
AND SIMPLIFIED MODEL

If we normalize N/Nth→N, S/Nth→n, ue6u2
5(te /Nthtp)I 6 , t/tp→t, m5teP/Nth , andb5tpM and if
we set b5Xtp /tc50.69r 3 , gbtp→gb , je5tp /te53.3
31023, js5tp /ts50.33, g5GGNNthtp51.85, h5121/g
5N0 /Nth50.46, b6(u6)→(Nthtp /te)b6(u6), we get
from Eqs.~1!–~3!

dN

dt
5je@m2N2g~12b2s22u2s1!~N2n2h!s2

2g~12b1s12u1s2!~N1n2h!s1#, ~B1!

dn

dt
52jsn1gjc@~12b2s22u2s1!~N2n2h!s2

2~12b1s12u1s2!~N1n2h!s1#, ~B2!

ė652~ga1 igb!e71
1

2
g~11 ia!~N6n21!e6

2
1

2
g~b6s61u6s7!~N6n2h!e6

1b66s6~ t2t!e2 ivt1b67s7~ t2t!e2 ivt.

~B3!

This system was used in the linear stability analysis and
numerical studies. This normalized set is equivalent to
one of Refs.@31, 34# whenN0 is set equal to 0 and when th
gain-compression terms are removed and withg5(1/te)P
5gm, 1/2tp5 1

2 GGN→k,

S→n, Ag/2ke65E6 :

dN

dt
52g~N2m!2g~N2n!ue2u22g~N1n!ue1u2,

dn

dt
52gsn1g~N2n!ue2u22g~N1n!ue1u2,

ė652ke62 iv0e62~ga1 igb!e71k~11 ia!~N6n!e6 .

APPENDIX C: EXPRESSIONS OF THE ELLIPTICAL
SOLUTIONS

Two elliptical solutions are characterized by the followin
stationary values of the dynamical variables when the am
tude anisotropy is not considered: the intensities of
field components:
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e6
2 5

1

2GGN

~P2Ns /te7Ss /ts!

~Ns6Ss2N0!

5
1

2GGN

~P2Ns /te!

~Nth2N0! S 16
Ns2Nth

Ss
D ,

the spin-carrier density:

Ss
25

~Ns2Nth!~Ns2N0!~P2Ns /te!

@~Nth2N0!/ts1P2Ns /tc#
,

the azimuth of the ellipse:

tan~2w!5
1

a

Ns2Nth

Ss
,

and the frequency difference:

Dvs5aGGN

~Ns2Nth!
22Ss

2

2~Ns2Nth!

5
~Nth2N0!@~Ns2Nth!/ts2~P2Ns /te!#

tpNth@~Nth2N0!/ts1~P2Ns /te!#
.

The value ofNs is one solution of the third-order equation
es

.

te
e

re
gb
2F S P2

Ns

te
D1

~Nth2N0!

ts
G2

5S GGNtp

2 D 2

~Nth2N0!F S P2
Ns

te
D2

~Ns2Nth!

ts
G

3H F ~Ns2Nth!S P2
Ns

te
D1

~Nth2N0!

ts
G

a2S P2
Ns

te
D ~Ns2N0!J .

The elliptical case is left to a future numerical study.

APPENDIX D:
EQUATIONS FOR THE STATIONARY SOLUTIONS

The intensities are given by

~12b6e6
2 2u6e7

2 !e6
2 5

1

2GGN

~P2Ns /te7Ss /td!

~Ns6Ss2N0!
.

e6 is the solution of a fourth-order equation. For (e1 ,e2)
Þ(0,0), the stationary quantitiesNs , Ss , vst,c are given
by
S 1
2 ~11 ia!GGN~Ns2Nth1Ss!1m1 exp~2 ivst!2 iDvs @2~ga1 igb!1c1 exp~2 ivst!#exp~2 i2c!

@2~ga1 igb!1c2 exp~2 ivst!#exp~ i2c! 1
2 ~11 ia!GGN~Ns2Nth2Ss!1m2 exp~2 ivst!2 iDvs

D
3S e1

e2
D2 1

2 GGNS ~Ns1Ss2N0! 0

0 ~Ns2Ss2N0!
D S e1

e2
D1 1

4 S ~P2Ns /te2Ss /ts!

e1
2 0

0
~P2Ns /te1Ss /ts!

e2
2

D S e1

e2
D50.
The imaginary part of the determinant of this matrix giv
Dvs or the phase condition. The first equation gives tan(2c).

In this paper, the gain-compression terms are ignored

APPENDIX E: LSA AND CRITICAL VALUES OF THE
PUMP PARAMETER IN THE STABILITY DIAGRAM

A small complex perturbationa6(t) is applied to each
stationary solution and the perturbed fields are writ
E6(t)5@e61a6(t)#ei (Dvst6w). The perturbed variables ar
written with D, d:N5Ns1D, S5Ss1d. For the linearly po-
larized solutionsx,y, two systems, which are decoupled, a
obtained with

A5a11a2 , R5a12a2 , dW A5S A
A*
D
D , dW R5S R

R*
d
D

and using the Jacobian matrix
n

ddW A
y
x

dt
5S 0 0 c1

0 0 c1*

2 j 0 2 j 0 2 j 1

D dW A1 f x
yS e2 ivst 0 0

0 eivst 0

0 0 0
D

3@dW A~ t2t!2dW A#,

ddW R
y
x

dt
5S c2 0 c1

0 c2* c1*

2 j 0 2 j 0 2 j 2

D dW R1S e2 ivst 0 0

0 eivst 0

0 0 0
D

3@hx
y
dW R~ t2t!2 f x

y
dW R#,

with f
y
x5(X/tc)(m16c2),h

y
x5(X/tc)(m17c2) with the

upper sign forx and the lower sign fory.
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c15GGN~11 ia!e1 , j 15S 1

te
1GGNe1

2 D ,

j 25S 1

ts
1GGNe1

2 D , c2562~ga1 igb!,

j 05 1
2 GGN~Ns2N0!e1

5 1
2 GGN~Nth2N0!e11@6ga2 f x

y
cos~vst!#e1 .

If u5p/2,

f x
y
5

X

tc
~m16c2!5

X

tc
H 0 polarization x
1 polarization y,

hx
y
5

X

tc
H 1 polarization x
0 polarization y.

ga is the dichroism,gb the birefringence,G the confinement
factor, GN the differential gain,N0 the carrier number a
transparency,Nth the carrier number at threshold,ts the re-
laxation time of the spin interaction,te the carrier relaxation
time, a the phase-amplitude factor,X/tc the feedback rate
m15m2 , c25c1 , respectively, the diagonal and the of
diagonal coefficients of the associated Jones matrix of
external cavity.

One should note that when the feedback light is polari
alongy ~respectively,x!, the componentR which describes
the evolution of small deviations from the stationary so
tions linearly polarized alongx is submitted to a delayed
term. The spin relaxation couples both linearly polariz
components and delayed terms.

The first system gives the following characteristic equ
tion:

~e2lt21! f
x
yF ~e2lt21! f

x
y

~P2N0 /te!

~Ns2N0!
2GGNS P2

Ns

te
D

3@cos~vst!2a sin~vst!#G1lF ~e2lt21!2f
x
y
2

1GGNS P2
Ns

te
D22~e2lt21! f

x
y

~P2N0 /te!

~Ns2N0!

3cos~vst!G1l2F ~P2N0 /te!

~Ns2N0!
22~e2lt21!

3 f x
y cos~vst!G1l350
e

d

-

d

-

while the equation of the second system is written

c~a21b2!2GGNS P2
Ns

te
D ~a1ab!1lFa21b2

1GGNS P2
Ns

te
D22acG1l2~c22a!1l350,

with

a5@62ga1~h
x
ye2lt2 f

x
y!cos~vst!#,

b5@62gb2@h
x
ye2lt2 f

x
y#sin~vst!#,

c5S 1

ts
1

~P2N0 /te!

~Ns2N0! D .

These equations are solved forl. Stability diagrams like
those of Ref.@34# are obtained. The border separating sta
@Re(l),0# from unstable region@Re(l).0# is obtained by
setting Re(l)50. N0 has a small influence on these diagram
and will slightly modify the curves which limit the regions o
stability. The critical parameter values for the parameter
the stability diagram of Ref.@34# are given by

P

Pth
,

Px

Pth
511

te

ts

gb

@aGGNNth/22gbNth /~Nth2N0!#

52.5 ~gb516 GHz!,

P

Pth
.

Py

Pth
512S 12

N0

Nth
D te

ts
12aS 12

N0

Nth
D te

tp
gb .

Only the y-stability condition is effectively changed by th
insertion of the carrier at transparency. The value ofgb for
which Py /Pth51 is given by the same value as in Ref.@34#:
gb51/2ats513.15 GHz.ts has been taken equal to 10 ps
order to get a quite high value of 1/2ats513.15 GHz, the
limit above which only thex-polarized mode is stable.

According to the linear stability analysis, when there is
amplitude anisotropy, the laser should operate in the th
region ~x stable region! in order to get a frequency shift o
10–13 GHz. One could note that for some lasers with diff
ent anisotropies, both modes were stable close to the thr
old, which meansga.0. For higher values of the bias cu
rent (P/Pth.1.03), only one polarized mode was stab
This was not the case for the presented results. For all te
components, only one polarized mode was stable ab
threshold. ForP/Pth above 1.5–1.8~depending on the com
ponents!, the laser has several transverse modes.
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