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Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures
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We present a numerical study of second-harmonic~SH! generation in a one-dimensional, generic, photonic
band-gap material that is doped with a nonlinearx (2) medium. We show that a 20-period, 12-mm structure can
generate short SH pulses~similar in duration to pump pulses! whose energy and power levels may be 2–3
orders of magnitude larger than the energy and power levels produced by an equivalent length of a phase-
matched, bulk medium. This phenomenon comes about as a result of the combination of high electromagnetic
mode density of states, low group velocity, and spatial phase locking of the fields near the photonic band edge.
The structure is designed so that the pump pulse is tuned near the first-order photonic band edge, and the SH
signal is generated near the band edge of the second-order gap. This maximizes the density of available field
modes for both the pump and SH field. Our results show that thex (2) response is effectively enhanced by
several orders of magnitude. Therefore, mm- or cm-long, quasi-phase-matched devices could be replaced by
these simple layered structures of only a few micrometers in length. This has important applications to
high-energy lasers, Raman-type sources, and frequency up- and down-conversion schemes.
@S1050-2947~97!09009-4#

PACS number~s!: 42.65.Ky, 42.79.Nv, 41.20.Bt, 78.66.2w
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I. INTRODUCTION

Recently, one-, two-, and three-dimensional periodic
electric structures have attracted a great deal of attentio
the optics community@1,2#. In such materials, electromag
netic field propagation is forbidden for a range of freque
cies, and allowed for others. The nearly complete absenc
some frequencies in the transmitted spectrum is referred t
a photonic band gap~PBG!, in analogy to semiconducto
band gaps@3#. This phenomenon is based on the interferen
of light; for frequencies inside the band gap, forward- a
backward-propagating components can cancel destructi
inside the structure, leading to complete reflection.

Two- and three-dimensional structures, in particular, h
been the focus of many studies over the past few years. H
however, we study the dynamics associated with ultras
pulses~about 1 ps or less! in one-dimensional systems. On
dimensional structures are simple, and they often prov
proof-of-principle results that are fundamental and that m
be extended to higher dimensions; they can also be m
easily fabricated to satisfy current technology needs. For
ample, some potential applications that have been h
lighted recently are the prediction of optical limiting an
switching of ultrashort pulses@4#; nonlinear optical diode
behavior @5#; the photonic band-edge laser@6#; and ~more
recently! the theoretical prediction and the experimental ve
fication of a tunable, optical true-time delay line@7#. In Ref.
@7# we showed that a ps pulse could propagate undisto
through a 30-period GaAs/AlAs PBG crystal only 8mm in
length, with a tunable delay of 10–110mm, making the
delay-to-device length ratio greater than one order of ma
tude. The predicted and measured minimum in the gr
velocity was of orderc/14, wherec is the speed of light in
561050-2947/97/56~4!/3166~9!/$10.00
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vacuum. The PBG material acts like a medium whose ind
of refraction is 14. We remark that this is a linear effect th
is entirely due to interference effects of light near the ph
tonic band edge.

Previous investigations of nonlinear optical behavior
large-index modulation, one-dimensional PBG structures
other authors have focused onx (3) processes@8#, such as
optical switching and gap-soliton propagation. In this pap
we study the effects of propagation in ax (2) active medium.
Although these nonlinear processes are of different orde
has been known for some time that second-order nonline
ties can lead to an effective nonlinearx (3) response, and
large phase shifts in the fundamental beam@9#. Only re-
cently, however, has the nature and extent of the phase
been extensively studied theoretically and experiment
@10#. As a result, novel, lower-intensity approaches to a
optical switching that utilize second-order nonlineariti
have been devised@11#.

In part, this work was originally motivated by a rece
issue ofPhysics Today@12#, where several aspects of non
linear optical interactions—including second-harmonic~SH!
generation, materials, laser tunability, and convers
efficiencies—were all discussed. Recent and extensive lit
ture that exists on SH generation@9–27# is evidence of the
importance of the process; also important are frequency
and down-conversion, and the more general issue of obt
ing laser radiation at frequencies generally not access
with a more direct process.

SH generation and enhancement in periodic structu
was first suggested in the early 1970s@28#. Because of the
phase mismatch between the fundamental and SH fields
timal enhancement was predicted only for the reflected
component. The idea is to introduce a periodic modulation
3166 © 1997 The American Physical Society



se
hi
ge
e

g
ri

on
n
th
he
v
th
c

th

en
op

s

as
x

r

ce
t
e
ed
o
id

ry
s

g

d
fib
te
a
o
ed

o
e
w
ba
tin
n
a
ow
g
rd
.
m
re
re
ho
o

ith
er

d to
in

c-
mp
n
s
rary
ly-

eep
ng

ent
in

rs
or-
m-
the
-
thus
ced
ab-
hed
ch-
in

and
ds
rs

all

BG
nt

d-
oth
v-
he
nd-
and
for

en
ges

the
of

her
de-
ar-

ng
ve

ider
dge

56 3167PULSED SECOND-HARMONIC GENERATION IN . . .
the linear background index in order to induce a pha
matching condition for second harmonic generation. T
can be accomplished in either a uniform Bragg grating
ometry @29#, or in a periodic structure with a defect mod
@30,31# sometimes referred to as a Fabry-Pe´rot cavity mode;
both approaches are qualitatively similar. Phase matchin
SH waves is also possible in thin-film waveguides if a pe
odicity, or corrugation, is introduced in the film deposited
a substrate@32#. In general, however, cavity-enhanceme
schemes rely on creating a resonant cavity for either
pump or the second-harmonic field. In the first case, eit
field may be tuned near the band edge; in the case of a ca
with a defect mode, the resonant mode is found inside
photonic band gap, where a transmission resonance is
ated thanks to the introduction of a phase slip within
structure.

The first experimental demonstration of reflected SH g
eration enhancement was accomplished with counterpr
gating beams in a 17-layer, GaAs-AlxGa12xAs, quarter-
wave structure @33#. The quarter-wave condition wa
satisfied atl52 mm. In the experiment, a 2-mm beam was
up-converted to 1-mm radiation. The fundamental beam w
tuned in the middle of the photonic band gap, where ma
mum pump reflection~about 70%! occurs. The higher-orde
gap was centered at approximatelyl50.7 mm, and the SH
signal was tuned in the middle of the pass band.

More recently, experimental observations of an enhan
SH signal have been reported in a vertical-cavity geome
composed of GaAs/AlAs layers, where 10%/W enhancem
of gain with respect to bulk was observed in the undeplet
pump~or linear! regime@34#. The structure was optimized t
confine the fundamental field efficiently, and hence prov
increased SH gain. Also recently, experimental evidence
SH signal enhancement in a PBG structure with a Fab
Pérot defect mode has been reported; these results also
gest order-of-magnitude enhancement of the SH signal@31#.

Analytical results for the case of uniform, shallow Brag
gratings ~index modulation depth less than 1022) with a
resonant, plane-wave SH field indicate order-of-magnitu
enhancement of SH generation near the band edge of a
grating @29#. However, significant enhancement is expec
only for a narrow-frequency bandwidth because of the sm
index modulation depth. Also, numerical integrations
Maxwell’s equations with boundary conditions that includ
a defect mode have been carried out@30# using the matrix
transfer method. The authors assumed a resonant sec
harmonic field, and only a forward-propagating pump. Th
did not consider pump reflections because the pump
assumed to be tuned away from any resonance or the
edge. This neglect is not valid in the case of deep-gra
PBG structures, since inside the structure forward- a
backward-propagating components can be very signific
even away from the band edge. For example, we have sh
that for an index modulation of order unity, the Poyntin
vector inside the structure contains forward- and backwa
propagating components of nearly the same magnitude
frequencies near the band edge, where the transmission
be unity@7#, there are no reflected waves from the structu
multiple reflections inside the periodic structure must the
fore be accounted for to all orders. Nevertheless, the aut
of Ref. @30# also found order-of-magnitude enhancement
-
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the second-harmonic signal, in qualitative agreement w
the results for SH enhancement in a uniform, shallow fib
grating.

In general, several procedures have been develope
analyze nonlinear wave mixing and harmonic generation
multilayered structures@35,36#. In Ref.@35#, for example, the
matrix transfer method is modified in order to take into a
count nonlinear polarization sources in the undepleted pu
regime. In Ref.@36#, a formalism that includes a combinatio
of Green’s functions@37# and the matrix transfer method i
developed to handle plane-wave propagation in an arbit
multilayer geometry. Our interest here is to extend the ana
sis of SH generation and enhancement to arbitrarily d
PBG gratings in the pulsed regime by directly integrati
Maxwell’s equations in the time domain.

Our results generally indicate that the enhancem
mechanism that we predicted—and later demonstrated
PBG structures in the linear regime@6,38#—can lead to fre-
quency up-~or down-! conversion rates nearly three orde
of magnitude better than conversion rates achieved with
dinary phase matched materials, or in fiber grating geo
etries. The geometrical properties and the periodicity of
photonic ‘‘crystal’’ can act to significantly modify the den
sity of electromagnetic field modes near the band edge,
facilitating the emission of the SH signal at a much-enhan
rate. More importantly perhaps, this means that current f
rication issues that arise in ordinary quasi-phase-matc
structures can be avoided altogether by utilizing current te
nology for deposition of semiconductor or dielectric th
films.

In our past work we emphasized pulse propagation
dynamics within the context of a small number of perio
~15–30 in general!, and large index contrast between laye
(dn of order unity!. This situation differs significantly from
ordinary distributed feedback reflectors DFB’s with sm
index modulation~thousands of periods anddn<1023), in
that ultrashort pulses can be transmitted through our P
crystal with large retardation, and without any significa
degradation, as theory and experiment clearly show@7#. In
contrast, small-index-modulation DFB’s~or shallow fiber
gratings! can be highly dispersive, even for long pulses, lea
ing to pulse broadening in the linear regime. In general, b
PBG’s and DFB’s are geometrically similar. However, se
eral physical characteristics are in fact very different, t
most obvious being their physical lengths. Also, the ba
widths and features of both transmission resonances
band gaps are considerably larger for PBG structures than
ordinary DFB’s.

Consideration of nonlinear effects can highlight ev
more dramatic differences. Typical nonlinear index chan
in GaAs or AlAs layers can be of orderdnNL'1023. This
implies that nonlinear index shifts can be larger than
linear index modulation depth. Consequently, the location
the gap on the frequency axis can shift dramatically to hig
or lower frequencies, and its bandwidth can increase or
crease significantly, depending on the sign of the nonline
ity. This effect is credited for the onset of pulse narrowi
and solitonlike pulses of 25–60 ps in duration, which ha
recently been observed experimentally in a fiber grating@39#.
The frequency bandwidth of such pulses can be much w
than the gap itself, and tuning the pulse near the band e
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causes considerable linear dispersion, as was recently sh
@39#. Such dispersion is necessary for the observation of
solitonlike behavior.

In contrast, the frequency bandwidth of a pulse only a f
hundred optical cycles in duration can be smaller~depending
on the wavelength! than the bandwidth of the PBG’s firs
transmission resonance peak, where the group velocity
minimum. Here, ultrashort pulse propagation can be non
persive, as our group has shown@7#. In addition, the nonlin-
ear index change remains orders of magnitude smaller
the index modulation depth, which in our case can be
order unity or larger. Thus gap and transmission resona
bandwidths, and their locations, are only marginally alter
although changes may be sufficient for the onset of opt
limiting and switching, optical diode behavior, and stro
pulse reshaping@4–7#.

The stability of the band structure in the frequency d
main is also important in parametric optical up- and dow
conversion, and harmonic generation, which is the subjec
this paper. In small-index modulation DFB’s@39#, linear dis-
persion due to the grating structure, and shifts of the b
gap due to nonlinear index changes, can lead to shifts of
frequency tuning of the pump with respect to the band ed
This effective detuning can cause an effective lowering
the cavityQ, a reduction of the pump intensity, and a d
crease of SH gain. In a companion paper@40#, analytical
multiple-scale perturbation theory was used in order to a
lyze the small index modulation regime typical of fiber gra
ings. In that study, the authors showed that it may be p
sible to achieve 2–3 orders of magnitude SH enhancem
for plane waves incident on mm-long, 20 000-period fib
Bragg gratings, whose index modulation is of order
31023. The pump frequency is assumed to be resonant w
the photonic band-edge resonance; the SH signal was t
in the middle of the pass band. The predicted SH gain
hancement is therefore solely attributed to pump inten
enhancement inside the grating. These results, when cou
with the present study, highlight the fact that a new gene
tion of compact and efficient high gain optical amplifiers a
optical parametric oscillators based on photonic band-e
effects may soon be realized.

In general, large index modulation PBG structures are
as easily susceptible to band-structure shifts due to nonli
index changes (dnNL'1023) because index variations are
small perturbation on the linear index modulation depth.
we will see below, our calculations show that, for ultrash
pulses tuned near the photonic band edge, a choice of m
rials with suitable indices of refraction, thicknesses, and
riodicity can lead to low group velocities, enhanced fie
intensity, and conversion efficiencies nearly three orders
magnitude larger than conventional bulk up-conversion ra
Conversion efficiencies greater than 1023 are not uncommon
for structures only a few micrometers in length, with a sing
pump pass, and at realistic pump intensities. Plane-w
conversion rates can be approximated by utilizing pul
whose frequency bandwidth is smaller than the transmis
resonance bandwidth, in this case only a few ps in durat

We point out that these conversion efficiencies can
even higher for structures with an increased number of p
ods. For example, we find that increasing the structure len
by 50% ~from 20 to 30 periods!, the energy output can in
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crease by a factor of 5. The only limitations appear to be~a!
the transmission resonance bandwidth decreases as 1N2,
whereN is the number of periods, so that the pulse durat
needs to be increased in order to ensure large pump enha
ment inside the structure@41#; and ~b! material breakdown
may occur because of excessive electric-field buildup, or
hancement, inside the structure.

The reason for the enhancement of gain in these struct
can be understood if we recall that the density of access
field modes in the vicinity of dielectric boundaries is mod
fied by the boundary conditions, as first indicated by Purc
@42#. Many experimental and theoretical investigations ha
confirmed this fact since Purcell’s original prediction@43#.
This means that if a linear or nonlinear gain medium is
troduced with in a PBG structure, the stimulated and sp
taneous emission rates are modified according to Ferm
golden rule@38#. In quasi-phase-matched structures, a mi
mization of the phase difference between the waves is de
able in order to avoid a phase mismatch in the cw case. T
is typically achieved by poling the active material—which
uniform in its composition and containsno linear index
discontinuities—in such a way that the nonlinear coefficie
only alternates sign in the longitudinal direction, every fe
tens of micrometers@13–29#. Here our approach departs sig
nificantly from convention. We rely on the unusually stron
confinement ofboth the pump and the SH signal that occu
near the photonic band edges, where the density of elec
magnetic field modes is large, the group velocity is low, t
field amplitude may be enhanced over bulk values by o
order of magnitude or more, and strong pump and SH m
overlap occurs. In this regime, the material is not poled in
usual manner; it is the geometrical properties of the struc
that cause strong mode overlap, copropagation, and la
interaction times, the combination of which is ultimately r
sponsible for the enhanced gain that we observe in our si
lations.

II. MODEL

We consider the following simple one-dimensional sy
tem. The crystal is composed of 40 dielectric layers~20 pe-
riods in all, roughly 12mm thick for a reference wavelengt
of 1 mm!, and the index of refraction alternates between
high and a low value,n251.42857~we chose this value for
computational expediency!, and n151. We take a rather
small value ofx (2)'0.1 pm/V~roughly 331029 cm/statvolt
in Gaussian units! and assume that the nonlinear material
distributed uniformly throughout the PBG structure. The
for a reference wavelengthl0 , the layers have thicknesse
a5l0 /(4n1) and b5l0 /(2n2), respectively. This forms a
mixed half-quarter-wave stack for wavelengthl0 . A range
of frequencies is reflected, as shown in Fig. 1, where we p
the transmission coefficient for this structure as a function
the scaled frequencyV5v/v0 , wherev052pc/l0 . The
figure suggests that this choice of parameters causes th
cation of the second-order gap to be removed from the fi
order gap by approximately a factor of 2. For an ordina
quarter-wave structure, a factor of 3 separates the first-
second-order band edges and based on our results, util
these two edges would be more appropriate for thi
harmonic generation. The equations of motion can be
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rived beginning with Maxwell’s equation for the total field
in Gaussian units, and can be written as

]2

]z2 E~z,t !2
n2

c2

]2

]t2 E~z,t !5
4p

c2

]2

]t2 PNL . ~1!

Here,PNL is the total nonlinear polarization. Without loss
generality, the fields can arbitrarily and conveniently be
composed as follows:

E~z,t !5Ev~z,t !ei ~kz2vt !1c.c.1E2v~z,t !e2i ~kz2vt !1c.c.,
~2!

PNL~z,t !5Pv~z,t !ei ~kz2vt !1c.c.1P2v~z,t !e2i ~kz2vt !1c.c.
~3!

This decomposition highlights the fundamental and seco
harmonic angular frequencies. The nonlinear polarizat
can be expanded in powers of the electromagnetic fi
strength as follows:

PNL~z,t !5x~2!E2~z,t !52x~2!Ev* ~z,t !E2v~z,t !ei ~kz2vt !

1c.c.1x~2!Ev
2 ~z,t !e2i ~kz2vt !1c.c. ~4!

While we can assume an initial left- or right-propagati
pump pulse, the SH signal is initially zero everywhere. T
direction of propagation of the spontaneously generated
field, and the exact nature of the quasistanding wave in
the structure, are dynamically determined by the nature
the initial and boundary conditions, pump-frequency tun
with respect to the band edge, and the distribution of non
ear dipoles inside the structure. This nonlinear dipole dis
bution can significantly affect the results. SH generation
phase-sensitive process; the field and its phase at any
inside the structure are a superposition of all fields origin

FIG. 1. Transmission vs normalized, dimensionless freque
for a 20-period, half-quarter-wave stack. The indices aren151 and
n251.429 57, and no dispersion is assumed. Tuning the pum
the low-frequency band edge causes the SH signal to be tuned
from the second-order, low-frequency band edge. The bandwidt
a picosecond pump pulse is narrower than the bandwidth of the
transmission resonance where the pump is tuned. In this case
second harmonic signal is enhanced only slightly with respec
bulk due to the large detuning from the band edge.
-

d-
n
ld

e
H
e

of
g
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a
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t-

ing everywhere else inside the structure, thus making ph
an important element that must be included in the integra
of the equations of motion. However, dipole distribution
important to the extent that it is modified in the layers whe
the fields happen to be localized. For instance, near the l
frequency band edges, the fields are localized in the h
index layers. Modifying the nonlinear medium distribution
the low-index layers will have little effect, although som
mode overlap between layers always occurs. Our calc
tions bear this out.

Since we are considering ultrashort incident pulses pro
gating in the presence of large index discontinuities, we m
retain all second-order spatial derivatives in order to prope
include boundary conditions. However, we assume that p
envelopes have a duration that is always much greater
the optical cycle, thus allowing the application of the slow
varying envelope approximation in time~SVEAT! only
@4–7#. The equations of motion for the fundamental and t
second-harmonic fields can be derived as follows. First, s
stituting Eq.~2! into Eq. ~1! yields

]2Ev

]z2 12ik
]Ev

]z
2k2Ev2

nv
2

c2

]2Ev

]t2 1
2ivn2

c2

]Ev

]t

1
v2

c2 nv
2Ev5

4p

c2 S ]2

]t2 Pv22iv
]

]t
Pv2v2PvD ,

~5!

]2E2v

]z2 14ik
]E2v

]z
24k2E2v2

n2v
2

c2

]2E2v

]t2

1
4iv

c2 n2v
2 ]E2v

]t
14

v2

c2 n2v
2 E2v

5
4p

c2 S ]2

]t2 P2v24iv
]

]t
P2v24v2P2vD . ~6!

We now make the following assumptions: we choosek
5v/c, and make the SVEAT only. This choice of wav
vector is simply an initial condition consistent with a pum
field of frequencyv initially propagating in free space, lo
cated away from any structure. Any phase modulation effe
that ensue from propagation, i.e., reflections and nonlin
interactions, are accounted for in the dynamics of the fi
envelopes. The inclusion of all second-order spatial deri
tives in the equations of motion means that reflections
accounted for to all orders, without any approximations. D
tails on the propagation method can be found in Refs.@4–7#.
Therefore, assuming that pulses never become so short
violate SVEAT ~usually this means a few tens of optic
cycles if propagation distances are on the order of pu
width!, neglecting all but the lowest order temporal cont
butions to the dynamics, and using the nonlinear polariza
expansions of Eqs.~4!, Eqs.~5! and ~6! become

nV
2 «̇V~j,t!5

i

4pV

]2«V

]j2 2
]«V

]j
1 ip~nV

2 21!V«V

1 i8p2Vx~2!«V* «2V ,
~7!

y
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n2V
2 «̇2V~j,t!5

i

8pV

]2«2V

]j2 2
]«2V

]j
1 ip~n2V

2 21!2V«2V

1 i8p2Vx~2!«V
2 . ~8!

Here j5z/l0 , and t5ct/l0 . The spatial coordinatez has
been conveniently scaled in units ofl0 ; the time is then
expressed in units of the corresponding optical period. As
will see below, forward and backward SH generation c
occur. If we assume that the medium is dispersionless,
the pump is tuned at the low-frequency band-edge trans
sion resonance, then the SH frequency is found well aw
from the second-order band edge. It is tuned in the middle
the pass band, as indicated in Fig. 1. In order to properly t
the SH signal frequency near the band edge, we introd
material dispersion. This causes changes in the band s
ture. Specifically, all higher-order gaps tend to move down
frequency, causing the SH signal to be tuned closer to
low-frequency, second-order band edge, where the elec
magnetic density of states is largest.

From a calculational standpoint, varying the amount
dispersion is simplest to undertake. From a fabrication sta
point, obtaining the same conditions is clearly more difficu
However, we find that the band structure and its features
strongly influenced by~a! the number of periods,~b! layer
thickness, and~c! material dispersion. For example, increa
ing ~decreasing! the number of layers sharpens the ba
edges, and increases~decreases! the number of transmissio
resonances between gaps, causing an effective shift of
resonance@41#. Changing layer thickness away from th
quarter- or half-wave conditions~in units of l0) can also
cause frequency shifts in the location of the band gaps
transmission resonances. When these frequency shifts
coupled with material dispersion, a structure with the rig
properties may be realized. Later we will show that the c
ditions and results that we discuss below can be repeate
a 20-period GaAs/AlAs structure.

In order to find the optimal parameters for SH generati
i.e., tuning with respect to the band edge, we vary the in
of refraction of the high-index layer fromn2(2V)
51.428 57 ton2(2V)51.65. The higher-index value corre
sponds to SH generation just inside the second-order
where we expect its suppression. For intermediate value
the index, SH generation also occurs at frequencies wh
the density of modes is a maximum. The degree of disp
sion that we assume is typical of the degree of dispers
found in both dielectric or semiconductor materials, 5–10
in this case.

Figure 2 shows the group index, defined asNg
5cdk/dv, for our sample@41#. ~We note that the maximum
group index is also a sensitive function ofdn, the index
modulation depth, and the number of periods. The maxim
value of the group index for this mixed half-quarter-wa
structure is similar in magnitude to that of a quarter-wa
20-period structure with the same index modulation dep!
In this case,n2(V)51.428 57, andn2(2V)51.519. Note
that the magnitude of this function is largest near the hi
and low-frequency band edges. We thus compare the
generation from this device with a uniform index-match
~same index of refraction for pump and signal! bulk medium
of similar dimensions, coated with antireflection layers
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both ends to avoid cavity effects for the pump field, a
compute conversion efficiencies for the periodic structu
We point out that the group-index maxima are directly c
related to the transmission maxima, a fact that was explo
in the design of the photonic band-edge delay line@7#, and is
clearly important for the onset of dramatically higher nonli
ear gain.

III. DISCUSSION AND RESULTS

A. Generic model

We choose the carrier frequency of an incident pu
pulse at the low-frequency band edge, where the transm
sion resonance is approximately unity and the group inde
a maximum~V50.591 in Fig. 2!. A high pump index implies
that a dramatic increase in the field intensities inside
structure occurs at that frequency. This is important, si
SH gain is nonlinear in the field, as Eq.~8! suggests. When
we choose the index of refraction such thatn2(2V)
51.519, the SH frequency coincides with the second den
of modes maximum on the low-frequency side of the seco
order band gap@see Fig.~2!#. Here, we find that for this
structure the total-energy output from the PBG device w
respect to the index-matched bulk, which includes forwa
and backward SH generation, varies from one order of m
nitude for pump pulses only 60 optical cycles in durati
(1/e width of the intensity envelope is about 200 fs ifl0
51 mm!, to approximately 500 times for pulses roughly 1
long. For subpicosecond pulses, the enhancement is red
due to the broad frequency content of the pulse.

We note that SH generation is not at a maximum wh
the SH signal is tuned at the density of the mode maximu
probably because the fields do not have the right phase
this to occur. As an example of the complexity of the syste
using the matrix transfer method we find that the phase of
transmitted, plane-wave field undergoes ap phase shift
across the gap, and a phase shift of 2p between consecutive
resonances on the same side of any gap. Therefore, the

FIG. 2. Group index vs normalized, dimensionless frequen
This function also represents the electromagnetic density of mo
in units ofc. There is just enough dispersion in the system to ca
the SH signal to be tuned at the second resonance peak nea
band edge, as indicated in the figure. The effect of normal dis
sion, i.e., the index increases with frequency, is to shift the b
structure to lower frequencies.
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ber of periods chosen may have an impact on the ove
phase of the SH field inside the structure. For short pul
the circumstances are much more complicated, becaus
their broadband frequency make-up.

In Fig. 3 we show the calculated SH energy output fo
ps pulse, as a function ofn2(2V), i.e., dispersion. The maxi
mum energy output occurs whenn2(2V)51.519, which cor-
responds to the second transmission or group index m
mum. The band structure forM251.519 is illustrated in Fig.
2. Evidence of the curvature of the band structure near
band edge is rather weak away from the second transmis
resonance. As we mentioned earlier, the dipole distributio
an important factor that cannot be overstated, and certa
needs further investigation. In this case, we point out that
SH field is generated inside the structure from a continu
distribution of nonlinear dipoles; the nonlinearity is in bo
the high and low index layers. This dipole distribution det
mines the form of the propagating eigenmode, and the m
ner in which the generated signal leaves the structure. Th
fore, it may be possible to find a nonlinear dipole distributi
that will maximize or further improve SH conversion effi
ciency, although that is beyond the scope of this work.

In our calculations, we also highlight the importance
pulse width. Pulses whose spectral widths are larger than
band-edge transmission resonance tend to couple poorly
the structure. This situation leads to dispersive propagat
and to only slightly enhanced field intensities inside the P
structure. On the other hand, a pulse whose frequency b
width is smaller than the band-edge resonance bandwidth
fewer frequency components, experiences little or no disp
sion, and allows the field to build up inside the structure
about one order of magnitude or more with respect to its f
space or bulk values, where the field amplitude is in gen
proportional toEfree/n. In Fig. 4~a! we plot the pump-field
intensity inside the structure, at the instant the peak of
1-ps pulse reaches the structure. This intensity is enhan
by more than one order of magnitude compared to its p
value outside the structure. Figure 4~b!, on the other hand
represents the SH field intensity quasistanding-wave pat
at the same instant in time as Fig. 4~a!. Both eigenmodes

FIG. 3. Maximum energy output vs index of refraction. Th
plot is also representative of the dependence of SH energy on
terial dispersion. The maximum out occurs when the SH signa
tuned to the second resonance peak, as indicated on Fig. 2.
shoulder atn2'1.54 corresponds to the first band-edge resona
For n2.1.55, the SH signal is suppressed by the band gap.
ll
s,
of

a

i-

e
ion
is
ly
e
s

-
n-
re-

f
he
ith
n,

d-
as
r-
y
e
al

e
ed
k

rn

overlap to a large extent inside the high index layers, and
fields propagate in this configuration for the entire durat
of the pump pulse. This mode overlap, combined with
dramatic group velocity reduction for both fields, allows e
ficient energy exchange between the pump and the SH
nal.

In Fig. 5 we plot the total-energy output~forward and
backward included! as a function of incident pulse width
expressed in optical cycles, for a 20-period, 12-mm-thick de-
vice ~solid line!, and a 12-mm bulk sample coated with anti
reflection layers at both ends to minimize pump reflectio
~dotted line!. We consider low input field intensities tha
yield conversion efficiencies on the order of 10212, although
this trend persists as long as pump depletion is not sign
cant. For clarity, the abscissa is plotted on a logarithm
scale. The figure shows that the total-energy output~and
therefore power output! becomes about 500 times greater f

a-
is
he
e.

FIG. 4. ~a! Pump field eigenmode distribution inside the stru
ture, at the instant that the peak of the pulse reaches the struc
As the pulse slows down dramatically, the maximum field intens
is amplified by more than one order of magnitude by linear int
ference effects of backward- and forward-traveling compone
Pump pulse depletion is negligible, and more than 90% transm
sion occurs in this case. In view of the magnitude of the fie
intensity, the SH eigenmode overlaps extremely well with the pu
eigenmode.~b! Second-harmonic eigenmode for the case of~a!.
The fact that two envelopes can be identified inside the structur
due to the fact that the SH signal is tuned to the second reson
away from the band edge. The fact that there are two maxima in
each high index layer, in contrast to the pump single peak, is du
the fact that the wavelength of the SH signal is half that of
pump.
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the PBG sample than for index-matched bulk when pu
width approaches 300 optical cycles, or about 1 ps. Our
sults indicate that at these length scales the energy outpu
the bulk sample increases linearly with incident pulse wid
In contrast, an early exponential increase characterizes
ergy growth in the PBG case, giving way to linear grow
only when pulse width approaches 1 ps. This implies that
pump field eigenmode intensity~and hence SH gain! in-
creases rapidly with pulse width, saturating when a quasi
nochromatic limit is reached, in this case, when pulse
quency bandwidth is somewhat less than band-e
resonance bandwidth. We also point out that both the am
tude and the width of the generated SH pulses increase
increasing incident pulse width. Figure 6 shows the SH fi
propagating away from the structure; While the pump w
incident from the left, note that the structure radiates sign
cantly in both directions, and that the SH pulses genera
have the same width as incident pump pulses; it would
difficult to predict this overall behaviora priori, especially in
the absence of analytical results in this regime. We also p
out that tuning the pump away from the band edge, tuning
the high-frequency band edge, or modifying the nonlin
dipole distribution can significantly alter the pattern
Fig. 6.

Figure 7 is a plot of the conversion efficiency vs pe
field intensity in Gaussian units, for a pulse of ps durat
(uEu2 of 109 in these units corresponds to roughly 1
GW/cm2 in free space. The free-space value of the ene
flow is to be distinguished from energy flow inside the stru
ture. As we pointed out in previous publications@7,44#, the
notions of energy, energy density, and Poynting vector
significantly modified inside the structure!. We define effi-
ciency as the ratio between the final total SH energy and
total initial pump energy. This ratio is also representative
the ratio between the corresponding peak field intensit
respectively. The figure suggests that for this simple str
ture only 12mm in length, a conversion efficiency of orde
1022 could be achieved with pump intensity of 10 GW/cm2,
yielding a SH signal intensity of approximately 10
MW/cm2. This is quite dramatic and remarkable, consid

FIG. 5. Comparison between the SH energy output from
PBG~solid line! and a phase-matched bulk material~dotted line!, as
a function of pulse width. They axis is represented in a logarithm
scale. The pulse width is given in units of the optical cycle,
described in the text. The output from the PBG structure is ab
500 times greater than the bulk material output when the incid
pulse width approaches 300 optical cycles, or about 1 ps.
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ing that our structure is only a few micrometers in leng
only a single pump pass occurs, and that we are using a
modest value ofx (2)'0.1 pm/V. Considering the extremel
compact nature of our device, and that the pump trave
the sample only once, the gain-to-device length ratio und
goes several orders of magnitude improvement over cur
state of the art devices.

We now provide a simple physical argument that w
help us understand the reason for such large enhancem
with respect to phase-matched up-conversion. According
Fermi’s golden rule, the power radiating from an oscillati
dipole is given byP(v)5r(v)uE(v)u2, wherer~v! is the
density of modes anduE(v)u2 is the eigenmode intensity
The average energy output can be obtained by multiply
the power output byt, the interaction time. As we hav
already pointed out, all these quantities increase by ne
one order of magnitude for our structure. In fact, sin
uE(v)u2 and t are both proportional tor~v!, then the total

e

s
ut
nt

FIG. 6. Spontaneously generated SH pulses. The amplitude
been normalized to unity without loss of generality. The structure
about 12mm in length, and is located near the origin. The width
the scattered pulses is roughly the same as the width of the inci
pump pulse. However, the maximum amplitude of each pulse
creases with the incident pulse width, until the quasimonochrom
limit is reached~about 1 ps in this case!.

FIG. 7. SH conversion efficiency vs incident pulse peak fie
strength. As we noted in the text, an intensity of 1029 corresponds
to a free-space energy flow of about 10 GW/cm2. Our calculations
indicate that the energy output, and hence conversion efficienc
proportional to the number of pump passes inside the structure.
emphasize that the results we have discussed represent a singl
inside a PBG structure.
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energy emitted is generally proportional tor(v)3. Hence the
significant increase in the total energy output that we rep
in Fig. 5.

We point out that higher conversion efficiencies can e
ily be achieved by increasing pump power, or, as we m
tioned earlier, by increasing the length of the structure
only modest amounts. For example, our calculations sh
that by increasing the total number of periods to 30, th
increasing the length of the device by 50%, the SH out
energy~and power level! increases by a factor of 5 for a p
pulse, enhancing the conversion efficiency by the same
tor. This occurs because the maximum group index increa
approximately asN2 @41#, whereN is the number of periods
The field eigenmode intensity is also proportional toN2, thus
enhancing energy output in a nonlinear fashion with resp
to device length.

Our calculations also indicate that in the linea
undepleted-pump regime, the conversion efficiency is p
portional to the free-space peak field value, as Fig. 7 sho
We point out that any small deviation in the actualx (2)

value, tuning with respect to the band edge, and input p
width could significantly affect comparison with experime
tal results. For this reason, the generic model is of gr
value in order to determine the overall behavior of the s
tem, and it could also be used in the very determination
x (2). Therefore, exercising some care in the design proc
could produce a very efficient SH generator, provided
sorption can be kept at bay.

Our discussion so far has been directed toward un
standing pulse dynamics when the pump is tuned at the l
frequency band edge. However, we expect the same qua
tive results to hold when the same analysis is applied to
high-frequency band edge. Generally, however, the h
quarter-wave structure discussed above does not lend itse
this task because tuning the pump at the high-frequency b
edge results in a second harmonic frequency tuned well a
from the band edge. We therefore consider a structure wh
indices of refraction are as in Sec. II, i.e.,n1(V,2V)51 and
n2(V,2V)51.428 57. For added simplicity, we assumed th
the material is not dispersive. If layer thicknesses are cho
such that the width of the low index layer isa50.65l0 /n1
~the low index layer is now the active layer because of
shift in localization of the field!, and the width of the high
index layer is such thatb50.089l0 /n2 , then, tuning the
pump at the first resonance of the first-order, high-freque
band edge causes the SH signal to be tuned at the se
resonance of the second-order high-frequency band edg
analogy to what was accomplished for the low-frequen
band edge. Our simulations suggest that the results are q
tatively similar to those of Sec. II; we find, however, that t
conversion efficiency can increase up to about a factor o
for ps pulses, compared to the low-frequency band-edge
version efficiency. This increase can be understood with
following argument. Tuning the pump at the high-frequen
band edge causes a shift of the pump field localization in
low index layer. This shift increases the field eigenmode
tensity in that layer. Also, the width of the active layer i
creases by about 30%, from 0.5l0 to 0.65l0 . This combina-
tion can account for the increase in overall nonlinear gai

Clearly, then, there may be circumstances where the
geometry is to be preferred over that of the half-quarter-w
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stack since the new structure is still about 12mm in length,
even though the output energy can increase by a factor o
However, we will not dwell on this point here, and simp
point out that our calculations suggest that higher convers
efficiencies could be obtained by judiciously choosing t
appropriate parameters.

B. GaAs/AlAs half-quarter-wave stack

We tested our numerical model with the parameters o
mixed half-quarter-wave structure composed of 20 period
GaAs/AlAs material. In this case, we assumedx (2)'1 pm/V
for both materials, and the index of refraction alternates
tween n1(V)52.868 andn2(V)53.31, andn1(2V)52.9
andn2(2V)53.35 @45#. This occurs at frequencies well be
low the electronic band gaps of both materials, where
sorption can be ignored. These indices correspond to a p
wavelength of 3mm, and a second-harmonic signal at 1
mm. The results are in essence the same as to what we fin
the generic model. This is because the parameters tha
use combine to give approximately the same dynamic, n
linear SH gain, which from Eq.~6! we define as the produc
x (2)«V

2 ; the order-of-magnitude increase inx (2), and the
order-of-magnitude decrease in the field eigenmode inten
~due to the substantial increase in the index for GaAs! pro-
duce conversion efficiencies that are also on the or
1022– 1023 for this 20-period structure at a pump intensi
of 10 GW/cm2. We expect a significant increase with in
creasing number of periods.

We note that while it would be ideal to up-convert
higher frequencies, we could not find a set of parameters
allowed for that to occur in the GaAs/AlAs structure~mostly
due to the large dispersion at higher frequencies!, although
our efforts were very limited in this regard; different mate
als, such as II-VI based semiconductors, may be necessa
order to achieve the enhancements that we have discus
However, the fact that simple semiconductor structures
pear to be useful for efficient SH generation, or frequen
halving, where the dynamics and the role of pump and sig
are reversed, is an encouraging development, since sem
ductors periodic structures are simple to grow with we
established techniques.

IV. CONCLUSIONS

In summary, we discussed a novel SH generator base
a PBG, mixed half-quarter-wave, periodic structure. Both
ergy output and conversion efficiencies are nearly three
ders of magnitude greater than for bulk, phase-matched
vices of comparable lengths. We find similar results for
GaAs/AlAs semiconductor periodic structure. These res
have immediate applications in frequency up- and downc
version lasers, higher and lower harmonic generation,
Raman-type lasers, where either Stokes or anti-Stokes r
nances can be enhanced or suppressed near the band ed
general, the underlying mechanism requires the fields to
strongly confined, allowing for longer interaction times, i
creased effective gain lengths, and enhanced conversio
ficiencies, although strong pump confinement alone can
result in significantly enhanced SH generation.
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