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Localized structures in chaotic patterns: From disorder to ordering

M. Le Berre, A. S. Patrascu, E. Ressayre, and A. Tallet
Laboratoire de Photophysique Mole´culaire du CNRS, 91405, Orsay, France

~Received 19 March 1997!

Two-dimensional~2D! ‘‘chaotic’’ localized structures are observed in the transverse profile of light with a
delay model of a ring cavity with strongly dispersive two-level atoms. Near nascent optical bistability, the 2D
homogeneous solution undergoes a subcritical transition to a spatiotemporal chaos. The inhomogeneous pattern
coexisting with the homogeneous solution is filled with large-intensity peaks, oscillating with time. In the
subcritical domain, localized structures are observed, with isolated peaks more stable and more coherent than
the ones in the filled structure. The order is easily recovered by a filtering procedure that reduces the wave-
vector bandwidth.@S1050-2947~97!10409-7#

PACS number~s!: 42.65.Pc, 42.60.Mi
in

te
le
b

c
e

r

t
ta
e

e
tu

eo

-
f a
r

nt
ou
l

or

to
e

-
-
o
er
it

y,
n
l

-
-

tic
ot

on-
a-
ld.
e a
er
the

poral
he
the
ole
ese
ical
rn

the
ng
gic
o
m-
ng

s-

-
es
I. INTRODUCTION

Two-dimensional localized structures, also called Is
patterns or bubbles@1#, are observed in hydrodynamics@2#
and chemistry@3,4#, and also in optics@5–8#. In all cases the
localized structures occur when two different stable sta
coexist in a certain range of control parameters. The simp
localized structures are patterns showing an interface
tween two stable homogeneous states~with constant ampli-
tude!. Other localized structures result from the coexisten
of stable homogeneous and inhomogeneous solutions, th
homogeneous solution being generally stripes@5# or hexa-
gons@5–7#. In these cases the localized structures appea
peaks~or holes! emerging on a flat background. AnN-peak
structure can be produced by addingN Gaussians to the fla
incident profile, and allowing the system to evolve to a s
tionary state. In anN-peak structure, the maxima have th
same value as in the periodic~stripe or hexagonal! one, and
the background level is equal to that of the nontrivial plan
wave solution. These localized structures are thus a signa
of the coexistence of homogeneous and nonhomogen
states.

Here we report~Sec. II! a numerical observation of ‘‘cha
otic’’ localized structures resulting from the coexistence o
stable plane-wave solution and a weakly chaotic patte
with disorder and time-varying intensity peaks; conseque
the peaks in localized structures are also set with vari
intensity values. The equations are those of a delay mode
a ring cavity, with saturable two-level atoms having null
finite decay time@Eqs.~1!#, which display chaotic solutions
in the domain of parameters studied here, corresponding
nascent optical bistability in the dispersive limit. While th
delay model was shown@9–11# to be equivalent to the Lu
giato and Lefever~LL ! mean-field model for an instanta
neous Kerr medium@12# in our previous papers relative t
stationary patterns with small intensity, it is no long
equivalent in the present study dealing with high-intens
patterns.

It is known @13# that, close to nascent optical bistabilit
the process of destabilization of the homogeneous solutio
not reducible to a Turing instability, with a single critica
wave numberK th . Actually the whole band of wave num
bers, 0<K<few K th, may be involved in the pattern
561050-2947/97/56~4!/3150~11!/$10.00
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forming process, and their interplay gives rise to the chao
solution. We thus show that localized solutions occur n
only for envelope equations which are valid close to the
set of instability, but also for a system of two coupled equ
tions valid in the dynamical regime far above the thresho
Finally, a very simple procedure is suggested to chang
chaotic solution into an ordered one. A low-frequency filt
is set inside the cavity, reducing the spatial bandwidth of
electric field at the input of the cell~Sec. IV!. This procedure
decreases the peak intensity and stabilizes the spatiotem
behavior of the solution. A narrow-band filter changes t
chaos into hexagons, while a broader filter transparent for
K andA2K components leads to a square pattern. The r
of the filter is then to control the chaos in the sense that th
two stable periodic patterns are observed far from opt
bistability in the delay model. Recall that the regular patte
for a tuned cavity is hexagonal on the focusing side of
resonance@7,9#, and squares are formed in the defocusi
side, due to the biconical emission of two modes with ma
wave-number ratioA2 @11#. The changeover from chaos t
hexagons is illustrated analytically by investigating the a
plitude equations, which receives finite solution by removi
nonlinear terms corresponding to the filter operation.

II. LOCALIZED STRUCTURES

The model for the passive ring cavity numerically inve
tigated in this paper was stated in Refs.@9,10#. It generalizes
the Ikeda equations@14#, including diffraction in the free
space of the cavity. With the notation of Ref.@11#, the two
equations for the electric fieldE and the atomic population
inversionf are

E~ t1d,x!5E0~x!1r expF i
L

2k
¹T

2GE~ t,x!

3eal ~11 ihD!f/22 ihucav, ~1a!

T1

df

dt
52~f11!2

eal f21

al
uEu2. ~1b!

In Eqs. ~1! the diffraction is decoupled from the nonlin
earity in the medium. Thus the light beam simply undergo
3150 © 1997 The American Physical Society
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56 3151LOCALIZED STRUCTURES IN CHAOTIC PATTERNS: . . .
a nonlinear absorption and has a nonlinear phase, inside t
cell, proportional to the atomic population inversion. Equa
tions~1! were justified within a given range of parameters, in
the sense that the solutions display the same linear thresho
characteristics as the full set of Maxwell-Bloch equations
@9,10#.

In the case treated here of the focusing side of the res
nance,h51, and for the parameter values

r50.95, al 50.1, al D58p, T15d, ~2!

the agreement between the delay model@Eqs. ~1!# and the
full set of Maxwell-Bloch equations is very good, since the
first ~static!, and also the second~dynamical! linear bound-
aries~see Fig. 1! coincide, when the radiative lifetimeT1 is
of order of the round-trip timed, or much smaller, and for a
total diffraction pathL equal to the cell lengthl , or much
larger thanl @9,10#.

Relations~2! mean that we focus on a high finesse cavity
containing a strongly dispersive and weakly absorptive me
dium. The parameter values in Eq.~2! are those of the feed-
back mirror experiment@17#, with a sodium cell containing a
high buffer gas pressure. In the ring cavity case, we hav
shown @10# that one can neglect the polarization dephasin
time T2 for T2<0.1T1, which is different from the case of
the feedback mirror@18#, where the 2d oscillation could not
be reproduced if one performs an adiabatic elimination of th
polarization. We numerically investigated the casesT15d
and T150, because in the feedback mirror experiment, th
turning spots were observed for a ‘‘large’’ round-trip time
d>T1. The numerical results presented here concern th
caseT15d, because it should be easier to realize experimen
tally, but very similar results are obtained in the case of a
instantaneous atomic response,T150.

Let us recall that the linear stability analysis of Eqs.~1!
and ~2! predicts multiconical emission. The lowest thresh-
olds correspond to the static instability, with coordinates
(I th ,Q th,n) given by the relations@10#

FIG. 1. Static~lower curve! and dynamical~upper curve, in
solid line! linear instability boundaries for Eqs.~1! and~2!. Param-
eters are as in Eq.~2!. The ‘‘nonlinearity’’ aal D I /2 (a59) is
drawn vs the ‘‘diffraction parameter’’
10@(K2L/2k)1u#, with this scaling the static boundary fits very
well the marginal stability curve of Eq.~5! drawn in Fig. 8.
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2 al DuEthu250.1, ~3!

L

2k
K th

2 1ucav5Q th,n50.212np. ~4!

Above the static instability frontier, there is a second
of curves corresponding to a dynamical instability, wi
minima twice as high, that is also periodic with respect to
diffraction parameterQ. In this paper we describe the pa
terns obtained on the vicinity of nascent optical bistabili
which occurs atucav,ob50.17. For that purpose we are on
concerned with boundaries close to the optical axis (K50)
shown in Fig. 1. Along the dynamical curve, the thresho
T/d period increases from 10 to 40@9,10#. For T150, the
dynamical frontier is located far above irrelevant for o
study.

The 2D patterns discussed here were obtained for the
ucav50.16. The numerical code was described in Refs.@9,10#
and the results are obtained by taking 1283128 and
2563256 grids for the transverse variables (x,y), and ten
time steps in one round-trip timed. A random noise of rela-
tive amplitude 1023– 1024 is added to the input fieldE0, the
boundary conditions are periodic, and the transverse gri
orthogonal and 1% asymmetrical. With the parameter val
given in Eq. ~2!, the threshold corresponds toE0

th

50.01, I th5uEthu250.0081.
Just above the linear threshold, the solution of Eqs.~1! is

chaotic, both in space and time. For an input fieldE0
(1)

50.0105, two examples of chaotic patterns correspondin
two different initial conditions are shown in Figs. 2~a!–2~c!,
which display the transverse intensityI (x,y) at a given sam-
pling time t much larger than the transient. The moonli
pattern in Fig. 2~a! has peaks and craters with a chaotic o
axis intensity@Fig. 2~b!#. The other pattern displays man
peaks of very different heights, and a weakly chaotic on-a
intensity @Figs. 2~c! and 2~d!#. The maximum intensity is
about 11 and 15 times the critical oneI th , respectively. In
both cases the intensity widely overpasses the dynam
threshold. The pattern with peaks in Fig. 2~c! seems less
chaotic than the moonlike one; indeed, one can see s
peaks aligned along directions making angles of 120° t
seems reminiscent of the hexagonal order. Actually, ho
ever, this order is only local, as illustrated in the spatial sp
trum in Fig. 2~e!, which contains components on a wid
annulus corresponding nearly to the range 1.4<K/K th<3. In
summary, the chaotic solution in Fig. 2~c!, displays a large
dispersion of the peak intensities, a disorder in the p
alignment, and a broadband wave-number spectrum. Le
now describe the inhomogeneous solutions obtained be
the linear threshold, by decreasing the control param
from E0

th50.01 toE0
sc50.0093, and starting from the chaot

pattern with disordered peaks as initial condition Fig. 2~c!.
~1! In the sequence obtained by slowly decreasing

control parameter~with a gapdE050.01E0
(1)!, all the pat-

terns have the same number of peaks, located at the s
place,~Fig. 3!, and are very intense. The maximum intens
I max is always of order-11 times the plane-wave val
I s(E0). As E0 decreases, the structure stabilizes, in the se
that the peak intensities become constant with respec
time, and spatially more uniform. More precisely, the co
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FIG. 2. ~a! 3D graph of the intensityI (x,y,t)5uE(x,y,t)u2 at the cell input, in the transverse plane (x,y) for the chaotic solution of Eqs
~1!, at a given timet after the transient, for input field amplitudeE050.0105.~b! Time traceI (0,0,t) during a time interval equal to 500d,
or 50tph ~the photon lifetime in the cavitytph is equal to ten times the round-trip timed, tph5d/(12r8). ~c! and~d! Density plot and time
trace of the intensity as in~a! and~b! with different initial conditions.~e! Density plot of the far-field intensity,I (Kx ,Ky)or spatial Fourier
spectrum for the chaotic solution in~c!.
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decreases from 50% to 10%. Just below threshold, atE0
50.01, a local peak time trace is weakly chaotic, while,
I 050.0098, the time trace is quasiperiodic, with a large
riod T'51d, and a modulation at a period about 560d. At
E050.0097, the time trace becomes constant. The peaks
appear atE0

sc50.0093 leading to the homogeneous solutio
~2! In the sequence obtained by decreasing the con

parameter with a larger value of the decrementdE0, the so-
lutions exhibit localized structures, with a smaller number
peaks. In some domain of the transverse plane, the inten
is equal to the plane-wave solutionI s , while in other do-
mains the chaotic solution with peaks still remains. The a
of the homogeneous solution becomes larger asdE0 in
creases. For example, the 35- and three-peak patterns s
t
-

is-
.
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f
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in Figs. 5~a! and 6~a!, are the localized structures obtained
E050.0097, from initial patterns formed at 5% and 11.5
above threshold, respectively.

The 35- and three-peak structures are obtained in
whole domain (E0

th ; E0
sc) by decreasing the control param

eter down toE0
sc, and by slowly varying the control param

eter, as in the case of the filled pattern. In this procedure
N-peak pattern is obtained byseedingthe homogeneous pro
file with N peaks with approximate height and width,
described in Refs.@5–8#.

The spatiotemporal properties of the localized structu
can be compared with those of the pattern filled with pe
~obtained for the same value ofE0!, in the whole sequence
(E0

th ; E0
sc). The heights of the peaks are qualitatively t

same, but their temporal evolution differs. For example,
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56 3153LOCALIZED STRUCTURES IN CHAOTIC PATTERNS: . . .
E050.0098, the 35 and three-peak structures are sta
while the time trace for the filled pattern is quasiperiod
~Figs. 4!. ForE050.01 the time trace for a particular peak
the localized structure is periodic@Fig. 5~b!#, but weakly cha-
otic for the filled pattern@Fib. 3~b!#. Thus the presence o
homogeneous domains seems to stabilize the tempora
havior of the structure.

The coherence properties of peaks differ in the dynam
regime. In the filled structure, the intensity time traces
three distant maxima show various regimes@Figs. 4~a!–4~c!#,
the phase relations between the three peaks changing
time. During a certain time interval two given peaks oscilla
coherently, but suddenly the relative phase changes. C
versely, in the case of the three-peak structure, the pe
oscillate in phase with time traces in exact coincidence@Fig.
6~b!#. Consequentlythe large intrapeak distance favors th
coherent properties of the light.

While in the three-peak pattern the peaks stay at the s
place in the whole domain (E0

th; E0
sc) a very slow drift is

observed in the dynamical regime for the 35-peak and fi
patterns. It is of order 0.03l th, per thousand of round-trip
time. Studying the drift would require an extremely lar
computing time. Nevertheless an interesting observa
must be reported. In the 35-peak pattern most of the pe
~those which have close neighbors! drift, but a few peaks
having more distant neighbors stay in place. In conclus
we observe that chaotic localized structures with sufficien
isolated peaks are temporally more stable and more cohe
than the filled structure.

FIG. 3. ~a! 3D graph of the chaotic intensityI (x,y) for the
‘‘filled’’ structure, obtained just below the threshold forE050.01.
~b! The on-axis intensityI (0,0,t) during 1800d.
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III. COMPARISON WITH THE „L -L …MODEL

At this stage it is necessary to understand why, for
present study of 2D localized structures, the delay model~1!
cannot be reduced to the well-known Lugiato and Lefe
~LL ! model@12# for the passive ring cavity in the dispersiv
limit,

dE

dt8
5E082E1 i ~b8uEu22u!E1 i¹T

2E, ~5!

which also displays localized structures at nascent opt
bistability @6,7#. In Eq. ~5!, the time is scaled to the photo
lifetime in the ‘‘dressed’’ cavitytph5d/(12r8), the trans-
verse variables in Eq.~1! have been rescaled a
Aa(L/2k)x→x, and

b85a
al D

2
, a5

r8

12r8
~6!

with r85re2al /2.

FIG. 4. Intensity time trace for the filled structure at three d
ferent points of the grid, vs time, forE050.0098. The time interval
is equal to 1500d. With grid dimensions between21 and11, the
traces are~a! at the centerI (0,0,t), ~b! I (0.67,0.2,t)20.0455, and
~c! I (20.81,20.59,t)20.0455. The decrease in traces~b! and~c! is
due to the slow motion of the peaks, discussed in the text.
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3154 56Le BERRE, PATRASCU, RESSAYRE, AND TALLET
The equivalence of Eqs.~1! and~5! is questioned because
in a certain range of parameters the envelope Eq.~5! is a
fairly good model of the delay equations~1!. For example,
the equivalence occurs at the onset of instability in the c
of a tuned cavity~u50!. Static hexagons are found for bo
models, on the focusing side of the resonance@7,9#. More-
over the biconical square pattern observed with Eqs.~1! on
the defocusing side of the resonance was analyzed@10# by
using a generalized version of the LL model including t
multiconical process (¹T

2E→sin¹T
2E). The originality of the

present work lies precisely in the presentation of 2D loc
ized structures for an equation valid in a larger domain th
the envelope equation~5!; thus we present the difference
between the two models.

A necessary condition for any model equation to rep
duce the main features of the original system of equation
that the threshold characteristics displayed by the linear
bility analysis are the same. The result of the linear stabi
analysis of the stationary solution shown in Fig. 7 for E
~1! and~5! is schematized in Figs. 1 and 8, respectively. F
we note that if the parametera, which is equal to 9@Eq. ~2!#,
is slightly increased by an amount of 10% in the scaling
the horizontal axis, the static boundaries of Figs. 1 an
agree very well with the minimum atb8uEthu251 andaKth

2

1u52. The small discrepancy is easily explained by t

FIG. 5. ~a! 3D graph of the intensityI (x,y) for the 35-peak
structure, atE050.01. ~b! The intensity time trace of the ‘‘iso-
lated’’ peak located at~20.375 and 0.24!. This peak does not move
during the recording time equal to 1500d.
e
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first-order truncature performed in the expansion of the
ponential of Eqs.~1!. Second the delay model displays
dynamical instability boundary, while the LL model onl
displays a static boundary. Indeed the LL model amounts
writing E(t1d)5E(t) 1d(dE/dt) in Eq. ~1! which leads to
a linear problem with two eigenvalues only, while the del
model has a dispersion relation which is not polynomi
with many solutions. Nevertheless one can assert that
two models should agree in the limit of small intensity,
more precisely if

1
2 al DuEu2!1 ~7a!

or

r 5b8uEu2!a. ~7b!

For example, the two models agree for a mistuningu
close to the valueA3, in the 1D case. Indeed the inhomog
neous 1D solutions of Eq.~5! display ‘‘small’’ peak inten-
sity, with r'2 as reported in Fig. 11 of Refs.@6,7#. There-
fore the 1D localized structures studied by Tlidli and c
workers are also solutions of Eqs.~1!, and shall not be
reported here.

The 2D structures behave differently. A simple explan
tion can be obtained from the weakly nonlinear analys
Above threshold, forI 5I th1dI , the bandwidthdK of the
unstable wave numbers may contain a larger number of
tive modes in two dimensions than in one dimension. Inde
with a quadratic nonlinearity, the first-order nonlinear te

FIG. 6. ~a! 3D graph of the intensityI (x,y) for the three-peak
structure.~b! The intensity time trace of any peak, atE050.01.
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56 3155LOCALIZED STRUCTURES IN CHAOTIC PATTERNS: . . .
involved in a 2D pattern with two active wave vectorsK i
andK j has components atK i6K j , which have more chanc
of belonging to the unstable band, and then becoming ac
than the component 2K which is the only nonlinear compo
nent in the 1D case.

The structure at threshold displayed a weakly chaotic t
trace with a mean period about 50 d, which qualitative
agrees with the linear analysis predictions. We also p
formed numerical simulations in the case of instantane
atomic response,T150, and found similar results, i.e., loca
ized structures with high-intensity peaks and weakly cha
time traces of long period,T'65 d, while the dynamica
boundary is too high to be invoked in the process.

In conclusion, the chaotic solutions observed with the
lay model of the ring cavity, forT150, andT15d, are at-
tributed to the interplay of a broadband of wave numb
active near nascent bistability, which leads to spatial ch
with large intensity modulations.

IV. FROM DISORDER TO ORDERING

Why does the hexagonal order setup for a quasituned
ity (ucav,0.1) disappear for higher values of the cavity m
tuning? What happens near the critical pointucav,ob50.17?
At nascent bistability, the lowest boundary in Figs. 1 and 8
quasitangent to the ordinate axis (K50). Therefore one can
expect that a large range of wave numbers located nea
minimum become unstable. Note that in the case stud
here the homogeneous solutions does not display bistab
~cf. Fig. 7!.

FIG. 7. Plane-wave stationary solution of Eqs.~1! for the inten-
sity I s vs the input field amplitudeE0.

FIG. 8. The marginal stability curve for Eq.~5!, r vs Q, the
position of the vertical axis corresponds tou51.6. The two dashed
lines are located at abscissa corresponding toK th andA3K th .
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The derivation of an amplitude equation for an order
structure with a single wave numberKc is questionable,
since an analytical description of the pattern formation ha
take into account the whole domain near the minimum. T
was done for the case of the ring cavity in the absorpt
limit @13#. The normal form of the original equations wa
shown to be a Swift-Hohenberg equation. The derivation o
normal form shows some generic properties, but one fin
has to solve a partial differential equation.

In this section we try to investigate the chaos in anot
way. We propose to control the formation of chaotic stru
tures appearing in the vicinity of nascent optical bistabili
by reducing the wave-number bandwidth by a low-frequen
filtering procedure that eliminates all the wave numb
larger than a given valueK f . An appropriate filter allows us
to obtain stationary ordered solutions with ‘‘small’’ ampl
tudes of modulations. Therefore we derive the properties
the filtered solution from a weakly nonlinear analysis of t
LL model. In Secs. IV A and IV B, the role of the filter is
first analytically investigated, then numerical results are p
sented.

A. Amplitude equation for the hexagons

With E5Es(11A), the LL model~5! becomes

] t8A52A1 i r ~2A1A* 1A212uAu21AuAu2!

1 i ~¹T
22u!A, ~8!

The amplitude equation for a hexagonal pattern with
critical wave numberK th was already given in Refs.@7,9#,
and generalized in Ref.@11# for an arbitrary wave numberKc
near critical valueK th . Here we recall the results with th
notations of Ref.@11#. At first order, the complex amplitude
of the electric fieldA15R11 i I 1 has real and imaginary
parts

R15A1eiK ix1B1eiK jx1C1eiKmx1c.c., ~9!

I 15cR1 , ~10!

whereK i , j ,m are three wave vectors with vertex anglesp/3
and equal moduliKc . In Eq. ~10!, the parameterc depends
on the wave numberKc via the relation

c52Q13r c ~11!

in the focusing case,Q5Kc
21u,andr c(Q), drawn in Fig. 8,

is expressed as

r c5~2Q6AQ223!/3. ~12!

The filtering procedure amounts to canceling all the co
ponents with wave vectorK>K f of the second-order solu
tion

R25a0~R1
2!01a1~R1

2!K1a3~R1
2!A3K1a4~R1

2!2K ,
~13!

where the index in (R1
2) is relative to the modulus of the

wave vector, and

a15crc/2, ~14!
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an5
f 2~n!1b~n!g2~n!

b~n!c~n!21
for nÞ1, ~15!

with b(n)5Qn2r c , c(n)53r c2Qn , Qn5nK21u,
f 2(n)52r cc(n)(R1

2)n , andg2(n)52(31c2)r c(R1
2)n .

The amplitude equations for the subcritical hexagonsA
5«A15B5C reduce to

]tA5mA12~11l m!A21~e12 f !A3, ~16!

wherem5(r 2r c )/r c, and

e52a01a413 j , f 52~a01a11a313 j !, ~17!

l 512
31c2

32c2 a1 , j 5
12c4

32c2. ~18!

1. Without filter

Let us describe first the amplitude diagramsA(m,Kc ,u)
in the usual case, when all the componentsKc ,A3Kc , and
2Kc are allowed to interplay for the pattern formation~no
filtering!. For a critical wave numberKc5K th , it is already
known @7,9# that A(m) become larger and larger values
the cavity mistuning increases fromu50 to u'1, and that
the third-order Landau expansion@Eq. ~16!# has no solution
for u.1. Actually reasonable values forA lies below unity
since a hexagonal pattern with maxima of intensity of or
ten times the homogeneous solution corresponds toA'0.7.
We shall now investigate the behavior of the solution of E
~16! for KcÞK th .

In the domain 0,u,1, where Landau expansion is val
for K5K th , the amplitude drastically increases withK, as
shown in the 3D graph@Fig. 9~a!#, which displays the thresh
old amplitudeA05A(m50)522/(e12 f ) in the parameter
space (Q5K21u,u). For example, for a tuned cavity th
amplitude diagram reported in Fig. 9~b!, for three values of
the wave number close to the critical oneK th diverges atK
'1.2K th. Does this predict that hexagons will appear with
wave number larger thanK th? This would disagree with the
numerical results, which display hexagons with the criti
wave numberK th for u50.

The same observation was done for the caseu50.7, stud-
ied by Tlidli: the numerical hexagons were found withKc
slightly smaller thanK th , while the amplitude is also an in
creasing function ofK @Fig. 9~c!#. In both cases the numer
cal results agree with the analytical predictions in the dom
K'K th only, where the weakly nonlinear analysis is val
For K.K th , the dramatic growing of the amplitude pre
dicted by the Landau expansion is meaningless, and doe
lead to a shift of the critical wave number~called the ‘‘non-
linear resonance’’ effect in Ref.@16#!.

2. Amplitude diagram with filter

Now let us describe the amplitude diagrams obtained
canceling the components with wave numbers larger t
Kc. The 3D graphA(m50,Q,u) in Fig. 10~a! displays
strong differences from the graph in Fig. 9~a!. In particular,
for small detuning, 0<u<1, the filtering procedure sup
presses the divergence of the solution of Eq.~16!, and in the
domainu.1.4 only Eq.~16! ‘‘with filter’’ has a solution, as
r

.

l

in

not

y
n

expected. Let us focus on this domain, which is close
nascent optical bistability. The solution of Eq.~16! exists for
a certain range of wave-number values only, as illustrate
Figs. 11~a!–11~c!, where the value of the amplitudeA(r
51.2) is reported as a function of the diffraction parame
Q5K21u, for the three values of mistuningu51.4, 1.5, and
1.6. As one approaches the bistability, the domain of ex
tence of a solution shrinks. The right part of the curves
Figs. 11 are meaningless for a low-frequency filtering, a
will not be considered.

For u51.6, in the left part of the curve, amplitudeA is
smaller than unity in a very small domain, for a wave nu
ber smaller thanK th only ~or Q smaller than 2!, as shown in
Fig. 10~b!. But for u51.4, the amplitudeA is smaller than
unity in a larger domain, forK<2K th . In this region the
amplitude slowly increases, then hexagons are expecte

FIG. 9. ~a! 3D graph of the threshold value of the amplitud
A(m50, u, andQ! for one hexagonal component, without any fi
ter, vs the cavity mistuning 0,u,A3 and the diffraction paramete
A3,Q,3.5. ~b! Amplitude diagramA(m,u50,Q i), for three val-
ues of the diffraction parameterQ i51.9, 2, and 2.2. The amplitude
increases withQ, and diverges atQ52.8. ~c! Amplitude A(r
51.2,u50.7,Q) for a given value of the control parameterr
51.2, and mistuningu50.7.
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appear with wave numbers larger than the critical one.

B. Numerical results

What about the numerical simulations of Eqs.~1! with a
filter? In the numerics theK f filter is easily introduced in the
code using a fast Fourier transform for the propagation in
free space of the cavity@Eq. ~1a!#. The mistuning is the sam
as in the Sec. III,ucav51.6, that corresponds tou'1.6,
within 10% of uncertainty due to the shift in the paramete
for fitting the marginal curves of both models@Eqs.~1! and
~5!#.

1. Circular filter

The cutoffK f increased progressively fromK th . WhenK f
is slightly larger thanK th , a hexagonal pattern is obtaine
~Fig. 12!. The wavelength is nearly equal to the critical on
The peak intensity is not larger than twice the station
valueI s , that corresponds to a small amplitude,A'0.1, as in
the diagrams of Fig. 10~b!. In this regime relations~7! are
fulfilled and then the LL model approximates Eqs.~1!. As K f
increases until 1.5K th ~2,Q,2.4!, the pattern remains hex
agonal, with an increasing maximum intensity 2,3 still ful-
filling the equivalence relation~7!, that corresponds to sma
modal amplitude 0.1,A,0.2. The striking observation con
cerns the shift in the spatial frequency, the wave numbe

FIG. 10. ~a! 3D graph of the threshold value of the amplitud
A(m50, u, and Q! for one hexagonal component, with a filte
cutting theA3K and 2K components, vs the cavity mistuning
,u,A3 and the diffraction parameterA3,Q,3.5. ~b! Amplitude
diagramA(m,u51.6,Q i), for three values of the diffraction param
eterQ i51.78, 1.8, and 1.82. The amplitude increases withQ, and
diverges atQ'1.9.
e

a

.
y

of

the hexagons increasing withK f , keeping a value close to
K f . More precisely, one observes that the critical wave nu
ber isshiftedfrom K th to 1.4K th ~or the diffraction paramete
is shifted fromQc'2 up to 2.4!. The observation of smal
amplitude hexagons in this domain qualitately agrees w
the analytical curve shown in Fig. 11~a!, corresponding to
u51.4, which displays the so-called ‘‘nonlinear resonan
effect’’ @16#.

The hexagons are stable up to 20% above thresh
Moreover they are also obtained with an hypergaussian in
beam, in the same range of control parameter.

When K f'1.7K th, the pattern becomes a bisquare~Fig.
12!, with two critical wave numbers close toK f and
(1/A2)K f(Qc'1.17 and 2.75!. For a filter with a broader
bandwidth, the disorder appears~see also Fig. 2!.

2. Square filter

A square filter is transparent in the domain$uKxu,K f and
uKyu,K f%. The pattern obtained near the threshold is als
bisquare when the cutoff is close to the critical wave num
K th,K f,1.3K th . The preferential square structure~with re-
spect to the hexagonal one obtained with a circular filt!
results from the use of a square filter, which allows the gro
ing of wave vectors with the resonantK x6K y components.

FIG. 11. AmplitudeA(r 51.2, u i , andQ! with the filter, as in
Fig. 10, for three values of the cavity mistuningu i51.4, 1.5, and
1.6, from top to bottom, vs the diffraction parameterQ.
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But when the cutoff isKx,y f'1.2K th, the bisquare is ob-
tained whatever the shape of the filter. Finally, as soon as
intermodalK2A2K coupling is allowed, the chaotic solu
tion is changed into a square pattern.

Let us recall that on the defocusing side of the resonan
the solution of Eqs.~1! also displays a bisquare patter
which results from the emission of two critical wave num
bers with a ratio close to the magic valueA2, belonging to
the first and second near-axis instability domains, resp
tively. In the case observed here, the filtered solution has
wave numbers belonging to the first instability domain~Fig.
8!. What differs in the biconical and monoconical bisquare
As shown in the analytical treatment of the bisquare patt
performed in Ref.@11#, the relevant parameters for a mult
modal interaction are not the set of wave numbersKn for the
different active modes, but the set of associated diffract
parametersQn5a sin@(LKn

2/2k)1hu#. In other words, the
predictions for a bisquare with diffraction parametersQ1 and
Q2 are identical for a biconical or monoconical emissio
We showed in Ref.@11# that, in the defocusing case, th
pattern spontaneously emerging from noise is a bisqu
with K25A2K1 when two sets of active modes withQ2
52Q1 are allowed to interplay. Here we show that the he
gons, disappear in favor of a bisquare pattern in the focus

FIG. 12. Hexagonal pattern obtained atucav50.16 and E0

50.0105, with a circular filter withK f slightly larger thanK th. ~a!
Near field intensity.~b! Far-field intensity.
he
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case, for the set (Q152.2, Q252.75).
In conclusion, we propose a very simple procedure

change the disorder into either a hexagonal or a bisqu
ordered solution. A low-pass filter which cuts a portion
the spatial frequencies allows the chaotic solution, obtai
at the onset of instability and close to the nascent opt
bistability, to recover the order corresponding to a tuned c
ity. When the wave-number bandwidth is large enough
allow theK-A2K interaction, the pattern is a bisquare as
the defocusing case, and with a narrow filter the pattern
hexagonal as in the focusing case.

V. DISCUSSION

The present work is purely numerical, but the parame
values are those of the feedback mirror device@17#, where
transverse instabilities were first observed in optics. The r
cavity set up was chosen in our numerical work, because
dynamical properties of the instabilities were shown to
described within the adiabatic approximation~elimination of
the polarization! @10#, while the ‘‘2d’’ oscillation of the
feedback mirror experiment is not explained within th
frame@18#, as written in Sec. II. In the latter experiment th
nonlinear medium was a weakly absorptive and strongly d
persive cell containing sodium atoms with a buffer gas.
laser beam was sent through the medium and reflected
to the cell via a quasiconfocal mirror. The optical arrang
ment was chosen to be a half-cavity, preferentially to a r
cavity, in order to get rid of fluctuations of the laser fr
quency over a time interval much larger than the round-
time d. The problem of stability of the cavity mistuning ove
many round-trip times seems to be passed over now@19#;
thus an experiment in a ring cavity with two-level atom
could be done.

The conditions for the existence of localized structures
still an open question. As noted in Ref.@8#, the whole class
of partial differential equations that have localized solutio
is not yet known. A necessary condition for the appeara
of localized structures is the existence of a subcritical bif
cation, since in this case two stable solutions may coex
However, this condition is not sufficient. For example, su
critical hexagons are often observed without coexistence
localized solutions. A condition that favors the existence
localized structure in two dimensions is that they also ex
in one dimension@1,5,7#. In other words, a necessary cond
tion for the existence of 2D localized structures seems to
the subcriticallity of rolls, and also of the observed 2D p
tern if it differs from rolls. This double subcriticality occur
here.

While the existence of 2D localized structures is co
nected to the existence of 1D structures, the present w
shows that the solutions may be very different in one a
two dimensions. The 1D solution of Eqs.~1! is stationary,
with a ‘‘small’’ modulation of the homogeneous intensit
and maxima of intensity located close to the first sta
boundary in Fig. 1, while the 2D solution displays large i
tensity peaks resulting from the richness of the intermo
coupling in two dimensions, near nascent optical bistabil
The present work enlarges the family of localized structu
to cases where the stable homogeneous solution is
nected, not to a stable homogeneous or inhomogeneou
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dered solution, but to spatiotemporal chaos.
The solitons@20# and the solitary waves@21,22# are some-

times referred to as belonging to the same family as
localized structures. They do, in the sense that they are o
defined as solutions which connect two stable coexis
states. But we must emphasize some important differen
As described here, the localized structures appear spon
ously on the transverse profile of a plane-wave input be
when decreasing the control parameter below the onset o

FIG. 13. Bisquare pattern obtained atucav50.16, and E0

50.0105, with a circular filter withK f'1.7K th . ~a! Near-field in-
tensity.~b! Far-field intensity.
.

an

d

e
en
g
s.

ne-
,

he

‘‘filled’’ structure. As studied in Ref.@4#, a front connecting
the inhomogeneous and homogeneous states propagat
the transient, then the front velocity vanishes because of
ning between the front and the flat structure. Differen
from the localized structures are the stationary solutio
formed with a finite-size beam, which makes the soluti
vanish at a finite distance from the optical axis. As an e
ample, let us quote the stationary solitary waves obtai
with Eqs.~1! for u50, with a finite-size input beam. In thi
case~tuned cavity!, no localized solution is found with a
plane-wave input. The solitary waves obtained with a circ
lar input look like daisy patterns with 1–15 petals distribut
on one or two circles at the top of the exit profile. If one
several petals are removed, and the truncated daisy is us
the initial condition, the full daisy pattern quickly forms
Increasing the size of the circular input changes the da
into a filled hexagonal structure.

What are the processes stabilizing the localized soluti
in our system? As argued in Ref.@23#, the stability of the
solutions may result from a nonvariational effect, since o
system is dissipative and dispersive.„However, stable local-
ized structures have also been observed in numerical s
lation of the variational Swift-Hohenberg equation@5#.

Another stabilization process, which was invoked
Coullet and Emilson@1#, is resonant forcing. The ‘‘bubble’’
observed in Ref.@1# was attributed to the stabilizing effect o
a strong forcing close to twice the natural frequency of
oscillators. In passive systems, the forcing is due to the in
beam. It corresponds to the termE0 in Eq. ~1b!, and has the
natural frequency of the ‘‘oscillators’’. Without this term th
unique stationary solution is the trivial one, and no instabil
can be built up. Thus the resonant forcing has here a de
bilizing effect, necessary to balance the strong losses, dif
ently from the Ginzburg-Landau case treated in Ref.@1#.

Finally, the filtering procedure, proposed here to ‘‘co
trol’’ the spatiotemporal chaotic solution and change it into
stable ordered one, is a very simple and successful met
Recall that a ‘‘period proportional feedback’’ method@23#
was also successfully applied to control the chaos in mu
transverse mode lasers@24#.
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