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Localized structures in chaotic patterns: From disorder to ordering
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Two-dimensional2D) “chaotic” localized structures are observed in the transverse profile of light with a
delay model of a ring cavity with strongly dispersive two-level atoms. Near nascent optical bistability, the 2D
homogeneous solution undergoes a subcritical transition to a spatiotemporal chaos. The inhomogeneous pattern
coexisting with the homogeneous solution is filled with large-intensity peaks, oscillating with time. In the
subcritical domain, localized structures are observed, with isolated peaks more stable and more coherent than
the ones in the filled structure. The order is easily recovered by a filtering procedure that reduces the wave-
vector bandwidth[S1050-29477)10409-7

PACS numbd(s): 42.65.Pc, 42.60.Mi

I. INTRODUCTION forming process, and their interplay gives rise to the chaotic
solution. We thus show that localized solutions occur not
Two-dimensional localized structures, also called Isingonly for envelope equations which are valid close to the on-
patterns or bubbleEl], are observed in hydrodynamifg]  set of instability, but also for a system of two coupled equa-
and chemistry3,4], and also in optic§5—8]. In all cases the tions valid in the dynamical regime far above the threshold.
localized structures occur when two different stable state§inally, a very simple procedure is suggested to change a
coexist in a certain range of control parameters. The simplesthaotic solution into an ordered one. A low-frequency filter
localized structures are patterns showing an interface bds set inside the cavity, reducing the spatial bandwidth of the
tween two stable homogeneous stat@ith constant ampli-  €lectric field at the input of the celBec. IV). This procedure
tude). Other localized structures result from the coexistencélecreases the peak intensity and stabilizes the spatiotemporal
of stable homogeneous and inhomogeneous solutions, the ikehavior of the solution. A narrow-band filter changes the
homogeneous solution being generally strip§sor hexa-  chaos into hexagons, while a broader filter transparent for the
gons[5-7]. In these cases the localized structures appear & and V2K components leads to a square pattern. The role
peaks(or holes emerging on a flat background. At-peak  of the filter is then to control the chaos in the sense that these
structure can be produced by addiNgGaussians to the flat two stable periodic patterns are observed far from optical
incident profile, and allowing the system to evolve to a sta-bistability in the delay model. Recall that the regular pattern
tionary state. In arN-peak structure, the maxima have the for a tuned cavity is hexagonal on the focusing side of the
same value as in the periodistripe or hexagonalone, and resonance?7,9], and squares are formed in the defocusing
the background level is equal to that of the nontrivial plane-side, due to the biconical emission of two modes with magic
wave solution. These localized structures are thus a signatureave-number ratio/2 [11]. The changeover from chaos to
of the coexistence of homogeneous and nonhomogeneobexagons is illustrated analytically by investigating the am-
states. plitude equations, which receives finite solution by removing
Here we reporfSec. 1) a numerical observation of “cha- nonlinear terms corresponding to the filter operation.
otic” localized structures resulting from the coexistence of a
stable plane-wave solution and a weakly chaotic pattern, Il. LOCALIZED STRUCTURES
with disorder and time-varying intensity peaks; consequently
the peaks in localized structures are also set with various The model for the passive ring cavity numerically inves-
intensity values. The equations are those of a delay model dfgated in this paper was stated in Re#,10]. It generalizes
a ring cavity, with saturable two-level atoms having null or the lkeda equation§14], including diffraction in the free
finite decay time[Eqs. (1)], which display chaotic solutions Space of the cavity. With the notation of RéL1], the two
in the domain of parameters studied here, corresponding togauations for the electric fielg and the atomic population
nascent optical bistability in the dispersive limit. While the inversion¢ are
delay model was showi®—11] to be equivalent to the Lu-
giato and LefeverLL) mean-field model for an instanta- E(t+d,x)=Eo(X)+ p exr{iLVﬂE(t,x)

neous Kerr mediunj12] in our previous papers relative to 2k
stationary patterns with small intensity, it is no longer w1+ i AV B2 i
equivalent in the present study dealing with high-intensity X e/ (AT InA) ¢z Inlcay, (1a
patterns. wld

It is known [13] that, close to nascent optical bistability, - d¢ _ _(¢+1)_e -1 E[2 (b
the process of destabilization of the homogeneous solution is Ldt al '

not reducible to a Turing instability, with a single critical
wave numberK,,. Actually the whole band of wave num- In Egs. (1) the diffraction is decoupled from the nonlin-
bers, O<K<few K;,, may be involved in the pattern- earity in the medium. Thus the light beam simply undergoes
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sa/A|Eg|?=0.1, 3

L
ﬁth—i— Oca= O n=0.2+2n 1. 4

Above the static instability frontier, there is a second set
of curves corresponding to a dynamical instability, with
L minima twice as high, that is also periodic with respect to the
diffraction paramete®. In this paper we describe the pat-
terns obtained on the vicinity of nascent optical bistability,
1L which occurs atf,, o= 0.17. For that purpose we are only
concerned with boundaries close to the optical akis=Q)

0 5 4 shown in Fig. 1. Along the dynamical curve, the threshold

DIFFRACTION PARAMETER 1/ harind increases from 10 to 48,10]. For T,=0, the
dynamical frontier is located far above irrelevant for our
study.

The 2D patterns discussed here were obtained for the case
0ca=0.16. The numerical code was described in RgE4L0]

NONLINEARITY

FIG. 1. Static(lower curve and dynamical(upper curve, in
solid line) linear instability boundaries for Eq§l) and(2). Param-
eters are as in Eq2). The “nonlinearity” aa/’A 1/12 (a=9) is

drawn 'S the “diffraction parameter” g .
10[(K2L/2K)+ 6], with this scaling the static boundary fits very @Nd the results are obtained by taking X228 and
well the marginal stability curve of Eq5) drawn in Fig. 8. 256x256 grids for the transverse variables,)(), and ten

time steps in one round-trip timg: A random noise of rela-
fiye amplitude 103-10 “ is added to the input fiel&,, the
boundary conditions are periodic, and the transverse grid is
orthogonal and 1% asymmetrical. With the parameter values
in Eq. (2), the threshold corresponds t&}

a nonlinear absorption and has a nonlinear phase, inside t
cell, proportional to the atomic population inversion. Equa-
tions (1) were justified within a given range of parameters, in "~
the sense that the solutions display the same linear thresho®i{"€" 5
characteristics as the full set of Maxwell-Bloch equations™ 0.01, Iyy=|Eqy|“=0.0081.

[9,10]. Just above the linear threshold, the solution of Edjsis
In the case treated here of the focusing side of the resg:haotic, both in space and time. For an input ﬁﬁ&).
nance,7=1, and for the parameter values =0.0105, two examples of chaotic patterns corresponding to

two different initial conditions are shown in Figs(@—2(c),
which display the transverse intenslt{x,y) at a given sam-
pling time t much larger than the transient. The moonlike
pattern in Fig. 2a) has peaks and craters with a chaotic on-
the agreement between the delay mod&ds. (1)] and the  axis intensity[Fig. 2(b)]. The other pattern displays many
full set of Maxwell-Bloch equations is very good, since the peaks of very different heights, and a weakly chaotic on-axis
first (stati9, and also the secon@ynamica) linear bound- intensity [Figs. 2c) and 2d)]. The maximum intensity is
aries(see Fig. 1 coincide, when the radiative lifetimg, is ~ about 11 and 15 times the critical ohg, respectively. In
of order of the round-trip timel, or much smaller, and for a both cases the intensity widely overpasses the dynamical
total diffraction pathL equal to the cell lengtl’, or much  threshold. The pattern with peaks in FigicR seems less
larger than/’ [9,10]. chaotic than the moonlike one; indeed, one can see some
Relations(2) mean that we focus on a high finesse cavitypeaks aligned along directions making angles of 120° that
containing a strongly dispersive and weakly absorptive meseems reminiscent of the hexagonal order. Actually, how-
dium. The parameter values in E@) are those of the feed- ever, this order is only local, as illustrated in the spatial spec-
back mirror experimeritL7], with a sodium cell containing a trum in Fig. Ze), which contains components on a wide
high buffer gas pressure. In the ring cavity case, we hav@nnulus corresponding nearly to the rangeslk4K,<3. In
shown[10] that one can neglect the polarization dephasingsummary, the chaotic solution in Fig(c2, displays a large
time T, for T,<0.1T,, which is different from the case of dispersion of the peak intensities, a disorder in the peak
the feedback mirrof18], where the 2 oscillation could not ~ alignment, and a broadband wave-number spectrum. Let us
be reproduced if one performs an adiabatic elimination of théow describe the inhomogeneous solutions obtained below
polarization. We numerically investigated the ca3gs-d the linear threshold, by decreasing the control parameter
andT,=0, because in the feedback mirror experiment, thérom E§'=0.01 toE$=0.0093, and starting from the chaotic
turning spots were observed for a “large” round-trip time pattern with disordered peaks as initial condition Figr)2
d=T,. The numerical results presented here concern the (1) In the sequence obtained by slowly decreasing the
caseT;=d, because it should be easier to realize experimeneontrol parametefwith a gap 5E0=0.01E§)1)), all the pat-
tally, but very similar results are obtained in the case of arterns have the same number of peaks, located at the same
instantaneous atomic respon3g=0. place,(Fig. 3), and are very intense. The maximum intensity
Let us recall that the linear stability analysis of E¢B. | . iS always of order-11 times the plane-wave value
and (2) predicts multiconical emission. The lowest thresh-14(E;). As E, decreases, the structure stabilizes, in the sense
olds correspond to the static instability, with coordinatesthat the peak intensities become constant with respect to
(I14h,O ) given by the relation§10] time, and spatially more uniform. More precisely, the con-

p=0.95, «/=0.1, a/A=8m, T;=d, 2
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FIG. 2. (a) 3D graph of the intensity(x,y,t)=|E(x,y,t)|? at the cell input, in the transverse plangy() for the chaotic solution of Egs.
(2), at a given time after the transient, for input field amplitud®=0.0105.(b) Time tracel (0,0t) during a time interval equal to 560
or 50y, (the photon lifetime in the cavityy, is equal to ten times the round-trip tinde 7p,=d/(1—p"). (c) and(d) Density plot and time
trace of the intensity as ife) and(b) with different initial conditions(e) Density plot of the far-field intensityl,(K ,K,)or spatial Fourier
spectrum for the chaotic solution ).

trast between the maximal =2 (I na— I min)/ (I maxt Imin) N Figs. §a) and Ga), are the localized structures obtained at
decreases from 50% to 10%. Just below thresholdEat Eo=0.0097, from initial patterns formed at 5% and 11.5%
=0.01, a local peak time trace is weakly chaotic, while, atabove threshold, respectively.
1,=0.0098, the time trace is quasiperiodic, with a large pe- The 35- and three-peak structures are obtained in the
riod T~51d, and a modulation at a period about 86\t  Whole domain ED: ES) by decreasing the control param-
E,=0.0097, the time trace becomes constant. The peaks dister down toEZ°, and by slowly varying the control param-
appear aEy’=0.0093 leading to the homogeneous solution.eter, as in the case of the filled pattern. In this procedure an
(2) In the sequence obtained by decreasing the contrdN-peak pattern is obtained sgedinghe homogeneous pro-
parameter with a larger value of the decreméBg, the so- file with N peaks with approximate height and width, as
lutions exhibit localized structures, with a smaller number ofdescribed in Refq5-8.
peaks. In some domain of the transverse plane, the intensity The spatiotemporal properties of the localized structures
is equal to the plane-wave solutidg, while in other do- can be compared with those of the pattern filled with peaks
mains the chaotic solution with peaks still remains. The aregobtained for the same value &), in the whole sequence
of the homogeneous solution becomes largerdgg in (EX: ESY. The heights of the peaks are qualitatively the
creases. For example, the 35- and three-peak patterns shosame, but their temporal evolution differs. For example, at
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FIG. 3. (a) 3D graph of the chaotic intensiti(x,y) for the
“filled” structure, obtained just below the threshold f&=0.01.
(b) The on-axis intensity(0,0t) during 180@.

0.0052

.
time

E,=0.0098, the 35 and three-peak structures are stable,

while the time trace for the filled pattern is quasiperiodic  FIG. 4. Intensity time trace for the filled structure at three dif-
(Figs. 4. ForEy=0.01 the time trace for a particular peak of ferent points of the grid, vs time, f&,=0.0098. The time interval
the localized structure is periodiEig. 5(b)], but weakly cha- is equal to 1500. With grid dimensions betweer1 and+1, the
otic for the filled patterr{Fib. 3(b)]. Thus the presence of traces arga) at the centei (0,01), (b) 1(0.67,0.2) —0.0455, and
homogeneous domains seems to stabilize the temporal b |(—0.81-0.591) —0.0455. The decrease in tragég and(c) is
havior of the structure. due to the slow motion of the peaks, discussed in the text.

The coherence properties of peaks differ in the dynamical
regime. In the filled structure, the intensity time traces for
three distant maxima show various regifiegs. 4a)-4(c), A this stage it is necessary to understand why, for the
the phase relations between the three peaks changing Willyesent study of 2D localized structures, the delay métel
time. During a certain time interval two given peaks oscillatecannet be reduced to the well-known Lugiato and Lefever
coherently, but suddenly the relative phase changes. Comr| ) model[12] for the passive ring cavity in the dispersive
versely, in the case of the three-peak structure, the peakgnit
oscillate in phase with time traces in exact coincidelfg.

6(b)]. Consequentlthe large intrapeak distance favors the dE
coherent properties of the light. W:Eé—E+i(ﬂ’|E|2— 0)E+iV2E, (5)
While in the three-peak pattern the peaks stay at the same
; ; h. s o

place in the whole dor_namE(g,_ Eq) a very slow drift o hich also displays localized structures at nascent optical
observed in the dynamical regime for the 35-peak and filled_. i S

. . istability [6,7]. In Eq. (5), the time is scaled to the photon
patterns. It is of order 0.03,, per thousand of round-trip ., .. : . /. . _ ,
1 : . : lifetime in the “dressed” cavityt,,=d/(1—p'), the trans-
time. Studying the drift would require an extremely large : . p

verse variables in Eq.(1) have been rescaled as

computing time. Nevertheless an interesting observation
must be reported. In the 35-peak pattern most of the peakga(LIZK)XHX’ and

IIl. COMPARISON WITH THE (L-L)MODEL

(those which have close neighbpmrift, but a few peaks ,
having more distant neighbors stay in place. In conclusion, ﬁ/:aa/A a= p 6)
we observe that chaotic localized structures with sufficiently 2 1-p'

isolated peaks are temporally more stable and more coherent

than the filled structure. with p'=pe~ "2,
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i FIG. 6. (a) 3D graph of the intensity(x,y) for the three-peak
time structure.(b) The intensity time trace of any peak, B§=0.01.
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FIG. 5. () 3D graph of the intensity(x,y) for the 35-peak first-order truncature performed in the expansion of the ex-
structure, atE,=0.01. (b) The intensity time trace of the “iso- Ponential of Egs(1). Second the delay model displays a
lated” peak located at—0.375 and 0.24 This peak does not move dynamical instability boundary, while the LL model only
during the recording time equal to 1500 displays a static boundary. Indeed the LL model amounts to

writing E(t+d)=E(t) +d(dE/dt) in Eq. (1) which leads to

The equivalence of Eqél) and(5) is questioned because, @ linear problem with two eigenvalues only, while the delay
in a certain range of parameters the envelope (Bpis a  Model has a dispersion relation which is not polynomial,
fairly good model of the delay equatioti$). For example, With many solutions. Nevertheless one can assert that the
the equivalence occurs at the onset of instability in the cas&vo models should agree in the limit of small intensity, or
of a tuned cavity(6=0). Static hexagons are found for both more precisely if
models, on the focusing side of the resonafit®]. More-
over the biconical square pattern observed with Efjson %a/A|E|2<1 (78
the defocusing side of the resonance was analy16{ by
using a generalized version of the LL model including theor
multiconical processY{2E— sinVZE). The originality of the
present work lies precisely in the presentation of 2D local- r=p'|E|?<a. (7b)
ized structures for an equation valid in a larger domain than
the envelope equatiofb); thus we present the differences  For example, the two models agree for a mistunihg
between the two models. close to the valug/3, in the 1D case. Indeed the inhomoge-

A necessary condition for any model equation to repro-neous 1D solutions of Eq5) display “small” peak inten-
duce the main features of the original system of equations isity, with r~2 as reported in Fig. 11 of Reff6,7]. There-
that the threshold characteristics displayed by the linear stgere the 1D localized structures studied by Tlidli and co-
bility analysis are the same. The result of the linear stabilityworkers are also solutions of Eqgél), and shall not be
analysis of the stationary solution shown in Fig. 7 for Egs.reported here.

(1) and(5) is schematized in Figs. 1 and 8, respectively. First The 2D structures behave differently. A simple explana-

we note that if the parameter which is equal to 9Eq.(2)],  tion can be obtained from the weakly nonlinear analysis.
is slightly increased by an amount of 10% in the scaling ofAbove threshold, fol =14+ 81, the bandwidthsK of the

the horizontal axis, the static boundaries of Figs. 1 and &nstable wave numbers may contain a larger number of ac-
agree very well with the minimum g’ |Ey|?=1 andaK3,  tive modes in two dimensions than in one dimension. Indeed,
+6=2. The small discrepancy is easily explained by thewith a quadratic nonlinearity, the first-order nonlinear term
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The derivation of an amplitude equation for an ordered
structure with a single wave numbét, is questionable,
since an analytical description of the pattern formation has to
1 take into account the whole domain near the minimum. That
was done for the case of the ring cavity in the absorptive
limit [13]. The normal form of the original equations was
shown to be a Swift-Hohenberg equation. The derivation of a
normal form shows some generic properties, but one finally
has to solve a partial differential equation.

0 In this section we try to investigate the chaos in another
way. We propose to control the formation of chaotic struc-
tures appearing in the vicinity of nascent optical bistability,
by reducing the wave-number bandwidth by a low-frequency
filtering procedure that eliminates all the wave numbers
larger than a given valu€; . An appropriate filter allows us
involved in a 2D pattern with two active wave vectdts to obtain stationgry ordered solutions vyith “small” am_pli—
andK ; has components &t + K , which have more chance tude_s of modula_tlons. Therefore we de'rlve the propertles of
of beli)nging o the unstablle_bajr;d and then becoming activ the filtered solution from a weakly nonlinear analy5|_s of _the
’ %L model. In Secs. IVA and IV B, the role of the filter is

than Fhe componentk2 which is the only nonlinear compo- first analytically investigated, then numerical results are pre-
nent in the 1D case. sented

The structure at threshold displayed a weakly chaotic time
trace with a mean period about 50 d, which qualitatively
agrees with the linear analysis predictions. We also per-
formed numerical simulations in the case of instantaneous With E=E¢(1+.7%), the LL model(5) becomes
atomic responsd,; =0, and found similar results, i.e., local- o o , o
ized structures with high-intensity peaks and weakly chaotic %= —7+i 1(2. 7+ 2* + 72+ 2|. 2>+ 7| 7|?)
time traces of long period]~65 d, while the dynamical (V2= 0). 7 ®)
boundary is too high to be invoked in the process. T

In conclusion, the chaotic solutions observed with the de-  The amplitude equation for a hexagonal pattern with a
lay model of the ring cavity, fof;=0, andT,=d, are at-  ¢ritical wave numbeK, was already given in Ref$7,9],
tributed to the interplay of a broadband of wave numbers;ng generalized in Reff11] for an arbitrary wave numbe;
active near nascent bistability, which leads to spatial chaofear critical valueKy,. Here we recall the results with the
with large intensity modulations. notations of Ref[11]. At first order, the complex amplitude

of the electric field. Z;=R;+il, has real and imaginary
IV. FROM DISORDER TO ORDERING parts

102 I

0.8 1 102 Io

FIG. 7. Plane-wave stationary solution of E@b. for the inten-
sity |5 vs the input field amplitudé&,.

A. Amplitude equation for the hexagons

Why does the hexagonal order setup for a quasituned cav- R;=A,e'¥*+B,e'*+C e+ c.c., €)
ity (6:4,<0.1) disappear for higher values of the cavity mis-
tuning? What happens near the critical po#f os=0.177? l1=CRy, (10
At nascent bistability, the lowest boundary in Figs. 1 and 8 is hereK. | h ith oS
guasitangent to the ordinate axi€ €0). Therefore one can whereK; ;m are three wave vectors with vertex ang
expect that a large range of wave numbers located near tr?é”'d equal modulk, . In Eq. (10), th_e parametec depends
minimum become unstable. Note that in the case studie" the wave numbeK; via the relation
?;Ire':itg.e;omogeneous solutions does not display bistability c=—0+3r, (11)
in the focusing case) = K§+ #,andr.(®), drawn in Fig. 8,
! is expressed as

2 re=(20+02-3)/3. (12

The filtering procedure amounts to canceling all the com-
ponents with wave vectd=K; of the second-order solu-
tion

. \ Ro= ag(R2)o+ a1(RE)k+ as(R2) V3K + ay(R2) 5,
2 3 5 ® (13)

where the index in R&f) is relative to the modulus of the
FIG. 8. The marginal stability curve for E@5), r vs O, the wave vector, and
position of the vertical axis correspondsfe1.6. The two dashed
lines are located at abscissa correspondinkcand 3K, . a1=Cr./2, (14
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_ fa(n)+b(n)ga(n)
~ b(n)e(n)—1

for n#1, (15

ap

with b(nN)=0,-r., c(nN)=3r.—0,, 0,=nK?+ 4,
fa(n)=2r.c(n)(RY)n, andgy(n)=—(3+c?)re(RY),.

The amplitude equations for the subcritical hexagéns
=gA;=B=C reduce to

9A=puA+2(1+/ u)A%+ (e+2f)A3, (16)
whereu=(r—r.)/r¢, and
e=2a0+a4+3j, f:2(a0+al+a3+3j)! (17)

) 3+c? o 1-c*
/:1_Wal’ J:3—C2' (18)

1. Without filter

Let us describe first the amplitude diagratéu,K., 6) 1
in the usual case, when all the componelits 3K, and
2K, are allowed to interplay for the pattern formatiamo +

filtering). For a critical wave numbek =Ky, it is already /

known [7,9] that A(u) become larger and larger values as /

the cavity mistuning increases frof=0 to #~1, and that 02¢

the third-order Landau expansi¢Bg. (16)] has no solution V/
for 6>1. Actually reasonable values féx lies below unity 08 1 12 r
since a hexagonal pattern with maxima of intensity of order

ten times the homogeneous solution corresponds~®.7. A

We shall now investigate the behavior of the solution of Eg.
(16) for Ko#Ky.

In the domain 6< #<1, where Landau expansion is valid 30
for K=Ky, the amplitude drastically increases wih as
shown in the 3D grapfFig. Aa)], which displays the thresh-
old amplitudeAy=A(u=0)=—2/(e+ 2f) in the parameter
space @=K?+ 6,6). For example, for a tuned cavity the 2 3 7 0
amplitude diagram reported in Fig(l9, for three values of
the wave number close to the critical oMg, diverges aK FIG. 9. (a) 3D graph of the threshold value of the amplitude
~1.XK,. Does this predict that hexagons will appear with aA(x=0, 6, and©) for one hexagonal component, without any fil-
wave number larger thai,,? This would disagree with the ter, vs the cavity mistuning<@ 6< /3 and the diffraction parameter
numerical results, which display hexagons with the criticaly3<®©<3.5. (b) Amplitude diagramA(x,6=00,), for three val-
wave numbei, for =0. ues of the dlffractlon para_lmetéri:l.g, 2,and 2.2. Th_e amplitude

The same observation was done for the o&s6.7, stud- increases with®, and diverges at®=2.8. (c) Amplitude A(r
ied by Tlidli: the numerical hexagons were found wkh ~ ~1-2:¢=0.7,0) for a given value of the control parameter
slightly smaller thark,, while the amplitude is also an in- ~ % and mistuning}=0.7.
creasing function oK [Fig. 9(c)]. In both cases the numeri- oy ected. Let us focus on this domain, which is close to
cal results agree with the analytical predlctlons |n.th¢ doma”?'lascent optical bistability. The solution of E46) exists for
K~Ky, only, where the weakly nonlinear analysis is valid. 5 certain range of wave-number values only, as illustrated in
F_or K>Ky,, the dramatic growing of the amplitude pre- Figs. 11a)-11(c), where the value of the amplitude(r
dicted by the Landau expansion is meaningless, a”f(j does naty 2y is reported as a function of the diffraction parameter
lead to a shift of Ehe critical wave numbggalled the “non- @ —k24 g for the three values of mistuning=1.4, 1.5, and
linear resonance” effect in Ref16]). 1.6. As one approaches the bistability, the domain of exis-
tence of a solution shrinks. The right part of the curves in
Figs. 11 are meaningless for a low-frequency filtering, and

Now let us describe the amplitude diagrams obtained bwvill not be considered.
canceling the components with wave numbers larger than For #=1.6, in the left part of the curve, amplitud® is
K¢:. The 3D graphA(x=0,0,6) in Fig. 10 displays smaller than unity in a very small domain, for a wave num-
strong differences from the graph in Figa® In particular,  ber smaller tharK, only (or ® smaller than 2 as shown in
for small detuning, &6<1, the filtering procedure sup- Fig. 10b). But for =1.4, the amplitudeA is smaller than
presses the divergence of the solution of Bd), and in the unity in a larger domain, foK<2K,,. In this region the
domain6>1.4 only Eq.(16) “with filter” has a solution, as amplitude slowly increases, then hexagons are expected to

2. Amplitude diagram with filter
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FIG. 10. (a) 3D graph of the threshold value of the amplitude
A(x=0, 6, and ©) for one hexagonal component, with a filter
cutting the V3K and 2K components, vs the cavity mistuning 0
< #<+/3 and the diffraction paramete;/é<®<3.5. (b) Amplitude
diagramA(u,0=1.60;), for three values of the diffraction param-
eter®;=1.78, 1.8, and 1.82. The amplitude increases W@ithand
diverges a®~1.9.

appear with wave numbers larger than the critical one.

B. Numerical results

What about the numerical simulations of E@¥) with a
filter? In the numerics th&; filter is easily introduced in the

™~
)

b 2.3 L} 35 i‘_ i3

FIG. 11. AmplitudeA(r=1.2, 6,, and®) with the filter, as in
Fig. 10, for three values of the cavity mistunidg=1.4, 1.5, and
1.6, from top to bottom, vs the diffraction parameér

the hexagons increasing witk;, keeping a value close to
K. More precisely, one observes that the critical wave num-
ber isshiftedfrom K, to 1.4K, (or the diffraction parameter
is shifted from® . ~2 up to 2.4. The observation of small

code using a fast Fourier transform for the propagation in th@mplitude hexagons in this domain qualitately agrees with

free space of the cavifyeq. (1a)]. The mistuning is the same
as in the Sec. lll,f.,~1.6, that corresponds t#~1.6,

the analytical curve shown in Fig. (d, corresponding to
6=1.4, which displays the so-called “nonlinear resonance

within 10% of uncertainty due to the shift in the parameter ageffect” [16].

for fitting the marginal curves of both moddlEgs. (1) and
5]
1. Circular filter

The cutoffK; increased progressively froky,. WhenK;
is slightly larger tharKy,, a hexagonal pattern is obtained

(Fig. 12. The wavelength is nearly equal to the critical one.
The peak intensity is not larger than twice the stationary

valuel g, that corresponds to a small amplitudes 0.1, as in
the diagrams of Fig. 1®). In this regime relationg7) are
fulfilled and then the LL model approximates E¢f). As K;
increases until 1.K;, (2<®<2.4), the pattern remains hex-
agonal, with an increasing maximum intensity 3 still ful-
filling the equivalence relatiofi7), that corresponds to small
modal amplitude 0.£ A<0.2. The striking observation con-

The hexagons are stable up to 20% above threshold.
Moreover they are also obtained with an hypergaussian input
beam, in the same range of control parameter.

When K;~1.7Ky, the pattern becomes a bisqudFeg.

12), with two critical wave numbers close t&; and
(1\2)K(®.~1.17 and 2.75 For a filter with a broader
bandwidth, the disorder appedsee also Fig. 2

2. Square filter

A square filter is transparent in the domdji,| <K and
|Ky| <Ky}. The pattern obtained near the threshold is also a
bisquare when the cutoff is close to the critical wave number
Kin<K;<1.3Ky,. The preferential square structureith re-
spect to the hexagonal one obtained with a circular filter
results from the use of a square filter, which allows the grow-

cerns the shift in the spatial frequency, the wave number oing of wave vectors with the resonakit, = K, components.
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case, for the set);=2.2, ©®,=2.75).

In conclusion, we propose a very simple procedure to
change the disorder into either a hexagonal or a bisquare
ordered solution. A low-pass filter which cuts a portion of
the spatial frequencies allows the chaotic solution, obtained
at the onset of instability and close to the nascent optical
bistability, to recover the order corresponding to a tuned cav-
ity. When the wave-number bandwidth is large enough to
allow theK- 2K interaction, the pattern is a bisquare as in
the defocusing case, and with a narrow filter the pattern is
hexagonal as in the focusing case.

80

60

2 % 8 8 BN

V. DISCUSSION

40

The present work is purely numerical, but the parameter
values are those of the feedback mirror de\it&], where
transverse instabilities were first observed in optics. The ring
cavity set up was chosen in our numerical work, because the
dynamical properties of the instabilities were shown to be
described within the adiabatic approximati@iimination of
the polarization [10], while the “2d” oscillation of the
feedback mirror experiment is not explained within this
frame[18], as written in Sec. Il. In the latter experiment the
nonlinear medium was a weakly absorptive and strongly dis-
persive cell containing sodium atoms with a buffer gas. A
laser beam was sent through the medium and reflected back
to the cell via a quasiconfocal mirror. The optical arrange-
ment was chosen to be a half-cavity, preferentially to a ring
cavity, in order to get rid of fluctuations of the laser fre-
quency over a time interval much larger than the round-trip
time d. The problem of stability of the cavity mistuning over
many round-trip times seems to be passed over b8y
thus an experiment in a ring cavity with two-level atoms
could be done.

The conditions for the existence of localized structures is
still an open question. As noted in R¢8], the whole class
. ) . of partial differential equations that have localized solutions
But when the cutoff isK, ,i~1.XKy, the bisquare is ob- s ot yet known. A necessary condition for the appearance
tained whatever the shape of the filter. Finally, as soon as thgy |ocalized structures is the existence of a subcritical bifur-
intermodalK — V2K coupling is allowed, the chaotic Solu- cation, since in this case two stable solutions may coexist.
tion is changed into a square pattern. However, this condition is not sufficient. For example, sub-

Let us recall that on the defocusing side of the resonancgyitical hexagons are often observed without coexistence of
the solution of Egs(1) also displays a bisquare pattern, |ocalized solutions. A condition that favors the existence of
which results from the emission of two critical wave num- |ocalized structure in two dimensions is that they also exist
bers with a ratio close to the magic valy@, belonging to  in one dimensiori1,5,7. In other words, a necessary condi-
the first and second near-axis instability domains, respeajon for the existence of 2D localized structures seems to be
tively. In the case observed here, the filtered solution has twehe subcriticallity of rolls, and also of the observed 2D pat-
wave numbers belonging to the first instability doméfiig.  tern if it differs from rolls. This double subcriticality occurs
8). What differs in the biconical and monoconical bisquareshere.

As shown in the analytical treatment of the bisquare pattern \while the existence of 2D localized structures is con-
performed in Ref[11], the relevant parameters for a multi- nected to the existence of 1D structures, the present work
modal interaction are not the set of wave numb¢tdor the  shows that the solutions may be very different in one and
different active modes, but the set of associated diffractionwo dimensions. The 1D solution of Eqgl) is stationary,
parametersd,,=a sin(LK%2k) + 76]. In other words, the with a “small” modulation of the homogeneous intensity,
predictions for a bisquare with diffraction paramet@&sand and maxima of intensity located close to the first static
0, are identical for a biconical or monoconical emission.boundary in Fig. 1, while the 2D solution displays large in-
We showed in Ref[11] that, in the defocusing case, the tensity peaks resulting from the richness of the intermodal
pattern spontaneously emerging from noise is a bisquareoupling in two dimensions, near nascent optical bistability.
with K,=12K,; when two sets of active modes wih,  The present work enlarges the family of localized structures
=20, are allowed to interplay. Here we show that the hexato cases where the stable homogeneous solution is con-
gons, disappear in favor of a bisquare pattern in the focusingected, not to a stable homogeneous or inhomogeneous or-

20

(b)

FIG. 12. Hexagonal pattern obtained 8f,~0.16 andE,
=0.0105, with a circular filter witiK; slightly larger tharky,. (a)
Near field intensity(b) Far-field intensity.
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“filled” structure. As studied in Ref[4], a front connecting
the inhomogeneous and homogeneous states propagates in
the transient, then the front velocity vanishes because of pin-
ning between the front and the flat structure. Differently
from the localized structures are the stationary solutions
formed with a finite-size beam, which makes the solution
vanish at a finite distance from the optical axis. As an ex-
ample, let us quote the stationary solitary waves obtained
with Egs. (1) for =0, with a finite-size input beam. In this
case(tuned cavity, no localized solution is found with a
plane-wave input. The solitary waves obtained with a circu-
lar input look like daisy patterns with 1-15 petals distributed
on one or two circles at the top of the exit profile. If one or
several petals are removed, and the truncated daisy is used as
the initial condition, the full daisy pattern quickly forms.
Increasing the size of the circular input changes the daisy
into a filled hexagonal structure.

What are the processes stabilizing the localized solutions
in our system? As argued in R4R3], the stability of the
solutions may result from a nonvariational effect, since our
system is dissipative and dispersiyelowever, stable local-
ized structures have also been observed in numerical simu-
lation of the variational Swift-Hohenberg equatifi.

Another stabilization process, which was invoked by
Coullet and Emilsori1], is resonant forcing. The “bubble”
observed in Refl1] was attributed to the stabilizing effect of
a strong forcing close to twice the natural frequency of the
oscillators. In passive systems, the forcing is due to the input
beam. It corresponds to the telf in Eq. (1b), and has the
natural frequency of the “oscillators”. Without this term the
unique stationary solution is the trivial one, and no instability
can be built up. Thus the resonant forcing has here a desta-
bilizing effect, necessary to balance the strong losses, differ-
ently from the Ginzburg-Landau case treated in REF.

Finally, the filtering procedure, proposed here to “con-

FIG. 13. Bisquare pattern obtained &t,~0.16, andE,  trol” the spatiotemporal chaotic solution and change it into a
=0.0105, with a circular filter withK;~1.7Ky,. () Near-field in-  stable ordered one, is a very simple and successful method.
tensity.(b) Far-field intensity. Recall that a “period proportional feedback” meth$a3]
was also successfully applied to control the chaos in multi-
transverse mode las€r24].

(b)

dered solution, but to spatiotemporal chaos.

The solitond20] and the solitary wave®1,22 are some-
times referred to as belonging to the same family as the
localized structures. They do, in the sense that they are often
defined as solutions which connect two stable coexisting
states. But we must emphasize some important differences. The numerical simulations were realized with the Cray
As described here, the localized structures appear spontan€98 of the IDRIS CNRS computer center. The authors
ously on the transverse profile of a plane-wave input beangreatly acknowledge fruitful discussions with T. Erneux, P.
when decreasing the control parameter below the onset of thdandel, and M. Tlidli.
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