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Exact solution of the Jaynes-Cummings model with cavity damping

A. J. van Wonderen
Physikalisch-Chemisches Institut der Universifarich, Winterthurerstrasse 190, CH-8057 rfah, Switzerland
(Received 1 April 199y

Operating in Laplace language and making use of a representation based on photon-number states, we find
the exact solution for the density operator that belongs to the Jaynes-Cummings model with cavity damping.
The detuning parameter is set equal to zero and the optical resonator does not contain any thermal photons. It
is shown that the master equation for the density operator can be replaced by two algebraic recursion relations
for vectors of dimension 2 and 4. These vectors are built up from suitably chosen matrix elements of the
density operator. By performing an iterative procedure, the exact solution for each matrix element is found in
the form of an infinite series. We demonstrate that all series are convergent and discuss how they can be
truncated when carrying out numerical work. With the help of techniques from function theory, it is proved that
our solutions respect the following conditions on the density operator: conservation of trace, Hermiticity,
convergence to the initial state for small times, and convergence to the ground state for large times. We
compute some matrix elements of the density operator for the case of weak damping and find that their analytic
structure becomes much simpler. Finally, it is shown that the exact atomic density matrix converges to the state
of maximum von Neumann entropy if the time, the square of the initial electromagnetic energy density, and the
inverse of the cavity-damping parameter tend to infinity equally fast. The initial condition for the atom can be
chosen freely, whereas the field may start from either a coherent or a photon-number state.
[S1050-294{@7)00108-X

PACS numbg(s): 42.50—p, 03.65-w, 05.30—d

[. INTRODUCTION rors, as well as from spontaneous emission of photons by the
atom. If the cavity contains many photons, the first mecha-
Since the early 1980s, we have been witnessing a growingism causes by far the greatest losses during a fixed time
interest [1-§] in dissipative variants of the Jaynes- Interval [13]. This statement can be made plausible by a
Cummings mode]9], one of the principal assets in quantum slmple argument. The.atom can absorb only one photon at a
optics [10]. Most workers have introduced dissipation by fiMe: Whereas the cavity mirrors can let through any number
means of a coupling to one or more Markovian reservoirs. | of photons ata time. Hence, fqr the Jaynes-Cummings model
. : . ) rEpontaneous emission gives rise to a damping mechanism of
doing so, one is led to a fully quantum-mechanical mastegeq ential nature, which acts much slower than the mecha-
equation. The theoretical efforts have been initiated primapigm originating from the finite transparency of the cavity
rily by experimental successes. Major progress has beemirrors. Of course, if the excited state of the atom becomes
made in the experimental realization of the interaction bevery short lived, then our reasoning is no longer valid.
tween a two-level atom and a single mode of the quantized In extracting exact results from dissipative counterparts of
electromagneti¢em) radiation field[11]. In short, it has be- the Jaynes-Cummings model, a variety of strategies can be
come possible to carry out precise tests on theoretical preadopted. The most recent one relies upon the use of damping

dictions that are obtained by solving those extended versiorfd@sed14] and has the advantage that master equations of a

of the Jaynes-Cummings model that include all of the religh complexity can be handlgdS,16. In particular, the
evant damping mechanisms. temperature inside the cavity may differ from zero. Then the

Besides the experimental drive. there exists also a the method yields a set of recursion relations, the solution of
P ’ Qvhich can be represented with the help of matrix continued

retical motivation to add damping to the Jaynes-Cumming ractions[17]. The latter have been evaluated numerically
model. If energy leaks away from the system of atom angg) For the case of zero temperature the damped Jaynes-

field mode_, its dynamics becomes much more interestingCummings model can be solved analytically by employing
For short times one still encounters the famous collapses anfle method of damping basgsA].

revivals in the Rabi oscillations of the atomic inversidi2], The other approaches have a more traditional character.
but for large times one now observes an exponential decay ¢or instance, the mathematical problem at hand can be for-
atom and field mode toward their ground states. In othemulated in terms of partial differential equations for a set of
words, we can study within a fully quantum-mechanical con-classical distribution functionl9]. These have been solved
text a time evolution that exhibits a crossover from a regimefor the case that the cavity does not contain any thermal
of quasireversible character to a regime that is truly irreversphotons[20]. Analytic expressions for the diagonals of the
ible. Such a program requires that exact analytical solutionatomic density matrix and the mean photon number have
be available. It is our aim to derive these for the case thabeen derived21].
depletion occurs in the field mode. Finally, the most familiar strategh6,13,22—24 is based
The reason for making the above choice of dampingon representations of the full density operator that employ
mechanism is a practical one. In an experimental setup erdirect products between atomic states and photon-number
ergy losses stem from photon escape through the cavity mistates. The master equation is replaced by a set of ordinary
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differential equations for the matrix elements of the densitywhere the new operators are defined as

operator. It has been suggested in the literature

[6,13,16,22,24,2b that in solving such a system, one is Lipl=—i[o.®ato_ca'p], (4)
obliged to treat at leasti?> equations simultaneously, where ) N s "

N linearly depends on some truncation parameter for photon Lo[p]l=2(1,®a)p(l,@a")—(l,®a'a)p—p(l,®a'a).
number. We shall demonstrate that this obligation does not (5
exist at all. For the case of ca\_/ity damping at zero tempera:][-in the Jaynes-Cummings contributiéd) the rotating-wave
ture, the complete set of matrix elements will be evaluate

. . ) nd electric-dipole approximations have been employed.
via aIS|mpIe FECIpe. Thergfore, we shall t_)e able to present théontribution(S) brings about damping and is of Markovian
solution for the full atomic density matrix. The latter gives

i th N A f the at nature. The master equation has been divided by the cou-
access 1o the von Neumann entropy ot the atom. pling constant of the Jaynes-Cummings term, so the time
This paper is organized as follows. In Sec. Il we lay the

) . . nd damping constart are dimensionless. For technical rea-
mathematical foundations for our method, making use of bing

several assumptions. The matrix elements of the density oo will be limited to the interval 0,2). We mention that
P ) Y ORsontribution (5) preserves the ftrace, self-adjointness, and

(na[uar;?:)re?rci‘ i?r\: a(')ur?;ﬁs rclen j?echclalétgnzsaé?scsl?sosﬁg |tr(1) ;ﬂg" lSpositivity of the density operatd27]. On the other hand, it
P d . ' rovides a realistic description of photon loss through the

our §olut|ons are consistent Wlth all of the assumptions ma_d avity mirrors only for rather low values of [28].
earlier. In Sec. V we examine the behavior of the atomic

density matrix for weak damping and large times. An inter-
esting asymptotic limit is put forth. A summary of all results

is given in Sec. VI. Our first step consists of transforming E8) into a set of

In order to fix notations and make our paper self-c_nymper equations. To that end, we propose the decompo-
contained, we close this introduction with a brief review of gjtion

the model that will be solved. It describes the quantum-

mechanical interaction between a motionless two-level atom, p(t)=i,®p;(t)+o_Qpy(t)+ oL@ pa(t) +i_®py(t),

which is enclosed in an optical resonator, and a single mode (6)

of the em radiation field. The atom, mode, and cavity are in ] .

perfect resonance with each other. The mirrors of the cavityVith operators{p(t)} acting on spacé{r. By making use

are slightly nonideal, so a cavity mode can lose energy to thef the linear independence of matriceés, as well as the

surroundings. This is not the case for the atom, as it is sup?roperties of ladder operatoasanda’, one can derive equa-

posed not to interact with em modes other than the privilegedons of motion for the matrix elements

one. We assume that the cavity does not contain any thermal

photons_ PJ(t)m,n:<m|p](t)|n>! (7)
The density operator for the system of the atoi) énd

field (F) is denoted byp(t) and acts on Hilbert space

Ha® He. We chooseH,= C?, with the excited state and

Il. METHOD OF SOLUTION

where on the right-hand side photon-number sté2gfigure.
The result can be cast into a remarkable form, given by

ground state of the atom represented by vectors {1a@y dv(t;m,n)/dt=A(m,n) v(t:m,n)
(0,1)", respectively. We define matrices
+2k S(m,n) v(t;m+1n+1), (8)
_ 10 . 0 0
ly= o o I_= o 1)’ dw(t;0,n)/dt=B(n)w(t;0,n)+2xT(n)w(t;1,n+1),
)
_(o1 _(o 0 @ dpa(t)oo/dt=2kps(t): 1. (10
“+7lo o) "7l1 o0

Integersm andn run from zero to infinity. We have intro-

and observe that each atomic operator can be represented fiyced vectors
a linear combination of these. The ladder operators of the ) _
cavity mode are called anda', so the orthonormal photon- V(MmN =[p1(mn.P2(Dm+10:03(Dmn+1,
number state$|n)};_o, which span Hilbert spacg(r, are pa(Vms1nr1l’s
given by

w(t;m,n)=[p(t)mn 1P4(t)m,n+l]T (11

and matrices

Iny=(n!)~*2a"h"0). ()

The commutatofa,a’] equals unity and the sta@0) is
identical to the zero element 6{- .

We assume that in the interaction picture the time evolu-
tion of the density operator is governed by the master equa-
tion [26]

A(m,n)=1,0B(M"+B(n)®1,, (12)
S(m,n)=T(N)®T(m),

—Kkm i(m+1)%2

BIM={{(m+1)¥2 —x(m+1))’

dp(t)/dt=Ly[ p(t) ]+ L[ p(D)], )
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(m+1)Y2 0 For k=0 the right-hand sidérhs) must be set equal to the
0 (m+2)2] matrix [z1,—iA(m,n)] L.
In order that serie€17) be convergent, the remainder
For the direct product of two matrices the standard definition" (t;N;m,n) should vanish a8l tends to infinity. Going for
has been employei®9]. Use of the self-adjointness pft)  &n estimate of expressigh8), we assume _that the_ Euclidean
in decomposition(6) leads to the symmetry relations norm of the vectorv(t;m,n) satisfies the inequality

. —1/; 1/2 1/ m+n
pi(05n=pi(Dnm  P2(DEa=psDnm: (13 [v(t;mn)f<gy(mnt) =51+ m %) (1+n%)h
Xe—xt(m+n+l), (20)

T(m)=

for j=1,4. Therefore, vectorsy and w deliver us all matrix
elements (7), except for the element withj=4 and
m=n=0.

The infinite set(8) of ordinary differential equations calls
for the employment of Laplace transformation. Defining the
transform of a functiorf(t) as

whereg,; and h are independent of indice®,n and time.

Now each component of the vectofz;m,n) makes up a
function that is analytic on the half space 2m— «. Since
the same holds true for each element of the matrix
G(z;N;m,n), we may shift in Eq(18) the contourC below

R © the real axis, toward the line o+ — /2, for instance.
f(z2)=—i fo dte'?'f(t), (14 Employing a result of Sec. IV, viz.,

ZI,—iA(m,M) ] Y =<g,|Imz+ «(m+n+1)|72, (21
with Imz positive, one obtains from E@8) the set of alge- 214 (mm]l=g.| ( ) @)
braic equations whereg, is independent ofn, n, andz, one can propose the
. following bound on the sup norm of the matri®:

v(z,m,n)=[zl,—iA(m,n)] Yv(t=0;m,n) _
. IG(z;N;m,n)[|<||[z1,—iA(m,n)]~ 7
+2ik S(m,n)v(z;m+1n+1)}. (15 ) 4
X|[[zl,—iA(m+1n+1)]7Y
As shown in Sec. IV, all imaginary parts of the eigenvalues 1 N1
of matrix i A(m,n) are smaller than- «, so the inverse ma- x—(%)
trix in Eq. (15) exists. NI\ 2k
_ We iterate th(_a recursion relatidib) a f|n|tg number of (M+N+1)! (n+N+1)!
times, carry out inverse Laplace transformation, and employ
Jordan’s lemmd30]. This brings us to (m+1)!(n+1)!

1/2

22
v(t;m,n)=v(t;N;m,n)+r(t;N;m,n), (16 22
N with Imz> — k. Use has been made of the equality
2ik)k )
v(t;N;m,n)= >, ( .) fﬁ dz e ''G(z;k;m,n) [S(m,n)||=(m+2)Y(n+2)2 (23
k=0 2  Jricmn
xv(t=0:m+k,n+k), (17) Aboundon norrﬁ|'\7(z;m,n)\| can be inferred from definition
(14) and assumptiof20). The combination of all inequalities
i(2i k)N*L leads to the estimate we are after. It reads

r(t;N;m,n)=

f dz e '#'G(z;N;m,n)
2 C

(g2h?HN1
r(t;N;m,n)||<16xkge 2~ —
X S(M+N,n+N) ” |=16kg:e™ N,

|I(m,n)|hm+”+4

XVv(z;m+N+1n+N+1), (18
[(m+1)!(n+1)1]¥2

(24)

whereN may equal any positive integer ahdnust be cho-

sen positive. Contou€ runs above and parallel to the real WhereN has been taken larger than max{2,n+2) and
axis, whereas the closed contoli(k:m,n) encircles all the inequality ¥ n*?<2n'? valid for n=1, has been em-
poles of matrix G(z;k;m,n) counterclockwise. The latter Ployed. Furthermore, we have defined an integral

must be constructed as

G(Z;k;m,n):[214_iA(m,n)]_l I(mvn): fcd2||[2ﬂ4—iA(m,n)]7l||

XS(m,n)[zl;—iA(m+1n+1)]"* x|[[zl,—iA(m+1n+1)]7Y. (25)

XS(m+1n+1)-- It is convergent because the integrand behavegz|ag for
X[zl,—iA(M+k—1n+k—1)]"1 2| large. _ ,
The identity(16) and estimaté24) enable us to write
XS(m+k—1n+k—1)
lim sup [v(t;m,n)— v(t;N;m,n)||=0. (26)
X[Z1,—iA(m+k,n+k)] % (19) N O<taos
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In other words, fort>0 the seriesv(t;o;m,n) exists and presented abové28), one proves that solutiof30) con-
represents the solution of the differential equaii®n More-  verges to the initial vectow(t=0;0n) for small times.
over, each component of(t;%;m,n) is continuous on the Upon computing matrix31) we recognize that
positive time axis.

Of course, we have to verify posteriorithat the solution
v(t;oo;m,n) indeed obeys conditio(R0). This technical job
will be taken care of in Sec. IV. There we also show that thevhere agairgs denotes a positive constant, independent of

series v(t=0;%:;m,n) is convergent. Hence limig26) im-  the indexn and time. With the aid of inequalitie0) and
plies that (32) we deduce from Eq30) the estimate

ID(t;n)|<gze™ <H+12), (32

lim |[v(t;%0;m,n)— v(t=0;%;m,n)|=0. Iw(t;0n)[[<ga(n!) ¥4 1+nt?)h"e” <12 - (33)

t—0"

(27)

The constang, shares its properties with;. We have as-

The second contribution inside the norm can be evaluated byumed that the initial vectow(t=0;0n) satisfies Eq(33).
resorting to standard techniquiel]. In this section a mathematical framework has been as-

In Eq. (17) the contourl’(k;m,n) may be blown up to sembled that allows us to solve the Jaynes-Cummings model
become a circléz] =R. The radiusR is chosen such that for with cavity damping exactly. From Eq$20) and (33) one
each matrix A(k,l), figuring in Eg. (19), the inequality derives the following inequality for both the sup norm and
[A(k,)[/R<1 is true. Now all resolvents can be expandedthe trace norm op(t):
into Neumann series. Since these converge uniformly on the

circle |z|=R, we may integrate in Eq(17) term by term.
Owing to the identityf dz z "=2i 61,, with n an inte-
ger, one ends up with the simple result

1

> dzG(z;k;m,n)=1,6q.

I'(k;m,n)

(28

The combination of Eq17), (27), and(28) yields the sat-
isfactory statement

lim [v(t;o;m,n)— v(t=0;m,n)||=0,

t—0"

(29

which tells us that our solution of the differential equation

(8) respects the accessory initial condition.

The differential equatiori9) can also be solved with the
help of Laplace transformation. Employing the convolu-
tion theorem, one finds for each positive time

w(t;O,n)=D(t;n)w(t=0;0n)+2;<fotdt’ D(t—t’;n)

XT(nw(t";1n+1). (30
The new matrix is given by
1 . ]
D(t;n)=— dze #[zl,—iB(n)]"%, (31
2i A(n)

where the closed contouk(n) encircles all poles of the

4 o
||p<t>||sj§1 m;:o 1) (Dl <. (34)

It demonstrates the existence of the density operator that is
generated by our method. Therefore, we can commence
evaluating matrix elements;(t)m,, -

[ll. CALCULATION OF MATRIX ELEMENTS

We calculate the resolvefizl,—iA(m,n)] ! for k<2
and find that it gives rise to the poles

z=i,u,lly,,2(m,n),

(mn)=—k(m+n+21)—inuUn—inU,, (35

lu“771,712

with the square root
U= (n+1—«?/4)12 (36)

and the prescription
(71,72)=(+1,+1),(+1,-1),(-1,+1),(=1,—1), m#n

(7715772):(+1!+1)|(+1!_1)1(_11_1)1 (37)
Thus, in elaborating Eq.17), one has to treat the cases
#n andm=n separately.

The reader can check that the following results are ob-

m=n.

integrand on the right-hand side. By repeating the argumertained:

>

K (2ik) ex w5, (M+1n+ D]

v(t;oo;m,n)=

o0
> 2>
n1.7m2 k=0

| =

=0

Umt1Un+1(72Ume 1+ 72Un 4 )

V[i,u,h,,?z(mvtl,n+|);k;m,n]v(t=0;m+ k,n+k)

X K

, (38)

1T 1T’ [y, m(M+1n+D) =i, . (m+p,n+p)]

73,14 P=0
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v(t;oo;n,n)=§ Zk(—1)'exp[,u+l,,1(n+l,n+l)t] W(i g1 _1(n+1,n+1);k:n) v(t=0;n+k,n+k)

K=o =0 (k=" K _
I II [ipesa(ntlinsl)=iu,, , (n+p.n+p)]
7 p=0
1 % i (2iK)"exr[,u,,1'771(n+I,n+|)t] W[i,u,,l'nl(nJrl,n+|);k;n]v(t=0;n+k,n+k)
+ o 1
8 %1 k=0 =0 Un+Un+ & - .
?7!_’[7]3 pl:[o [|M”1,”1(n+l,n+|)—|,ug,lzy,73(n+p,n+p)]
(39
|
wherem and n are non-negative integers. Each indgx R(z;m,n) =R(z;m,n),
belonging to a sum or product runs through the valuels
and +1. The prime in the product ovef, and 55 indicates
that the choice 45, 73) = (—1,+ 1) should not be made. In a Rla* (z*):m.nlu=—Rla* (—7*):n.m
primed product ovep the choicep=I must be excluded. In [amn(Z7)im.n]i [am (=27 )i mleqopa)
the case that andl are zero, the latter product equals unity. =— R[a;,n(—z);n,m]g(k)Q(l).
The matrix V, figuring in Eq.(38), must be constructed 44
according to the recipe (44)
V(z;k;m,n)=R(z;m,n)S(m,n)R(z;m+1,n+1) Characters P and Q denote the permutations

oo _ _ (1234)—(4231) and (1234)(1324), respectively.
XS(m+1n+1)---R(zm+k=1n+k-1) The matrix W, figuring in Eqg.(39), is created from
XS(m+k—1n+k—1)R(z;m+k,n+k),

(40 k
W(z;k;n)=V(z;k;n,n) |H antin(2). (45)
wherek stands for a positive integer azdnay be any com- -0
plex number. Fok=0 the choiceV(z;0;m,n)=R(z;m,n)

must be made. The matriR must be obtained from For the sake of clarity we mention that the matrix

V(z;k;n,n) contains the produdﬁl‘zoanﬂnﬂ(z) as a fac-
R(z;m,n)=defzl,—i A(m,n)][zl,—iA(m,n)]"". (41  tor. Relations(40)—(45) completely specify how solutions
(38) and (39) depend on the damping parametertime t,
The computation of the resolvent provides us with the ex2Nd integersn,n. _ _
plicit results The result (38) furnishes the solution for the vector
w(t;1,n+1), on account of definition§ll). We substitute
this solution into the rhs of Eq30) and interchange the
R(z:mM,N)11=amn(2)[@m,n(2)*+i k8 n(2) —M—n~-2], integration over time with all summations. The last step is
permitted because, by Eq20), the series for vector
w(t;1,n+1) converges uniformly on the positive time axis.
The integration can now be done, and for each non-negative
integern one arrives at

R(z;m,n)3=(n+ 1)1/2[ - am,n(z)z_ [ Kamn(Z)—m+ nj,

R(z;m,n) 4= R(z;m,n) 5= —2(m+1)*(n+1)"2a,, \(2),

po(t) n 1
R(ZiM, M) 55 8 n(2)[ (224 7] (P4(2t)o,:+1) Gy 2 O g, (N2
—(m+1)[ayn(2) +ix] U, +imkl2 —ni(n+ 1)1/2
—(n+D)[ann(2)—ix], (42 —p(n+1D)Y2 U —inkl2
' p2(t=0)gn+s l(t;n)
where we have defined o on 2 (46)
pa(t=0)gn+1t S, (t;N)4
amn(z2)=z+ik(m+n+1). (43

The remaining elements dR are determined by the symme- The rhs contains the second and fourth components of a new
try relations vector, given by
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s (t'n)IL E i k (2iK)k{l—eXF[—Mnl,,yl(n,n)t/2+,u772'n3(|,n+|+1)t]}
" 42 goms K50 120 Wlnyps1(73U1+ DaUnsi+ ) oy (NM2— ) (In+T41)]

S(O,n)V[iM,,Z,%(I,nJrI+1);k;0,n+1]v(t=0;k,n+k+ 1)
X K . (47
IT II' liw,,,(0n+l+)=in,, ,(p.n+p+1)]

74,1m5 P=0

For summations and products the same conventions have been used as(BBEapsd (39).
Evaluation of the last matrix elemepj(t)o o can happen by integrating EGL0) over time. Its rhs follows from E¢(:39),
with n set equal to zero. Operating in a similar vein as above, one is led to

ot kz ﬁ (_1)|{1_exq“+1ﬁ1(|’I)t]k}{w[iﬂu,—l(',|);k;0]V(t=0;k,k)}4
=0 i=0

(+ 120 (k=T TI [iper 2D =g, . (p.p)]

7 p=0

pa(t)o,0= pa(t=0)o,

(21 )M exd Ly, (1D = LHWI 1,y (11K 0IV(E=03K,K)

3 k
K ; go |:20 . . (48)

iy, o (LD TT T iy, (D =iy, 5.(0.P)]

72,173 P=0

I

+

From the results38), (39), (46), and (48), supplemented y(t;N;0,0), and subsequently taking the intederto infin-

with symmetry relationg13), all matrix elements;(t),n ity. In doing so, we extract from Eq10) the equality
can be found. As an alternative, one can first compute the

complete set of matrix elements and subsequently check that k&
the constraint$13) are indeed fulfilled. The symmetry prop- lim p4(t)o,0=pa(t=0)p0— — E (2i k)X
erties(44) of the matrix R(z;m,n) should be used. A further t—o T k=0
check on our solutions is carried out by letting the damping
parametetk go to zero. Then one indeed recovers the matrix X fﬁ dzz [ G(zk;0,0
elements that represent the density operator of the undamped I'(k;0,0
Jaynes-Cummings model. Xv(t=0:k,K)]a. (51)

In Sec. Il we have proved that each matrix element con-
verges to its initial value if time tends to zero. As to the | virtue of an argument similar to the one used near Eq.
asymptotic behavior of our solutions, a physical argument28)1 the above integral vanishesli{k:0,0) is replaced by a
can be brought into play: If one waits sufficiently long, all .;niour encircling all poles of matriG(z:k;0,0), as well as
em energy will leak away from the cavity and the atom will 4, origin. Thus the integral is equal to the matrix
stay in its ground state. We thus expect that the fOIIOWi”g—ZTriG(z=0;k;0,0). The 4 element of the latter is given

limit is valid: by — 7k }(2ix) %(81j+ 84;), a result that can be estab-
lished by means of induction. Substitution of our findings
into Eq. (51) leads to the desired limit.

In finishing the foregoing proof, we have made use of the

Since for both the sup norm and trace norm one hafact that fort=0 the trace of the density operator equals

[|m){nl||=1, the validity of Eq.(49) is implied by the state- Unity. Since this property is conserved in time, it should be
ments made sure that our solutions respect the condition

im|lp(t)—i_®|0)(0l]|=0. (49)

I
t*}

4 )

lim >, 20(1—64,j60,m50,n>|pj<t>m,n|=o, (508 TrATerm:j:EH n20v<t;oo;n,n>,-+p4<t>o,o=1 (52)

toow J=1 mn=

limpy(t)oo=1. (50p  for all t=0.
t—soo We repeat the derivation of Eq51), but refrain from

taking t to infinity. For the matrix elemenp,(t=0)q, We
The seriesZ;_o(n!) “¥%h" is convergent, so inequalities insert the result that is found by uniting EqS0b) and(51).
(20) and (33) tell us that Eq(509 is true. The ensuing identity enables us to eliminate the matrix ele-
For completion of the proof we return to EG.0). Evalu-  mentpy(t)o in Eg. (52). Upon eliminating the matrix ele-
ation of the limit (50b) requires that matrix element ment v(t;;n,n); with the help of Eq.(17) and choosing
v(t;0,0), be integrated over the complete positive time axis.new summation indices, we see that Ezp) is equivalent to
By Eqg. (24) this is equivalent to first integrating the function the condition
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4 o0 d d 1/2
> 2> 35 dz z 'e "2y(z:k); V(t=0:k,k);=0, M =sup [Mv]/vil= >, IAJ-I( > lej( w<k>>|2) ,
=1 k=0 Jr, =1 k=1
(55)
_ X . . where the prime reminds us of the conditia¥ 0. The co-
¥(z; k),—=2p;’4 240 (2ik) G(z L k=1, k=1)y; efficients on the rhs are determined by the constraints

©ok+1 L d

+(2i K) G(Z,k,0,0)4] ) (53) k21 <W(i),V(k)>Ck(W(j))= 5” ’ (56)
where the contoul’y lies below the real axis and encircles
all poles of the matrice$G(z;1;k—1,k—1)}¥_,. By means Withi,j=1,23,....d. _ _ _
of induction the identitys(z;k);=6,;+ 8, can be proved. The above result can be directly applied to the matrix at
Hence the integral53) is indeed identical to zero. hand._ From representatiofl2) we derive the eigenvalue

In this section we have obtained explicit expressions fo€duation
all matrix elements of the density operator. They have been A - .
shown to satisfy a number of important physical require- (M) Gy (MG )= 7, (M) gy, (T ).
ments. However, we still have to check whether our results (57)

are consistent with inequaliti€20) and (21). Eigenvaluem,]l,,]z(m,n) can be found in Eq(35). The nor-

malized and linearly independent eigenvectors are given by
IV. CONVERGENCE L r1b T b T
. . Ay, .p,(MNk)=3[1b, (N)]'®[1,—b, (M]",
The material that is presented below demonstrates the 2 ? 72 N

mathematical soundness of our treatment. Besides that, it is
of great use in performing a numerical evaluation of our
solutions. We shall be able to tell how many terms of a serie
fqr a matrix element must be computed in order to achieve #om zero.
given accuracy.

The initial density matrixp(t=0) is assumed to satisfy Obviously, the sei{(q),}l,,yz(m,n;.x=0)} should serve gs
the constraint orthonormal frame{w!}. Then inversion of the matrix

(w® v9ydoes not demand great algebraic efforts because
we merely need to deal with a direct product of twix 2
matrices. The solution of Ed56) is now a straightforward
affair and takes us to the identity

b, (M)=(m+1)" Y4 = pupn+ix/2). (58)

%’hey are not orthogonal as long as the parameteliffers

|pj(t=0)m n|<gs(minl) = Y2hm*n, (54)

with gg independenz 01; the integerg,n and the parameter . 1o
h defined below Eq(20). The above inequality implies that _
Egs. (20) and(33) hold true at time zero, as required. (;1 |Ci(W(k))|2> =(m+1)"(n+1)"(upu,)

A possible choice folp(t=0) is given byp,®|a){«/, (59
where the coherent state is defined a$a)
=exp(—|aj%2+ «a’)|0), a being a complex number. The The indexj does not occur on the right. Hence, from esti-
characterp, stands for a fixed atomic density matrix. Con- mate(55) we can deduce the statement
stantsh andgs come out aga| and exp-|a/?), respectively. " 1
The above initial condition gives rise to rich dynamics inside ; _ iA(m,n)]flng(m—i_ D™n+1)

the optical cavity. As an example, one may mention the fa- UmUn,

mous collapses and revivals in the Rabi oscillations of the

atomic inversiof12]. A second choice that obeys E§4) is X D |z—ip (m,n)|~%.
given by pa®|n)(n|. 71,72 7172

Our first aim is the derivation of a bound on the sup norm
of the non-Hermitian matrixR(z;m,n), defined in Eq(41).
Consider a complex block matri# of dimensiond; it sat-  Multiplication of both sides by a factor
isfies the eigenvalue equatiiv® =\ ;v with { vI}{_; a
set of normalized and linearly independent eigenvectors. The
set of eigenvalue@\j}?zl may contain degeneracies. Now
an arbitrary vector can be decomposed according to
v==3{_;c;(v)v), where the objectéc;(v)}{_, are complex yields the desired bound on the norm of matf®(z;m,n).

(60)

detzl—iAmmI|= TT lz=ig,, ,mn] 6

71172

coefficients. They can be expressed asEach denominator of E460) cancels out against a factor of
cj(v)z(Eﬁzlcj* (W) wk vy if the Set{w(”}?zl is ortho-  EQ. (61), so for all complexz the bound is finite.
normal. Statement21) is a direct consequence (B0), in view of

On the basis of the last remark the inequalitythe inequalities
|c; (V)| <[IVI[ == 4] c;(w®)|?]2 can be proved. It enables us

to propose for the norm of the matrid the estimate 2=

i,u,]l,ﬂz(m,n)|>|lmz+K(m+n+1)|, (62
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(m+k+ )Y uy =< (k+1)Yu,, (63 Employing in Eq. (67) the inequality (+k
+2)Y2< (k+2)Y(1+m'?), we reach the conclusion that
with k, m, andn non-negative integers. The constaptis  the vector v(t;o;m,n) indeed fulfils condition(20), with
found as 16/(4 «?), so indeedk must be chosen inside the constanty; taking on the form
interval[0,2). _ 5
The proof of statemer(®0) is more delicate. Assumption 01=4Ug “gsmax 1,h?)(2+ &) ee. (69)
(54) allows us to control the norm of initial vector

v(t=0;m,n). With the help of definition(11) we arrive at  1he shorthand notatiog,= &(t=0;m=0n=0) has been
used. Timet may be taken either zero or positive. Thus the

12 assumption made above H7) appears to be true as well.
The derivation of Eq(67) can be repeated for the norm of
the difference vectow(t;;m,n) —v(t;N;m,n) without any
problems. Evidently, on the rhs of the corresponding in-

The combination of Eqg60)—(62) results in the inequalities €duality summation indek runs fromN+1 to infinity. In
the square roots of the summand we replace integesand

(m+2)(n+2)
(m+D)!(n+1)!

[v(t=0;m,n)|<gsmax1,h?)h™*"

||R[ir“n o (mELn+1);m+p,n+ plll n by maxf,n). Then one encounters the SLET:ka/k!,
S which is dominated by the expressionN+1)x"/
T | (m+1,n+)—pu (m+p,n+p)| [NI(N+1-x)] as long asx does not leave the interval
R YRR 7317 [ON+1). Consequently, the following inequality can be put
2(m+p+1)Yn+p+1)¥? forth:
= , (65)
KU pUn+pl P—1] [[v(t;e0;m,n) —v(t;N;m,n)||
2 + _
IR[ie,,  (MH10+1);m+1n+1]] _Agsmax(1h )h™ "exd 172t(m+n+1)]
UpUn(mint)
<8(m+1+1)YAn+1+1)" noUm s+ 71Unl,
+ 34+ N+1
(66) [maxm,n)+3+N]¢ (70

[N+1—&]N! ’
with p#1 in Eq. (65 andm#n in Eq. (66). Choosing the
integerp positive, we replack by m+ 1 on the rhs anét by ~ where the integeN+ 1 may not become smaller than func-
p on the |hs of Eq(63). The ensuing inequality will play an tion ¢, defined in Eq(68).
important role in the following, namely, when it comes to ~ We calculate the absolute error, as given by the rhs of Eq.
simplifying the bounds in Eq<65) and (66). (70), for the case that at time zero the field is in a coherent

We go to the solution for vectow(t;eo;m,n), with m state. Making the choice}&|2=10,x=0.01,m,n$ 100, and
#n, and set the above-constructed machinery in motiont=0, we find that forN=240 the distance between vectors
Owing to resultg23), (40), and(64)-(66), one can devise a V(t;°;m,n) and v(t;N;m,n) is smaller than 1.2 10°°. By
fairly economical bound on the summand of E88). Itis of ~ employing Eqgs(10), (30), (32), and(70), one can also ac-
crucial importance, however, to treat each of the followingquire truncation criteria for the series that represent the vec-
cases separatelk=1=0; k=1|=0; k=1)/=1. The sum- tor w(t;0,n) and matrix elemenp,(t)q 0.
mation oveir can be carried out with the aid of the binomial
formula. Truncating the summation overone ends up with V. WEAK DAMPING

4gsmax 1h2)h™ Nexd — kt(m+n+1)] The matrix V(z;k;m,n), defined in Eq.(40), forms the
backbone of our solution for the density operator of the
damped Jaynes-Cummings model. Unfortunately, the ana-

D <
HV(t,N,m,n)” umun(m!n!)l/Z

N lytic evaluation of the elements d¥ turns out to be a tough
X > (m+k+2)Y3n+k+2)2 job. At the same time, for the undamped case0 the struc-
k=0 ture of the matrix product40) is expected to become much
X[&(t:m,n)T¥/K!. (67) more transparent. For that reason we shall calculate the
atomic density matriyp(t) = Trg[ p(t)] in the limit of small
The new function reads damping parameter. As the initial state we choose
p(t=0)=p A®|a){al, with the coherence parameierreal.
4(m+2)Y3(n+2)1n? The upper-left element of the atomic density matrix is
&t,m,n)= u (1+ e 2. (68  given by
m+1Un+1
The above inequality can also be established in the case that _ .
the integersm andn are equal. This assertion can be proved paln n§=:0 v(tin.n)s.- 71

by means of a simple argument. Regardingndn as con-

tinuous variables, one can verify that E88) reduces to the For the vector component on the rhs we insert the solution
solution (39) upon taking the limitm—n. Therefore, it is (39). By inequality (67), the resulting double series con-
sufficient to take the same limit in E¢67). verges uniformly on each closed interval<@<2-—e.
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Hence its behavior for smalt may be studied by operating The upper-right element of the atomic density matrix

behind the summation signs. Limiting our attention to themust be obtained from

first summation of Eq(39), we meet the expression

(— D" nlexg — «t(2n+21+1)] pa(D)12=pa(togt 2 V(tn+1n)s, (77
AT (k=) (n+ k+1)! n=o

XW(z=0;k;n)|,.—ov(t=0;n+k,n+Kk). (72)  where the rhs can be elaborated with the help of relations
(13), (38), and(46). The weak-damping limit can be taken in
Contributions of orderkn®? have been discarded. Since a similar vein as before. The off diagonal comes out as
terms withn=«a? generate the largest contributions to Eq.

(71), we see that the produeta® is to remain smal(32]. 1
There is no restriction on the value of tiheMost important PA(D12=5 (Pa12~ @pp 20 €XP( — kt/2— a®+it)
of all, the elements of matriXVV can be evaluated now. One
has 1
+ E(pA’12+ apAyzz)eXF( - Kt/2_ az_ |t)

W(z=0;k;n) | =0

[

=2(—1)k+1(n+|<+1)!(2n+2k+1)! ' | + S Eytakn), 78)
(n+K)1(2n+1)! 1i7F 94)), i=0

(73 with the summand given by

as follows from Eqs(40)—(45) by performing an induction
pr00f F3(t1a!K;n)

If k is taken small in the second summation of E2p),

only the summand with indek equal to zero survives. Its B a 5 oetan 2 )
evaluation does not require any further restrictions on our _W[a e ] = exp — a®— 2«t
parameters. The final result for the atomic matrix element '

reads then +it[ 7y (n+1)Y2+ 9y(n+2) 2]}

© ©

pA(t)ll:ngo I(EO Fl(t!avK;nlk)+r;0 FZ(t!aiK;n)l
(74)

X[ m1pa11— 720°pa2dN+1) YA n+2)"12

+appidn+1)" Y=g papi 1 An+2)" 17 (79

. ) Again, the choice=0 produces the initial value of the ma-
with the summands given by trix element. Symmetry relationd3) ensure that the lower-
left element of the atomic density matrix is equal to the
complex conjugate of Eq77).
4%kt (2n+ 1)1 (n+k)!7]? For the case of weak damping, with produat® small,

_ the simple result§74) and(78) constitute a solid approxima-

2 1

X[pairt appan+k+1) 7] tion to the atomic density matrix. They offer us the possibil-

X[ a?(1—e 2K ale2xn, (75) i'Fy to study analytically how the twp-levgl atom evolves.in
time. Formulas for collapse and revival times can be derived
along the same lines as in R¢B3]. A second, and more

L e n!(2n+2k+1)!
Fl(txa,K;n,k)zze a’—kt

Fz(t,a,x;n)=—e—a2—KtRe{exF[—2it(n+1)1/2] rewarding, application of Eq€74) and (78) consists of in-
? vestigating the behavior of the exact atomic density matrix in
X[pAy]__‘]__ asz’Zz(n“l‘ 1)71—2|a/ the I|m|t
N ! - im’ =i T T LUk
X1Impa 1AN+1) 1/z]}m[aze 26tyn, l,iTo f(t,a,x) llinof(t/K,a/K K, (80)
(76)

with f an arbitrary functiont anda are positive constants.
The above series are convergent, and for (Z4) the choice In the undamped case the atomic density matrix almost
t=0 yields the initial matrix elemeni, 1;, as expected. By coincides with the central statd, ast becomes large. On
repeating the foregoing computation for the diagonal elemerthe other hand, by setting zero in Eq.(74), one sees that
pa(t)22, one confirms the identity Epa(t)=1, which is a the density matrix contains oscillating terms that do not de-
consequence of Eq52). We mention that in Ref[7] the cay to zero and thus inhibit convergence. Below we prove
Jaynes-Cummings model with weak cavity damping haghat for the limit(80) all oscillations do decay, so that con-
been studied as well, but not on the basis of an exact solufergence to the central state does take place.
tion. Results have been reported that are at variance with First of all, we observe that in the lim{80) the parameter
Egs.(74)—(76). « and productka® both go to zero. Hence the difference
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between a matrix elemefit4) or (78) and its exact counter- lim’ pa(t)=31,. (86)

part goes to zero as well. The absolute value of the series k—0

figuring in Eq. (78 is smaller than the form

a3exp[—a2[1—exp(—2f<t)]} multiplied by a positive con- The initial statep, of the atom may be chosen arbitrarily.
stant. Sincet = t is greater than zero, it follows that ex- The above result remains valid if the coherence parameter

pression(78) vanishes in the limit80). In other words, the ¢ IS chosen to be complex. _

exact atomic density matrix becomes diagonal. A similar ar- We should also investigate how the resonant field mode

gument shows that the second series on the rhs of . behaves under the lim{80). The mean photon number and

does not survive the limit80) either. second moment of the photon distribution can be calculated
The remaining contribution to Eq74) must be handled from the relations

carefully. Fore positive one has — "
n(t)= Tre[a'ape(t)],

[ea?] o
2, & IFitaxno] n%(t)= Tre[a'aaape ()], @)

<4afex — a2(e 2+ elne—e)], (81 By adopting the same methodology as earlier, the reader may
be convinced of the fact that the following expansions hold
owing to the inequality true:

R

2 — Aa— 4kt 2~— 2kt 21 _ — 4kt 0
where integersk and n are non-negative. For the double n(H)=a’e " Ha’e ™+ a’(1-2pp20)€ +O(a(9))é)

series withn running from zero to infinity an# from zero to

[ea?], one derives a bound that is analogous to the one ifthe parametex is small, whereasr andt satisfy the con-

Eq. (81). If e is taken sufficiently small, both bounds decay straints belonging to Eq80). Notice that not only the lead-
exponentially to zero fow large. Thus it is possible to re- jng byt also the next-to-leading terms have been evaluated.
place the lower boundaries of double serti@é) by [ea®].  Hence, in making the transitiof83), one has to cope with
Now one can represent all factorials by means of Stirling’scontributions that arise from the correction term of order
expansior{34]. This last step paves the way for making use1/.. All of these turn out to be of exponential decay.

of the transition Often, one characterizes a photon distribution by means
[bL] b of a factorQ=n?/n—n—1 [36]. The above results reveal
L1 > f(k/L)=J dx f(x)+[f(a)+f(b)]/2L that
k=[al] a

whereL is large and' denotes a continuous .fun<.:tion. In the The Q factor takes on the value that belongs to a coherent

present case one only needs the first contribution on the rr‘ﬁate In assessing E€R0), one should be aware of the fact

of Eq'(83f)'” ina the ab nstructi E@4) red that the density operator itself may not be replaced by a
pon following the above instructions, E(74) reduces coherent state. To enlighten this statement we assume the

to existence of a complex functiof(«) for which the norm
ale—rt (o v (x+y)H2 |TrE[_apF(t)]—,8(a)| vanishes in the limit80). It can be
pa(t)11= 1 f dxf dyﬁT verified that the expectation value (Tapg(t)] is of expo-
T Je € X nential decay akx| gets large, so we conclude that the same
X[ pasrt pasd X+y) " Hexd a2g(x,y)] must be true for functiorB. By identity n=|g|?, the last
' ' requirement contradicts E¢88).
+0(a™?), (84) As a final point, we observe that the limit86) and (90)

are not affected by a transformation of the density operator to
the Schrdinger picture. The unperturbed Hamiltonian of the
Jaynes-Cummings model commutes with both the unit op-
erator in Eq.(86) and the number operator in E@7).

with the definition
g(x,y)=—1+x+y—xIn[x/(1—e 2]

—yIn(ye*. (85)

The integral(84) demonstrates that the introduction of a cut- VI- SUMMARY
off parametele is indispensable, as the integrand diverges at In the Jaynes-Cummings model with cavity damping the
the origin. The limit(80) takes the parameter to infinity, so  evolution of all observables is dictated by the master equa-
in calculating Eg.(84) one can call upon the saddle-point tion (3) for the density operatop(t), at least if the cavity
method[35]. The result 1/2 is found. does not contain any thermal photons. By adopting a repre-

From the foregoing considerations we learn that the exactentation based on direct products of two-dimensional Car-
atomic density matrix possesses the limit tesian vectorde;,e,} and photon-number statéfn)}, the
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master equation can be converted into an infinite set of ordiand thus attempts to maximize its von Neumann entropy
nary differential equations. Subsequently, upon going over t&,= — Tra[ pa(t)Inpa(t)] [38]. . . .
Laplace language and distributing all matrix elements In Sec. V we prove that the exact atomic density matrix
(e@m|p(t)|g@n) over two- and four-dimensional vectors truly converges to the central state if the paramettesis and
in a suitable manner, two algebraic recursion relations ares” - are taken to infinity such that the produets and xa*
found. As shown in Sec. II, these can be solved exactly byemain constant. Numerical work shows that the new limit is
performing an iteratiomd infinitum Convergence is secured Not only of mathematical interest. For example, if the choices
with the help of a few inequalities, the verification of which k=0-001 and =5 are made, then on the interval
is carried out at a later stage. 250=<t=<1250 the entropys, differs from its maximal value
The iterative procedure provides us with solutions for alllN2 by an amount of 10° at most. This long stage of quasi-
matrix elements(a®m|p(t)|ej®n), each of these being an equnlbrll_Jm is preceded_ by the l_JsuaI dynam_lcs of_ collapse
infinite series. Explicit results are presented in Sec. lll. Thefﬂiggg'\f In tthe Ra&n _oscnlznt(;]ns (t)f thz mvers;on. Ifjo'rt
obey important physical constraints on the density operatorl:ound St;‘;‘:'pa lon Sets i an € atom decays toward 1S
namely, Hermiticity, conservation of trace, convergence to(j We point 6ut that the remarkable crossover from quasire-
the initial state for small times, as well as convergence to th(g/e P q

tate of | " for | i The last th rsible to fully irreversible behavior persists if the initial
state ot lowest energy for large imes. 1he last tnree propelz, ,qision for the field is modified. In the Appendix we es-

ties can be proved on the basis of techniques from functiongabnsh an asymptotic limit, which is similar to E¢80), for

theory. At this point the advantages of Laplace transformaghe case that the field starts from a photon-number state. The

tion become manifest. various stages in the time evolution of the atomic density
Invoking some methods from linear algebra, we demonmatrix will be discussed at length in a future pap@T].

strate in Sec. IV that our solutions for the matrix elements of  Finally, it should be mentioned that one can try to apply

the density operator are consistent with all of the inequalitieshe strategy developed in this paper to the case in which

employed earlier. Besides that, we estimate for each matrigtomic detuning and spontaneous emission are present. On

element how fast its solution converges. This information isthe contrary, the handling of thermal photons might prove

useful when undertaking a comprehensive numerical studgifficult because then one meets an operatpof a different

on the evolution of observables. The conclusions of such atructure as before.

study will be discussed in a forthcoming pagpar].

The results of Sec. IV can also serve to find out how ACKNOWLEDGMENTS
cavity damping affects the magnitude of matrix elements. .
For instance, together with Eq38) the inequality (67) The author would like to thank Farhad Farhadmotamed,

tells us the following: As soon as damping parameter Karl Lendi, and Leendert Suttorp for useful discussions. The
has a finite value, the modulus of product SWiss National Science Foundation is gratefully acknowl-

expt)(e,@m|p(t)|e;@n) decreases by a factor of €dged for financial support.
exp(—«t) for each photon making up statgs) and|n). As
pointed out in the Introduction, this can be understood from APPENDIX: PROOF OF A LIMIT
the fact that the photons inside the cavity experience a finite
transparency of the cavity mirrors simultaneously. Similar
reasoning can be held for the other matrix elements of the
density o?:)erator. p(t=0)=pa@[m)(m|, (A1)
The foregoing observations have an important conse-
guence for the work performed in Sec. V. There the atomié’"here|m.> Qenotgs a photon-numbgr Stal, we set out to
density matrix is evaluated for the case that damping is weaROVve & limit that is akin to I.E.C(BG)' Like before, we take the
and the field is initially in a coherent state. Due to factor!M€: the square of the initial em energy density, and the

h™"(min!) ~2 on the right-hand side of E467), the chief inverse of the cavity-damping parameter to infinity in such a
contributions to Eqs(71) and(77) possess a summation in-

manner that all of the ratios between these quantities remain
dexn of order «?. Therefore, if the coherence parameter

constant. The limi{80) is thus replaced by
increases, one has to face more factors of ex) in evalu-

Opting for the initial condition

ating Egs.(71) and(77), so that the impact of cavity damp- lim” f(t,m,x)=lim f(t/x,m/«"2 k), (A2)
ing on the atomic density matrix becomes stronger. The last K0 K0

statement has been advanced before, on the basis of a nu- _ _

merical computation of the atomic inversiph3]. with t andm positive constants.

As seen from a theoretical standpoint, one advantage of Following the same route as in Sec. V and choosing
the present model over its undamped counterpart resides =1, we obtain from Eqs(71), (77), and(Al) the follow-
the limit (49). This result permits us to make a clear-cuting results for the atomic density matrix:
statement on the behavior of observables for long times, a
possibility that is lacking for the Jaynes-Cummings model p,(t)y;=3pa 118 “'C(kt;m)+ Fpa 2 “'C(xt;m—1)
itself. On the other hand, by taking the linf#9 one com-
pletely disregards the interesting asymptotic behavior of the + 3pase @M Ueog 2t(m+1)12]
atomic density matrix in the undamped case. karqual to
zero andt large, the atom hovers about the central séase — 3page 12 Lcog 2tm'2], (A3)
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m—[ em] and[ em], respectively. Ife is chosen sufficiently
close to zero, the ensuing errors vanish in the lifA2), as
one can demonstrate with the help of £E48).

Upon inserting Stirling’s expansion for all factorials and
making the transitior(83), we see that in leading order of
m the seriegA5) becomes equal to

pa(t) 1= pase” *Mcogtm'?cogt(m+1)"7]. (A4)

We have defined a series

[e72t]k[l_ e72t]mfk,

m

_4(M

C(t;m)=bp, 2, by 1( K
k=0

(A5)
b= V2 r1-e exg—mh(x)] A9
_(2m+1)! (A6) (kt;m)= > . amoT (A9)
m 4m(m| )2 .
The damping parametermust be chosen such that the prod- with the function
uct km*? is small. “ okt xt
All contributions that contain a cosine factor do not sur- h()=(1=X)I[(1-x)/(1~e"*)]+xIn(xe* )(.Alo)

vive the limit (A2). For seriegA5) things work out differ-

ently because we can establish the bounds o ] )
Application of the saddle-point method gives the result

1<lim"C(«t;m)=<e?<, (A7)  exp(kt) for the integralA9). Hence we have proved the limit
k—0
m! 1
by employing the inequalities l"(TO PAD)=zlz. (ALD)
1<b,/bys(m+1)/(k+1), (A8)

If the field is in a photon-number state at time zero, the
atomic density matrix converges to the central state under the
limit (A2).

which are valid fom=Kk. In evaluating the limit in Eq(A7),
we replace boundariesn and 0 of the sum(A5) by
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