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Exact solution of the Jaynes-Cummings model with cavity damping

A. J. van Wonderen
Physikalisch-Chemisches Institut der Universita¨t Zürich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland

~Received 1 April 1997!

Operating in Laplace language and making use of a representation based on photon-number states, we find
the exact solution for the density operator that belongs to the Jaynes-Cummings model with cavity damping.
The detuning parameter is set equal to zero and the optical resonator does not contain any thermal photons. It
is shown that the master equation for the density operator can be replaced by two algebraic recursion relations
for vectors of dimension 2 and 4. These vectors are built up from suitably chosen matrix elements of the
density operator. By performing an iterative procedure, the exact solution for each matrix element is found in
the form of an infinite series. We demonstrate that all series are convergent and discuss how they can be
truncated when carrying out numerical work. With the help of techniques from function theory, it is proved that
our solutions respect the following conditions on the density operator: conservation of trace, Hermiticity,
convergence to the initial state for small times, and convergence to the ground state for large times. We
compute some matrix elements of the density operator for the case of weak damping and find that their analytic
structure becomes much simpler. Finally, it is shown that the exact atomic density matrix converges to the state
of maximum von Neumann entropy if the time, the square of the initial electromagnetic energy density, and the
inverse of the cavity-damping parameter tend to infinity equally fast. The initial condition for the atom can be
chosen freely, whereas the field may start from either a coherent or a photon-number state.
@S1050-2947~97!00108-X#

PACS number~s!: 42.50.2p, 03.65.2w, 05.30.2d
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I. INTRODUCTION

Since the early 1980s, we have been witnessing a grow
interest @1–8# in dissipative variants of the Jayne
Cummings model@9#, one of the principal assets in quantu
optics @10#. Most workers have introduced dissipation b
means of a coupling to one or more Markovian reservoirs
doing so, one is led to a fully quantum-mechanical mas
equation. The theoretical efforts have been initiated prim
rily by experimental successes. Major progress has b
made in the experimental realization of the interaction
tween a two-level atom and a single mode of the quanti
electromagnetic~em! radiation field@11#. In short, it has be-
come possible to carry out precise tests on theoretical
dictions that are obtained by solving those extended vers
of the Jaynes-Cummings model that include all of the r
evant damping mechanisms.

Besides the experimental drive, there exists also a th
retical motivation to add damping to the Jaynes-Cummi
model. If energy leaks away from the system of atom a
field mode, its dynamics becomes much more interest
For short times one still encounters the famous collapses
revivals in the Rabi oscillations of the atomic inversion@12#,
but for large times one now observes an exponential deca
atom and field mode toward their ground states. In ot
words, we can study within a fully quantum-mechanical co
text a time evolution that exhibits a crossover from a regi
of quasireversible character to a regime that is truly irreve
ible. Such a program requires that exact analytical soluti
be available. It is our aim to derive these for the case t
depletion occurs in the field mode.

The reason for making the above choice of damp
mechanism is a practical one. In an experimental setup
ergy losses stem from photon escape through the cavity
561050-2947/97/56~4!/3116~13!/$10.00
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rors, as well as from spontaneous emission of photons by
atom. If the cavity contains many photons, the first mec
nism causes by far the greatest losses during a fixed
interval @13#. This statement can be made plausible by
simple argument. The atom can absorb only one photon
time, whereas the cavity mirrors can let through any num
of photons at a time. Hence, for the Jaynes-Cummings mo
spontaneous emission gives rise to a damping mechanis
sequential nature, which acts much slower than the mec
nism originating from the finite transparency of the cav
mirrors. Of course, if the excited state of the atom becom
very short lived, then our reasoning is no longer valid.

In extracting exact results from dissipative counterparts
the Jaynes-Cummings model, a variety of strategies can
adopted. The most recent one relies upon the use of dam
bases@14# and has the advantage that master equations
high complexity can be handled@15,16#. In particular, the
temperature inside the cavity may differ from zero. Then
method yields a set of recursion relations, the solution
which can be represented with the help of matrix continu
fractions @17#. The latter have been evaluated numerica
@18#. For the case of zero temperature the damped Jay
Cummings model can be solved analytically by employi
the method of damping bases@14#.

The other approaches have a more traditional charac
For instance, the mathematical problem at hand can be
mulated in terms of partial differential equations for a set
classical distribution functions@19#. These have been solve
for the case that the cavity does not contain any ther
photons@20#. Analytic expressions for the diagonals of th
atomic density matrix and the mean photon number h
been derived@21#.

Finally, the most familiar strategy@6,13,22–24# is based
on representations of the full density operator that emp
direct products between atomic states and photon-num
states. The master equation is replaced by a set of ordi
3116 © 1997 The American Physical Society
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56 3117EXACT SOLUTION OF THE JAYNES-CUMMINGS MODEL . . .
differential equations for the matrix elements of the dens
operator. It has been suggested in the literat
@6,13,16,22,24,25# that in solving such a system, one
obliged to treat at leastN2 equations simultaneously, wher
N linearly depends on some truncation parameter for pho
number. We shall demonstrate that this obligation does
exist at all. For the case of cavity damping at zero tempe
ture, the complete set of matrix elements will be evalua
via a simple recipe. Therefore, we shall be able to presen
solution for the full atomic density matrix. The latter give
access to the von Neumann entropy of the atom.

This paper is organized as follows. In Sec. II we lay t
mathematical foundations for our method, making use
several assumptions. The matrix elements of the density
erator are evaluated in Sec. III and are shown to fulfil
number of important requirements. As discussed in Sec.
our solutions are consistent with all of the assumptions m
earlier. In Sec. V we examine the behavior of the atom
density matrix for weak damping and large times. An int
esting asymptotic limit is put forth. A summary of all resul
is given in Sec. VI.

In order to fix notations and make our paper se
contained, we close this introduction with a brief review
the model that will be solved. It describes the quantu
mechanical interaction between a motionless two-level at
which is enclosed in an optical resonator, and a single m
of the em radiation field. The atom, mode, and cavity are
perfect resonance with each other. The mirrors of the ca
are slightly nonideal, so a cavity mode can lose energy to
surroundings. This is not the case for the atom, as it is s
posed not to interact with em modes other than the privile
one. We assume that the cavity does not contain any the
photons.

The density operator for the system of the atom (A) and
field (F) is denoted byr(t) and acts on Hilbert spac
HA^HF . We chooseHA5 C2, with the excited state and
ground state of the atom represented by vectors (1,0)T and
(0,1)T, respectively. We define matrices

i 15S 1 0

0 0D , i 25S 0 0

0 1D ,

s15S 0 1

0 0D , s25S 0 0

1 0D ~1!

and observe that each atomic operator can be represente
a linear combination of these. The ladder operators of
cavity mode are calleda anda†, so the orthonormal photon
number states$un&%n50

` , which span Hilbert spaceHF , are
given by

un&5~n! !21/2~a†!nu0&. ~2!

The commutator@a,a†# equals unity and the stateau0& is
identical to the zero element ofHF .

We assume that in the interaction picture the time evo
tion of the density operator is governed by the master eq
tion @26#

dr~ t !/dt5L1@r~ t !#1kL2@r~ t !#, ~3!
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where the new operators are defined as

L1@r#52 i @s1 ^ a1s2 ^ a†,r#, ~4!

L2@r#52~12^ a!r~12^ a†!2~12^ a†a!r2r~12^ a†a!.
~5!

In the Jaynes-Cummings contribution~4! the rotating-wave
and electric-dipole approximations have been employ
Contribution~5! brings about damping and is of Markovia
nature. The master equation has been divided by the c
pling constant of the Jaynes-Cummings term, so the timt
and damping constantk are dimensionless. For technical re
sonsk will be limited to the interval@0,2). We mention that
contribution ~5! preserves the trace, self-adjointness, a
positivity of the density operator@27#. On the other hand, it
provides a realistic description of photon loss through
cavity mirrors only for rather low values ofk @28#.

II. METHOD OF SOLUTION

Our first step consists of transforming Eq.~3! into a set of
c-number equations. To that end, we propose the decom
sition

r~ t !5 i 1 ^ r1~ t !1s2 ^ r2~ t !1s1 ^ r3~ t !1 i 2 ^ r4~ t !,
~6!

with operators$r j (t)% acting on spaceHF . By making use
of the linear independence of matrices~1!, as well as the
properties of ladder operatorsa anda†, one can derive equa
tions of motion for the matrix elements

r j~ t !m,n5^mur j~ t !un&, ~7!

where on the right-hand side photon-number states~2! figure.
The result can be cast into a remarkable form, given b

dv~ t;m,n!/dt5A~m,n! v~ t;m,n!

12k S~m,n! v~ t;m11,n11!, ~8!

dw~ t;0,n!/dt5B~n!w~ t;0,n!12kT~n!w~ t;1,n11!,
~9!

dr4~ t !0,0/dt52kr4~ t !1,1. ~10!

Integersm and n run from zero to infinity. We have intro-
duced vectors

v~ t;m,n!5@r1~ t !m,n ,r2~ t !m11,n ,r3~ t !m,n11,

r4~ t !m11,n11#T,

w~ t;m,n!5@r2~ t !m,n ,r4~ t !m,n11#T ~11!

and matrices

A~m,n!512^ B~m!†1B~n! ^ 12 , ~12!

S~m,n!5T~n! ^ T~m!,

B~m!5S 2km i~m11!1/2

i ~m11!1/2 2k~m11!
D ,
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T~m!5S ~m11!1/2 0

0 ~m12!1/2D .

For the direct product of two matrices the standard definit
has been employed@29#. Use of the self-adjointness ofr(t)
in decomposition~6! leads to the symmetry relations

r j~ t !m,n* 5r j~ t !n,m, r2~ t !m,n* 5r3~ t !n,m , ~13!

for j 51,4. Therefore, vectorsv and w deliver us all matrix
elements ~7!, except for the element withj 54 and
m5n50.

The infinite set~8! of ordinary differential equations call
for the employment of Laplace transformation. Defining t
transform of a functionf (t) as

f̂ ~z!52 i E
0

`

dteiztf ~ t !, ~14!

with Imz positive, one obtains from Eq.~8! the set of alge-
braic equations

v̂~z;m,n!5@z142 iA~m,n!#21$v~ t50;m,n!

12ik S~m,n!v̂~z;m11,n11!%. ~15!

As shown in Sec. IV, all imaginary parts of the eigenvalu
of matrix iA(m,n) are smaller than2k, so the inverse ma
trix in Eq. ~15! exists.

We iterate the recursion relation~15! a finite number of
times, carry out inverse Laplace transformation, and emp
Jordan’s lemma@30#. This brings us to

v~ t;m,n!5v~ t;N;m,n!1r ~ t;N;m,n!, ~16!

v~ t;N;m,n!5 (
k50

N
~2ik!k

2p i R
G~k;m,n!

dz e2 iztG~z;k;m,n!

3v~ t50;m1k,n1k!, ~17!

r ~ t;N;m,n!5
i ~2ik!N11

2p E
C
dz e2 iztG~z;N;m,n!

3S~m1N,n1N!

3 v̂~z;m1N11,n1N11!, ~18!

whereN may equal any positive integer andt must be cho-
sen positive. ContourC runs above and parallel to the re
axis, whereas the closed contourG(k;m,n) encircles all
poles of matrix G(z;k;m,n) counterclockwise. The latte
must be constructed as

G~z;k;m,n!5@z142 iA~m,n!#21

3S~m,n!@z142 iA~m11,n11!#21

3S~m11,n11!•••

3@z142 iA~m1k21,n1k21!#21

3S~m1k21,n1k21!

3@z142 iA~m1k,n1k!#21. ~19!
n

s

y

For k50 the right-hand side~rhs! must be set equal to th
matrix @z142 iA(m,n)#21.

In order that series~17! be convergent, the remainde
r (t;N;m,n) should vanish asN tends to infinity. Going for
an estimate of expression~18!, we assume that the Euclidea
norm of the vectorv(t;m,n) satisfies the inequality

iv~ t;m,n!i<g1~m!n! !21/2~11m1/2!~11n1/2!hm1n

3e2kt~m1n11!, ~20!

whereg1 and h are independent of indicesm,n and time.
Now each component of the vectorv̂(z;m,n) makes up a
function that is analytic on the half space Imz.2k. Since
the same holds true for each element of the ma
G(z;N;m,n), we may shift in Eq.~18! the contourC below
the real axis, toward the line Imz52k/2, for instance.

Employing a result of Sec. IV, viz.,

i@z142 iA~m,n!#21i<g2uImz1k~m1n11!u21, ~21!

whereg2 is independent ofm, n, andz, one can propose the
following bound on the sup norm of the matrixG:

iG~z;N;m,n!i<i@z142 iA~m,n!#21i

3i@z142 iA~m11,n11!#21i

3
1

N! S g2

2k D N21

3F ~m1N11!! ~n1N11!!

~m11!! ~n11!! G1/2

,

~22!

with Imz.2k. Use has been made of the equality

iS~m,n!i5~m12!1/2~n12!1/2. ~23!

A bound on normi v̂(z;m,n)i can be inferred from definition
~14! and assumption~20!. The combination of all inequalities
leads to the estimate we are after. It reads

ir ~ t;N;m,n!i<16kg1e2kt/2
~g2h2!N21

p~N21!!

3
uI ~m,n!uhm1n14

@~m11!! ~n11!! #1/2, ~24!

whereN has been taken larger than max(m12,n12) and
the inequality 11n1/2<2n1/2, valid for n>1, has been em-
ployed. Furthermore, we have defined an integral

I ~m,n!5E
C
dzi@z142 iA~m,n!#21i

3i@z142 iA~m11,n11!#21i . ~25!

It is convergent because the integrand behaves asuzu22 for
uzu large.

The identity~16! and estimate~24! enable us to write

lim
N→`

sup
0,t,`

iv~ t;m,n!2 v~ t;N;m,n!i50. ~26!
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In other words, fort.0 the seriesv(t;`;m,n) exists and
represents the solution of the differential equation~8!. More-
over, each component ofv(t;`;m,n) is continuous on the
positive time axis.

Of course, we have to verifya posteriorithat the solution
v(t;`;m,n) indeed obeys condition~20!. This technical job
will be taken care of in Sec. IV. There we also show that
series v(t50;`;m,n) is convergent. Hence limit~26! im-
plies that

lim
t→01

iv~ t;`;m,n!2 v~ t50;`;m,n!i50. ~27!

The second contribution inside the norm can be evaluate
resorting to standard techniques@31#.

In Eq. ~17! the contourG(k;m,n) may be blown up to
become a circleuzu5R. The radiusR is chosen such that fo
each matrix A(k,l ), figuring in Eq. ~19!, the inequality
iA(k,l )i /R,1 is true. Now all resolvents can be expand
into Neumann series. Since these converge uniformly on
circle uzu5R, we may integrate in Eq.~17! term by term.
Owing to the identityrG dz z2n52p id1,n , with n an inte-
ger, one ends up with the simple result

1

2p i RG~k;m,n!
dzG~z;k;m,n!514d0,k . ~28!

The combination of Eqs.~17!, ~27!, and~28! yields the sat-
isfactory statement

lim
t→01

iv~ t;`;m,n!2 v~ t50;m,n!i50, ~29!

which tells us that our solution of the differential equati
~8! respects the accessory initial condition.

The differential equation~9! can also be solved with th
help of Laplace transformation. Employing the convolu-
tion theorem, one finds for each positive time

w~ t;0,n!5D~ t;n!w~ t50;0,n!12kE
0

t

dt8 D~ t2t8;n!

3T~n!w~ t8;1,n11!. ~30!

The new matrix is given by

D~ t;n!5
1

2p i RD~n!
dz e2 izt@z122 iB~n!#21, ~31!

where the closed contourD(n) encircles all poles of the
integrand on the right-hand side. By repeating the argum
e

by

e

nt

presented above~28!, one proves that solution~30! con-
verges to the initial vectorw(t50;0,n) for small times.

Upon computing matrix~31! we recognize that

iD~ t;n!i<g3e2kt~n11/2!, ~32!

where againg3 denotes a positive constant, independent
the indexn and time. With the aid of inequalities~20! and
~32! we deduce from Eq.~30! the estimate

iw~ t;0,n!i<g4~n! !21/2~11n1/2!hne2kt~n11/2!. ~33!

The constantg4 shares its properties withg3. We have as-
sumed that the initial vectorw(t50;0,n) satisfies Eq.~33!.

In this section a mathematical framework has been
sembled that allows us to solve the Jaynes-Cummings m
with cavity damping exactly. From Eqs.~20! and ~33! one
derives the following inequality for both the sup norm a
the trace norm ofr(t):

ir~ t !i<(
j 51

4

(
m,n50

`

ur j~ t !m,nu,`. ~34!

It demonstrates the existence of the density operator tha
generated by our method. Therefore, we can comme
evaluating matrix elementsr j (t)m,n .

III. CALCULATION OF MATRIX ELEMENTS

We calculate the resolvent@z142 iA(m,n)#21 for k<2
and find that it gives rise to the poles

z5 imh1 ,h2
~m,n!,

mh1 ,h2
~m,n!52k~m1n11!2 ih1um2 ih2un , ~35!

with the square root

un5~n112k2/4!1/2 ~36!

and the prescription

~h1 ,h2!5~11,11!,~11,21!,~21,11!,~21,21!, mÞn

~h1 ,h2!5~11,11!,~11,21!,~21,21!, m5n. ~37!

Thus, in elaborating Eq.~17!, one has to treat the casesm
Þn andm5n separately.

The reader can check that the following results are
tained:
v~ t;`;m,n!5
1

8 (
h1 ,h2

(
k50

`

(
l 50

k ~2ik!kexp@mh1 ,h2
~m1 l ,n1 l !t#

um1 lun1 l~h2um1 l1h1un1 l !

3
V@ imh1 ,h2

~m1 l ,n1 l !;k;m,n#v~ t50;m1k,n1k!

)
h3 ,h4

) 8
p50

k

@ imh1 ,h2
~m1 l ,n1 l !2 imh3 ,h4

~m1p,n1p!#

, ~38!
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v~ t;`;n,n!5 (
k50

`

(
l 50

k
~21! lexp@m11,21~n1 l ,n1 l !t#

l ! ~k2 l !!

W~ im11,21~n1 l ,n1 l !;k;n! v~ t50;n1k,n1k!

)
h1

)
p50

k

@ im11,21~n1 l ,n1 l !2 imh1 ,h1
~n1p,n1p!#

1
1

8 (
h1

(
k50

`

(
l 50

k ~2ik!kexp@mh1 ,h1
~n1 l ,n1 l !t#

un1 lun1 l

W@ imh1 ,h1
~n1 l ,n1 l !;k;n#v~ t50;n1k,n1k!

) 8
h2 ,h3

) 8
p50

k

@ imh1 ,h1
~n1 l ,n1 l !2 imh2 ,h3

~n1p,n1p!#

,

~39!
a

ty.

ex

-

s

ix

r

is

s.
tive

new
where m and n are non-negative integers. Each indexh i
belonging to a sum or product runs through the values21
and11. The prime in the product overh2 andh3 indicates
that the choice (h2 ,h3)5(21,11) should not be made. In
primed product overp the choicep5 l must be excluded. In
the case thatk andl are zero, the latter product equals uni

The matrix V, figuring in Eq.~38!, must be constructed
according to the recipe

V~z;k;m,n!5R~z;m,n!S~m,n!R~z;m11,n11!

3S~m11,n11!•••R~z;m1k21,n1k21!

3S~m1k21,n1k21!R~z;m1k,n1k!,

~40!

wherek stands for a positive integer andz may be any com-
plex number. Fork50 the choiceV(z;0;m,n)5R(z;m,n)
must be made. The matrixR must be obtained from

R~z;m,n!5det@z142 i A~m,n!#@z142 iA~m,n!#21. ~41!

The computation of the resolvent provides us with the
plicit results

R~z;m,n!115am,n~z!@am,n~z!21 ikam,n~z!2m2n22#,

R~z;m,n!135~n11!1/2@2am,n~z!22 ikam,n~z!2m1n#,

R~z;m,n!145 R~z;m,n!23522~m11!1/2~n11!1/2am,n~z!,

R~z;m,n!335am,n~z!@am,n~z!21k2#

2~m11!@am,n~z!1 ik#

2~n11!@am,n~z!2 ik#, ~42!

where we have defined

am,n~z!5z1 ik~m1n11!. ~43!

The remaining elements ofR are determined by the symme
try relations
-

R~z;m,n!kl5R~z;m,n! lk ,

R@am,n* ~z* !;m,n#kl52R@am,n* ~2z* !;n,m#P~k!P~ l !

52R@am,n* ~2z!;n,m#Q~k!Q~ l !* .

~44!

Characters P and Q denote the permutation
(1234)→(4231) and (1234)→(1324), respectively.

The matrix W, figuring in Eq.~39!, is created from

W~z;k;n!5V~z;k;n,n! )
l 50

k

an1 l ,n1 l
21 ~z!. ~45!

For the sake of clarity we mention that the matr
V(z;k;n,n) contains the product) l 50

k an1 l ,n1 l(z) as a fac-
tor. Relations~40!–~45! completely specify how solutions
~38! and ~39! depend on the damping parameterk, time t,
and integersm,n.

The result ~38! furnishes the solution for the vecto
w(t;1,n11), on account of definitions~11!. We substitute
this solution into the rhs of Eq.~30! and interchange the
integration over time with all summations. The last step
permitted because, by Eq.~20!, the series for vector
w(t;1,n11) converges uniformly on the positive time axi
The integration can now be done, and for each non-nega
integern one arrives at

S r2~ t !0,n

r4~ t !0,n11
D 5

1

2un
(
h1

exp@mh1 ,h1
~n,n!t/2#

3S un1 ih1k/2 2h1~n11!1/2

2h1~n11!1/2 un2 ih1k/2 D
3S r2~ t50!0,n1sh1

~ t;n!2

r4~ t50!0,n111 sh1
~ t;n!4

D . ~46!

The rhs contains the second and fourth components of a
vector, given by
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sh1
~ t;n!5

k

4A2
(

h2 ,h3
(
k50

`

(
l 50

k ~2ik!k$12exp@2mh1 ,h1
~n,n!t/21mh2 ,h3

~ l ,n1 l 11!t#%

ulun1 l 11~h3ul1h2un1 l 11!@mh1 ,h1
~n,n!/22mh2 ,h3

~ l ,n1 l 11!#

3
S~0,n!V@ imh2 ,h3

~ l ,n1 l 11!;k;0,n11#v~ t50;k,n1k11!

)
h4 ,h5

) 8
p50

k

@ imh2 ,h3
~ l ,n1 l 11!2 imh4 ,h5

~p,n1p11!#

. ~47!

For summations and products the same conventions have been used as in Eqs.~38! and ~39!.
Evaluation of the last matrix elementr4(t)0,0 can happen by integrating Eq.~10! over time. Its rhs follows from Eq.~39!,

with n set equal to zero. Operating in a similar vein as above, one is led to

r4~ t !0,05r4~ t50!0,01 (
k50

`

(
l 50

k
~21! l$12exp@m11,21~ l ,l !t#%$W@ im11,21~ l ,l !;k;0#v~ t50;k,k!%4

~ l 11/2!l ! ~k2 l !!)
h1

)
p50

k

@ im11,21~ l ,l !2 imh1 ,h1
~p,p!#

1
1

4
k (

h1
(
k50

`

(
l 50

k ~2ik!k$exp@mh1 ,h1
~ l ,l !t#21%$W@ imh1 ,h1

~ l ,l !;k;0#v~ t50;k,k!%4

ululmh1 ,h1
~ l ,l ! ) 8

h2 ,h3
) 8
p50

k

@ imh1 ,h1
~ l ,l !2 imh2 ,h3

~p,p!#

. ~48!
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From the results~38!, ~39!, ~46!, and ~48!, supplemented
with symmetry relations~13!, all matrix elementsr j (t)m,n
can be found. As an alternative, one can first compute
complete set of matrix elements and subsequently check
the constraints~13! are indeed fulfilled. The symmetry prop
erties~44! of the matrix R(z;m,n) should be used. A furthe
check on our solutions is carried out by letting the damp
parameterk go to zero. Then one indeed recovers the ma
elements that represent the density operator of the undam
Jaynes-Cummings model.

In Sec. II we have proved that each matrix element c
verges to its initial value if timet tends to zero. As to the
asymptotic behavior of our solutions, a physical argum
can be brought into play: If one waits sufficiently long, a
em energy will leak away from the cavity and the atom w
stay in its ground state. We thus expect that the follow
limit is valid:

lim
t→`

ir~ t !2 i 2 ^ u0&^0ui50. ~49!

Since for both the sup norm and trace norm one
ium&^nui51, the validity of Eq.~49! is implied by the state-
ments

lim
t→`

(
j 51

4

(
m,n50

`

~12d4,jd0,md0,n!ur j~ t !m,nu50, ~50a!

lim
t→`

r4~ t !0,051. ~50b!

The series(n50
` (n!) 21/2hn is convergent, so inequalitie

~20! and ~33! tell us that Eq.~50a! is true.
For completion of the proof we return to Eq.~10!. Evalu-

ation of the limit ~50b! requires that matrix elemen
v(t;0,0)4 be integrated over the complete positive time ax
By Eq. ~24! this is equivalent to first integrating the functio
e
at

g
x
ed

-

t

g

s

.

v(t;N;0,0)4 and subsequently taking the integerN to infin-
ity. In doing so, we extract from Eq.~10! the equality

lim
t→`

r4~ t !0,05r4~ t50!0,02
k

p (
k50

`

~2ik!k

3 R
G~k;0,0!

dz z21@ G~z;k;0,0!

3v~ t50;k,k!#4. ~51!

In virtue of an argument similar to the one used near E
~28!, the above integral vanishes ifG(k;0,0) is replaced by a
contour encircling all poles of matrixG(z;k;0,0), as well as
the origin. Thus the integral is equal to the matr
22p iG(z50;k;0,0). The 4j element of the latter is given
by 2pk21(2ik)2k(d1,j1d4,j ), a result that can be estab
lished by means of induction. Substitution of our findin
into Eq. ~51! leads to the desired limit.

In finishing the foregoing proof, we have made use of t
fact that for t50 the trace of the density operator equa
unity. Since this property is conserved in time, it should
made sure that our solutions respect the condition

TrA TrFr~ t !5 (
j 51,4

(
n50

`

v~ t;`;n,n! j1r4~ t !0,051 ~52!

for all t>0.
We repeat the derivation of Eq.~51!, but refrain from

taking t to infinity. For the matrix elementr4(t50)0,0 we
insert the result that is found by uniting Eqs.~50b! and~51!.
The ensuing identity enables us to eliminate the matrix e
ment r4(t)0,0 in Eq. ~52!. Upon eliminating the matrix ele-
ment v(t;`;n,n) j with the help of Eq.~17! and choosing
new summation indices, we see that Eq.~52! is equivalent to
the condition
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(
j 51

4

(
k50

` R
Gk

dz z21e2 iztc~z;k! j v~ t50;k,k! j50,

c~z;k! j5z (
p51,4

(
l 50

k

~2ik! lG~z; l ;k2 l ,k2 l !p j

1~2ik!k11G~z;k;0,0!4 j , ~53!

where the contourGk lies below the real axis and encircle
all poles of the matrices$G(z; l ;k2 l ,k2 l )% l 50

k . By means
of induction the identityc(z;k) j5d1,j1d4,j can be proved.
Hence the integral~53! is indeed identical to zero.

In this section we have obtained explicit expressions
all matrix elements of the density operator. They have b
shown to satisfy a number of important physical requi
ments. However, we still have to check whether our res
are consistent with inequalities~20! and ~21!.

IV. CONVERGENCE

The material that is presented below demonstrates
mathematical soundness of our treatment. Besides that,
of great use in performing a numerical evaluation of o
solutions. We shall be able to tell how many terms of a se
for a matrix element must be computed in order to achiev
given accuracy.

The initial density matrixr(t50) is assumed to satisf
the constraint

ur j~ t50!m,nu<g5~m!n! !21/2hm1n, ~54!

with g5 independent of the integersm,n and the paramete
h defined below Eq.~20!. The above inequality implies tha
Eqs.~20! and ~33! hold true at time zero, as required.

A possible choice forr(t50) is given byrA^ ua&^au,
where the coherent state is defined asua&
5exp(2uau2/21aa†)u0&, a being a complex number. Th
characterrA stands for a fixed atomic density matrix. Co
stantsh andg5 come out asuau and exp(2uau2), respectively.
The above initial condition gives rise to rich dynamics insi
the optical cavity. As an example, one may mention the
mous collapses and revivals in the Rabi oscillations of
atomic inversion@12#. A second choice that obeys Eq.~54! is
given byrA^ un&^nu.

Our first aim is the derivation of a bound on the sup no
of the non-Hermitian matrixR(z;m,n), defined in Eq.~41!.
Consider a complex block matrixM of dimensiond; it sat-
isfies the eigenvalue equationMv( j )5l jv

( j ), with $ v( j )% j 51
d a

set of normalized and linearly independent eigenvectors.
set of eigenvalues$l j% j 51

d may contain degeneracies. No
an arbitrary vector can be decomposed according
v5( j 51

d cj (v)v( j ), where the objects$cj (v)% j 51
d are complex

coefficients. They can be expressed
cj (v)5^(k51

d cj* (w(k)) w(k),v& if the set$w( j )% j 51
d is ortho-

normal.
On the basis of the last remark the inequal

ucj (v)u<ivi@(k51
d ucj (w

(k))u2#1/2 can be proved. It enables u
to propose for the norm of the matrixM the estimate
r
n
-
ts

e
is

r
s
a

-
e

e

to

s

iMi5sup8iMvi /ivi< (
j 51

d

ul j uS (
k51

d

ucj~ w~k!!u2D 1/2

,

~55!

where the prime reminds us of the conditionvÞ0. The co-
efficients on the rhs are determined by the constraints

(
k51

d

^w~ i !,v~k!&ck~w~ j !!5d i , j , ~56!

with i , j 51,2,3,. . . ,d.
The above result can be directly applied to the matrix

hand. From representation~12! we derive the eigenvalue
equation

A~m,n!qh1 ,h2
~m,n;k!5mh1 ,h2

~m,n!qh1 ,h2
~m,n;k!.

~57!

Eigenvaluesmh1 ,h2
(m,n) can be found in Eq.~35!. The nor-

malized and linearly independent eigenvectors are given

qh1 ,h2
~m,n;k!5 1

2 @1,bh2
~n!#T

^ @1,2bh1
~m!#T,

bh1
~m!5~m11!21/2~2h1um1 ik/2!. ~58!

They are not orthogonal as long as the parameterk differs
from zero.

Obviously, the set$qh1 ,h2
(m,n;k50)% should serve as

orthonormal frame$w( j )%. Then inversion of the matrix
^w( i ),v(k)&does not demand great algebraic efforts beca
we merely need to deal with a direct product of two 232
matrices. The solution of Eq.~56! is now a straightforward
affair and takes us to the identity

S (
k51

4

ucj~w~k!!u2D 1/2

5~m11!1/2~n11!1/2~umun!21.

~59!

The index j does not occur on the right. Hence, from es
mate~55! we can deduce the statement

i@z142 iA~m,n!#21i<
~m11!1/2~n11!1/2

umun

3 (
h1 ,h2

uz2 imh1 ,h2
~m,n!u21.

~60!

Multiplication of both sides by a factor

udet@z142 iA~m,n!#u5 )
h1 ,h2

uz2 imh1 ,h2
~m,n!u ~61!

yields the desired bound on the norm of matrixR(z;m,n).
Each denominator of Eq.~60! cancels out against a factor o
Eq. ~61!, so for all complexz the bound is finite.

Statement~21! is a direct consequence of~60!, in view of
the inequalities

uz2 imh1 ,h2
~m,n!u>uImz1k~m1n11!u, ~62!
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~m1k11!1/2/um1k<~k11!1/2/uk , ~63!

with k, m, andn non-negative integers. The constantg2 is
found as 16/(42k2), so indeedk must be chosen inside th
interval @0,2).

The proof of statement~20! is more delicate. Assumption
~54! allows us to control the norm of initial vecto
v(t50;m,n). With the help of definition~11! we arrive at

iv~ t50;m,n!i<g5max~1,h2!hm1nF ~m12!~n12!

~m11!! ~n11!! G
1/2

.

~64!

The combination of Eqs.~60!–~62! results in the inequalities

iR@ imh1 ,h2
~m1 l ,n1 l !;m1p,n1p#i

)
h3 ,h4

umh1 ,h2
~m1 l ,n1 l !2mh3 ,h4

~m1p,n1p!u

<
2~m1p11!1/2~n1p11!1/2

kum1pun1pup2 l u
, ~65!

iR@ imh1 ,h2
~m1 l ,n1 l !;m1 l ,n1 l #i

<8~m1 l 11!1/2~n1 l 11!1/2uh2um1 l1h1un1 l u,

~66!

with pÞ l in Eq. ~65! and mÞn in Eq. ~66!. Choosing the
integerp positive, we replacek by m11 on the rhs andk by
p on the lhs of Eq.~63!. The ensuing inequality will play an
important role in the following, namely, when it comes
simplifying the bounds in Eqs.~65! and ~66!.

We go to the solution for vectorv(t;`;m,n), with m
Þn, and set the above-constructed machinery in mot
Owing to results~23!, ~40!, and~64!–~66!, one can devise a
fairly economical bound on the summand of Eq.~38!. It is of
crucial importance, however, to treat each of the followi
cases separately:k5 l 50; k>1,l 50; k>1,l>1. The sum-
mation overl can be carried out with the aid of the binomi
formula. Truncating the summation overk, one ends up with

iv~ t;N;m,n!i<
4g5max~1,h2!hm1nexp@2kt~m1n11!#

umun~m!n! !1/2

3 (
k50

N

~m1k12!1/2~n1k12!1/2

3@j~ t;m,n!#k/k!. ~67!

The new function reads

j~ t;m,n!5
4~m12!1/2~n12!1/2h2

um11un11
~11 e22kt!. ~68!

The above inequality can also be established in the case
the integersm andn are equal. This assertion can be prov
by means of a simple argument. Regardingm andn as con-
tinuous variables, one can verify that Eq.~38! reduces to the
solution ~39! upon taking the limitm→n. Therefore, it is
sufficient to take the same limit in Eq.~67!.
.

at

Employing in Eq. ~67! the inequality (m1k
12)1/2<(k12)1/2(11m1/2), we reach the conclusion tha
the vector v(t;`;m,n) indeed fulfils condition~20!, with
constantg1 taking on the form

g154u0
22g5max~1,h2!~21j0!ej0. ~69!

The shorthand notationj05j(t50;m50,n50) has been
used. Timet may be taken either zero or positive. Thus t
assumption made above Eq.~27! appears to be true as wel

The derivation of Eq.~67! can be repeated for the norm o
the difference vectorv(t;`;m,n)2v(t;N;m,n) without any
problems. Evidently, on the rhs of the corresponding
equality summation indexk runs fromN11 to infinity. In
the square roots of the summand we replace integersm and
n by max(m,n). Then one encounters the sum(k5N

` xk/k!,
which is dominated by the expression (N11)xN/
@N!(N112x)# as long asx does not leave the interva
@0,N11). Consequently, the following inequality can be p
forth:

iv~ t;`;m,n!2v~ t;N;m,n!i

<
4g5max~1,h2!hm1nexp@2kt~m1n11!#

umun~m!n! !1/2

3
@max~m,n!131N#jN11

@N112j#N!
, ~70!

where the integerN11 may not become smaller than fun
tion j, defined in Eq.~68!.

We calculate the absolute error, as given by the rhs of
~70!, for the case that at time zero the field is in a coher
state. Making the choicesuau2510, k50.01,m,n<100, and
t>0, we find that forN>240 the distance between vecto
v(t;`;m,n) and v(t;N;m,n) is smaller than 1.231029. By
employing Eqs.~10!, ~30!, ~32!, and ~70!, one can also ac-
quire truncation criteria for the series that represent the v
tor w(t;0,n) and matrix elementr4(t)0,0.

V. WEAK DAMPING

The matrix V(z;k;m,n), defined in Eq.~40!, forms the
backbone of our solution for the density operator of t
damped Jaynes-Cummings model. Unfortunately, the a
lytic evaluation of the elements ofV turns out to be a tough
job. At the same time, for the undamped casek50 the struc-
ture of the matrix product~40! is expected to become muc
more transparent. For that reason we shall calculate
atomic density matrixrA(t)5 TrF@r(t)# in the limit of small
damping parameter. As the initial state we choo
r(t50)5r A^ ua&^au, with the coherence parametera real.

The upper-left element of the atomic density matrix
given by

rA~ t !115 (
n50

`

v~ t;n,n!1 . ~71!

For the vector component on the rhs we insert the solu
~39!. By inequality ~67!, the resulting double series con
verges uniformly on each closed interval 0<k<22e.
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Hence its behavior for smallk may be studied by operatin
behind the summation signs. Limiting our attention to t
first summation of Eq.~39!, we meet the expression

~21!k1 l 11n!exp@2kt~2n12l 11!#

4k11l ! ~k2 l !! ~n1k11!!

3W~z50;k;n!uk50v~ t50;n1k,n1k!. ~72!

Contributions of orderkn3/2 have been discarded. Sinc
terms withn.a2 generate the largest contributions to E
~71!, we see that the productka3 is to remain small@32#.
There is no restriction on the value of timet. Most important
of all, the elements of matrixW can be evaluated now. On
has

W~z50;k;n!1 j uk50

5
2~21!k11~n1k11!! ~2n12k11!!

~n1k!! ~2n11!!
~d1,j1d4,j !,

~73!

as follows from Eqs.~40!–~45! by performing an induction
proof.

If k is taken small in the second summation of Eq.~39!,
only the summand with indexk equal to zero survives. Its
evaluation does not require any further restrictions on
parameters. The final result for the atomic matrix elem
reads then

r A~ t !115 (
n50

`

(
k50

`

F1~ t,a,k;n,k!1 (
n50

`

F2~ t,a,k;n!,

~74!

with the summands given by

F1~ t,a,k;n,k!5
1

2
e2a22kt

n! ~2n12k11!!

4kk! ~2n11!! @~n1k!! #2

3@rA,111a2rA,22~n1k11!21#

3@a2~12e22kt!#k@a2e22kt#n, ~75!

F2~ t,a,k;n!5
1

2
e2a22ktRe$exp@22i t ~n11!1/2#

3@rA,112a2rA,22~n11!2122ia

3ImrA,12~n11!21/2#%
1

n!
@a2e22kt#n.

~76!

The above series are convergent, and for Eq.~74! the choice
t50 yields the initial matrix elementrA,11, as expected. By
repeating the foregoing computation for the diagonal elem
rA(t)22, one confirms the identity TrArA(t)51, which is a
consequence of Eq.~52!. We mention that in Ref.@7# the
Jaynes-Cummings model with weak cavity damping h
been studied as well, but not on the basis of an exact s
tion. Results have been reported that are at variance
Eqs.~74!–~76!.
.
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The upper-right element of the atomic density mat
must be obtained from

rA~ t !125r3~ t !0,01 (
n50

`

v~ t;n11,n!3 , ~77!

where the rhs can be elaborated with the help of relati
~13!, ~38!, and~46!. The weak-damping limit can be taken i
a similar vein as before. The off diagonal comes out as

rA~ t !125
1

2
~rA,122arA,22!exp~2kt/22a21 i t !

1
1

2
~rA,121arA,22!exp~2kt/22a22 i t !

1 (
n50

`

F3~ t,a,k;n!, ~78!

with the summand given by

F3~ t,a,k;n!

5
a

4n! ~n11!1/2@a2e22kt#n (
h1 ,h2

exp$2a222kt

1 i t @h1~n11!1/21h2~n12!1/2#%

3@h1rA,112h2a2rA,22~n11!21/2~n12!21/2

1arA,12~n11!21/22h1h2arA,12* ~n12!21/2#. ~79!

Again, the choicet50 produces the initial value of the ma
trix element. Symmetry relations~13! ensure that the lower
left element of the atomic density matrix is equal to t
complex conjugate of Eq.~77!.

For the case of weak damping, with productka3 small,
the simple results~74! and~78! constitute a solid approxima
tion to the atomic density matrix. They offer us the possib
ity to study analytically how the two-level atom evolves
time. Formulas for collapse and revival times can be deriv
along the same lines as in Ref.@33#. A second, and more
rewarding, application of Eqs.~74! and ~78! consists of in-
vestigating the behavior of the exact atomic density matrix
the limit

lim8
k→0

f ~ t,a,k!5 lim
k→0

f ~ t̃ /k,ã /k1/4,k!, ~80!

with f an arbitrary function;t̃ and ã are positive constants
In the undamped case the atomic density matrix alm

coincides with the central state1212 as t becomes large. On
the other hand, by settingk zero in Eq.~74!, one sees tha
the density matrix contains oscillating terms that do not
cay to zero and thus inhibit convergence. Below we pro
that for the limit ~80! all oscillations do decay, so that con
vergence to the central state does take place.

First of all, we observe that in the limit~80! the parameter
k and productka3 both go to zero. Hence the differenc
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between a matrix element~74! or ~78! and its exact counter
part goes to zero as well. The absolute value of the se
figuring in Eq. ~78! is smaller than the form
a3exp$2a2@12exp(22kt)#% multiplied by a positive con-
stant. Sincet̃ 5kt is greater than zero, it follows that ex
pression~78! vanishes in the limit~80!. In other words, the
exact atomic density matrix becomes diagonal. A similar
gument shows that the second series on the rhs of Eq.~74!
does not survive the limit~80! either.

The remaining contribution to Eq.~74! must be handled
carefully. Fore positive one has

(
n50

[ ea2]

(
k50

`

iF1~ t,a,k;n,k!i

<4a6exp@2a2~e22kt1e lne2e!#, ~81!

owing to the inequality

~n! !2~2n12k11!!

4k~2n11!! @~n1k!! #2 <11
k

n11
, ~82!

where integersk and n are non-negative. For the doub
series withn running from zero to infinity andk from zero to
@ea2#, one derives a bound that is analogous to the one
Eq. ~81!. If e is taken sufficiently small, both bounds dec
exponentially to zero fora large. Thus it is possible to re
place the lower boundaries of double series~74! by @ea2#.
Now one can represent all factorials by means of Stirlin
expansion@34#. This last step paves the way for making u
of the transition

L21 (
k5[aL]

[bL]

f ~k/L !5E
a

b

dx f~x!1@ f ~a!1 f ~b!#/2L

1O~L22!, ~83!

whereL is large andf denotes a continuous function. In th
present case one only needs the first contribution on the
of Eq. ~83!.

Upon following the above instructions, Eq.~74! reduces
to

rA~ t !115
a2e2kt

4p E
e

`

dxE
e

`

dy
~x1y!1/2

x1/2y

3@rA,111rA,22~x1y!21#exp@a2g~x,y!#

1O~a22!, ~84!

with the definition

g~x,y!5211x1y2x ln@x/~12e22kt!#

2y ln~ye2kt!. ~85!

The integral~84! demonstrates that the introduction of a cu
off parametere is indispensable, as the integrand diverges
the origin. The limit~80! takes the parametera to infinity, so
in calculating Eq.~84! one can call upon the saddle-poi
method@35#. The result 1/2 is found.

From the foregoing considerations we learn that the ex
atomic density matrix possesses the limit
es

r-

in

s

hs

t

ct

lim8
k→0

rA~ t !5 1
2 12. ~86!

The initial staterA of the atom may be chosen arbitrarily
The above result remains valid if the coherence param
a is chosen to be complex.

We should also investigate how the resonant field mo
behaves under the limit~80!. The mean photon number an
second moment of the photon distribution can be calcula
from the relations

n̄~ t !5 TrF@a†arF~ t !#,

n2~ t !5 TrF@a†aa†arF~ t !#. ~87!

By adopting the same methodology as earlier, the reader
be convinced of the fact that the following expansions h
true:

n̄~ t !5~a21 1
2 2rA,22!e

22kt1O~a22!, ~88!

n2~ t !5a4e24kt1a2e22kt1a2~122rA,22!e
24kt1O~a0!.

~89!

The parameterk is small, whereasa and t satisfy the con-
straints belonging to Eq.~80!. Notice that not only the lead
ing but also the next-to-leading terms have been evalua
Hence, in making the transition~83!, one has to cope with
contributions that arise from the correction term of ord
1/L. All of these turn out to be of exponential decay.

Often, one characterizes a photon distribution by me
of a factorQ5n2/ n̄2 n̄21 @36#. The above results revea
that

lim8
k→0

Q~ t !50. ~90!

The Q factor takes on the value that belongs to a coher
state. In assessing Eq.~90!, one should be aware of the fac
that the density operator itself may not be replaced b
coherent state. To enlighten this statement we assume
existence of a complex functionb(a) for which the norm
uTrF@arF(t)#2b(a)u vanishes in the limit~80!. It can be
verified that the expectation value TrF@arF(t)# is of expo-
nential decay asuau gets large, so we conclude that the sam
must be true for functionb. By identity n̄5ubu2, the last
requirement contradicts Eq.~88!.

As a final point, we observe that the limits~86! and ~90!
are not affected by a transformation of the density operato
the Schro¨dinger picture. The unperturbed Hamiltonian of th
Jaynes-Cummings model commutes with both the unit
erator in Eq.~86! and the number operator in Eq.~87!.

VI. SUMMARY

In the Jaynes-Cummings model with cavity damping t
evolution of all observables is dictated by the master eq
tion ~3! for the density operatorr(t), at least if the cavity
does not contain any thermal photons. By adopting a rep
sentation based on direct products of two-dimensional C
tesian vectors$e1 ,e2% and photon-number states$un&%, the
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master equation can be converted into an infinite set of o
nary differential equations. Subsequently, upon going ove
Laplace language and distributing all matrix eleme
^ei ^ mur(t)uej ^ n& over two- and four-dimensional vector
in a suitable manner, two algebraic recursion relations
found. As shown in Sec. II, these can be solved exactly
performing an iterationad infinitum. Convergence is secure
with the help of a few inequalities, the verification of whic
is carried out at a later stage.

The iterative procedure provides us with solutions for
matrix elementŝ ei ^ mur(t)uej ^ n&, each of these being a
infinite series. Explicit results are presented in Sec. III. Th
obey important physical constraints on the density opera
namely, Hermiticity, conservation of trace, convergence
the initial state for small times, as well as convergence to
state of lowest energy for large times. The last three prop
ties can be proved on the basis of techniques from func
theory. At this point the advantages of Laplace transform
tion become manifest.

Invoking some methods from linear algebra, we dem
strate in Sec. IV that our solutions for the matrix elements
the density operator are consistent with all of the inequali
employed earlier. Besides that, we estimate for each ma
element how fast its solution converges. This information
useful when undertaking a comprehensive numerical st
on the evolution of observables. The conclusions of suc
study will be discussed in a forthcoming paper@37#.

The results of Sec. IV can also serve to find out h
cavity damping affects the magnitude of matrix elemen
For instance, together with Eq.~38! the inequality ~67!
tells us the following: As soon as damping parameterk
has a finite value, the modulus of produ
exp(kt)^e1^ mur(t)ue1^ n& decreases by a factor o
exp(2kt) for each photon making up statesum& and un&. As
pointed out in the Introduction, this can be understood fr
the fact that the photons inside the cavity experience a fi
transparency of the cavity mirrors simultaneously. Simi
reasoning can be held for the other matrix elements of
density operator.

The foregoing observations have an important con
quence for the work performed in Sec. V. There the atom
density matrix is evaluated for the case that damping is w
and the field is initially in a coherent state. Due to fac
hm1n(m!n!) 21/2 on the right-hand side of Eq.~67!, the chief
contributions to Eqs.~71! and ~77! possess a summation in
dex n of ordera2. Therefore, if the coherence parametera
increases, one has to face more factors of exp(2kt) in evalu-
ating Eqs.~71! and ~77!, so that the impact of cavity damp
ing on the atomic density matrix becomes stronger. The
statement has been advanced before, on the basis of a
merical computation of the atomic inversion@13#.

As seen from a theoretical standpoint, one advantag
the present model over its undamped counterpart reside
the limit ~49!. This result permits us to make a clear-c
statement on the behavior of observables for long time
possibility that is lacking for the Jaynes-Cummings mo
itself. On the other hand, by taking the limit~49! one com-
pletely disregards the interesting asymptotic behavior of
atomic density matrix in the undamped case. Fork equal to
zero andt large, the atom hovers about the central state1
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and thus attempts to maximize its von Neumann entro
SA52TrA@rA(t)lnrA(t)# @38#.

In Sec. V we prove that the exact atomic density mat
truly converges to the central state if the parameterst, a, and
k21 are taken to infinity such that the productskt andka4

remain constant. Numerical work shows that the new limi
not only of mathematical interest. For example, if the choic
k50.001 and a55 are made, then on the interva
250<t<1250 the entropySA differs from its maximal value
ln2 by an amount of 1023 at most. This long stage of quas
equilibrium is preceded by the usual dynamics of collap
and revival in the Rabi oscillations of the inversion. F
t.1500 dissipation sets in and the atom decays toward
ground state.

We point out that the remarkable crossover from quas
versible to fully irreversible behavior persists if the initi
condition for the field is modified. In the Appendix we e
tablish an asymptotic limit, which is similar to Eq.~80!, for
the case that the field starts from a photon-number state.
various stages in the time evolution of the atomic dens
matrix will be discussed at length in a future paper@37#.

Finally, it should be mentioned that one can try to app
the strategy developed in this paper to the case in wh
atomic detuning and spontaneous emission are present
the contrary, the handling of thermal photons might pro
difficult because then one meets an operatorL2 of a different
structure as before.
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APPENDIX: PROOF OF A LIMIT

Opting for the initial condition

r~ t50!5rA^ um&^mu, ~A1!

whereum& denotes a photon-number state~2!, we set out to
prove a limit that is akin to Eq.~86!. Like before, we take the
time, the square of the initial em energy density, and
inverse of the cavity-damping parameter to infinity in such
manner that all of the ratios between these quantities rem
constant. The limit~80! is thus replaced by

lim9
k→0

f ~ t,m,k!5 lim
k→0

f ~ t̃ /k,m̃/k1/2,k!, ~A2!

with t̃ andm̃ positive constants.
Following the same route as in Sec. V and choos

m>1, we obtain from Eqs.~71!, ~77!, and~A1! the follow-
ing results for the atomic density matrix:

rA~ t !115
1
2 rA,11e

2ktC~kt;m!1 1
2 rA,22e

2ktC~kt;m21!

1 1
2 rA,11e

2kt~2m11!cos@2t~m11!1/2#

2 1
2 rA,22e

2kt~2m21!cos@2tm1/2#, ~A3!
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rA~ t !125rA,12e
22ktmcos@ tm1/2#cos@ t~m11!1/2#. ~A4!

We have defined a series

C~ t;m!5bm (
k50

m

bk
21 S m

k D @e22t#k@12e22t#m2k,

~A5!

bm5
~2m11!!

4m~m! !2 . ~A6!

The damping parameterk must be chosen such that the pro
uct km3/2 is small.

All contributions that contain a cosine factor do not su
vive the limit ~A2!. For series~A5! things work out differ-
ently because we can establish the bounds

1< lim
k→0

9C~kt;m!<e2kt, ~A7!

by employing the inequalities

1<bm /bk<~m11!/~k11!, ~A8!

which are valid form>k. In evaluating the limit in Eq.~A7!,
we replace boundariesm and 0 of the sum~A5! by
an

Le
nd

p

, J

h

-

m2@em# and @em#, respectively. Ife is chosen sufficiently
close to zero, the ensuing errors vanish in the limit~A2!, as
one can demonstrate with the help of Eq.~A8!.

Upon inserting Stirling’s expansion for all factorials an
making the transition~83!, we see that in leading order o
m the series~A5! becomes equal to

C~kt;m!5S m

2p D 1/2 E
e

12e

dx
exp@2mh~x!#

x~12x!1/2 , ~A9!

with the function

h~x!5~12x!ln@~12x!/~12e22kt!#1x ln~xe2kt!.
~A10!

Application of the saddle-point method gives the res
exp(kt) for the integral~A9!. Hence we have proved the lim

lim9
k→0

rA~ t !5 1
2 12 . ~A11!

If the field is in a photon-number state at time zero, t
atomic density matrix converges to the central state under
limit ~A2!.
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