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Laser cooling, friction, and diffusion in a three-level cascade system

W. Rooijakkers,* W. Hogervorst, and W. Vassen
Department of Physics and Astronomy, Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, the Nether

~Received 24 March 1997!

A model is presented to calculate optical forces, friction, and diffusion for three-level atoms in a ladder
configuration. This model is then applied to the 23S1-23P2-33D3 cascade in metastable helium. It is demon-
strated that metastable helium atoms can be decelerated within a much shorter distance using cascade excita-
tion by overlapping traveling waves. The equilibrium temperature representing the final width of the velocity
distribution is calculated as a function of laser detuning and intensity. This equilibrium temperature is also
calculated for the situation of overlapping standing waves~one-dimension!, and is found to be well above the
Doppler limit for two-level 23S1-23P2 excitation. Numerical results are compared with existing experimental
data.@S1050-2947~97!03310-6#

PACS number~s!: 32.80.Pj, 42.50.Vk
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I. INTRODUCTION

First proposals for laser cooling of atoms started with
simplest situation of a two-level atom interacting with
external laser field. However, it was soon realized that
multi-level structure of atoms can be exploited to achie
much lower temperatures. One example of this is s
Doppler polarization gradient cooling, which was theore
cally described by Dalibard and Cohen-Tannoudji@1#. It is
based on the delicate interplay of optical pumping betw
several Zeeman sublevels and the externally varying po
ization. Another example is velocity selective coherent po
lation trapping~VSCPT! @2#. In this scheme atoms are pre
pared in a coherent superposition of several Zeeman gro
states such that they no longer interact with the light fie
The latter is a necessary requirement for obtaining temp
tures below the recoil limit.

Almost all of the theoretical and experimental work o
multilevel laser cooling deals with systems displaying Ze
man degeneracy. In this paper we study laser cooling
diffusion in a three-level cascade. Examples of three-le
cascade systems that may be considered
32S1/2→32P3/2→32D5/2 in sodium ~wavelengths 589 and
820 nm!, 22S1/2→22P3/2→32D5/2 in lithium ~wavelengths
671 and 610 nm!, and 52S1/2→52P3/2→52D5/2 in rubidium
~wavelengths 780 and 776 nm!. In our calculations we will
restrict ourselves to the 23S1→23P2→33D3 cascade in
metastable helium~wavelengths 1083 and 588 nm!.

Questions that may arise in such excitation processes
as follows: ‘‘Can the cooling force be enhanced using
extra laser exciting the upper transition? Can the tempera
in optical molasses be lowered by adding the second l
excitation? How large are friction and diffusion coefficien
in cascade excitation?’’

Zeeman degeneracy of the three-level cascade will no
considered. Such a degeneracy may give rise to com
cooling schemes similar in nature to polarization gradi
cooling and VSCPT. We will focus on the phenomenolo
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introduced by the use of an extra laser with a different f
quency, exciting the atoms to a higher energy. For the
situations that we will discuss, excitation by overlappi
traveling waves and excitation in one-dimensional two-co
molasses~with overlapping standing waves!, the atoms may
always be prepared in an ideal three-level configuration,
ing optical pumping.

This paper is organized as follows. First we introduce
relevant parameters of this problem. We will describe
equations of motion for the internal states of the atom wh
recoil is neglected~optical Bloch equations!. Characteristic
parameters in laser cooling are friction and diffusion coe
cients and we will give procedures to calculate these for
cascade system, including numerical examples for the c
of metastable helium. Finally we will discuss experimen
work by Kumakura and Morita who used cascade excitat
of metastable helium atoms confined in a magneto-opt
trap @3#.

II. DESCRIPTION OF THE ATOM-FIELD SYSTEM

We consider a three-level system, with a ground stateu0&,
an intermediate stateu1&, and an upper stateu2& ~see Fig. 1!.
The laser fieldE1 couples statesu0& and u1&; a second laser

FIG. 1. Three-level atom interacting with two laser fields in
cascade configuration.
3083 © 1997 The American Physical Society
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3084 56W. ROOIJAKKERS, W. HOGERVORST, AND W. VASSEN
field E2 statesu1& and u2&. There is no direct coupling be
tween u0& and u2&, i.e., the dipole moment̂2ur u0& is zero.
Thus the total electric fieldE may be written as

E~R!5E1~R!cos@v1t1u1~R!#1E2~R!cos@v2t1u2~R!#,
~1!

whereEi(R) is a spatially dependent amplitude of the ele
tric field (i 51,2), andu i the phase of the respective fiel
The Hamiltonian for the system schematically shown in F
1 is

H5HA1HV1VAL1VAV . ~2!

HA represents the energy of the atomic system, contain
both kinetic energy and internal energy,HV represents the
energy of the quantum~vacuum! radiation field.VAL and
VAV are interaction terms of the atom with the laser field a
the vacuum field, respectively. For the cascade system
interactionVAL consists of two terms, one for each laser fie
present:

VAL52d1•E12d2•E2 . ~3!

Here d1 and d2 are the dipole moments for the two trans
tions in the cascade. It is common to introduce Rabi frequ
cies to describe the strength of the laser field:

V i~R!5di•Ei~R!/\. ~4!

The interaction of the excited atom with the vacuum fie
leads to spontaneous emission which we will treat phen
enologically throughout this paper. The transition rates
radiative decay of the intermediate and upper level are gi
by

G i5di
2v i8

3/~3p«0\c3!. ~5!

Here v i8 is the atomic transition frequency. The differen
between the laser frequencyv i and the atomic transition fre
quenciesv i8 is the detuningd i :

d i5v i2v i8 . ~6!

Equations~4!, ~5!, and~6! define the fundamental paramete
in our context of cascade laser cooling and its semiclass
description. We will derive friction and diffusion coefficien
which in principle depend on these six parameters. This la
number of parameters makes it hard to search for optim
forces or temperatures. For a specific atom the transi
linewidths are known, resulting in a remaining set of fo
adjustable parameters.
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III. EQUATIONS OF MOTION FOR THE INTERNAL
STATE OF THE ATOM

The time evolution of the internal state of the atom~ne-
glecting recoil! is described by optical Bloch equation
~OBE’s!, which in their most general form are written as

d

dt
r̂5

1

i\
@Ĥ,r̂ #1 r̂ relax, ~7!

where r̂ is the density matrix operator of the system
Throughout this paper a circumflex is written to emphas
that the corresponding symbol represents a quant
mechanical operator, containing ket-bra projection operat
e.g., r̂ i j 5u j &^ i u. When the operator form is not shown e
plicitly, the symbol represents an expectation value, e
r i j 5Tr@ r̂• r̂ i j #5^r̂ i j &. Using the rotating wave approxima
tion, the full set of nine equations that appear in the thr
level cascade case, including the relaxation terms due
spontaneous emission, have been worked out by Whitley
Stroud@4#. This set of equations takes the following form

dx

dt
5A•x. ~8!

HereA is a 939 matrix containing the six parameters in th
problem~linewidths, Rabi frequencies, and detunings! andx
is a column vector containing the nine expectation values
the density matrix elements@Whitley and Stroud takex
5(r22,r21,r20,r10,r00,r01,r02,r12,r11)#. In a steady-state
situation the left-hand side of Eq.~8! is zero, resulting in a
set of linear equations. Since this system is overdetermin
one of the equations may be cancelled and be replaced b
condition that the sum of all populations equals one (r00
1r111r2251). This results in a set of nine independe
equations that formally may be described as

Fdx

dt G
p

5Ap•x. ~9!

The subindexp refers to the fact that one of the rows in th
matrix A has been changed. Thus analytical expressions
be found for the steady-state values of the density ma
elementsr i j (0< i , j <2). These expressions are given e
plicitly in an appendix of the Whitley and Stroud paper@4#.
They are rather lengthy and are not reproduced here.

We prefer to cast the optical Bloch equations of Whitl
and Stroud into a different form, using the following tran
formation:
the
r optical
the
u015r011r10, u125r121r21, u135r021r20,

v0152 i ~r012r10!, v1252 i ~r122r21!, v1352 i ~r022r20!,

w015r002r11, w125r112r22. ~10!

This approach has several advantages. The parameters (u,v,w) correspond to the real part of the atomic polarization,
imaginary part of the atomic polarization and the atomic inversion, respectively. As we shall explain the expressions fo
forces on the atom take their simplest form using the (u,v,w) parametrization; the two types of forces identified, i.e.,
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dissipative spontaneous emission force and the reactive dipole force correspond to the imaginary and real part of th
polarization, respectively@5#. The optical Bloch equations now contain only real terms and take the form

dy

dt
5B•y1b, ~11!

where the matrixB is given by
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and the inhomogeneous vectorb by

b5S 0,0,
4G122G2

3
,0,0,

4G222G1

3
,0,0D . ~13!

The vectory5(u01,v01,w01,u12,v12,w12,u02,v02) contains
the density matrix information. The steady-state solution
Eq. ~11! ~for a nonmoving atom at positionR! can be found
analytically, but in general the expressions for the eleme
of y are rather lengthy@6#. In the limit where the upper
transition is not excited (V250) the above set reduces
four equations. After elimination of thew12 term, the famil-
iar set of three OBE’s for the two level system is obtaine

For zero detuning and high intensities~d15d250; V1,2
@G1,2! Cohen-Tannoudji and Reynaud found a dressed-a
basis@7#. This allows for a better physical understanding
this limiting situation and a direct calculation of the popu
tions. The advantage of a dressed-atom approach van
for nonzero detuning as the complexity of the expressi
then becomes comparable to those of the OBE approac

Now that we have a full description of the atomic dens
matrix we may calculate expectation values for a
quantum-mechanical operatorÔ, using the well known iden-
tity ^Ô&5Tr@ r̂ Ô#. We will proceed in the next paragraph
by writing down expressions for the force operator. Valu
for diffusion and friction cannot directly be calculated b
tracing over the density matrix, since they containtwo-time
correlations between the density matrix elements. This
cessitates that we take into account the unitary evolution
f
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the complete system~including the vacuum reservoir!. This
will be explained in more detail in Sec. VI.

IV. OPTICAL FORCES IN THE CASCADE SYSTEM

The center-of-mass motion of the atom can be descri
by the Heisenberg equations for the positionR and the mo-
mentumP @5,8–10#. The velocity of the center of mass i
given by

Ṙ5
1

i\
@R,H#5

]H

]P
5

P

M
. ~14!

The force operatorF(R)5M R̈5Ṗ is given by the Heisen-
berg equation forP:

Ṗ5
1

i\
@P,H#52

]H

]R
. ~15!

Using Eq.~2! we find

F̂~R!52¹V̂AL~R!2¹V̂AV~R!. ~16!

It may be shown that the second term vanishes in the qu
classical calculation of the mean force. However, this te
gives a significant contribution to the diffusion, as will b
described later. Usingd15d1ez(u0&^1u1u1&^0u) and a simi-
lar expression ford2 , and using Eqs.~3! and ~4!, dropping
the counter-rotating terms, we find the following expressio
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V̂AL5
\V1~R!

2
@e2 iu1~R!e2 iv1tu1&^0u1H.c.#

1
\V2~R!

2
@e2 iu2~R!e2 iv2tu2&^1u1H.c.#. ~17!

Here it has been assumed that the laser fields may be wr
asEi(r ,t)5ei(r )Ei(r )cos@vit2ui(r )#, whereei(r ) andEi(r )
are the spatially dependent polarization and amplitude of
field, respectively@5#. Inserting Eq.~17! into Eq. ~16!, and
using the operator form of Eq.~11!, we get the following
expression for the cascade force expectation value:

Fcascade5
\

2
~u01¹V11v01V1¹u1!

1
\

2
~u12¹V21v12V2¹u2!. ~18!

The average force thus consists of four terms, the first
corresponding to the lower transition, the last two to t
upper. As in a two-level system the force can be split int
phase gradient part corresponding to radiation pressure
an intensity gradient part corresponding to a dipole force
is easily seen that this picture can be generalized to m
level cascade systems. We shall see later that contributio
the diffusion do not necessarily add up for the different tra
sitions, i.e., cross terms may appear.

For overlapping plane traveling waves the intensity gra
ent part vanishes and the phases are given byu i5k i•R with
ki52p/l i the wave vector of the laser radiation. Using Eq
~10!, ~11!, and~18!, we find the following expression for th
average radiation force:

F rad5\k1G1r111\k2G2r22. ~19!

The radiation force in Eq.~19! can be easily under
stood: the terms on the right-hand side correspond to
momentum change that is caused by the fact that a ph
\k is always absorbed in one direction whereas it is spo
neously emitted in a random direction. The rate of photo
scattered is given by the upper state population for each t
sition divided by its average lifetime. Equation~19! has been
experimentally tested for metastable helium@11#. For this
atom the second term can be made much larger than the
one, which allows for a theoretical enhancement of the
diation force by almost an order of magnitude compared
two-level system. To test this an atomic beam of metasta
helium atoms was perpendicularly crossed by two overl
ping traveling waves exciting the cascade. The deflection
the atomic beam as a result of the radiation force was m
sured, and it was found that the deflection for two-color e
citation could be made a factor of 8 larger than the maxim
deflection for one-color~two-level! excitation. Moreover, the
behavior of the force enhancement as a function of la
intensities was shown to be in agreement with the mo
outlined above.

We point out that the term bichromatic cooling has a
been used in the literature for describing a situation of ov
lappingstandingwaves, where the phase gradient is abse
Groveet al. @12# have described such a situation in a casc
level system in rubidium, deriving a position dependent fo
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which may also exceed the maximum spontaneous emis
force for the two-level system.

V. FRICTION AND DIFFUSION

So far we have described the internal motion of the at
ignoring recoil. For a study of laser-cooling processes, ho
ever, the external degrees of freedom are relevant as w
and must be included in the density matrix formalism. F
mal procedures exist to derive evolution equations for
phase-space distribution of a statistical sample of atoms
comparison of semiclassical and fully quantum-mechan
approaches to this problem is given by Dalibard and Coh
Tannoudji @13#. We will use the semiclassical expressio
used by Cook@8# and Gordon and Ashkin@10# for a two-
level system. These expressions were also applied by U
et al. @14#, Nienhuis, van der Straten, and Shang@15#, and
Mo” lmer @16# to systems displaying Zeeman structure. It c
be shown that under certain conditions~de Broglie wave-
length of the atom much smaller than the laser wavelen
and \G@\2k2/2M @5#! the evolution of the distribution
function in phase spacef (R,P) may be described by a
Fokker-Planck equation@17#:

] f

]t
52

P

M

] f

]R
2

]

]P
~Ff !1

]2

]P2 ~D̄ f !. ~20!

The right-hand side of this equation shows three terms.
first is a hydrodynamic term which describes the free spa
evolution of the distribution, given its velocity. This term
may be included on the left-hand side of the equation usin
total derivative instead of a partial derivative. The seco
term represents the effect of the mean~cooling! force F on
the phase-space distribution. If the phase space distributio
sufficiently confined in momentum, this mean force may
linearized: F52ā(P/M )52āv where ā is called the
friction tensor~ā is used instead ofa to emphasize the ten
sorial character!. The third term in Eq.~20! describes the
effect of fluctuations in the optical force. These fluctuatio
are represented by the diffusion tensorD̄, given by

2D̄5
Š~D P̂2^D P̂&!2

‹

Dt

5E
2`

`

@^F̂~t!F̂~0!&2^F̂~0!&^F̂~t!&#dt. ~21!

Diffusion may thus be expressed in terms of two-time for
correlations, and special techniques have to be employe
calculate expressions of the type^Â(t1)B̂(t2)& @18#. Symme-
try allows us to integrate the above expression starting fr
time zero. We assume that the atom is in the steady sta
time t50 so that we may replacêF̂(t)&^F̂(0)& with
^F̂(0)&^F̂(0)& @19#, resulting in

D̄5Re E
0

`

@^F̂~t!F̂~0!&2^F̂~0!&^F̂~0!&#dt. ~22!

In the rest of this paper we limit ourselves to a on
dimensional situation, implying that we only consider a d
fusion scalarD rather than a tensorD̄.
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The total diffusion coefficient may be written as the su
of two contributions: D tot5Dcorr1Dspon. The second term
is due to spontaneous emission which must be dealt w
separately if the atom-vacuum interaction@VAV in Eq. ~2!# is
not included in the derivation of the force operator@Eq.
~16!#. The result for the cascade system, extending the t
level result, becomes@8#

Dspon5
1

10
~\k1!2G1r111

1

10
~\k2!2G2r22. ~23!

The factor 1/10 is due to the fact that spontaneous em
sion is nonisotropic in three dimensions@8,15# ~the factor for
the diffusion coefficient in a direction perpendicular to t
induced dipole moment is a factor of 2 larger, i.e., 1/5
stead of 1/10!. For the specific case of metastable helium
second term at the right-hand side of Eq.~23! becomes domi-
nant in case of sufficient population of the upper level (r22
.0.05). Dsponcannot exceed a certain value determined
the atomic parameters, contrary to the termDcorr which gen-
erally dominates for situations with high laser intensity~in
which case the total diffusion becomes proportional to
Rabi frequency, as it determines the rate at which phot
are transferred to different modes by stimulated emission!.

Dcorr accounts for the stochastics in the laser-atom in
action. We will calculate this term following the prescriptio
of Mo” lmer and Agarwal@16,20#. The force operator may b
formally expressed as

F̂~R,t!5(
i j

Fi j ~R!u j &^ i u~t!5(
i j

Fi j ~R!r̂ i j ~t!. ~24!

In accordance with the Heisenberg picture the projection
erators u j &^ i u depend on timet ~in contrast with the
Schrödinger picture, where the system eigenstates are ti
dependent instead of the operators!. Equation~22! may be
rewritten as

D~R!5Re (
i jkl

Fi j ~R!Fkl~R!E
0

`

@^r̂ i j ~t!r̂kl~0!&

2^r̂ i j ~0!&^r̂kl~0!&#dt

5Re (
i jkl

Fi j ~R!Fkl~R!E
0

`

f i jkl ~R,t!dt, ~25!

with the indicesi , j ,k,l running over all levels of the cas
cade. According to the quantum regression theorem~see,
e.g.,@21#!, the quantitiesf i jkl follow the same equations o
motion as the expectation values for the elements of the d
sity matrix @Bloch equations~8!#:

ḟkl~R,t!5A~R!fkl~R,t!. ~26!

HereA(R) is the same matrix as in Eq.~8!, and thef i jkl are
grouped in a vectorfkl . The elements in this vector ar
positioned using the labeli , j the same way as convened
Eq. ~8!: fkl5(f22kl ,f21kl ,f20kl ,f10kl ,f00kl ,f01kl ,f02kl ,
f12kl ,f11kl).Each possible combination of labelsk,l re-
quires a new evaluation of Eq.~26!. Now the integral in Eq.
~25! can be calculated, usingf i jkl (R,`)50:
th

o-
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e-

n-

E
0

`

fkl~R,t!dt52Ap
21~R!fkl~R,0!p . ~27!

The Bloch matrixAp(R) is the same as in Eq.~9!. The sub-
index p refers to the insertion of the condition that the int
gral off i jkl has zero trace@16#, the corresponding element i
fkl(R,0)p should thus be a zero. The vectorfkl(R,0) con-
taining the initial values (t50) can be calculated using one
time expectation values for the density matrix, given by E
~9!:

f i jkl ~R,0!5r jk~R!d i l 2r i j ~R!rkl~R!. ~28!

The delta function arises from the fact that the project
operator u l &^ku(0) is followed by the projection operato
u j &^ i u(0) before calculating the expectation value, and^ i u l &
5d i l ~orthogonal and normalized states!. As a consequence
the diffusion coefficient in a system containing more th
two levelscannotbe considered as consisting of independ
terms for the respective transitions, or in other words cr
terms will appear and may be significant.

To clarify the implication of this we use the paradigm
the drunkard, who takes steps with a fixed size in rand
directions and at random times, thereby moving away fr
his original position. Consider now a more complex situati
where the drunkard can make either big or small steps. If
stepsize is independent of history, i.e., the steps are not
related, we may estimate the most probable distance
drunkard covered since he left his original position using
theory for the case of only one possible stepsize. Howeve
a big step is likely to be followed by a small one or vic
versa, the characteristics of that correlation have to be ta
into account. In our description of cascade excitation it is
coherence of both lasers that provides a correlation betw
the random steps with sizes\k1 and \k2 in momentum
space. It is thus not surprising that the optical Bloch eq
tions contain all the information on the time correlation b
tween the steps, as exploited using the quantum regres
theorem. This correlation only exists for absorption a
stimulated emission processes. The random steps du
spontaneous emission are not correlated, i.e., the correla
time between the atom and the vacuum radiation field re
voir is much shorter than the typical time scale for the ev
lution of the atom. For this reason Eq.~23! only involves the
two-level ~single-step size! result.

Similarly to Eq. ~25! for the diffusion, an expression fo
the friction coefficient is found@13#:

a~R!5
22

\
Im (

i jkl
Fi j ~R!Fkl~R!E

0

`

tf i jkl ~R,t!dt.

~29!

The integral in Eq.~29! can be found@16# by using Eq.~27!
in combination with the following equation:

E
0

`

tfkl~R,t!dt52Ap
21~R!F E

0

`

fkl~R,t!dtG
p

. ~30!

Friction and diffusion coefficients are important paramet
to characterize a statistical sample of atoms in the semic
sical approximation. The spatially averaged friction and d
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fusion coefficients may be used to calculate an equilibri
temperatureT ~assuming that these coefficients are no
function of velocity over the full width of the velocity dis
tribution of the considered sample of atoms!:

kBT5
D tot

a
. ~31!

This equation is only meaningful for positivea ~with the
force defined asF52av!. Diffusion and friction can be
calculated from Eq.~25! and Eq.~29!, respectively, inserting
Eq. ~27!, ~28!, and ~30!. The calculation procedure i
straightforward and only involves the repeated use of
inverted Bloch matrixAp

21, which is reasonably small~9
39 elements! for the three-level cascade system. Howev
in the case of standing waves the matrix is a function
position, and the expressions should be evaluated over a
unit cell of the standing wave pattern of the laser fields,
obtain average values. For overlapping standing waves in
cascade system averaging is more delicate than for a s
standing wave. A much larger distance containing both
integer number of wavelengths for the upper and for
lower transition must be used in the averaging process.
have used a gridN5100 covering this distance. In the ne
paragraph we will present our numerical results for the c
of overlapping standing waves in one dimension, exciting
three-level cascade.

VI. NUMERICAL CALCULATION OF FRICTION AND
DIFFUSION COEFFICIENTS IN ONE DIMENSION

Using the theory described in the previous paragraph
have calculated friction and diffusion coefficients for on
dimensional overlapping traveling waves and stand
waves. Except for detuning which is given in MHz, our r
sults are represented in dimensionless scaled quantities:
frequencies are divided by the linewidth of the correspo
ing transition, forces by\k1G1/2 ~which is the maximum
radiation force for a two-level system!, diffusion and friction
coefficients by (\k1)2G1/4 and\k1

2G1/4, respectively, which
are the maxima in a two-level traveling wave situation. Te
perature is scaled to the two-level Doppler limit\G1/2. The
linewidths were chosen for the metastable helium at
~1/G1598 nsec; 1/G2514 nsec!.

When V2 is small the two-level limit of three-level cas
cade excitation is reached. We verified that our comput
code reproduces the two-level results of Gordon and Ash
@10# and Cook@8#. It was also verified that the number o
positions used to average over a standing wave pattern
sufficient, i.e., a further increase of this number (N5100)
gave no different results~convergence criterion!.

A. Numerical results for two-color deceleration
using traveling waves

As explained in Sec. IV, the radiation force on metasta
helium can be increased by an order of magnitude us
cascade excitation. It is interesting to consider decelera
of these atoms within a reduced distance using this enha
force. An atom moving with velocityv in the laboratory
frame experiences a Doppler shiftk•v. For cascade excita
tion by two overlapping laser beams, counterpropaga
a
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with the atomic beam, it is necessary to consider two D
pler shiftsk1•v andk2•v. As the atoms decelerate, the Do
pler shifts change, and the laser frequencies should be
justed synchronously to maintain a large force. Th
technique is known as frequency chirping@22#. Consider a
situation where the optical force is kept maximum for a v
locity v0 which varies linearly with timet. This is realized
by imposing d1(t)5k1•v0(t) and d2(t)5k2•v0(t) corre-
sponding to a frame with decelerationachirp5dv0 /dt with
respect to the laboratory inertial frame. In order to deal w
the force fluctuations~represented by a diffusion coefficien!
achirp should be chosen smaller thanamax5Fmax/M, where
Fmax is the maximum value of the velocity dependent optic
forceF(v2v0). In that case it may be shown@23# that atoms
will accumulate around a momentary velocityvs(t), given
by F(vs2v0)5Machirp (vs.v0). The velocity distribution
around vs evaluates to a widthDv, given by M (Dv)2

5D/a5kBT @see Eqs.~20! and ~31!#. Here it is assumed
thatD anda are almost constant over the intervalDv around
vs . Taking achirp,amax ensures locking of the atoms to th
decelerating frame: an atom which—due to a fluctuation
the force—has shifted fromvs towardsv0 will feel an iner-
tial force pushing it back to its equilibrium velocityvs . This
is of course only true when the excursion of the atom has
exceeded the velocity range for whichF(v2v0).Machirp.
Usually the choice ofachirp is based on a compromise b
increasing this velocity ‘‘capture’’ range and avoiding a to
large reduction in stopping distance. A typical choice
achirp5amax/2.

Force, friction, and diffusion have been calculated a
function of velocity for the case of metastable helium dec
eration. It was assumed that the atoms are resonant with
laser frequencies atv5v0 . This was performed for severa
intensities of the decelerating laser beams. For each g
Rabi frequencyV1 of the lower transition, we calculated th
corresponding Rabi frequencyV2 for the upper transition
that would give the maximum population in the upper lev
The results are shown in Fig. 2. The velocity capture ran
Dvc of the force can be defined as the full width at ha
maximum of the bell shaped curve~the force curves are sym
metric aroundv5v0). As expected the capture range i
creases with increasing laser power~comparable to power
broadening for a two-level system!.

It should be noted that—contrary to the case of stand
waves—there is no spatial dependence of the force to
averaged over. Thus the friction coefficient is simply t
derivative of the force: a5dF/dv. Rather than taking this
derivative, we have used Eq.~29! since it does not require
evaluation at two different points in~velocity! space.

We may formally calculate an equilibrium temperatu
for a velocity distribution peaked aroundv5vs . This is also
shown in Fig. 2. The temperature increases with laser in
sity. Using the fact that the temperature is scaled to the t
level Doppler limit, we may calculatêDv& by taking the
square root of the value along the vertical axis in the te
perature curve of Fig. 2, multiplied by the velocity corr
sponding to the one-dimensional Doppler limit for met
stable helium (vDoppler50.39 m/s). Doing this it is found tha
for all the situations considered^Dv& is smaller thanDvc by
at least one order of magnitude, assuring the accumulatio
atoms in the decelerating frame. This demonstrates the
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sibility of two-color deceleration using simultaneous fr
quency chirping.

B. Numerical results for two-color overlapping standing waves

It is also of interest to study the behavior of friction an
diffusion in one-dimensional molasses varying the detuni
of the two lasers. Another important parameter is the int
sity ~Rabi frequency! of the laser field exciting the uppe
transition. We have investigated two regimes, one of reas
ably strong upper level excitation (V251.9G2), and another
with weak excitation (V250.4G2), in which case the result
should represent a perturbation of the two-level system~in
both casesV155.5G1 , corresponding to strong saturation
the lower transition!.

For weak excitation~Fig. 4! the population of the uppe
level is favorable at two-photon resonance, where the p
tive detuning of the lower transition laser frequency is co
pensated by the negative detuning of the upper exciting l
field. This two-photon resonance condition does not hold
the case of strong excitation~Fig. 3! as the Rabi frequencie
are not negligible against the detunings. In general there
competition between the Rabi frequencies and detun
used in the matrix Eq.~12!. A high Rabi frequency for the
upper transition may Stark shift the intermediate level wh
results in an effective detuningdeff different fromd1 .

Our diffusion results are shown in Fig. 3~strong excita-
tion! and Fig. 4~weak excitation!, with the detuning of the
upper transition laser field (d2) plotted along the horizonta
axis. As expected an increased excitation of the upper le
leads to an increased diffusion in the case of strong up
transition excitation~Fig. 3!. The diffusion does not ap
proach zero forud2u→`, due to the remaining diffusion
caused by relatively strong excitation of the lower transitio
As can be seen a detuningd1 of the lower laser transition
takes away the symmetry aroundd250. In contrast with the
diffusion curves for strong upper level excitation, the diff

FIG. 2. Force, friction, diffusion, and equilibrium temperatu
as a function of velocity for overlapping traveling waves exciti
the three-level cascade in metastable helium. Curves correspo
~a! V153G1 , V251.4G2 ; ~b! V156G1 , V252.2G2 ; ~c! V1

512G1 , V253.7G2 ; ~d! V1531G1 , V258.9G2 .
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sion for weak upper level excitation~Fig. 4! decreasesfor
d150, ud2u→0. This effect may be explained by cohere
population trapping@19,24,25#, in which case part of the at
oms reside in a stateuNC& that is not coupled to the lase
light V̂ALuNC&50:

to
FIG. 3. Numerical calculation of average upper level popu

tion, diffusion coefficient, friction coefficient, and equilibrium tem
perature for three-level cascade excitation of metastable helium
oms in one-dimensional overlapping standing waves, in the cas
strong upper transition excitation (V251.9G2). Curves are~a! d1

50; ~b! d1525 MHz; ~c! d15215 MHz; ~d! d15225 MHz.
Averaged over position~see text!.

FIG. 4. Numerical calculation of average upper level popu
tion, diffusion coefficient, friction coefficient, and equilibrium tem
perature for three-level cascade excitation of metastable helium
oms in one-dimensional overlapping standing waves, in the cas
weak upper transition excitation (V250.4G2). Curves are~a! d1

50; ~b! d1525 MHz; ~c! d15215 MHz; ~d! d15225 MHz.
Averaged over position~see text!.
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uNC&5
1

AV1
21V2

2 ~V2u0&2V1u2&). ~32!

Contrary to the dark state in a lambda system@2#, the dark
state in Eq.~32! is not stable against spontaneous emissi
In a steady-state situation, however, a substantial fractio
the atoms, given by (V1r222V2r00)

2/(V1
21V2

2), will be
pumped into this superposition state (d15d250). Since
there is no force on atoms in a noncoupled state, the di
sion Dcorr has vanished for this fraction.

Friction coefficient calculations are presented in Fig
~strong upper transition excitation! and Fig. 4~weak excita-
tion! as well. Symmetry prescribes that friction must be ze
in a situation with both detunings equal to zero: there is
mechanism to generate a force in that situation. This
longer holds when a detuningd1 is applied in the excitation
of the lower transition. The point where friction crosses ze
is shifted in the case of strong saturation of the upper tr
sition ~Fig. 3!. This has a dramatic effect since friction wit
a minus sign has the effect of exploding a sample of atom
momentum space rather than confining them. For weak s
ration of the upper transition, yet strong saturation of
lower ~Fig. 4! it is seen that friction is negative ford1,0
~curvesb,c,d! for any value ofd2 . It is well known that in
two-level molasses the friction coefficient changes sign
going to strong saturation. The high saturation of the low
transition explains the negative sign, and verifying t
change of sign was used as a consistency check of the c
puter code.

Using the diffusion and friction results it is straightfo
ward to calculate the temperature curves. As can be see
Figs. 3 and 4 the scaled temperature does not go belo
i.e., the Doppler limit for two-level excitation is never su
passed. We also made calculations for the case of wea
frared excitation and strong yellow excitation~not shown!
and did not find any evidence for sub-Doppler temperatu

These results can be used to explain some features in
experiments of Kumakura and Morita, as will be demo
strated in the next paragraph.

VII. COMPARISON WITH EXPERIMENTS

Kumakura and Morita performed precise fluorescen
measurements for cascade excitation of metastable hel
varying laser detunings and powers@3#. The theory outlined
above may be used to get a qualitative understanding of t
observations.

The setup of the experiment is as follows. A magne
optical trap~MOT! is loaded with metastable helium atom
from a Zeeman slower. The trapping laser beams are
tetrahedral configuration and excite only the 23S1→23P2
transition ~1083 nm, infrared!. Through the center of the
trap, in one dimension, a pair of counterpropagating la
beams exciting the 23P2→33D3 transition~588 nm, yellow!
is applied. The trapping laser beams are circularly polariz
and the trap contains a mixture ofm levels as a result of the
MOT geometry, violating the ideal three-level situation. F
qualitative analysis we will assume no coherences betw
differentm levels, so that diffusion and friction will show th
same qualitative behavior. We also assume that the Zeem
.
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shift frequency introduced by the quadrupole field is sm
and has no inhomogeneous effect on the fluorescence s
as a function of laser frequency. This is only the case
weak gradients and a relatively small sized cloud of atom
The trap of Kumakura and Morita has a diameter of 1 m

The yellow laser introduces friction and diffusion in on
dimension, which depend on detuning and intensity. Th
are the parameters that have been varied. The yellow fl
rescence of the trapped atoms is shown in Fig. 5~a! ~strong
excitation for upper laser! and Fig. 5~b! ~weak excitation!.
The Rabi frequencies are identical to those used to calcu
Figs. 3 and 4.

At low intensity @Fig. 5~b!# the yellow laser is merely a
perturbation and does not influence the dynamics of
MOT. The measured fluorescence is proportional to
population in the upper (33D3) level, which indeed is smal
(,5%). This population is maximal at two-photon res
nance explaining the shift of the maximum in Fig. 5~b!. Dif-
fusion and friction effects due to the presence of the yell
laser cannot be tested in this situation. The observed m
mum atd1525 MHz is compatible with a reasonable pop
lation of the upper level at the best working conditions f
the infrared MOT.

At high power the situation is notably different. Her
V2 /V151.7, which is close to the condition for maximum

FIG. 5. Measurement of the 588 nm fluorescence of a cloud
metastable helium atoms trapped by 1083 nm laser beamsV1

55.5G1), and intersected in one dimension by a standing wave
588 nm radiation, as a function of the detuning of the two la
frequencies, both for strong excitationV251.9G2 ~a! and for weak
excitationV250.4G2 ~b!. Courtesy of Morita@3#.
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force enhancement in overlapping traveling waves@11#. The
effect of the yellow laser on the trap dynamics can be see
the decrease of trap lifetime whenV2 is increased, as ob
served by Kumakura and Morita. Although the trap is thre
dimensional and the yellow laser interacts only in one
mension, and is not overlapping with one of the infrar
beams, most features in Fig. 5~a! may be explained using ou
one-dimensional theory. It is clearly seen in this figure t
no trapping signal remains if the yellow laser is put on
positive detuning. This coincides with the situation in Fig.
where always ‘‘anti’’-friction (a,0) occurs at positive yel-
low detuning. This leads to an explosion of the trap. It
interesting to consider the point where the friction cros
zero in Fig. 3. For the calculated valuesud1uÞ0 this occurs
for d2525 MHz. This may explain the position of th
maximum in Fig. 5~a!. It is striking that a high maximum
persists for increasing values ofud1u, whereas the maxima
decrease much faster in Fig. 5~b!, as a function ofud1u. The
small signal in Fig. 5~a! for d150 andd1,220 MHz can be
explained by the fact that the loading of the MOT, that d
pends primarily on the four infrared laser beams, is ineff
tive: without the yellow laser hardly any atoms are trapp
as can be seen in Fig. 5~b! for d150 andd15225 MHz.

VIII. CONCLUSIONS

We presented a theory to calculate forces and diffus
and friction coefficients for a cascade level system. The
sults have been used to qualitatively explain our own exp
mental results as well as results of Kumakura and Mor
The cooling force, and thus the cooling rate, may be sign
cantly larger than for traditional cooling on a two-level tra
sition.

Neither in the numerical experiments, nor in the work
Kumakura and Morita do we find any evidence for su
Doppler temperatures. The one-dimensional Doppler li
for the two-level system is derived for low saturation. Ho
ever, high saturations for both the lower and the upper tr
sition are required to obtain sufficient population of the u
per state. In that case it appears that diffusion alw
increases more than friction, so that the equilibrium tempe
ture increases too. This observation leads us to the con
sion that it seems not beneficial to use yellow laser beam
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reduce the temperature in a trap~of course the issue of usin
it for increasing the loading rate or fluorescence probing i
different one!.

It is possible to use the presented theory for multidime
sional laser fields. In that case, however, it will be impossi
to realize a pure three-level system, since more than onm
component will be populated: the matrixAp @Eq. ~9!# will
increase in size and will contain Clebsch-Gordan coefficie
depending on the specificm values of the atom. We hav
carried out a laser cooling analysis for metastable heli
moving in a traveling wave exciting the upper transition
one dimension and in a standing wave exciting the low
transition in the other dimension@26#. A system with 11
levels was obtained leading to a 1213121 matrix. As com-
puting time for matrix inversion scales withn3, the calcula-
tion of diffusion and friction coefficients becomes an e
tremely laborious job.

In the present paper diffusion and friction have been c
culated for atoms with velocity close to zero. In general d
fusion and friction display a rich and complicated behav
as a function of velocity, especially for high laser intensitie
where Raman-like Doppleron processes play a signific
role @27#. Calculating the full velocity dependence of the
coefficients is hard but can nowadays be performed for o
dimensional standing waves, using continued fractions@28–
30# or Floquet theory@31#. Similar work for a lambda three
level configuration has been performed by Drewsen@32#.
However, the role of spontaneous emission is totally diff
ent from the case of cascade excitation. We are now inc
porating these techniques in our computer code, and hop
describe our results in a future paper.
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