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Laser cooling, friction, and diffusion in a three-level cascade system
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A model is presented to calculate optical forces, friction, and diffusion for three-level atoms in a ladder
configuration. This model is then applied to thig2-23P,-3%D; cascade in metastable helium. It is demon-
strated that metastable helium atoms can be decelerated within a much shorter distance using cascade excita-
tion by overlapping traveling waves. The equilibrium temperature representing the final width of the velocity
distribution is calculated as a function of laser detuning and intensity. This equilibrium temperature is also
calculated for the situation of overlapping standing walee-dimensiop and is found to be well above the
Doppler limit for two-level 2S,;-23P, excitation. Numerical results are compared with existing experimental
data.[S1050-2947®@7)03310-6

PACS numbgs): 32.80.Pj, 42.50.Vk

[. INTRODUCTION introduced by the use of an extra laser with a different fre-
quency, exciting the atoms to a higher energy. For the two
First proposals for laser cooling of atoms started with thesituations that we will discuss, excitation by overlapping
simplest situation of a two-level atom interacting with an traveling waves and excitation in one-dimensional two-color
external laser field. However, it was soon realized that thénolassegwith overlapping standing wavgshe atoms may
multi-level structure of atoms can be exploited to achievealways be prepared in an ideal three-level configuration, us-
much lower temperatures. One example of this is subing optical pumping.
Doppler polarization gradient cooling, which was theoreti-  This paper is organized as follows. First we introduce the
cally described by Dalibard and Cohen-Tannoudj. It is  relevant parameters of this problem. We will describe the
based on the delicate interplay of optical pumping betweerquations of motion for the internal states of the atom when
several Zeeman sublevels and the externally varying polarecoil is neglectedoptical Bloch equations Characteristic
ization. Another example is velocity selective coherent popuparameters in laser cooling are friction and diffusion coeffi-
lation trapping(VSCPT) [2]. In this scheme atoms are pre- cients and we will give procedures to calculate these for the
pared in a coherent superposition of several Zeeman grourghscade system, including numerical examples for the case
states such that they no longer interact with the light field of metastable helium. Finally we will discuss experimental
The latter is a necessary requirement for obtaining temperawvork by Kumakura and Morita who used cascade excitation
tures below the recoil limit. of metastable helium atoms confined in a magneto-optical
Almost all of the theoretical and experimental work on trap[3].
multilevel laser cooling deals with systems displaying Zee-
man degeneracy. In this paper we study laser cooling and
diffusion in a three-level cascade. Examples of three-level

cascade ~systems that may be considered are we consider a three-level system, with a ground sf@ite
375y, 3P3;,—3 Dy, in sodium (wavelengths 589 and an intermediate statd), and an upper state) (see Fig. L

820 nm), 2°S,;,—2%P3;,— 3Dy, in lithium (wavelengths  The laser fieldE; couples statef) and|1); a second laser
671 and 610 ni and ¥S;;,— 52P3;,— 52Ds), in rubidium

(wavelengths 780 and 776 nmin our calculations we will
restrict ourselves to the 38,—23P,—33D; cascade in
metastable heliunjwavelengths 1083 and 588 nm

Questions that may arise in such excitation processes are
as follows: “Can the cooling force be enhanced using an
extra laser exciting the upper transition? Can the temperature
in optical molasses be lowered by adding the second laser
excitation? How large are friction and diffusion coefficients
in cascade excitation?”

Zeeman degeneracy of the three-level cascade will not be
considered. Such a degeneracy may give rise to complex
cooling schemes similar in nature to polarization gradient
cooling and VSCPT. We will focus on the phenomenology

II. DESCRIPTION OF THE ATOM-FIELD SYSTEM

12>

*Present address: Institut d’Optique “Dhigue et Applique, B.P. FIG. 1. Three-level atom interacting with two laser fields in a
147, 91403 Orsay, France. cascade configuration.
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field E, states|1) and|2). There is no direct coupling be- Il EQUATIONS OF MOTION FOR THE INTERNAL
tween|0) and|2), i.e., the dipole moment2|r|0) is zero. STATE OF THE ATOM

Thus the total electric fiel@ may be written as The time evolution of the internal state of the atone-
_ lecting recoil is described by optical Bloch equations
E(R)=E;(R t+6,(R)]+E»(R t+60,R)], 9 oy 1S de: .
(R)=Ey(Rjcod yt+62(R) ]+ Ea(R)cod ot + 65( )21) (OBE's), which in their most general form are written as

whereE;(R) is a spatially dependent amplitude of the elec-

tric field (i=1,2), andé; the phase of the respective field. dat? " i [H.p]+ pretax: ™
The Hamiltonian for the system schematically shown in Fig.
lis where p is the density matrix operator of the system.

Throughout this paper a circumflex is written to emphasize
that the corresponding symbol represents a quantum-
echanical operator, containing ket-bra projection operators,
.g.,pij=|j)(i|. When the operator form is not shown ex-
plicitly, the symbol represents an expectation value, e.g.,
=Tt{p-pi;1=(pij). Using the rotating wave approxima-
n, the full set of nine equations that appear in the three-
evel cascade case, including the relaxation terms due to
spontaneous emission, have been worked out by Whitley and

H:HA+HV+VAL+VAV' (2)

H, represents the energy of the atomic system, containin
both kinetic energy and internal enerdy,, represents the
energy of the quantunfvacuum radiation field.V,, and
V,y are interaction terms of the atom with the laser field andii
the vacuum field, respectively. For the cascade system t
interactionV, consists of two terms, one for each laser field

resent:
P Stroud[4]. This set of equations takes the following form:
VaL=—dy-E;—dy- Es. 3 q
X
Hered; andd, are the dipole moments for the two transi- g A (8

tions in the cascade. It is common to introduce Rabi frequen-

cies to describe the strength of the laser field: HereA is a 9x9 matrix containing the six parameters in the
Q(R)=d,-E,(R)/. 4) problem(linewidths, Rabi frequencies, and detuningadx
is a column vector containing the nine expectation values for
The interaction of the excited atom with the vacuum fieldsthe density matrix elementfWhitley and Stroud takex
leads to spontaneous emission which we will treat phenom= (P22:021:P20:P10:P00:Po1:P02:P12:p11 ] IN a steady-state
enologically throughout this paper. The transition rates forsituation the left-hand side of E€8) is zero, resulting in a

radiative decay of the intermediate and upper level are givefiet of linear equations. Since this system is overdetermined,
by one of the equations may be cancelled and be replaced by the

condition that the sum of all populations equals opgg(
Ii=d?w3/(3meqhcd). (5  +p1utprp=1). This results in a set of nine independent
equations that formally may be described as
Here w{ is the atomic transition frequency. The difference

between the laser frequenay and the atomic transition fre-
quenciesw; is the detunings; :

dx

at] ~A

p

pe X 9)

Si=wi—of. (6) . .
The subindexp refers to the fact that one of the rows in the

Equationg4), (5), and(6) define the fundamental parameters matrix A has been changed. Thus analytical expressions may
in our context of cascade laser cooling and its semiclassicdle found for the steady-state values of the density matrix
description. We will derive friction and diffusion coefficients elementsp;; (0<i, j<2). These expressions are given ex-
which in principle depend on these six parameters. This largplicitly in an appendix of the Whitley and Stroud pagpét.
number of parameters makes it hard to search for optimized@hey are rather lengthy and are not reproduced here.
forces or temperatures. For a specific atom the transition We prefer to cast the optical Bloch equations of Whitley
linewidths are known, resulting in a remaining set of fourand Stroud into a different form, using the following trans-

adjustable parameters. formation:
|
Ug1= pPo1t P1o; Uo=p1ot P2y, Upz=po2t P20,
vo1= —1(po1— P10, V1= —i(p12—p21), v13= —i(po2— P20
Wo1= Poo~ P11 W1o=p11~ P22 (10

This approach has several advantages. The parametersm) correspond to the real part of the atomic polarization, the
imaginary part of the atomic polarization and the atomic inversion, respectively. As we shall explain the expressions for optical
forces on the atom take their simplest form using thev(w) parametrization; the two types of forces identified, i.e., the
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dissipative spontaneous emission force and the reactive dipole force correspond to the imaginary and real part of the atomic
polarization, respectivelf5]. The optical Bloch equations now contain only real terms and take the form

dy_ B-y+b 11
where the matrixB is given by
-t 4 0 0 0 0 0 )
2
Q
-5 -, -9 0 0 0 - 72 0
2T,—4T Q 4, +
0 Ql 2 1 _ __2_ FI 4F2 0 0
3 2 3
O O 0 _FI_FZ 52 0 0 - %
B= (12)
Q,
0 0 0 - 62 —Fl _Fz "Qz 7 0
Ql 2F1-4F2 2F1+8F2
0 - ——_— 0 Q _
2 3 ? 3 0
Q Q
0 72 0 0 —7‘ 0 -T, &+6
Q, Q,
i o 7 O O 7 0 O - 51 - 52 ‘Fz i
|
and the inhomogeneous vectoby the complete systertincluding the vacuum reservgirThis
will be explained in more detail in Sec. VI.
ar,-2r, ar,—-21';
b=10,0,—5—00—5——00]. (13 IV. OPTICAL FORCES IN THE CASCADE SYSTEM

The center-of-mass motion of the atom can be described
The vectory=(Ug;,v01,Wo1,U12,012,W12,Ug2,U0p) CONtains by the Heisenberg equations for the positRrand the mo-
the density matrix information. The steady-state solution ofnentumP [5,8—1Q. The velocity of the center of mass is
Eg. (11) (for a nonmoving atom at positioR) can be found given by
analytically, but in general the expressions for the elements
of y are rather lengthy6]. In the limit where the upper -1 JH
transition is not excited(2,=0) the above set reduces to R= in [R,H]= P M (14
four equations. After elimination of the/,, term, the famil-
iar set of three OBE'’s for the two level system is obtained. +4 torce operatoF(R)=MR=P is given by the Heisen-

For zero detuning and high intensitiés; = 5,=0; €, berg equation foP:
>1I"; 5 Cohen-Tannoudji and Reynaud found a dressed-atom '
basis[7]. This allows for a better physical understanding in 1 JH
this limiting situation and a direct calculation of the popula- P=_[PH]=——. (15)
tions. The advantage of a dressed-atom approach vanishes if IR
for nonzero detuning as the complexity of the expressions
then becomes comparable to those of the OBE approach. Using Eq.(2) we find
Now that we have a full description of the atomic density . R R

matrix we may calculate expectation values for any F(R)=—VVAL(R)—VVauR). (16)
quantum-mechanical operatdr, using the well known iden-
tity (O)=Tr[p O]. We will proceed in the next paragraphs It may be shown that the second term vanishes in the quasi-
by writing down expressions for the force operator. Valuesclassical calculation of the mean force. However, this term
for diffusion and friction cannot directly be calculated by gives a significant contribution to the diffusion, as will be
tracing over the density matrix, since they conttiro-time  described later. Usind, =d,e,(|0)(1|+|1){0[) and a simi-
correlations between the density matrix elements. This néar expression fod,, and using Eqs(3) and (4), dropping
cessitates that we take into account the unitary evolution othe counter-rotating terms, we find the following expression:
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- rQ(R) _ which may also exceed the maximum spontaneous emission
Vai=— [e”'1(Rg~1e11)(0[+H.c] force for the two-level system.
hQL(R ' ' V. FRICTION AND DIFFUSION
- AR [e 2R 102 2)(1|+H.c]. (17)

2 So far we have described the internal motion of the atom

Here it has been assumed that the laser fields may be writtd@"0ring recoil. For a study of laser-cooling processes, how-
asE(r,t) = &(r)&(r)codwt—6(r)], wheree(r) and&(r) ever, the external deg_rees of free_dom are relevant as well,
are the spatially dependent polarization and amplitude of th@nd must be included in the density matrix formalism. For-

field, respectively[5]. Inserting Eq.(17) into Eq. (16), and mal procedures exist to derive evolution equations for the
usin,g the operator form of qul). we get thé foIIE)wing phase-space distribution of a statistical sample of atoms. A

expression for the cascade force expectation value: comparison of semiclassical and fully quantum-mechanical
’ approaches to this problem is given by Dalibard and Cohen-

ﬁ Tannoud;ji[13]. We will use the semiclassical expressions
Fascade 5 (UolV 21+ 001{21V 01) used by CooK8] and Gordon and Ashkifil0] for a two-
level system. These expressions were also applied by Ungar
h et al. [14], Nienhuis, van der Straten, and Shdndg], and
+ 5 (UV Qo v1205V ). (18)  Mdlmer[16] to systems displaying Zeeman structure. It can
be shown that under certain conditiofde Broglie wave-
The average force thus consists of four terms, the first twdength of the atom much smaller than the laser wavelength
corresponding to the lower transition, the last two to theand #I'>#%k%2M [5]) the evolution of the distribution
upper. As in a two-level system the force can be split into &unction in phase spacé(R,P) may be described by a
phase gradient part corresponding to radiation pressure arebkker-Planck equatiofil7]:
an intensity gradient part corresponding to a dipole force. It

2
is easily seen that this picture can be generalized to multi- of Pt 49 Yy
L —=—— = + :
level cascade systems. We shall see later that contributions to ot M JR P (Ff) P2 (D) (20
the diffusion do not necessarily add up for the different tran- . . _ .
sitions, i.e., cross terms may appear. The right-hand side of this equation shows three terms. The

For over|apping p|ane trave"ng waves the intensity gradi.first isa hydrOdynamiC term which describes the free Spatial
ent part vanishes and the phases are givefl, byk; - R with evolution of the distribution, given its velocity. This term
k;=2a/\; the wave vector of the laser radiation. Using Egs.may be included on the left-hand side of the equation using a
(10), (11), and(18), we find the following expression for the total derivative instead of a partial derivative. The second

average radiation force: term represents the effect of the me@onoling forceFon
the phase-space distribution. If the phase space distribution is
Frag= kil 1p11t kol 5p0s. (19 sufficiently confined in momentum, this mean force may be

o . _ linearized: F=—a(P/M)=—av where « is called the

The radiation force in Eq(19) can be easily under- friction tensor(« is used instead of to emphasize the ten-

stood: the terms on the right-hand side correspond to thgyyia| character The third term in Eq.(20) describes the
momentum change that is caused by the fact that a photogfect of fluctuations in the optical force. These fluctuations

fik is always absorbed in one direction whereas it is spontay, e .
- ) L re represented by the diffusion ten&byr given b
neously emitted in a random direction. The rate of photons P y forg y

scattered is given by the upper state population for each tran- o ((A|5—(A |5>)2>
sition divided by its average lifetime. Equati¢i®) has been 2D=——-—1—""—"
experimentally tested for metastable helijdi]. For this At
atom the second term can be made much larger than the first © .. " "
one, which allows for a theoretical enhancement of the ra- =J’ [(F(7)F(0))—(F(0))(F(7))]dr. (21
diation force by almost an order of magnitude compared to a -

two-level system. To test this an atomic beam of metastablgy ¢ jq, may thus be expressed in terms of two-time force

hghum atoms was perpe_qdmularly crossed by two ov.erlapff‘orrelations, and special techniques have to be employed to
ping traveling waves exciting the cascade. The deflection o ~

the atomic beam as a result of the radiation force was me%c_alculate expressions of the typ(t,) B(t,)) [18]. Symme-

sured, and it was found that the deflection for two-color ex—Y allows us to integrate the above expression starting from

citation could be made a factor of 8 larger than the maximurﬁ!me zero. We assume that the atom is in the steady. state at
deflection for one-coloftwo-leve) excitation. Moreover, the tme 7=0 so that we may replac¢F(7))(F(0)) with
behavior of the force enhancement as a function of lasefF(0))(F(0)) [19], resulting in
intensities was shown to be in agreement with the model .
outlined above. P— T = _(F -

We point out that the term bichromatic cooling has also D=Re jo [(F(mFO) = (FO)(FO)]dr. (22
been used in the literature for describing a situation of over-
lapping standingwaves, where the phase gradient is absentln the rest of this paper we limit ourselves to a one-
Groveet al.[12] have described such a situation in a cascadélimensional situation, implying that we only consider a dif-
level system in rubidium, deriving a position dependent forcefusion scalaiD rather than a tensdd.
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The total diffusion coefficient may be written as the sum = .
of two contributions: Dio=Dcort Dspon- The second term Jo $(R,7)d7=—A,"(R) ¢ (R,0),. (27)
is due to spontaneous emission which must be dealt with

separately if the atom-vacuum interactidfny in EqQ. (2)]is  The Bloch matrixA,(R) is the same as in EG9). The sub-

not included in the derivation of the force opera{®d. inqeyp refers to the insertion of the condition that the inte-

(16)]. The result for the cascade system, extending the tWOgraI of ;14 has zero trackl6], the corresponding element in

level result, becomefs] #a(R,0), should thus be a zero. The veciy,(R,0) con-
taining the initial values £=0) can be calculated using one-

Dsponz% (k)T 1py1+ %) (1K) 2T 5ps. (23)  time expectation values for the density matrix, given by Eq.
(9):

. The fact_or 1llQ i; due to t_he fac_t that spontaneous emis- Fij (R0)=p(R) & — pij(R)pi(R). (28)
sion is nonisotropic in three dimensiof&15] (the factor for
the diffusion coefficient in a direction perpendicular to theThe delta function arises from the fact that the projection
induced dipole moment is a factor of 2 larger, i.e., 1/5 in-operator|l)(k|(0) is followed by the projection operator
stead of 1/1 For the specific case of metastable helium the|j)(i|(0) before calculating the expectation value, &nd)
second term at the right-hand side of E2f) becomes domi- =6, (orthogonal and normalized stateés a consequence
nant in case of sufficient population of the upper leye),(  the diffusion coefficient in a system containing more than
>0.05). Dgponcannot exceed a certain value determined bytwo levelscannotbe considered as consisting of independent
the atomic parameters, contrary to the tddg,, which gen-  terms for the respective transitions, or in other words cross
erally dominates for situations with high laser intengity  terms will appear and may be significant.
which case the total diffusion becomes proportional to the To clarify the implication of this we use the paradigm of
Rabi frequency, as it determines the rate at which photonthe drunkard, who takes steps with a fixed size in random
are transferred to different modes by stimulated emigsion directions and at random times, thereby moving away from
D.or @ccounts for the stochastics in the laser-atom interhis original position. Consider now a more complex situation
action. We will calculate this term following the prescription where the drunkard can make either big or small steps. If the
of Mélmer and Agarwa[16,20. The force operator may be stepsize is independent of history, i.e., the steps are not cor-
formally expressed as related, we may estimate the most probable distance the
drunkard covered since he left his original position using the
A . - theory for the case of only one possible stepsize. However, if
F(R'T):; Fii(R)|J><'|(7):i2j Fij(R)pij(7). (24 3 big step is likely to be followed by a small one or vice
versa, the characteristics of that correlation have to be taken
In accordance with the Heisenberg picture the projection opinto account. In our description of cascade excitation it is the
erators |j)(i| depend on timer (in contrast with the coherence of both lasers that provides a correlation between
Schralinger picture, where the system eigenstates are timghe random steps with sizésk, and ik, in momentum

dependent instead of the operajof&quation(22) may be  Space. It is thus not surprising that the optical Bloch equa-
rewritten as tions contain all the information on the time correlation be-

tween the steps, as exploited using the quantum regression

o ~ theorem. This correlation only exists for absorption and
D(R)=Re 2, Fij(R)FkI(R)J’ [{pij(T)pK(0)) stimulated emission processes. The random steps due to
Kl 0 spontaneous emission are not correlated, i.e., the correlation
—<f)ij(0)><f>k|(0)>]dT time between the atom and the vacuum radiation field reser-

voir is much shorter than the typical time scale for the evo-
lution of the atom. For this reason E@3) only involves the
two-level (single-step sizeresult.

Similarly to Eq.(25) for the diffusion, an expression for
with the indicesi,j,k,| running over all levels of the cas- the friction coefficient is found13]:
cade. According to the quantum regression theofeee, )
e.g.,[21]), the quantitiesp;;, follow the same equations of __“ - o
motion as the expectationjvalues for the elements of the den- (%= 7 1M .% Fi(RIFa(R) fo i (R, 7).
sity matrix [Bloch equationg8)]: (29

—Re> Fij(R)kaR)f@jka,ﬂdr, (25
ijkl 0

(R, 1) =A(R) ¢y (R, 7). (26)  The integral in Eq(29) can be found16] by using Eq.(27)
in combination with the following equation:

HereA(R) is the same matrix as in E(B), and theg;;,| are .
grouped in a vectowp,,. The elements in this vector are f ré(R,7)dr=—A-XR)
positioned using the labélj the same way as convened in 0 P
Eq. (8): é=(Poxi, omi s Paoki s 1okt » Pooki » Porki » Poxki »
d12q »P1111) -Each possible combination of labeksl re-  Friction and diffusion coefficients are important parameters
quires a new evaluation of ER6). Now the integral in Eq. to characterize a statistical sample of atoms in the semiclas-
(25) can be calculated, usingjj (R,%)=0: sical approximation. The spatially averaged friction and dif-

. (30
p

fx@'(R,r)dT
0
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fusion coefficients may be used to calculate an equilibriumwith the atomic beam, it is necessary to consider two Dop-
temperatureT (assuming that these coefficients are not apler shiftsk,-v andk,-v. As the atoms decelerate, the Dop-
function of velocity over the full width of the velocity dis- pler shifts change, and the laser frequencies should be ad-

tribution of the considered sample of atoms justed synchronously to maintain a large force. This
technique is known as frequency chirpif2g]. Consider a

koT = D_tot 31) situation where the optical force is kept maximum for a ve-
B a locity vy which varies linearly with time. This is realized

by imposing §;(t)=kq-vg(t) and 8,(t) =k,-vo(t) corre-
This equation is only meani_ngfu_l for positi_ve_ (with the sponding to a frame with decelerati@gy,=dvo/dt with
force defined ag==—av). Diffusion and friction can be respect to the laboratory inertial frame. In order to deal with
calculated from Eq(25) and Eq.(29), respectively, inserting  the force fluctuationgrepresented by a diffusion coefficignt
Eq.'(27), (28), and (30. 'The calculation procedure is achip Should be chosen smaller thai,,,=Fna,/M, where
straightforward and onlyllnvolves the repeated use of thq:max is the maximum value of the velocity dependent optical
inverted Bloch matrixA; ", which is reasonably smal®  forceF(v —v,). In that case it may be shoW@3] that atoms
X9 elementsfor the three-level cascade system. Howeverwill accumulate around a momentary velocity(t), given
in the case of standing waves the matrix is a function ofyy F(vs—v0)=Magnip (vs>v0). The velocity distribution
position, and the expressions should be evaluated over a fuiound vs evaluates to a widthAv, given by M(Av)?
unit cell of the standing wave pattern of the laser fields, to— D/a=kgT [see Eqs(20) and (31)]. Here it is assumed
obtain average values. For overlapping standing waves in th@atD anda« are almost constant over the intervat around
casca_de system averaging is more delicate thgr} for a sing{ps_ Taking achip< amax €Nsures locking of the atoms to the
standing wave. A much larger distance containing both aRjecelerating frame: an atom which—due to a fluctuation in
integer number of wavelengths for the upper and for th&ne force—has shifted fromg towardsuv, will feel an iner-
lower transition must be used in the averaging process. Wgy) force pushing it back to its equilibrium velocity. This
have used a grit=100 covering this distance. In the next js of course only true when the excursion of the atom has not
paragraph we will present our numerical results for the casgyceeded the velocity range for whi€Hv —vo)>Macpinp-
of overlapping standing waves in one dimension, exciting thEUsuaIIy the choice ofiy, is based on a compromise by

three-level cascade. increasing this velocity “capture” range and avoiding a too
large reduction in stopping distance. A typical choice is
VI. NUMERICAL CALCULATION OF FRICTION AND Achirp= Amad2-
DIFFUSION COEFFICIENTS IN ONE DIMENSION Force, friction, and diffusion have been calculated as a

Using the theory described in the previous paragraph Wéunction of velocity for the case of metastable helium decel-
eration. It was assumed that the atoms are resonant with the

have calculated friction and diffusion coefficients for one- . .
aser frequencies at=vy. This was performed for several

dimensional overlapping traveling waves and standingl i _ .
waves. Except for detuning which is given in MHz, our re- ntensities of the decelerating laser beams. For each given

sults are represented in dimensionless scaled quantities: Rd%i"‘b' freque_nc;ﬂl OT the lower transition, we calculate_d_ the
frequencies are divided by the linewidth of the correspond-Corres|°0nd'r.‘g Rabi frequen@z for the upper transition
ing transition, forces byik,I';/2 (which is the maximum that would give the maximum population |n.the upper level.
radiation force for a two-level systepdiffusion and friction The results are shown in F'g'_ 2. The velocity C"?‘pt“re range
coefficients by fik;)2I';/4 and#hk2T',/4, respectively, which Avc_of the force can be defined as the full width at half
are the maxima in a two-level traveling wave situation. Tem-MaXiMum of the bell shaped curyhe force curves are sym-

: . metric aroundv =v,). As expected the capture range in-
peratgre 's scaled to the two-level Doppler “mrllzf The creases with increg\)sing Iasepr pOV\(eDmparfEl)ble to pgwer
linewidths were chosen for the metastable helium atonbroadening for a two-level systom
ul];&;?}%“?;;géiﬁi T\?via-;ievel limit of three-level cas- It should be noted that—contrary to the case of standing

2> . . waves—there is no spatial dependence of the force to be
cade excitation is reached. We verified that our computin

code reproduces the two-level results of Gordon and Ashki%\é(:’i:/a;%?/ i g;lter:é ;I;)hrgz the_ ;r::c/t(ljon Ic?c;?:écruter?;r:stailirr?p%itshe
[10] and Cook[8]. It was also verified that the number of erivative. we have uég d_E (29)U§ince it does not reg Uire
positions used to average over a standing wave pattern wgs ' q

sufficient, i.e., a further increase of this numbé&f=100) evaluation at two different points ifvelocity) space.
gave no different resultconvergence criterion We may formally calculate an equilibrium temperature

for a velocity distribution peaked around=v¢. This is also
shown in Fig. 2. The temperature increases with laser inten-
sity. Using the fact that the temperature is scaled to the two-
level Doppler limit, we may calculatéAv) by taking the

As explained in Sec. IV, the radiation force on metastablesquare root of the value along the vertical axis in the tem-
helium can be increased by an order of magnitude usingerature curve of Fig. 2, multiplied by the velocity corre-
cascade excitation. It is interesting to consider deceleratiosponding to the one-dimensional Doppler limit for meta-
of these atoms within a reduced distance using this enhancetable helium ¢ poppie=0.39 m/s). Doing this it is found that
force. An atom moving with velocity in the laboratory for all the situations considerddv) is smaller tham\v . by
frame experiences a Doppler shiftv. For cascade excita- at least one order of magnitude, assuring the accumulation of
tion by two overlapping laser beams, counterpropagatingtoms in the decelerating frame. This demonstrates the fea-

A. Numerical results for two-color deceleration
using traveling waves
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force (scaled units) diffusion (scaled units) upper level population diffusion (scaled units)
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friction (scaled units) temperature (scaled units) » ]
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FIG. 2. Force, friction, diffusion, and equilibrium temperature

as a function of velocity for overlapping traveling waves exciting  FIG. 3. Numerical calculation of average upper level popula-
the three-level cascade in metastable helium. Curves correspond tion, diffusion coefficient, friction coefficient, and equilibrium tem-
(@ O,=3I'y, Q,=1.4",; (b) Q,=6I'y, Q,=2.2A1",; (c) O, perature for three-level cascade excitation of metastable helium at-
=12y, Q,=3.7T,; (d) Q,=31",, Q,=8.9",. oms in one-dimensional overlapping standing waves, in the case of

strong upper transition excitatiof),=1.9I",). Curves arda) &,
sibility of two-color deceleration using simultaneous fre- =0: (b) §,=—5MHz; (c) 8,=—15 MHz; (d) &= —25 MHz.
guency chirping. Averaged over positioisee text

B. Numerical results for two-color overlapping standing waves  sion for weak upper level excitatiofFFig. 4) decreasedor
6,=0, |8,]—0. This effect may be explained by coherent

It is also of interest to study the behavior of friction andgopulation trapping19,24.28, in which case part of the at-
diffusion in one-dimensional molasses varying the detuning oms reside in a stafC) that is not coupled to the laser

of the two lasers. Another important parameter is the inten-
sity (Rabi frequency of the laser field exciting the upper 19Nt VaL[NC)=0:
transition. We have investigated two regimes, one of reason-
ably strong upper level excitatiof),=1.9",), and another
with weak excitation {,=0.4l",), in which case the results
should represent a perturbation of the two-level system
both case$),=5.5I",, corresponding to strong saturation of
the lower transition

For weak excitatior(Fig. 4) the population of the upper
level is favorable at two-photon resonance, where the posi-
tive detuning of the lower transition laser frequency is com- 3¢ 1 To 20 30 30 20 1o ' 10 20 920
pensated by the negative detuning of the upper exciting laser 8, (MHz) 8, (MHz)
field. This two-photon resonance condition does not hold in
the case of strong excitatidirig. 3) as the Rabi frequencies

upper level population diffusion (scaled units)

are not negligible against the detunings. In general there is a friction (scaled units) temperature (scaled units)
competition between the Rabi frequencies and detunings @ 3 0
used in the matrix Eq(12). A high Rabi frequency for the 2 4
upper transition may Stark shift the intermediate level which . 30
results in an effective detuning.;; different from &, . A N T 20

Our diffusion results are shown in Fig.(3trong excita- ™~ I A . 0
tion) and Fig. 4(weak excitatioh, with the detuning of the 3

-30 -25 -20 -15 -10 -5 0

upper transition laser field&%) plotted along the horizontal
axis. As expected an increased excitation of the upper level
leads to an increased diffusion in the case of strong upper g 4. Numerical calculation of average upper level popula-
transition excitation(Fig. 3). The diffusion does not ap- jon, diffusion coefficient, friction coefficient, and equilibrium tem-
proach zero for|8,/—, due to the remaining diffusion perature for three-level cascade excitation of metastable helium at-
caused by relatively strong excitation of the lower transition.oms in one-dimensional overlapping standing waves, in the case of
As can be seen a detuningy of the lower laser transition weak upper transition excitatiof),=0.4",). Curves arga) &,
takes away the symmetry aroudgd=0. In contrast with the =0; (b) §;=—5MHz; (c) §;=—15MHz; (d) §;=—25 MHz.
diffusion curves for strong upper level excitation, the diffu- Averaged over positiofsee text

8, (MHz) 5, (MHz)
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(Q25]0)~04]2)). 32

1
NC)= ———
ING) VOI+Q3

Contrary to the dark state in a lambda systgh the dark
state in EQ.(32) is not stable against spontaneous emission.
In a steady-state situation, however, a substantial fraction of
the atoms, given by @;p.— Q,pe0) %/ (Q2+Q3), will be
pumped into this superposition stat®;E& 5,=0). Since
there is no force on atoms in a noncoupled state, the diffu-
sion D, has vanished for this fraction.

Friction coefficient calculations are presented in Fig. 3
(strong upper transition excitatipand Fig. 4(weak excita-
tion) as well. Symmetry prescribes that friction must be zero
in a situation with both detunings equal to zero: there is no
mechanism to generate a force in that situation. This no
longer holds when a detuningy is applied in the excitation
of the lower transition. The point where friction crosses zero
is shifted in the case of strong saturation of the upper tran-
sition (Fig. 3). This has a dramatic effect since friction with
a minus sign has the effect of exploding a sample of atoms in
momentum space rather than confining them. For weak satu-
ration of the upper transition, yet strong saturation of the
lower (Fig. 4) it is seen that friction is negative fa$;<0
(curvesb,c,d) for any value ofs,. It is well known that in

-
N'w;/\‘ . g O Q}\;\\
P ! ' : RS N
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two-level molasses the friction coefficient changes sign in o5

going to strong saturation. The high saturation of the lower "l 0 40 @ >0

transition explains the negative sign, and verifying the 588nm Laser Detuning (MHz)

change of sign was used as a consistency check of the com-

puter code. FIG. 5. Measurement of the 588 nm fluorescence of a cloud of

Using the diffusion and friction results it is straightfor- metastable helium atoms trapped by 1083 nm laser bedis (
ward to calculate the temperature curves. As can be seen n>-9'1), and intersected in one dimension by a standing wave of
Figs. 3 and 4 the scaled temperature does not go below iss nm _radlatlon, as a functlor_1 of the detuning of the two laser
i.e., the Doppler limit for two-level excitation is never sur- Teduencies, both for strong excitatiél,=1.9I'; (@) and for weak
passed. We also made calculations for the case of weak iff*Citation{2;=0.4 (b). Courtesy of Moritg 3]
frared excitation and strong yellow excitatignot shown
and did not find any evidence for sub-Doppler temperaturesshift frequency introduced by the quadrupole field is small,

These results can be used to explain some features in thghd has no inhomogeneous effect on the fluorescence signal
experiments of Kumakura and Morita, as will be demon-as a function of laser frequency. This is only the case for
strated in the next paragraph. weak gradients and a relatively small sized cloud of atoms.
The trap of Kumakura and Morita has a diameter of 1 mm.

The yellow laser introduces friction and diffusion in one
dimension, which depend on detuning and intensity. These

Kumakura and Morita performed precise fluorescenceare the parameters that have been varied. The yellow fluo-
measurements for cascade excitation of metastable heliumgscence of the trapped atoms is shown in Fig) &strong
varying laser detunings and powegf. The theory outlined excitation for upper lasgrand Fig. §b) (weak excitation
above may be used to get a qualitative understanding of therhe Rabi frequencies are identical to those used to calculate
observations. Figs. 3 and 4.

The setup of the experiment is as follows. A magneto- At low intensity [Fig. 5(b)] the yellow laser is merely a
optical trap(MOT) is loaded with metastable helium atoms perturbation and does not influence the dynamics of the
from a Zeeman slower. The trapping laser beams are in ®MIOT. The measured fluorescence is proportional to the
tetrahedral configuration and excite only théSg— 2°P, population in the upper (D) level, which indeed is small
transition (1083 nm, infrared Through the center of the (<5%). This population is maximal at two-photon reso-
trap, in one dimension, a pair of counterpropagating lasenance explaining the shift of the maximum in Figbp Dif-
beams exciting the3P,— 33D, transition(588 nm, yellow  fusion and friction effects due to the presence of the yellow
is applied. The trapping laser beams are circularly polarizedaser cannot be tested in this situation. The observed maxi-
and the trap contains a mixture wf levels as a result of the mum at§;=—5 MHz is compatible with a reasonable popu-
MOT geometry, violating the ideal three-level situation. Forlation of the upper level at the best working conditions for
qualitative analysis we will assume no coherences betweethe infrared MOT.
differentm levels, so that diffusion and friction will show the At high power the situation is notably different. Here
same qualitative behavior. We also assume that the Zeemaf,/},;=1.7, which is close to the condition for maximum

VIl. COMPARISON WITH EXPERIMENTS
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force enhancement in overlapping traveling waEs. The  reduce the temperature in a tragf course the issue of using
effect of the yellow laser on the trap dynamics can be seen iit for increasing the loading rate or fluorescence probing is a
the decrease of trap lifetime whe®, is increased, as ob- different one.

served by Kumakura and Morita. Although the trap is three- It is possible to use the presented theory for multidimen-
dimensional and the yellow laser interacts only in one di-sional laser fields. In that case, however, it will be impossible
mension, and is not overlapping with one of the infraredto realize a pure three-level system, since more thannone
beams, most features in Figa may be explained using our component will be populated: the matu, [Eq. (9)] will
one-dimensional theory. It is clearly seen in this figure thaincrease in size and will contain Clebsch-Gordan coefficients
no trapping signal remains if the yellow laser is put on adepending on the specifim values of the atom. We have
positive detuning. This coincides with the situation in Fig. 3,carried out a laser cooling analysis for metastable helium
where always “anti”-friction (¢<<0) occurs at positive yel- moving in a traveling wave exciting the upper transition in
low detuning. This leads to an explosion of the trap. It isone dimension and in a standing wave exciting the lower
interesting to consider the point where the friction crossedransition in the other dimensiof26]. A system with 11
zero in Fig. 3. For the calculated valug$|# 0 this occurs levels was obtained leading to a 22121 matrix. As com-

for 5,=—5MHz. This may explain the position of the puting time for matrix inversion scales witi?, the calcula-
maximum in Fig. %a). It is striking that a high maximum tion of diffusion and friction coefficients becomes an ex-
persists for increasing values b#;|, whereas the maxima tremely laborious job.

decrease much faster in Figiby, as a function of §;|. The In the present paper diffusion and friction have been cal-
small signal in Fig. &) for ;=0 andd;<—20 MHz can be culated for atoms with velocity close to zero. In general dif-
explained by the fact that the loading of the MOT, that de-fusion and friction display a rich and complicated behavior
pends primarily on the four infrared laser beams, is ineffec-as a function of velocity, especially for high laser intensities,
tive: without the yellow laser hardly any atoms are trappedwhere Raman-like Doppleron processes play a significant

as can be seen in Fig(ly for §,=0 and ;= —25 MHz. role [27]. Calculating the full velocity dependence of these
coefficients is hard but can nowadays be performed for one-
VIIl. CONCLUSIONS dimensional standing waves, using continued fract{@&s-

30] or Floguet theory31]. Similar work for a lambda three-
We presented a theory to calculate forces and diffusioneve| configuration has been performed by Drew$ag].
and friction coefficients for a cascade level SyStem. The reHowever, the role of Spontaneous emission is tota”y differ-
sults have been used to qualitatively explain our own experient from the case of cascade excitation. We are now incor-

mental results as well as results of Kumakura and Moritaporating these techniques in our computer code, and hope to
The cooling force, and thus the cooling rate, may be signifigescribe our results in a future paper.

cantly larger than for traditional cooling on a two-level tran-
sition.

Neither in the numerical expgriments, nor in the work of ACKNOWLEDGMENTS
Kumakura and Morita do we find any evidence for sub-
Doppler temperatures. The one-dimensional Doppler limit We thank Nataly Konopleva and Anatoly Tumaikin from
for the two-level system is derived for low saturation. How- Novosibirsk State University for many fruitful discussions
ever, high saturations for both the lower and the upper tranand Professor Morita for providing Fig. 5. Professor G.
sition are required to obtain sufficient population of the up-Nienhuis from the Universiteit Leiden is acknowledged for a
per state. In that case it appears that diffusion alwaysritical reading of the manuscript. We gratefully acknowl-
increases more than friction, so that the equilibrium temperaedge the financial support of the Foundation for Fundamental
ture increases too. This observation leads us to the concliResearch of MattefFOM), which is part of the Netherlands
sion that it seems not beneficial to use yellow laser beams t@rganization for Advancement of Reseaf®hvO).
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