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Measuring the cyclotron state of a trapped electron
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We propose the cyclotron state retrieval of an electron trapped in a Penning trap by using different mea-
surement schemes based on suitable modifications of the applied electromagnetic fields, and exploiting the
axial degree of freedom as a probe. A test for the matter-antimatter symmetry of the quantum state is proposed.
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I. INTRODUCTION

The quantum state of a system is a fundamental con
in quantum mechanics, because the density matrix descri
it contains the complete information we can obtain about t
system. Recently, in quantum measurement theory, a g
interest has been devoted to the possibility of reconstruc
the density matrix by measuring a complete set of probab
distributions over a range of different operator represen
tions.

A tomographic approach to the problem of state retrie
was first introduced by Bertrand and Bertrand@1#, and some
measurement schemes proposed to implement quantum
tomography are reviewed by Royer@2#. Later on Vogel and
Risken@3# showed thats-parametrized quasiprobability dis
tributions can be obtained from the probability distributio
of rotated quadrature phases, a technique which allows p
tical implementation within the field of quantum optics@4#.

The method relies on the possibility of making homody
measurements of the field of interest by scanning the ph
of the added local oscillator field, which is called optic
homodyne tomography~OHT!. Recently, another metho
@5,6# was introduced, based on direct photon counting
scanning both the phase and the amplitude of a refere
field. The latter method, also called photon number tom
raphy~PNT! @7#, has the advantage of avoiding sophistica
computer processing of the recorded data@5# and is appli-
cable when direct access to the system is inhibited@7#.

Although the reconstruction of the phase-space distri
tion was already proposed for nonoptical systems, i.e.,
ticles @8,9#, it is based on optical measurements perform
on the field radiated by these particles, exploiting the re
nance fluorescence phenomenon. These methods would
be suitable in systems without an internal electronic struc
such as a trapped electron~or proton! @10#. The purpose of
this work, instead, is to show how to reach the character
tion of the quantum state of a trapped ‘‘elementary’’ partic
not having an electronic structure, by using tomographicl
measurements without the use of the radiated field. In p
ticular, we shall consider an electron trapped in a Penn
trap @10# developing techniques resembling both OHT a
PNT, which allow one to obtain the state of the cyclotr
motion by probing its axial degree of freedom.
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II. MODEL

We consider the motion of an electron in a uniform ma
netic fieldB along the positivez axis and a static quadrupo
lar potential. As is well known@11#, the motions of that
electron in the trap are well separated in energy scale
what follows we shall consider only the cyclotron and t
axial degrees of freedom, which radiate in the GHz and M
ranges, respectively, neglecting the slow magnetron mo
in the kHz region. To simplify our presentation, we assu
an a priori knowledge of the electron’s spin@12#, then we
neglect all the spin-related terms in the Hamiltonian that,
an electron of rest massm and charge2ueu, can be written
as the quantum counterpart of the classical one

Ĥ5
1

2mF p̂2
e

c
ÂG2

1eV0

x̂21 ŷ222ẑ2

4d2
, ~1!

whereÂ5(2 ŷB/2,x̂B/2,0), c is the speed of light,d char-
acterizes the dimensions of the trap andV0 is the potential
applied to its electrodes.

It is convenient to introduce the rising and lowering o
erators for the cyclotron motion,

âc5
1

2Fb~ x̂2 i ŷ !1
1

b\
~ p̂y1 i p̂x!G , ~2!

âc
†5

1

2Fb~ x̂1 i ŷ !1
1

b\
~ p̂y2 i p̂x!G , ~3!

with b5(mvc/2\)1/2, andvc5ueuB/mc being the cyclotron
angular frequency. For the axial motion we define

âz5Fmvz

2\ G1/2

ẑ1 i F 1

2m\vz
G1/2

p̂z , ~4!

âz
†5Fmvz

2\ G1/2

ẑ2 i F 1

2m\vz
G1/2

p̂z , ~5!
3060 © 1997 The American Physical Society



rs

ra

m
th
ha

rv
g
e
ax
us
e
re
b
n

th

u
e

ro
tio
t

n
g

ri

rter

-
the
ed,
r of
r-

ria-
xial

ility

de-
eset
d a

the

ms

the

ac-
xial
c-
a

on-
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with vz
25ueuV0 /md2. Thus, by using these new operato

Hamiltonian~1! simply becomes

Ĥ5\vc~ âc
†âc1 1

2 !1\vz~ âz
†âz1

1
2 !, ~6!

where all terms not containing the raising or lowering ope
tors have been omitted. The obtained Hamiltonian~6! is de-
composed into two indipendent parts, each forming a co
plete Hilbert space with their own basis. The state of
electron is thus the inner product of the two states we s
call the cyclotron and axial states,uc&5ucc&uca&.

To go further, we also remark that the best way of obse
ing the microscopic system from the outside world is throu
the measurement of the current due to the induced charg
the cap electrodes of the trap, as a consequence of the
motion of the electron along the symmetry axis, beca
there are not good detectors in the GHz range to measur
cyclotron radiation@11#. Therefore, since the motions a
completely decoupled, only the axial one is easily detecta
@11#. In the following we shall consider some interactio
Hamiltonians suitable for an indirect characterization of
cyclotron motion.

III. DETECTION TECHNIQUES

The OHT technique is based on the possibility of meas
ing different quadratures of the field of interest; let us th
define in our case the generic cyclotron quadrature

X̂c~f!5âce
2 if1âc

†eif, ~7!

where f is the angle in the phase space of the cyclot
motion. Furthermore, as mentioned above, the axial mo
could be considered as a meter; then, in order to couple
meter with the system~cyclotron motion!, we may consider

Ĥ int5\g~ âce
2 if1 ivct1âc

†eif2 ivct!ẑ, ~8!

where g is the strenght of interaction. This interactio
Hamiltonian could be obtained by applying the followin
fields on the trapped particle

Â5S mc

ueub
gẑ sin~f2vct !

2
B

2
ŷ,

mc

ueub
gẑ cos~f2vct !1

B

2
x̂,0D ,

~9!

V̂5V0

x̂21 ŷ222ẑ2

4d2
2

m

2e\2b2
g2ẑ2,

which differ from the usual ones@Eq. ~1!# for time-dependent
terms added at the preexistent components. By conside
,
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Eqs. ~6!, ~7!, and ~8!, the evolution in the~cyclotron! inter-
action picture will be determined by the Hamiltonian

Ĥ5\vz~ âz
†âz1

1
2 !1\gX̂c~f!ẑ , ~10!

where the cyclotron quadrature phasef can be set by the
experimentalist as shown in Eq.~9!.

We now assume that the interaction time is much sho
than the axial period, i.e.t,,2p/vz , so that the free evo-
lution of the electron in Eq.~10! can be neglected. This as
sumption allows us to disregard a possible detuning of
applied field with respect to the cyclotron frequency. Inde
in the usual experimental setup the detuning is of the orde
a few kHz @11#. Hence the effect of the interaction is dete
mined by applying a unitary kick

K̂~t!5exp@2 igtX̂c~f!ẑ#. ~11!

By measuring the current due to the induced charge va
tion on the cap electrodes of the trap, one obtains the a
momentum@11#, then the value of quadratureX̂c(f) by
means of

^ p̂z~ t1t!&5^K̂†~t! p̂z~ t !K̂~t!&

5^ p̂z~ t !&1\gt^X̂c~f!& cos~vzt !. ~12!

Repeated measurements allow us to recover the probab
distributionP(Xc ,f) for that cyclotron quadrature~marginal
distribution!. However, the measurement process is state
structive; hence the initial state of the electron has to be r
prior to each new measurement. After one has performe
large set of measurements for each phase anglef, the
s-parametrized Wigner function can be obtained from
probability of experimental dataP(Xc ,f) through the in-
verse radon transform@3#

W~a,a* ,s!5E
2`

1`drur u
4 E

0

pdf

p E
2`

1`

dXc P~Xc ,f!

3exp$sr2/81 ir @x2Re~ae2 if!#%. ~13!

It is evident from this expression that convergence proble
arise fors>0.

In analogy with Refs.@5,7# we now show how one can
probe the quantum cyclotron phase space by measuring
number of cyclotron excitations. In Ref.@13# the quantum
nondemolition measurement of the latter is shown to be
cessible by only considering the coupling between the a
and the cyclotron motions induced by the relativistic corre
tion to the electron’s mass; however, in order to obtain
stronger coupling we shall consider the magnetic bottle c
figuration, which leads to@11#

Ĥ int5\kâc
†âcẑ

2, ~14!
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3062 56STEFANO MANCINI AND PAOLO TOMBESI
where the constantk is related to the strengthb of the field
characterizing the magnetic bottle. As a consequence of
~14!, the axial angular frequency will be affected by th
number of cyclotron excitations; in fact, it will result in

V̂z
25vz

212
\k

m
âc

†âc . ~15!

Then, probing the resonance frequency of the output elec
signal, one can obtain the number of cyclotron excitation

The axial motion relaxes much faster than the cyclot
one @11#, so, when Hamiltonian~14! is added to the Hamil-
tonian of Eq.~1!, by considering the axial steady state, a
neglecting a very small anharmonicity term, we can write

Ĥcyc5\~vc1k^ẑ2&!âc
†âc , ~16!

with ^ ẑ2&5kBT/mvz
2 the thermal equilibrium value of the

free axial motion, from which we may recognize a shift e
fect also on the cyclotron angular frequency due to the c
pling.

Furthermore, to perform a PNT-like scheme, according
the optical case of Ref.@7#, we need a reference field whic
displaces the state one wants to recover or, equivalently,
which is mixed to it by means of a beam splitter@5,6# that,
however, in this case is not applicable. To this end we
use a driving field with amplitudee acting immediately be-
fore the measurement process induced by Hamiltonian~14!,
and given by a Hamiltonian term of the type

Ĥdrive52 i\~ee2 ivctâc
†2e* eivctâc!. ~17!
t
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Hence, in the interaction picture we may write

r̂cyc~t!5D̂†~E!r̂cyc~0!D̂~E!, ~18!

with

D̂~E!5exp@Eâc
†2E* âc#, E5et, ~19!

wheret represents the driving time interval. One can ag
get rid of the detuning with respect to the cyclotron fr
quency, provided one chooses the interaction timet to be
much shorter than the axial period.

Once one has ‘‘displaced’’ the initial state, the measu
ment process of the axial frequency allows one to obtain
number of cyclotron excitations present in the stater̂c(t);
hence the probabilityP(nc)5^ncuD̂†(E) r̂cyc(0)D̂(E)unc&,
which becomes; nc after a large set of measuremen
Then, by referring to the expression of thes-parametrized
Wigner function introduced in Ref.@14#, we may write

W~E,E* ,s!5
2

12s (
nc50

` S s11

s21D nc

3^ncuD̂†~E!r̂cyc~0!D̂~E!unc&, ~20!

where the quasiprobability distribution corresponds to
state r̂cyc(0), and can beentirely obtained by varying the
complex parameterE ~i.e., the reference field!.

This scheme requires the use of the following fields:
Â55 S 2
mc

bueu
Im$ee2 ivct%2

B

2
ŷ,2

mc

bueu
Re$ee2 ivct%1

B

2
x̂,0D , t<t

S 2
B

2
ŷ2

b

2
@ ŷẑ22 ŷ3/3#,

B

2
x̂1

b

2
@ x̂ẑ22 x̂3/3#,0D , t.t,

~21!
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T-
ect
red
se-
our
ich,
ant
e-
tec-
w

on
ent
of a
which means turning on the magnetic bottle as soon as
driving field is switched off. The latter may consist of a
electromagnetic field circularly polarized in thex-y plane
and oscillating atvc . The scalar potential remains the sam
as Eq.~1!, while Eqs.~14! and~17! can be obtained from the
above fields by consideringb!B and making the rotating
wave approximation and dipole approximation; in doing th
one also obtainsk5ueub/2mc. We wish to point out that
these fields are commonly used in the experimental setu
the Penning trap, differently from an OHT-like schem
where nontrivial modifications of the fields are required.

IV. CONCLUDING REMARKS

In conclusion, we have shown the possibility of reco
structing the cyclotron state of a trapped electron using
he

t,

of
,

-
f-

ferent measurement schemes based on suitable modifica
of the external electromagnetic fields. In particular the PN
like scheme could be considered more powerful with resp
to the OHT-like scheme, since it does not need any filte
back-projection process, directly giving the desired pha
space distribution from measured data. We confined
treatment to the case of undamped cyclotron motion, wh
however, could be reasonable for a perfectly off-reson
situation@15#. To simplify the presentation of the measur
ment schemes we also assumed unity efficiency in the de
tion process. For nonunity efficiency it is possible to sho
@16,6# that one never reconstructs the full Wigner functi
but only a smoothed version of it. Moreover, the pres
model can be applied to reconstruct the quantum state
trapped antiparticle such as the positron~or antiproton!, and
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56 3063MEASURING THE CYCLOTRON STATE OF A TRAPPED . . .
to test whether particle and antiparticle have the same q
tum state under charge conjugation transformation.

Let us give some numerical simulations to emphasize
discussed possibilities of reconstructing quasiprobability d
tributions. We demonstrate the methods assuming that
cyclotron state is an odd coherent state state@17# ~or Schrö-
dinger cat state!

ua2&5N2~ ua&2u2a&), ~22!

with ua& being a coherent state andN2 a normalization con-
stant. States of this type exhibit quantum interferences,
ing rise to negative values and sharp structures in the Wig
function, so that their reconstruction necessitates partic
care.

In Fig. 1 we show a smoothed version of the Wign
function (s520.25) reconstructed by using OHT; the neg

FIG. 1. Simulations of the reconstruction of thes-parametrized
Wigner function (s520.25) for an odd cat state witha51.5 by
means of OHT; 27 phases are scanned with 103 data each.
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tivity of the parameters makes the numerical algorithm fo
the inversion easier. The full Wigner function (s50), in-
stead, can be readily reached by means of PNT~Fig. 2!,
where no convergence problems arise and cumbersome
merical algorithms can be avoided.

Cat states could be created in a Penning trap by consid
ing relativistic effects~which introduce an anharmonicity!,
having a macroscopic character whenever strong excitati
are considered, and they can be displayed with the aid of
discussed methods@18#. From the experimental point of view
the difficulty in using PNT is connected with the measur
ment of the cyclotron excitation number, and the need
distinguish among the Landau levelnc and its nearestnc61.
It was shown in Ref.@13# that with the sensibility already
reached for the axial resonance frequency, this measurem
is feasible when the electron’s spin is known.

FIG. 2. Simulations of the reconstruction of the Wigner functio
for an odd cat state witha51.5 by means of PNT; 103 events are
sampled for each of the 255 points of the grid.
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