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Radiative cooling force in atoms with multiplet structure
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This paper extends the calculation of laser cooling forces on atoms with magnetic degeneracy to the case
where the excited state is composed by a multiplet of levels with arbitrary energy separation. The sub-Doppler
force that arises in the, ,o_ field configuration is found to be strongly affected if other atomic levels lie
close to the excited level of the cooling transition. The paper examines in detail the case in which the excited
multiplet comes from spin-orbit coupling of angular momentum1 and spinS= 1, forming theJ,=0, J.=1,
andJ.=2 energy levels. The cooling transitidly=1+J.=2 shows the sub-Doppler structure due to mag-
netic degeneracy. The force is modified by the two other transitibssfficiently close, even if these do not
provide any mechanical effect on the atom when acting alone. The paper presents a detailed scheme for the
construction of the relevant optical Bloch equations for the present case, which can be generalized to treat more
complex atomic structures. The solutions to these equations are then discussed; several cases of energy sepa-
ration are worked out and the ensuing graphs of the radiative force are shown. The calculations were carried
out in both low- and strong-field regimds$1050-2947@7)10309-2

PACS numbeps): 32.80.Pj

[. INTRODUCTION Doppler cooling of the atomic species. Both these schemes
were investigated for isolated transitions, i.e., when the lev-
Laser cooling below the “Doppler”’ limit temperature els involved in the cooling mechanism are well separated
To=%7v/(2kg) [1] was observed in several experiments byfrom all other atomic levels. A detailed description of the
the end of the 1980§2,3]. It was soon realized that the Processes involved in these cooling schemes can be found in
two-level system, used to describe the atomic transitions inRef. [8].
duced by the laser beams and derive the radiative force act- In this paper we discuss several aspects of sub-Doppler
ing onto the atom, was completely inadequides), as it  laser cooling of atoms with Zeeman sublevels by means of
predicted limit temperatures several times higher than th&vo coaxial and counterpropagating laser beams with the
ones actually measured in optical molasses. The magnetf&@me frequency, and the same amplitude:cg, circularly
degeneracy of the levels involved in the transition was soompolarized field propagating in the positive direction of the
recognized to be the ultimate cause of such behd@g. axis, and ao _ circularly polarized field propagating in the
Magnetic sublevels enter the process in radically differennegative direction of the axis. In Refs|[6,8] it was shown
ways, depending on the polarization of the laser beams usdbat, with such a configuration, the polarization of the result-
to cool down the atomic gas. Two typical schemes of laseing field is always linear, but the polarization axis changes its
cooling were analyzed in detd#]. In the first one two coun- direction alongz: indeed, the polarization axis of the result-
terpropagating beams, with linear polarization and polarizaing field rotates in thety plane as varies, completing a full
tion axes mutually orthogonal, are used to damp the motiomotation of 360° wherz has changed by an optical wave-
of the atom. The laser frequency is tuned close to an atomitength\.
transition between d,=1/2 ground level and d,=3/2 ex- An atom moving along the axis will therefore see a
cited level. Under such excitation, a dipole force is exertedinearly polarized field with a polarization axis rotating in the
on the atoms moving with low velocities along the axis of X-y plane. Let the Zeeman sublevels of the atom refer to the
the fields’ propagation: when the laser frequency is tunedjuantization axis directed alorzg and choose the orientation
below the atomic resonance, the force acts against the atomid the other two axes andy in such a way that the field is
motion, providing an effective frictional force. In the second always polarized along thg axis. In order to satisfy this
scheme, two counterpropagating laser beams with opposiondition, we must choose a rotating reference frame. The
circular polarization are used instead. In this case, the lowesttate amplitudes of the Zeeman sublevels in such a rotating
magnetic degeneracy that allows for a sub-Doppler coolindrame are obtained from the state amplitudes in the fixed
is one withJq=1 in the ground state, an#,=2 in the ex-  frame by applying the transformation exgi(J,), whereJ,
cited state. Under such conditions, a radiative force ariseis the z component of the angular momentum operator.
that is mostly due to the unbalanced radiation pressure exFherefore, they vary according to
erted by the two beams. Tuning again the laser frequency _ _
below the atomic resonance, the resulting radiation force acts fotating__.  fixedg ~im¢, (1.2)
as a viscous force proportional to the atomic veloaity
when v is sufficiently low, providing an effective sub- where¢ is the angle of rotation anth the magnetic quantum
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FIG. 1. Gradient polarization forces at low
field intensities in ther, , o_ configuration.(a)
0.00 0.00 transition J;=1-J.=2. (b)  transition
Jg=4+J.=5. The field amplitude corresponds
to a reduced Rabi frequency of 0.279&ee Sec.
VI).
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number of the Zeeman sublevel. If the atom moves with ahe new mechanism that results in a stronger force disap-
velocity v along thez axis, and we choose the rate of rota- pears, and the usual Doppler force of the two level atom is
tion of the reference frame so that the atom, in such a frameestored.

sees a linearly polarized fieldlways directed along they The calculation of the force for thiy=1<J.=2 transi-
axis, theng=k vt, wherek, is the magnitude of the laser tion leads to the graph shown in Figial One can see here
fields’ wave vector. Thus, the rotation of the reference framehat, at low velocities, the force has a steep variation with
manifests itself as a shiEr, in the energy of the sublevels, ; ~while at larger values of the force gets a smoother
behavior, since the effects brought in by the magnetic degen-
eracy of the atomic states involved in the transition have
disappeared, as mentioned above.

AE=miik_ v, (1.2)

which can be traced back to a fictitious magnetic figld = i .
directed along the axis (Larmor's theorerm The frequency A Similar calculation carried out for 3, =4 J,=>5 tran-
of the precession induced by this fieldkisu. Note that the ~Sition, such as the one involved in the laser cooling of ce-
field B is constant in both magnitude and direction as long a$ium atoms, is shown in Fig.(t) (details of these calcula-
the atom maintains its velocity constant along the axis. tions will be given below. One can see that the force arising
The fictitious magnetic field is the source of a motion from polarization gradient effects in the proximity o0 is
induced orientation of the atomic ground state: in particularsloping even more sharply. This is not surprising, since the
it was shown that, if the atomic velocityalong thez axis is ~ magnetic alignment induced by the fictitious fieddis re-
positive, and the common frequency of the two laser beamgarkably larger in states with high magnetic degeneracy. It
is slightly detuned to the red of the atomic transition, theshould be noted that the friction force arising nearO may
population of than= — 1 sublevel in the stationary regime is even exceed the Doppler force in transitions involving levels
larger than the population of the= -+ 1 sublevel. Thus, the with high magnetic degeneracy. In the graph of Figp) this
probability for such an atom to absorb a photon from theresults in a peak of the force at~+0.01y/k_, where the
o_ component of the field is larger than the probability of highest magnetic polarization of the atoms is achieved. At
absorbing a photon from the, component. This in turn larger atomic velocities such an effect is washed out and the
yields an unbalanced radiation pressure exerted by the twonly remaining force is the Doppler force.
fields, with a net, velocity dependent, viscous force, larger However, the effects due to a larger friction force in a
than the one predicted by the cooling theories based on @ansition with higher magnetic degeneracy are somewhat
simple two level model. This force has been shown in Refsreduced by an enhanced diffusion coeffici¢i, whose
[6,8] to be mostly of a dissipative character. A further cor-value ultimately sets the limit temperature that can be
rection to the cooling force is provided by the coherence thateached for the atomic species under consideration.
arises between then=—1 and m=+1 sublevels of the As noted above, the minimal magnetic degeneracy in the
ground statethe reactive component of the fojgdout this ~ ground state required to observe motion-induced orientations
does not change the conclusions outlined above. The ne@nd the new friction force is the one associated with a total
force arising from polarization gradients is effective in aangular momenturd=1. It is obvious that these effects can-
range of atomic velocities for whick [v|<y’, wherey’ is  not be present if the ground state is not degenerate. Yet,
the rate of optical pumping among the ground state’s sublevmagnetic degeneracy is, in most cases, brought in by spin-
els induced by the circularly polarized fields. Optical pump-orbit coupling and/or hyperfine interactions. For instance, in
ing occurs through several absorption processes followed bipe case of cesiurD, transition, the ground states6”S;,
spontaneous emission processes: if the field amplitude is loWwas the orbital angular momentuln=0, and the excited
enough, as in several experimental apparatuses used in lastate ® 2p,, hasL=1. These states couple with the elec-
cooled molasses, the optical pumping rag¢ is much tronic spinS=1/2 to formJ=1/2 andJ=3/2 angular mo-
smaller than the rate of spontaneous emission processes mentum states. Finally, the nuclear spis 7/2 brings the
the opposite limit, i.e., whek, |v| is much larger thany’  hyperfine structuré=3 andF=4 in the ground state and
and gets closer to the damping ratef the atomic transition, F=2, F=3, F=4, F=5 in the excited state. Magnetic de-
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generacy is then associated with the presence of other leveisrce turns out to be quite different from the ideal case of
of the multiplet, which in turn may affect the magnetic align- isolated transitions. Finally, Sec. VIl summarizes the main
ment and the ensuing force. Moreover, the strongest couesults derived in this paper.

pling of the electromagnetic field with the atom occurs

throu_g.h the electric dipole i.ntera_lction, vyhich involves only Il. THE COOLING FORCE
transitions among states with differeatbital angular mo- ) )
mentum. It is therefore of interest to investigate how the new A. The optical block equations

kind of force, in a transitiol. =0~ L=1, emerges because  The friction force exerted on the atoms by counterpropa-
of the spin-orbit coupling that brings magnetic degeneracy ofjating laser beams has been the subject of extensive investi-
the two states involved in the transition. gations(see, for instance, Rf10] and references thergint

In this paper we consider an atom with b0 ground arises because the internal state of a moving atom does not
state and ah =1 excited state. The orbital angular momen-adjust itself immediately to the variations of the laser field
tum is then coupled with a fictitious spS=1 (which forms experie_nced.during. its motion. The coqling force _could also
aJ=1 ground state and a multiplgt=0, J=1, andJ=2 in  be derived in a simple way by considering a linear and
the excited stajeand we study the emergence of the polar-damped oscillator, coupled to two driving fields having
ization gradient force in a, , o configuration, as the cou- slightly different frgquenmes, such as those resultlng from
pling grows from zerowhere the only force present is the the Doppler effect in a reference frame that moves with the

Doppler force since there is no magnetic degeneracy in thgtom. Carrying out the calculatlpns, one would find that the
ground state withL,=0) to a finite value. When the fre- oscillator experiences a force given by

guency separation in the multiplet is much larger than every
other frequency that enters the problem, we expect to re- F=
cover, at low atomic velocities, the polarization gradient
force shown in Fig. 1. On the other hand, when the fre-

quency separation is not so large, we expect to find deVia\ivherefo and g, are the amplitudes of the driving fields,

tions from the ideal behavior, and ultimately the dlsappear-w,w/ are their frequenciesy is the damping constant, and

ance of the sub-Doppler force when the spin-orbit gouphng% is the oscillator frequency. Equatid®.1) is quite general
is vanishingly small. This is not of a mere academic interesti, 5| respects, except that it lacks saturation. It contains only

in real cases, such as when the atomic species in the opticgle gissipative component, since the amplitude of the driving
molasses is an alkaline atom, the frequency separatiofje|ds is assumed to be constant.

among excited sublevels are often of the order of a few times p widely used model to evaluate the force exerted by the
the spontaneous decay raje In such cases, we expect t0 glectromagnetic field on an atom is one in which the gener-
find substantial deviations from the cooling force arisingajized optical Block equations are introduced to describe the
from aJg—Je (with Jo=Jg+1) transition. In this paper, we response of the atom to the field. Saturation effects are auto-
limit ourselves to an evaluation of the cooling force Undermatically taken into consideration when using the Block
these circumstances, without considering effects of the spinsquations to evaluate the atomic polarizability. Magnetic de-
orbit coupling on the diffusion coefficient. generacy of the levels is included in the description, since it
This paper is organized as follows. In Sec. I, we reviewp|ays a relevant role in the process.
the basic concepts of the radiation pressure force exerted by For the sake of completeness, we describe here the basic
two counterpropagating waves onto a linear oscillator and agteps in deriving the optical Bloch equatiof®BE) in a
atomic system with magnetic degeneracy. In Sec. Ill, wesystem with magnetic degeneracy. This will prove useful
describe the atomic internal structure in our model: theater in this paper, when the OBE will be generalized to
ground state, with orbital angular momentun+ 0, and the  jnclude the effects of spin-orbit coupling. We consider the
excited state, with angular momentur 1. Spin-orbit cou-  ynidimensional problem only, in which both the atomic mo-
pling (S=1) is then added and gives rise to a multiplet struc-tjon and the propagation of the electromagnetic field occur in
ture in the excited state, with=0, 1, and 2 levels having the same direction, along which we take thaxis. This axis
different energies, while the ground state gets a total angulgg also taken as the quantization axis for the eigenstates of
momentumJ=1. In Sec. IV, we derive the optical Bloch angular momentum. We disregard for the moment the mul-
equations in thel(,S,M, ,Mg) and the [,S,J,M;) bases. tiplet structure of the excited state, and consider only transi-
Strong spin-orbit coupling is considered in the next sectiontions between the ground state with total angular momentum
we show there that optical transitions from the ground statg, and the excited state with total angular momentim
(J=1) to either aJ=0 or aJ=1 excited state do not add to The external degrees of freedom on the atom, i.e., its motion
the force exerted onto the atom. Not only do these transition§|ong thez axis, are considered only in a classical way,
not provide any sub-Doppler contributions to the fof8¢  which is a valid approximation as long as the atomic speed is
they are also not capable of producing any effective mesufficiently large. The internal degrees of freedom are fully
chanical effect on the atom. In Sec. VI we discuss the case qfescribed by the density operator whose equations of motion
weak spin—orbit coupling, where the multiplet splitting is are given by
small and interference effects arise among transitions to the
excited levels. In such cases, it may be expedient to tune the do
laser field below the lowest resonance, but then the cooling i —=[H,o]+i
force is affected by the interference effects and the ensuing dt

79 - ar
200 Y*+ 4(wo— 0")?} 2w0{72+4(w0—w)2}(' )
2.1

dt

) damp
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where[H, o] is the commutator of the density operator with dogg
the Hamiltonian of the system, andi¢/dt)gamp is a term i W=F9‘{C(m,+l,a)<m|ff|,3>
that accounts for the damping in the system due to the spon-
taneous emission processes. —F*RC(B,—1n){a|a|n) (2.80
The field is made up of two counterpropagating running
waves, of circular polarizations, ando_ : and similarly for the terms arising from the coupling with the
o_ component,
E(Z,t)zE(0'+ ,Z,t)+ E((T, ,Z,t), (22) d
U0mn
where T =G*RC(B,+1m){B|o|n)
< L —GRC(n,— La){m|o|a), (2.939
E(o,,zt)=—— (I+ij)e "et"k2 1 cc. (2.39
V2 T am
i =GRC(n,—L,a){n|a|m)
dt
and
—GRC(m,—1,8){a|a|B), (2.9n
g .o i}
E(o_,zt)=—(—ij)e " kdycec.  (2.3b o
V2 | g = GRC(M, — La)(mlo|B)

The two components of the field have the same frequency
o, and the wave vectdk, |=k,_ pointing in opposite direc-

tions. The atom-field coupling occurs via the electric dipoleyhere we have introduced the symbaf§m,q,«) and

—G*RC(B,+1n){a|co|n). (2.90

coupling, C(a,q,m) defined by
—d-E(z,t)=—{ET e otk p o7 _ e ilorttk2) Jg K,m,qld, . K, Je,
1€T 44 1 } C(m,q,a)=< g Q| g e a>, (2.103
+H.c., (2.4 V2J+1
where we have used the tensorial components of the electric ‘ ~ (Je.K,@,q]3¢ K, Ig,m) (2.100
dipole operator (ar,q,m)= 23,+1 ' '

1 _ 1 _ (Jg.K,m,qJg,K,Je, @) and(Je K, ,q|Je,K,Jq,m) denote
Ti1=——(x+iy), T_j=—(x=ly). (2.9  Clebsch-Gordan coefficient$: is the reduced matrix ele-
V2 V2 .
ment of the transition,

Atomic units are used in which the Planck’s constargnd R=(g|T|le), (2.11)
the charge of the electromare set equal to unity. Introduc-
ing the symbols andK is the rank of the coupling spherical tensor, in our case
A ‘ the electric dipole vector, for whicKk=1. Using the sym-
F=ge '(el"ka  G=¢ge (el (2.6)  metry properties of the Clebsch-Gordan coefficients, one can

show thatC(«,q,m)=C(m,—q,«). Exchanging the states
the complete coupling operator can be written in the form m and « in this relation would change the sign of the coef-
_ N + . t ficient for g=0, but, for our case of circularly polarized
—d-E(z,t)= —{FT 1 +F* (T, )" +GT_1+G*(T_1'}. fields, the only components that are allowed are those with
2.7 g= =1, since the quantization axis coincides with the axis
along which the electromagnetic waves propagate. In deriv-
ing the equations for the density matrix elements, we have

operator. Latin lettersn,n will be used as indices of the di ded ilati . .
round state sublevels, and greek letiegs as indices of the Iscarded terms oscillating atuig (_rotayng wave approxi-
9 ' mation. According to this approximation, the off-diagonal

excited state sublevels. The time evolution of the atomic . : )
) ! . . ___.__elements of the density matrix are redefined as
density operator driven by the field of circular polarization

In what follows, we will denote byr the atomic density

o, alone is described by the equation of motion T o= T €L, (212
Qomn _ accordingly, the time dependenceRrandG will disappear,
i—gr = FRA(B, — Lm)(B|aln) and the field amplitudes are replaced by

—FRC(n, + La)(m|o|a), (2.89 F=gekiz, G=¢ge k2, (2.13
_dogm The tilde will be omitted in what follows.
I —g = FRCN, + La)(n|o|m) To these equations we have to add the terms of the free

evolution of the system and the damping terms due to spon-
—FRC(m,+1,8)(a|ad|B), (2.8b  taneous emission. While the inclusion of the free evolution
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terms is straightforward, keeping account of the spontaneousnd ¢ is equal tok vt.

emission processes requires some algebraic effort. Another method to solve the equations and find the sta-
Decay from the upper levels into the lower ones can occutionary values of the matrix elementg[® is to solve the

through spontaneous emissions of photons with any polarizainear system of equations

tions. The basic assumption is made that the spontaneous

emission processes are statistically independent processes. dofY

Thus, with a straightforward generalization of the equation T (2.17)
governing the radiative decay for a two level system, we

write the equation that describes the decay processes forig the unknownss{{*Y that represent the stationafiye., time

multilevel atom a§11-13 independentvalues of the density matrix elements. The de-
dor 1 rivative of each matrix element{® can be expressed as a

(— =>, (— 5895V + oS VS¥) + 5 VaSV linear combination of the matrix elements themselves. The
dt damp 9 2 system(2.17) is homogeneous but its determinant is null; the

(2.14 matrix elements are then completely determined by imposing
another condition on them, namely, that the total population
3oy of both the ground and the excited states be 1. The
evaluation of the eigenvalues of the time evolution matrix for
me matrix elements{{*Y gives also useful insights into the
problems connected to numerically integrating the full sys-
tem of differential equations, such as the time required to
reach the stationary regime, which is determined by the
slowest time scale in the system, i.e., the optical pumping
characteristic time 3/, and, possibly, the very existence of

To evaluate the radiative force acting on the atom, wesuch a regime. It is expedient to write the time evolution
must find the atomic polarization induced by the field in thematrix as a real matrix, Sp”tting the matrix e|ement$0t)
stationary state. We therefore have to integrate the full sysyng (™Y into their real and imaginary parts.

tem of equations, starting from arbitrary initial conditions,  aying found the stationary values of the density operator
until a situation is reached in which the populations do NOtmatrix elements, in one way or the other, we can determine

vary when time elapses. It is expedient to refer the atomignhe aromic polarization and hence the radiative force. We
system to a rotating system of coordinate axes that movegefine the symbols

with the atom. The axis is taken along the direction of field

whereS{? (S{?) is the raising(lowering operator for elec-
tric dipole transitions induced by thg component of the
tensor T®). Note that the raising and lowering operators
have been defined so as to include the damping constant.
this way, the Bloch equations for an atom with magnetic
sublevels are readily written.

B. Evaluation of the cooling force

propagation. Thex andy axes are made to rotate about the R
Z axis, in such a way that, in this reference frame, the atom P+=5 2 (m|o|a)C(m,+1,a), (2.183
a,m

sees always a linearly polarized field. As mentioned above,

the effect of the rotating reference frame is taken into ac-

count by a fictitious magnetic fiel@, directed along the

rotating axis(i.e., thez axis). Since the latter field is constant P- Y mEa (mlola)C(m,—1a)
as long as the atom keeps moving with the same velocity, the

interaction between the atom and the field is described by & indicate the atomic polarization induced by the and
time independent term. Thus, we expect that in such a movs-_ components of the field. In Eq&2.183 and(2.18b), the
ing rotating frame of reference, each element of the denSitYnatriX e|ement$m|a-|a/> give the Steady state coherences in
matrix reaches a stationary value, independent of time.  the fixed reference frame. According to Eg.15), these are

The indices of the matrix elements, run over the entire  given, in terms of the stationary values fof°®?, by the
set of the states considered hergg21 for the ground (gjations

state’s sublevels, andJ2+1 for the excited state’s sublev-

| 2

(2.189

els. Within each manifold, states are numbered in the order 7>+:7>(+f0t>e—ikLvt, (2.19a
of ascending magnetic number. The transformation of the
density matrix from the fixed reference frame to the moving P_=plrotgtikot, (2.19h

rotating frame is performed by

We find then the expression for the radiative force exerted on

(o _ _tg (fix) , . .
o =1H{o M, (219 the atom by the combined action of the two field components

where 7 is a diagonal matrix given by F=2vak [F Im(P)— G Im(ﬂmg)] (2.20
v O] .

g ig¢
Both graphs in Fig. 1 were obtained by evaluating €0
ot idgd for the transitions Jg=1Je=2 [see Fig. ®] and
r= o iet Jg=4+J.=5 [see Fig. 1)].

It is to be noted that Eq2.20 expresses the total radia-
tive force acting on the atom because of its interaction with
gt iled the electromagnetic field. The force has reactive and dissipa-
(2.19 tive componentgsee Ref[8] for a complete discussion of
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this subject that arise from different physical mechanisms, TABLE I. States of the atomic system in the,M,), (J,M,)
but we prefer to use Ed2.20, which gives the total force, bases.

i.e., the sum of the two components, since the latter are dif

ficult to disentangle in a strong field regime. Moreover, Eq. L.M_ basis J.M; basis

(2.20 is more apt for numerical calculations. State 1- M= —1 M =0 3-1 M,=—1
State 2: Ms=0 M=0  Jy=1 M;=0

lll. SPIN-ORBIT INTERACTION State 3- Me=1 M, =0 34=1 M,=1
We consider here a simplified atomic model to describeState 4: Ms=—-1 M=-1 J=2 My=-2
how spin-orbit coupling affects the cooling force exerted byState 5: Ms=-1 M =0 Je=1 My=-1
the electromagnetic field. The atom is basically a two levelState 6: Ms=0 M ==1  Je=2 My=—
system, in which the lowelground state has orbital angular State 7: Mg=-1 M =1 Je=0 M;=0
momentumL =0, and the excited level has orbital angular State 8: Mg=0 M_ =0 Je.=1 M;=0
momentumL =1. In such a system, the force exerted by theState 9: Mg=1 M, =- Je=2 M;=0
two counterpropagating, circularly polarized fields, in theState 10: Mg=0 M =1 Jo=1 M;=1
same unidimensional geometry described in Sec. Il, wouldtate 11: Mg=1 M. =0 Jo=2 M,=1
be the Doppler force alone. However, we add a fictitious spirstate 12: Ms=1 M, =1 Jo=2 M;=2

S=1 to the system, and the spin-orbit coupling gives rise ta
a multiplet of excited levels witll,=0, J,=1, andJ,=2,
having different energies. The ground state gets a total angl,ﬂﬁ
lar momentumJ =1. The force exerted by the laser fields
tuned near the resonandg=1<J.=2 includes the new

kind of force, and allows for sub-Doppler cooling. Thus, the AU . :
rise of the new force is entirely due to the spin-orbit Cou_subscnpt u* (uncoupled, while states in tha, M, repre-

pling. This can be seen in another way yet: if the groundsem""t'o.n will be denoted by the ;ubscnpt”“ (COUpI?d'
state is anL=0 state, with any spin component, and we Passing from one representation to the other is accom-

disregard couplings with the electromagnetic field other thar‘i)IISheOI by means of the transformation matrix whose ele-

the electric dipole coupling, then transitions are induced bymfgts r?rf ;:rllzb;(;?flozria;g (t:r?eezlglrﬁgt'sﬁ Ik;]oit)r?rrtclacurlssréittztt?c)sni
the field only towards the sublevelsv =+1 and ug ! P 1ons.

M_=—1 of the excited state. In the absence of a spin—orbitThe other states are linked by the relations

The first three sublevels belong to the ground state, and
e other nine sublevels to the excited state. We will use
either representation, depending on which one best fits our
purposes. States ih, M, S, Mg will be denoted by the

interaction, which couples these sublevels with others having s, Pse

different spin component, any sublevel of the excited state (¢6u) =A1( l//ec)’ (3.1a
would decay to a ground state=0 sublevel having the

same spin component, thus preventing the formation of a Y7y Wre

motion-induced orientation in the ground state and coher- Weu | =Ag| W (3.10
ences among its sublevels. Thus the only available cooling y y '

force would be the Doppler force. We will see later in this du 9%

paper that the strength of the spin-orbit coupling greatly af- . Yo

fects the formation of the motion-induced orientation of the (l/fuu) =A4 l!/nc') (3.10

ground state and the coherences among the ground sublevels.

It should be noted that a situation in which transitionswhereA_;, Ay, andA, ; are matrices of transformation that
occur amond-=0 andL =1 states is typical of many atomic contain the appropriate Clebsch-Gordan coefficients.
species used in generating laser-cooled atomic molasses, al- Details of the spin-orbit coupling need not be known. The
though the spin may be much larger than the oSe 1) only parameters needed to carry out the calculations are the
considered here. energy displacements from the unperturleedl level intro-

The whole atomic system in our model contains twelveduced by the coupling. The Hamiltonian in the M , S,
sublevels, three in the ground state, and nine in the exciteM g representation is not diagonal even in the absence of the
states. We label these sublevels, in the two bd&eM  } electromagnetic field, but its evaluation is straightforward:
and{J,M;} (see Table)l using the transformatiof8.1), we can write

<miM|HO|m,;M,>:JM 2 C(m’M'J’MJ)C(m,’ILL,"],’M\;’)<J!MJ|HO|J,’M\;’>:JM C(m!MlJlMJ)C(m,5M,|‘JIM\])EJi
Jywm J
3

3.2

where m,u, and m’,u’ denote the orbital and spim components of two states in the uncoupled representation, and
c(m,u,J,Mj), c(m',u',J",M’;) are Clebsch-Gordan coefficients; is the energy of thdth level displaced by the spin-
orbit coupling.

The atomic polarization can also be evaluated in either representation. Defining the vectors
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€ :_T-i-_ijA (3.33
+ ‘/21 .

T—ij
€e_=——o 3.3b
v (3.3b
and using Egs(2.5) the electric dipole operatat is expressed in spherical components
d=T+lEi+T,1€t+Zk, (34)

where the asterisk denotes the complex conjugate. Assuming that the atomic system is in a pure, quantum mechanical state,
and expanding the atomic wave functig in terms of the eigenvectotsp,) of the chosen basis, we find the expectation
value ofd:

(d>=§n) Z e |Toreh +T 1€ +2K|¢y). (3.5

In theL, M, S, Mg representatiorid) is given by
(dy=R{C(0,+ 1,+ 1)(C1yCh,+ CouCio,+ CauCiay) €% +C(0,— 1,— 1)(C1,Ciay+ CouCay+ CauCay) €°
+C(0,0,0)(C1yCe,+ €2 CH, T CauCiy) K} +C.C., (3.6
where the coefficient§(m,q,m’) are given by
_<Jg,K,m,q|Jg,K,Je,m'> 37
V23.+1 '

with J4=L,=0 andJ.=L.=1, andfi is the reduced matrix element of the operaddior the transitionL =0« L=1. Note

that the electric dipole operator couples states with the same spin component, since it involves the electron coordinates only.
In theJ, M, representation, there are three distinct transitions, connecting the ground state with each level belonging to the

multiplet. The expectation value of the electric dipole operator is given by

C(m,q,m")

(dy=k{—2,C0(0,0,0/c3.Coc+R1[C1(—1,0,~1)cE.C1.+C1(0,0,0)C5cCoc+ C1(+1,0,+ 1) CYeCac]
—R,[Co(—1,0,—1)c§ C1c+Co(0,0,0)C5.Coc+ Co( + 1,04+ 1)CT 1 Cacl} + €5 { —RoCo( — 1,+1,0)C5C1c
+R4[C1(—1,+1,0)c5.C1c+Ca (0,4 1,4 1)CipCoc] — Ro[ Co — 1,4+ 1,0)c§Coc+Co(0,4 1,4 1)CT1Coc

+Co(+1,+1,+2)ciCac)t + € {—RoCo(+1,— 1,005 .Cac+R1[C1(0,— 1,— 1) cECoc+ Ci(+1,— 1,0)C5.Cac]

—R[Co( —1,—1,— 2)CC1c+Co(0,— 1,— 1)CECoc+ Co( +1,—1,0)C5.Cac ]}, (3.8
T
where the reduced matrix elements for the three distinct tran- R 5
sitions are defined as Ro=— 7 Ri=R, R,=-— \[5 R, (3.1)

Ro=(9[|Tlle,3=0), Ry=(g[T[eI=1), . . :
These equations can also be proved directly by using the

R,=(g|T|e,d=2), (3.9 transformationg3.1) and replacing the Clebsch-Gordan co-

efficients by their actual values.
and theC(m,q,m;) coefficients are given by If the atomic system is not prepared in a pure, quantum

mechanical state, the coefficiemsor ¢, in the expressions

o (Jg,1m,aldg,1.3¢,my) (3.6) or (3.8 must be replaced by the density matrix ele-

Ck(m,g,my) = — (3.10  ments,
V2t
Tmn={CmCr ). (3.12

The two expression$3.6) and (3.8) must yield the same

result for the expectation value of the dipole electric operai et the transformation matrix between thg andc, coeffi-
tor, which is of course independent of the representationgients be denoted b@:

This sets a relationship among the reduced matrix elements

in the two equations, {c.}=Q{c.}; (3.13
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J=2

FIG. 2. The energy level diagram for the
whole system. The spontaneous emission damp-
ing rates are shown for all transitions.

[=]

J=1

the transformation of the density matrix is then given by  peared from the equations. This approximation introduces
other, diagonal, terms in the atom-field interaction Hamil-

TLsmmg=Qaam)Q (314 tonian, namely,
The matrixQ transforms also the atomic Hamiltonidity, (Hrwa)kk=—6. (k=4,5,..,12, 4.3
not diagonal in the representatidnS,M, ,Mg, into the di-
agonal form of thel,M  representation: whereé, is the frequency detuning of the laser field from the

atomic resonancey:

HY=Q H{'Q. (3.19 5 s
L= WL~ Wwq. .

IV. OPTICAL BLOCH EQUATIONS To these terms we must also add the terms arising from the
IN SPIN-ORBIT COUPLING spin-orbit Hamiltoniang”) derived in the previous section.

The Bloch equations for the atomic system under consid- The optical Bloch equations in the M, ,S,Ms represen-
eration are easily written in thie,M, ,S,M¢ representation, tation are then completed by introducing the damping terms.
and transformed back into thk M representation by ap- The raising and lowering operators are easily derived in this
plying the transformationé3.14. We will see in this section representation. The only nonzero terms in $eperator for
that, when the frequency separation among the levels in the+ transitions are
excited multiplet are much larger than the decay ratand
the reduced Rabi frequendR, no interference effects arise (7187711)=(108"|2)=(12S"|3)=\y. (4.5
among the optical transitions, and the transformed equations, . )
in theJ, M , representation look the same as those derived irpmilarly, we find
Sec. Il

In the L,M_,S,Mg representation, the Hamiltonia g
for the atom-field interaction is very simple. Only those sub- (=) () ()
levels having the same spin component are coupled by the (48 [1)=(6[S;’[2)=(9IS; 3)=\r. 47
electric dipole operator. Looking at Table |, we find that the
o_ component of the field couples the states 1-4, 2-6, an
3-9, while theo, component of the field couples the states

(5|S\”[1)=(8|S\”2)=(1USV[3) =, (4.6

Jhe matrix elements of the lowering operat&sare found
by transposing the matrices; . Alternatively, the equations

1-7, 2-10, 3-12. Thus, can be wr_itten in thd,M r_epresentati_on. The main assump-
tion here is that the damping constanis not affected by the
(1|Hg|4)y=¢" RelkLz 4.1 introduction of the spin-orbit coupling, so that it can be taken
to be the same for each level in the multiplet.
<_’]_|HF|7>:5§'Re_ikLZ' (4.2 A quick way of passing from one representation to the

other is to use the transformatiqB.14), which holds true
and so on. The rotating wave approximation has beemlso for the time derivative of the density operator, since the
adopted here so that the fast oscillating terms have disagransformation matrixQ does not depend explicitly on time.
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In Fig. 2 the energy level diagram is shown for the whole V. THE COOLING FORCE IN STRONG
system. The allowed transitions are indicated as straight lines SPIN-ORBIT COUPLING
::rc;r:]r;ﬁicglr?g the levels, with the decay rate reported for each We pass now to the discussion of the cooling force ex-

erted by the two counterpropagating waves of opposite cir-
cular polarizations onto the atom in the atomic level configu-
eBEation described in the previous sections. First we consider
than the reduced Rabi frequen®€ and the damping con- he case where the spl_n—orblt coupling is strong enough jchat
the frequency separation among the levels in the excited

stantvy. In this case, only one level in the multiplet can be . : i
excited at a time, depending on which transition the lasanultlplet is larger than the reduced Rabi frequency and the

field has been tuned to: populations and coherences of thos(,jee cay ratey of the excited states. We set the values of the

levels that are far off resonance become negligible. For ingouplmg parameters so that the frequency separations are

stance, if these conditions are met and the laser field is tune%oy between the) =0 ansz_l excned_levels, an(_:i Hbe-
_ _ : tween theJ=1 andJ=2 excited levels in the multiplet. The
at the resonancgy= 1< J.=2, the terms in the Bloch equa- transition frequencies will be denoted by (ground state to
tions arising from Eq(2.14 are, for the ground sublevels ~ "~ tion frequencies wi ha_é grour
(see also Fig. P J=0 excited statg w4 (ground s.tate td=1 excited state
and w, (ground state td=2 excited state

In what follows, the frequencies will be expressed in units

These equations, when transformed to 3hi ; represen-
tation, reduce to the ones derived in Sec. Il, if the frequenc
separation among the levels in the multiplet is much larg

oy 6044+3066+ 099 of y, while the a_tomic velocities will be expresse_d in uni'Fs of
at =y 3 , (4.8  y/k_, wherek, is the wave vector of the laser fields. Since
damp there are several optical transitions in the atomic system,

each one having its own strengtbr electric dipolg, the
definition of the Rabi frequency needs some clarification. We

(‘902 2) =y 306614099 301413 4.8y have preferred to introduce a “reduced Rabi frequency”
It ] qamp 6 ' (RRF, see Sec. Il, which involves the reduced matrix ele-
ments of the bare transitioh=0~L=1. In terms of that
RRF, all the electric-dipole matrix elements, specific to our
dog3 099t 301111+ 601212 system, can be evaluatégee Sec. Il In other words, the
( ot ) =7 6 ’ (4.80 Rabi frequency is defined as the largest one among the vari-
damp ous Rabi frequencies associated to the different transitions,
typically the one connecting thgm|=J, sublevels of the
ground state to thém|=J, sublevels of the excited state,
(001 3) = Y6749+ 301t \/60912, (4.89  which have the largest Clebsch-Gordan coefficients. In Sec.
g damp 6 IIl one can find the reduced matrix elemefty, R,, and

R, of the transitions between the ground state and the ex-

cited multiplet, expressed as a function #8f the reduced

These terms are the same as those that would be fourfayix elements for the transition=0<L=1, and deduce
from Eq.(2.14) for a singleJg=1<J,=2 transition. from them the corresponding Rabi frequencies for the vari-

The construction of the optical Bloch equations in theq g yransitions. The RRF is therefore defined2#, where
J,M; representation from a transformation of the equations: jg the amplitude of the laser field; see E@3).

in thel,M, ,S,Mg representation has several advantages: in | several situations, it is expedient to introduce a new

t_he first instancg, the damping tgrms.in the latter representas antization axis, lying on the planey and directed along
tion are far easier to handle, since its Zeeman structure

) : e electric field component, as experienced by the atom, that
simpler. Second, one has to deal only with those coherencesgits from the superposition of the, and o polarized

that arise between sublevels having the same spin Compgzys The direction of the new quantization axis depends on
nent, since the electric dipole interaction with the field does[hez coordinate, and if the atom is moving along thexis

not change the electronic spin or the nuclear quadrupolg ., es with time. The transformation of the state ampli-
components. As a matter of fact, the transformation into thetudes of the ground state under such change of the quantiza-

J,M, representation brings in coherences among Zeemafy,, 4yis is accomplished by the unitary transformation
sublevels belonging tdifferentlevels in the multiplet, a fea-

ture that could hardly be inferred when working directly in

this representation. e’ 1 e'¢
The cooling force can be found, as for the single transi- 2 5 2
tion case, by integrating the system of differential equations _ _
until a stationary regime is found, and then evaluating the e'® e !¢
atomic polarization from Eqs3.6) or (3.8), depending on T'= v o - a (5.1
which representation has been used. Alternatively again, one
can solve the linear system for the stationary case directly, as e’ 1 e ¢
discussed in Sec. Il. The transformatith15, (2.16 still ) 5 N

applies, with each diagonal, element in Eq(2.16) written
in the form expim,¢) wherem, is the magnetic quantum
number of thekth state(see Table)l where ¢=Kk vt. Similar transformations apply for the state
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FIG. 5. Ground-state populations vs atomic velocity in the sta-
FIG. 3. Force(unitsk,_ y) vs laser detuningunits ). tionary regime. The laser field is tuned at tag resonance.

amplitudes of the excited states. The new reference frame When the frequency separations among the levels in the
will be referred to as the “primed” system. excited multiplet are sufficiently large, the two transitions at
In Fig. 3 we show the cooling force plotted versus thewg andw; are not usable to cool the atomic system. We give
detuning 6, of the laser field defined with respect to the here a brief explanation of the absenceaafy laser cooling
transition occurring between the ground state andJt® (i.e., both Doppler and sub-Dopp)efor these transitions,
excited stated, = w — wy. The atomic velocity is kept fixed which generalizes to the high intensity regime the results of
atv=—0.1y/k_. The laser frequency spans the entire inter-Ref. [8].
val containing the frequencies of the excited multiplet, but an When the laser frequency is tuned close to ¢hgtransi-
appreciable cooling force appears only about the transitiotion, and the two other transitions at, and w, are far off
involving the J=2 excited state. The force is posititee.,  resonance, there is no appreciable transfer of population in
opposite to the direction of the atomic motjamhen the field the upperld,=0 level of the excited multiplet for the present
is tuned just below the atomic transition, and negative on th@olarization configuration; in the ground state, population ac-
other side. cumulates in then=0 Zeeman subleveiquantization axis
In Fig. 4 we show the same graph as in Fig. 3, expandegarallel to the propagation vector of the electromagnetic
about the only resonancel =1+ J.=2) that displays an field, unprimed framg except for a tiny interval of atomic
appreciable cooling force. In this graph are shown the plotselocities around = 0. In Fig. 5 we show the population of
for an atomic velocityv=—0.1y/k, (solid curvg and the Zeeman subleveh=—1 of the ground state in the sta-
v=—0.002y/k, (dashed curve The cooling force as a func- tionary regime, versus the atomic velocity for several fre-
tion of the atomic velocity, for a fixed laser frequency tunedquency separations in the excited multiplet. The Zeeman
at 0.5y below thew, transition, reproduces the graph shown sublevelm=1 gets the same population as the- —1 sub-
in Fig. 1(a) (J4=1+J.=2 transition, as expected because level. The laser frequency is tuned at thg resonance, but
of the large frequency differences in the excited multiplet. the graph would be similar also for small detunings from that
resonance. Whenw,— wo| and |w;— wy| are very large
0.015 when compared toy, the velocity interval over which the
Zeeman sublevelsn=*1 get an appreciable stationary
population shrinks[see Figs. &@)—5(b)]. At infinite fre-
guency separatiorsee Fig. bc)], the atomic system may end
up in a variety of stationary regimes, i.e., the Zeeman sub-
levelm=0 of the ground state may get any population in the
stationary regime ab =0, the remaining population being
0.000 - equally shared among the two other ground sublevels, while
for v #0, the entire population remains in the=0 sublevel,
leaving the other two sublevels of the ground state empty.
This is easily understood if we change the quantization
axis of the atomic system to the primed frame. Let us assume
that we have prepared the system in an incoherent superpo-
sition of ground state sublevels, referring to the quantization
0015 " 50 Y o 500 a_lxis along the axis, and leto1 1, o33 be the initial popula-
Detuning (in units 1) tions of them=—1 andm=1 Zeeman sublevels. The atom
is assumed to be at rest in the laboratory frame. We then
FIG. 4. Force(unitsik, y) vs laser detuningunits 7). rotate the quantization axis and pass to the primed reference

Force (in units hk v
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frame. In the new quantization configuration, the electric

field appears to be linearly polarized, so that there is just one

optical transition connecting the=0 Zeeman sublevel of

the ground state to th@nique m=0 excited sublevel. Also, 0.000
a coherencer,; arises among then=—1 andm=1 Zee-
man sublevels of the ground state, equal to
3(o11+033)/4—1/2. The subsequent interaction with the
field does not involve these Zeeman sublevels, so that, in th
transient time during which the stationary regime is reached
the coherencer ;3 remains unchanged. The field acts on the
system by pumping population up from the groumd=0
sublevel to the excited state, from which it decays to all three
ground sublevels. In the primed frame, the Zeemean+ 1
sublevels act as a sink for the population, which cannot es 0015 0.00 010
cape from them. Hence, when the stationary regime is Atomic speed (in units Y/ k. )

reached, we find that the population is shared between these

sublevels, while then=0 sublevel is empty. This is the final
density matrix of the atomic system for the primed quantiza
tion axis. Transforming back to the original quantization
axis, we find the density matrix of the ground sublevels of?
the form

-0.005 -

Eigenvalues (in units y)

-0.010

FIG. 6. Two eigenvalues of the evolution matrix merge at 0
when the atom speed is null. One eigenvalue is zero for amy
The eigenvalues are in units gf A null eigenvalue corresponds to
constant of motion.

This is a very unstable situation, though, since any small
perturbation of ther,5 coherence would disrupt the interfer-

3(011+033) 0 3(011+ 033) ence process between the two transitions, leading to a small,
8 8 but efficient, channel of complete population depletion of the
3(o111 033) m=:1 sublevels. This occurs as soon as the atom gets a
o= 0 - 0 i thermal speed by fluctuations or a kick by collisions with its
4 environment. It should be noted, however, that in the case of
3(oq11+ 033) 3(0q11+ 033) finite frequency separations in the excited manifold, as the
8 0 8 one depicted in Fig. 5, such instability is eliminated by the

very presence of the other excited levels: these remove the
(5.2 degeneracy of the two eigenvalues that are zem=ad. In
any case, there is no magnetic alignment in the ground state,

Sinceo; andosg are arbitrary, the final state for such a nor any appreciable transfer of population in the upper
transition is dependent on the initial preparation, and mayJ.=0) state, hence no atomic polarization. Thus, no cool-
have any population in the range 0 through 3/8 in each of thing force can arise when the laser field is tuned near the
sublevels withm= =1, with the remaining population in the wq resonance.
m=0 sublevel of the ground state. Thus, different population Similar considerations apply for the isolatedj=1
distribution can be found in the final state. It is precisely the—J.=1 transition, although the atomic system reaches in
coherence between the=—1 andm=1 ground sublevels this case a stationary regime that is unique for any atomic
(in the unprimed quantization configuratiothat prevents speed, and independent of the initial conditigne degen-
the population from being pumped out of these sublevels, bgracy is found in the eigenvalues of the time evolution ma-
the two circularly polarized fields, into the=0 sublevel. In  trix of the density operator elemetRotating the quantiza-
an incoherent transition, population would pass continuouslyion axis to the primed frame, the resulting linearly polarized
from the m=—1, m=1 sublevels into then=0 sublevel field induces transitions between sublevels having the same
(through photon absorption processes followed by spontanégnagnetic quantum numbéreferring to the new quantization
ous emission procesgesuntil the former are completely axis), except themy=0+>m,=0 transition, forbidden by the
emptied. selection rules. Av =0, the system ends up in a stationary

The presence of different stationary states for theregime in which themy=0 sublevel is fully populated, while
Jg=1-J.=0 transition at =0 is confirmed by evaluating all other elements in the density matrix are zero. Transform-
the eigenvalues of the time evolution matrix for the matrixing back to the original configuration of the quantization axis
elements of the density operator. One of these eigenvalues (along the z axis), we find that the populations of the
always zero, corresponding to the existence of a constant ohy=—1 andmy=+1 Zeeman sublevels are equally popu-
motion (the sum of the levels’ populatipnAt v =0, how- lated to 1/2 and theny=0 sublevel is empty. Again, coher-
ever, two eigenvalues have the common value of zero, asnce between they;=—1 andmy=+1 Zeeman sublevels
shown in Fig. 6, while all other eigenvalues have their realprevents population transfer into the excited sublevel
part negative, as expected. A0 there are two constants m,=0, so that the excited state remains completely unpopu-
of motion: however we prepare the system at the initial timeJated, and no fluorescence can be detected from atoms at rest.
we find that the final population of each of the two sublevels This symmetry is broken when the atom moves along the
of the ground statg§them= —1 andm= +1 sublevelsgets z axis. In the primed frame, the Hamiltonian of the system is
a steady state population equal too3(+ o33)/8. written as
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[sublevels are labeled as in E§.16)]. Equation(5.3) shows In spite of the large, unbalanced population distribution
that in the primed frame, a motional coupling arises thatbetween the Zeeman sublevels witly=*1, no radiative
couplesm=—1 tom=0 andm=0 to m=+1 within each force is exerted onto the atom. This can be seen, for instance,
manifold, see Refl6]. This Hamiltonian is time independent by looking at the optical coherences of the stationary density
and can be diagonalized numerically. The equation of motiomperator in the unprimed frame. These turn out to be equal to
for the density operator can be easily integrated, and one

finds the final(stationary density matrix to be of the form 0-1,0,= ~B—V2C, (5.6a
a o a c 0 -—c o1, ,oez,B—x/ic; (5.6b
“« b “« B O B their imaginary parts, which stem from, are opposite in
, | @ a* a c 0 -c sign. Taking into account Eq(2.18, and recalling that
RO B B* c d o0 -—-d (54 C(m,+1,&) andC(m,—1,«) are also opposite in sign for the
0 0 0 0 0 o0 Jg=1+J.=1 transition, the radiative forc@.20 is null. In
Ref.[8] it is shown that the reactive and dissipative compo-
-¢c B* -¢ —-d 0 d nents of the force for this transition, in the weak field limit,

as could be expected from E.3), on the grounds of sym-
metry considerations. In Ed5.4), latin letters denote real,

are equal in size and opposite in sign, so that they mutually
cancel.
Thus, in our model, the only radiative force may arise

positive quantities and greek letters complex quantitiesfrom theJ,=1«J.=2 transition, which will be referred to
Transforming back to the original quantization frame, we sees the main transition. A brief description of the origin of the

that themyg=+1 andmy=—1 sublevels get highly unbal-
anced populations,

b a«a * -
O_1-1 a 2+5+51 ( . a
b a a*
01141~ a 5_5_5, (5.5

while themy=0 remains empty. Contrary to the=0 situ-
ation, however, there is population in the excitea,=0

force has been given in Sec. Il. A deeper analysis can be
found in Refs[6,8]. In spite of the fact that the two transi-
tions Jy=1J,=0 andJy=1«<J.=1 do not provide any
additional force, their effect may be large enough when their
frequency separations from the other transition is of the same
order of magnitude as the damping constaor the reduced
Rabi frequency. This will occur when the spin-orif§0)
coupling is not sufficiently strong to eliminate the interfer-
ence effects among the various transitions. Removal of the
eigenvalue degeneracy in tig=1+J.=0 transition, due

to the presence of other transitions, has been illustrated in
this section. Graphs of the radiative force in the weak SO
coupling case are presented in the next section.

sublevel, and hence fluorescence can be detected from mov-
ing atoms. This phenomenon, according to which fluores-

cence disappears when the atoms approaches a condition of
zero kinetic energy, is known as “coherent population trap- The radiative force is substantially changed when the
ping” [14]. It can also lead to very cold atomic distributions atomic transition used to cool the atom is close in frequency
(see Ref[15] for a recent review of the subject to other transitions, normally belonging to the same multip-

VI. WEAK SPIN-ORBIT COUPLING
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FIG. 7. Cooling force vs atomic speed in the low intensity limit. Spin-orbit coupling increases from @agohgraph(d) (solid line).
For comparison, in each graph the plot for the 0 J=1 transition(dashed lingis also shown.

let. We show in this section these modifications, at [(tg.  side of the J=1~J=0 transition (w;,=—0.3y and
7) and high (Fig. 10 field intensities. In this section the Swq,=—0.8y). A further decrease appears in the Doppler
value of the reduced Rabi frequency for the low field inten-force at its largest value, while the force is slightly modified
sity is set at 0.279pwhile the value for the high field inten- by magnetic alignment about=0. In Fig. 7c), the laser
sity is set at 1.8. In all graphs in this section, the laser frequency is tuned to the blue side of the 1+J=0 and
frequency detuning refers to thd=1-~J=2 ftransiton J=1«J=1 transitions, but these are still close to the
(solid curvg. The other two transitiongJ=1—J=1 and J=1+J=2 transition and affect substantially the cooling
J=1+J=0) lie below the first one, and are separated fromforce (w,,= —37y and dwy,=—87%). A new phenomenon
it by dwp,=wi—w, and Swg,=wo— w,, respectively. arises in this case: the cooling force changes sign when the
Hencedwq, and Swy, take only negative values. atomic speed is larger thaylk, , thus limiting the effective
In Fig. 7 the radiative forcdsolid curvg is shown at range of velocities that can be captured by the radiative
various spin-orbit coupling values, along with the force per-force. This is arguably due to the fact that the force here is
taining to theJ=0-J=1 transition, i.e., the force at zero contributed to by dissipative effects, and by reactive effects.
coupling(dashed curve The field amplitude is such that the The latter changes its sign, and becomes predominant at
reduced Rabi frequency is 0.28and the laser detuning from large atomic velocities. Application of a bichromatic laser
the J=1-J=2 transition is§, = —0.5y. From Figs. Ta)— fields of suitable frequencies has been shown to remove
7(d), the spin-orbit coupling increases. In Fida), the laser these undesirable effects in several atomic level configura-
frequency is tuned to the red side of all three transitiongions[16,17]. In Fig. 7(d), the spin-orbit coupling is strong
(dw1o=—0.15y and Swg,= —0.4y). The main effect here is enough to eliminate any interference effects among the tran-
a slight reduction of the Doppler force at its largest valuesitions (Sw.,=— 15y and dwy,= —40y), and the cooling
attained atv=*=0.5y/k_. Also, a tiny sub-Doppler force force takes the shape that belongs to an isolated transition. In
arises at very small atomic speed. This is too small to appeatll cases, the force is symmetric abaut 0.
in Fig. 7(a). Figure 8 shows the radiative force in a short interval of
In Fig. 7(b), the laser frequency is tuned to the red side ofatomic velocities, for a number of values of the coupling
theJ=1~J=2 andJ=1+J=1 transitions, but to the blue strength, starting from the degenerate case of zero coupling,
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values of the coupling strength as in Fig. 7, but in the strong
field regime(reduced Rabi frequeneyl.8y). The radiative
force (dashed curveat zero coupling is shown again in each
graph for comparison. Its shape is consistent with the ana-
Iytical solution for theJ=0<J=1 transition reported in
Ref.[18]. The resonances that appear in these graphs when
x#0 are due to multiphoton processds: the atom can
absorb one photon from the field with circular polarization
o, (i) emit by stimulated emission a photon into the field
with circular polarizationo_ , and(iii) absorb another pho-
ton from theo, field. Such processes are resonant if the
accumulated Doppler shifBk v in this cas¢ compensates
the frequency detuning of the laser field from the main tran-
‘ sition (“doppleron” or velocity-tuned resonances, see Ref.
0.0 T 20 [19]). Note that such a process can occur only if there is
Atomic speed (i units 107/ k) magnetic degeneracy in the ground state. Otherwise, after the
absorption of ar. photon, there is no transition available for
the stimulated emission of@_ photon. For this reason, such

Force (in units 10° hk LY

FIG. 8. A sub-Doppler force near=0 appears as soon as level
degeneracy is removed. The level splittings are assumed to be pr

portional to an effective coupling strength. At=1 they are ?es_?;]:nr(é%igt?gnagf ?ﬁé c\)/r:?(l)z?f Oéa ture range is stronal
dwgy=—8y, dwi,=—37y. The values ofy shown here arg=0, y cap 9 gy

_ -3 _ -3 _ -3 enhanced in the strong field regiri€ig. 10c), x=1] The
X=2XA0°5 )= A0, x=8x 1077 value of y at which the radiative force takes the form that
pertains to the isolated transitids= 1<~ J=2 is much larger
than in the weak field regime, and in Fig. () where
x=>5, we still see that the force changes its sign and becomes
an antidamping force at larges. To reach the limiting con-
dition of an isolated transition, the coupling strength must be
as large as 50, which corresponds to frequency separation of
150y and 400y for dwq, and dwq,, respectively, at high
%ield intensity. The friction coefficient about=0, however,
is large in the same range of coupling strengtbe Fig. 11
In Fig. 12 we show the radiative force for the coupling
!sstrength)(=50 (full line), large enough to make the interfer-
ence effects of the other two transitions negligifdee also
Fig. 10d)]. For comparisoridashed lingthe radiative force
for y=5 is also shown.

Finally, we show in Fig. 13 the separate effects of the
nsitionsJ=1-~J=0 andJ=1<J=1 on the radiative
force from the main transitiod=1<J=2, at high field in-
tensity. In Fig. 13(solid line), w4, is very large, so that the
only effect on the radiative force comes from the
J=1+J=0 transition wyp,=—8%). In Fig. 13 (dashed

15 line) the situation is reversed, withbw,,=—8y and
Swyy,=00. The two graphs in Fig. 13 show that the strongest
interference effects arise from tle=1+J=1 transition.

for which no sub-Doppler force exists.

In Fig. 9, we show the friction coefficient, defined as
the derivative of the radiative force with respect to the
atomic speed ab =0, F~—av if v is sufficiently small.
The friction coefficient is plotted versus the strength of the
spin-orbit coupling, at low field intensity. The frequency
splittings in the multiplet are assumed to be proportional t
an effective coupling strengthy, and take the values
dwq,=—3vy and dwg,= —8vy wheny=1. The friction coef-
ficient has a discontinuity as soon as the level degeneracy
removed by the spin-orbit couplingsee Fig. 8 then de-
creases toward a minimum reachedyat 0.18, and finally
tends to the limit value pertaining to the isolated transition
J=1<J=2. Although the friction coefficient is very large
at small values of, the sub-Doppler force affects only a tiny t

. . " . ra
fraction of atoms having very small velocitiésee Fig. 8.
At x=0.18, no significant sub-Doppler force exists.

In Fig. 10 we report the graphsolid curveg for the same

10 VII. CONCLUSIONS

Although the model laser cooling in an atomic system
with fine structure interaction presented in this paper is a
simplified one (for instance, the ground state is a single
J=1 state, it shows several features that modify substan-
tially the radiative force as obtained from a “single transi-
tion” description. Of the three transitions considered in our
model, two(namely, thel=1+-J=0 andJ=1-~J=1 tran-

sitiong are not capable of yielding any mechanical effects on
0.0 ‘ the atomic motion for this configuration of the electromag-
0.0 05 1.0 . . . . . .
Coupling strength netic fields. Yet, their interference with the main
J=1+J=2 transition produces sizable effects when the

FIG. 9. The friction coefficient vs the coupling strength, low Separation frequency in the excited multiplet is comparable

field intensity. with the damping constantof the atomic upper levels. Such

Friction coefficient

05 -
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FIG. 10. As in Fig. 7, but in strong field intensity regime.

effects include elimination of any sub-Doppler structure anchyperfine structure of the atomic levels. However, this model
a redefinition of the velocity capture range. can be extended to include effects such as the hyperfine in-
In real atoms, usually spin-orbit coupling introduces muchteraction. The coupling of the different angular momenta,
larger separations in the multiplet structure, and the smalbrbital, spin, and nuclear, will then be carried out in a suit-
separations considered here are more likely to occur in thable order according to the coupling strengths. In such way,

0.70 0.15
E 7
8 <
L r-
2 2
8 035 £
8 £
2 8
* 5

I8
. -0.15 .
0.000.0 20 4.0 -5.0 ' do:o o 5.0
Coupling strength ¥, Atomic speed (in units y/k )
FIG. 11. The friction coefficientin unitsk?y) vs the coupling FIG. 12. The radiative forcén units ik_y) vs v, with =50

strength, high field intensity. (solid line) and y=5 (dashed ling
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calculations can be done to evaluate the radiative force for
real atoms.

Analytical results for the radiative force could in principle
be obtained for the low-field-intensity case, but we have pre-
ferred not to pursue this goal, in view of the fact that most
experiments on atoms having multiplet structure are carried
out by using strong fields, usually detuned to the red side of
the lowest transition frequency. For such field amplitudes, a
fully analytical treatment would probably be impossible. We
have limited our discussion to a few examples where the
rotation of the quantization axis can be exploited to derive
simple results for the density operator that support our con-
clusions.

0.15

Force (in units hk v

-0.15 !
-5.0 0.0 5.0

Atomic speed (in units y/k,) ACKNOWLEDGMENT
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