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Quantum signatures of chaos in the dynamics of a trapped ion
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We show how a nonlinear chaotic system, the parametrically kicked nonlinear oscillator, may be realized in
the dynamics of a trapped, laser-cooled ion, interacting with a sequence of standing-wave pulses. Unlike the
original optical scheme@G. J. Milburn and C. A. Holmes, Phys. Rev. A44, 4704 ~1991!#, the trapped ion
enables strongly quantum dynamics with minimal dissipation. This should permit an experimental test of one
of the quantum signatures of chaos: irregular collapse and revival dynamics of the average vibrational energy.
@S1050-2947~97!08109-2#

PACS number~s!: 42.50.Vk, 05.45.1b, 42.50.Md
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I. INTRODUCTION

It is now well understood that the quantum dynamics o
classically chaotic system will show major departures fr
the classical motion on a suitable time scale@1,2#. Systems
that classically show chaotic diffusion of a slow momentu
like variable will cease to show diffusion after the ‘‘brea
time.’’ In this region, the momentum distribution is found
be exponentially localized rather than Gaussian. One sys
that demonstrates this phenomenon is a laser-cooled a
moving under the dipole force of a standing wave with pe
odically modulated nodal positions@3,4#. Recently, this pre-
diction achieved experimental confirmation in the work
Moore et al. @5#. The quantum and classical dynamics c
also differ through the existence of quantum tunneling
tween fixed points of the classical Poincare´ section, a phe-
nomenon that has not yet been observed. In this pape
consider yet another way in which quantum and class
motion can differ for systems that classically do not sh
diffusion. In this case the transition to chaos in the class
system is manifested in the quantum case by a trans
from regular collapse and revivals of average values w
time to a highly irregular collapse and revival sequen
@2~b!#. An example of such a system is the parametrica
kicked nonlinear oscillator@6#. A nonlinear oscillator, in
which the frequency is linearly dependent on energy, is
riodically kicked by a parametric amplification proces
which momentarily turns the origin into a hyperbolic fixe
point. The classical dynamics of this system exhibits regi
of regular and chaotic motion in the Poincare´ section.

In Ref. @6# it was proposed to realize this system using
combination of a Kerr optical nonlinearity and an optic
parametric amplifier. Unfortunately, the required optic
nonlinearity is usually rather small and accompanied b
large amount of dissipation. For this reason, it is unlike
that an optical version will ever show interesting quantu
features. However, the system does show some intere
classical chaotic behavior including a strange attractor
which unstable periodic orbits can be stabilized by O
Grebogi-Yorke control@7#. In this paper we show that
much more promising realization of the quantum version
this system may be achieved in the dynamics of a sin
trapped laser-cooled ion interacting with a sequence
561050-2947/97/56~4!/3022~6!/$10.00
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pulsed optical fields. Furthermore, the dynamics may
monitored with high quantum efficiency using the quantu
nondemolition ~QND! vibrational energy measuremen
scheme proposed by de Matos Filho and Vogel@8# together
with the now standard method of detection on a strong pr
transition.

We consider the vibrational motion of a single trapp
ion. In the absence of laser pulses, the ion executes sim
harmonic motion in the quadratic trap potential. As we sh
below, a suitable sequence of laser pulses enables us t
alize the nonlinear quantum dynamics specified by the m

ucn11&5UNLUPAucn&, ~1!

where

UNL5expS 2 iua†a2 i
m

2
~a†!2a2D ~2!

FIG. 1. Bifurcation diagram for the origin and the period-1 o
bits close to the origin. The bifurcation curves for the origin a
represented as solid lines, while those for the period-1 orbits
dashed. The regions are labeled by a finite sequence ofE’s andH ’s,
standing for elliptic and hyperbolic. The first letter refers to t
stability of the origin, the second to that of the pair of period
orbits closest to the origin in the second and fourth quadrants~those
in the first and third are always hyperbolic!, the third to the pair of
period-1 orbits next closest to the origin, etc.
3022 © 1997 The American Physical Society
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56 3023QUANTUM SIGNATURES OF CHAOS IN THE DYNAMICS . . .
describes an intensity-dependent rotation in the oscilla
phase plane, while

UPA5expS r

2
@~a†!22a2# D ~3!

describes a parametric amplification kick. In these expr
sions the operatorsa,a† are the ladder operators for th
quantized harmonic motion of the trapped ion, which may
written in terms of the dimensionless position and mom
tum operatorsX̂1 ,X̂2 asa5X̂11 iX̂2 .

II. CLASSICAL DYNAMICS

The classical model corresponding to Eq.~1! is closely
related to the model in Ref.@6#,

X185g@cos~u1mR2!X11sin~u1mR2!X2#, ~4!

X285
1

g
@cos~u1mR2!X22sin~u1mR2!X1#, ~5!
r

s-

e
-

where R25X1
21X2

2 and the parametric gain isg5er . The
parameterm is simply a scaling parameter and the cruc
control parameters are the parametric gaing and u. When
u52p, easily achievable in experiment as we show belo
this model reduces to that discussed in Ref.@6#. The origin is
then a saddle. If, however,ucoshr cosuu,1, wherer 5 lng, the
origin is elliptically stable. The bifurcation diagram is show
in Fig. 1. The origin is elliptically stable in the region
bounded by the solid curvesu56arccos(1/coshr)1np and
labeledE** . Away from the origin an infinite number o
period-1 orbits lie on lines with a slope of6e(2r ), indepen-
dent of u as in the original model. However, the radius
which the period-1 orbits lie does depend onu and is deter-
mined by the equation

2tan~u1mR2!56sinhr . ~6!

As u is increased the period-1 orbits move inward, collaps
on the origin and changing its stability. Those in the o
cal
FIG. 2. Phase-space portraits for the classi
map. In all casesm50.01p and u52p. ~a!
g51.0, ~b! g51.2, ~c! g51.5, and~d! g52.0.
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FIG. 2 ~Continued!.
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quadrants are always unstable. In the even quadrants a
number~maybe zero! lying closest to the origin are stabl
depending on whether

1.mR2tan~u1mR2!.0. ~7!

They lose stability on the curvesu5arctan(sinhr)
21/sinhr1np, shown as dashed~for n521,0,1! in Fig. 1.
The various parameter regions are labeled with a sequen
E’s and H ’s standing for elliptic or hyperbolic. The firs
letter refers to the stability of the origin and the subsequ
letters to the stability of the pairs of period-1 orbits in t
second and fourth quadrants starting with those closest to
origin and moving out. Since the elliptic period-1 orbits a
ways occur closest to the origin in the regionEEH, for
instance, only one pair of period-1 orbits is elliptically stab

In Fig. 2 we show typical Poincare´ sections of the classi
cal dynamics for various values ofg and u52p. Note the
transition to almost global chaos for large values ofg.
ite

of
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he
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III. QUANTUM DYNAMICS

To compare the quantum and classical dynamics we c
pute the mean energy as a function of the number of kicks
the quantum case we assume that the oscillator is initi
prepared in the vibrational ground state, while in the clas
cal case we use an initial Gaussian phase-space distribu
with the same moments as the initial quantum state. T
detailed results are given in Ref.@6#, which we summarize
here. In the classical case, the average energy saturates
almost time-independent value, as the initial distribution b
comes spread around the period-1 fixed points. The t
taken to reach the saturation value is longer for an ini
state in the regular region than for one located in a cha
region. In the quantum case, the mean energy follows
classical for a short time, but instead of saturating at an
most stationary value it continues to oscillate with a char
teristic collapse and revival envelope. The transition fro
regular to chaotic dynamics in the classical system is mar
in the quantum system by a transition from a regular colla
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FIG. 3. Initial states centered in a classical
regular region:~a! plot of the quantum average
Pg(t)5^cos2 ftn̂& for an initial coherent state
and ~b! plot of cos2(ftE) ~whereE is the classi-
cal mean energy! for an initial Gaussian distribu-
tion. In both cases the initial state is centered
~0,0!, with g51.2, m50.01p, u52p, and
ft50.01.
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and revival sequence to a highly irregular and more ra
collapse and revival sequence. This is due to the fact th
state localized in the chaotic region has support on m
quasienergy eigenstates compared to a state localized
regular region.

We now show how this system may be realized in
trapped ion experiment. Following de Matos Filho and Vog
@8#, we first consider an ion trapped at an antinode of
optical standing wave tuned to the atomic frequency,
carrier frequency. In an interaction picture at frequencyn the
interaction Hamiltonian is

HI52\Vh2a†asx1\
Vh4

4
~a†!2a2sx , ~8!

where V is the Rabi frequency andh is the Lamb-Dicke
parameter. If the ion is first prepared in an eigenstate ofsx
by the application of ap/2 pulse, it will remain in this state
In that case the vibrational motion experiences a linear an
nonlinear phase shift. The interaction is precisely the k
d
a
y
a

l
n
e

a
d

required to realizeUNL , with u5TVh2 andm5TVh4/2,
where T is the time for which the standing-wave pulse
applied.

In order to realize the parametric kick we use a Ram
interaction with two laser pulses, one tuned to the first low
sideband, the other to the first upper sideband. This sch
has been used successfully by Meekhofet al. to prepare the
ion in a squeezed vibrational state@9#. In this case the inter-
action Hamiltonian, in an interaction picture at frequencyn,
is

HPA5 i\k@a22~a†!2#, ~9!

wherek5V1V2hR
2/8d1d2 andV i is the Rabi frequency for

each of the Raman pulses, each of which is detuned from
atomic transition byd i such thatd12d252n. The Lamb-
Dicke parameter for the Raman transition ishR5dkx0 ,
wheredk is the wave-vector difference for the two Rama
beams andx0 is the rms fluctuations of position in th
ground state of the trap. Note that this Hamiltonian is ind
pendent of the ion electronic state. The ion evolves acco
ing to the parametric kick transformation withg5ekT for a
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FIG. 4. Same as Fig. 3, except initial stat
are centered in a classically chaotic region,
~1,0!, with g51.5.
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Raman pulse of durationT. In summary, we first prepare th
ion electronic state by the application of ap/2 pulse and then
apply the pulse at the carrier frequency, followed by t
Raman parametric kick pulses. Pulses at the carrier
quency and the Raman pulses then alternate to effect
kick.

A particular advantage of this realization is that it is ea
to read out the energy of the vibrational motion at any sta
If we do not reprepare the ion in the ground electronic st
at the end of the carrier frequency pulse, its evolution will
dominated by the first term in Eq.~8!. This is a QND mea-
surement interaction for the vibrational quantum number
causes the Bloch vector describing the two level system
precess around thex axis by an angle proportional toa†a.
The probability of finding the atom in the ground state a tim
t after the last squeezing pulse is

Pg~t!5 (
n50

`

P~n!cos2ftn, ~10!
e
e-
ch

y
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e
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where f5Vh2/2. A set of readouts of the atomic state
time after an appropriate number of kicks thus enable
moment of the photon number to be constructed direc
This is similar to the scheme used by Meekhofet al. to ob-
serve the Jaynes-Cummings collapse and revival sequ
@9#.

In Figs. 3 and 4 we plotPg(t)5^cos2ftn̂& for the same
two initial states and parameter values as discussed in
@6#. In Fig. 3 the initial state is localized in a classical
regular region of phase space. A regular collapse and rev
sequence is evident in the quantum case@Fig. 3~a!#. In Fig. 4,
however, we have the case of an initial state localized in
chaotic part of the classical phase space, leading to an irr
lar revival sequence. In both cases the corresponding cla
cal moment is shown as well.

IV. DISCUSSION AND CONCLUSION

We can estimate reasonable values of the parame
u,g,m from recent experiments on trapped ions. Fro
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Meekhof et al. @9#, typical values areV5106, h50.2, and
g56. For an interaction time ofT510 ms, we haveu'1.0
andm'0.02. It is then apparent that the parameter value
interest are achievable in an experiment.

However, the real limitation to observing the regular a
irregular collapse and revival sequence is decoherence@6#.
The departure of the quantum from the classical dynam
discussed in this paper is due to the preservation of quan
coherence between the eigenstates~Floquet states! of the
kick operator. As these form a discrete set, the system m
exhibit quasiperiodic behavior. The dynamics will depend
two things: ~i! how many Floquet states make a significa
contribution to the initial state and~ii ! the commensurability
of the Floquet eigenvalues. The primary reason why the c
otic case has such an irregular revival sequence is tha
initial state has almost uniform support on the Floquet ba
for these parameters. In both cases, however, the revival
due to quantum coherence. Decoherence will thus be a p
lem.

There are two major sources of decoherence for this
tem. The first is spontaneous emission of the ion. In
scheme it is necessary to reprepare the ion in a superpos
of the ground and excited states between each pulse. I
ion undergoes a spontaneous emission after this step th
s
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ture dynamics will not be described by our kick operato
However, this source of decoherence is not significant
current experiments as long-lived metastable levels are u
The other major source of decoherence is due to laser in
sity and phase fluctuations. While this has not been defini
identified as the observed source of decoherence in cur
experiments, the decoherence that is observed is signific
The rate of decoherence between the ground and first exc
state of the vibrational motion in@9# is quoted as of the orde
of 10 kHz. Comparing Figs. 3~a! and 3~b!, we see that to
observe a difference a kick number of about 100 must
reached. As the time between kicks is given byT510 ms, it
is clear that a decoherence at this rate would most lik
suppress the revival. The solution is to reduce the time
tween kicks by striving for a larger effective nonlinearitym
~by increasing laser power!, while simultaneously decreasin
the decoherence rate. If the dominant source of decoher
is laser intensity fluctuations there will be a trade-off b
tween these two imperatives. However, while our sche
may be difficult to implement in present experiments, the
is much more hope that the decoherence problem can
overcome in the ion realization than in a nonlinear opti
realization.
.
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