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Quantum signatures of chaos in the dynamics of a trapped ion
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We show how a nonlinear chaotic system, the parametrically kicked nonlinear oscillator, may be realized in
the dynamics of a trapped, laser-cooled ion, interacting with a sequence of standing-wave pulses. Unlike the
original optical schem¢G. J. Milburn and C. A. Holmes, Phys. Rev. 44, 4704 (1991)], the trapped ion
enables strongly quantum dynamics with minimal dissipation. This should permit an experimental test of one
of the quantum signatures of chaos: irregular collapse and revival dynamics of the average vibrational energy.
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PACS numbe(s): 42.50.Vk, 05.45+b, 42.50.Md

[. INTRODUCTION pulsed optical fields. Furthermore, the dynamics may be
. . monitored with high quantum efficiency using the quantum
Itis now well understood that the quantum dynamics of 8,ondemolition (QND) vibrational energy measurement

classically chaotic system will show major departures fromscheme proposed by de Matos Filho and Vd@ltogether
the classical motion on a suitable time scile?]. Systems  ith the now standard method of detection on a strong probe
that classically show chaotic diffusion of a slow momentum-transition.
like variable will cease to show diffusion after the “break ~ We consider the vibrational motion of a single trapped
time.” In this region, the momentum distribution is found to ion. In the absence of laser pulses, the ion executes simple
be exponentially localized rather than Gaussian. One systefi@rmonic motion in the quadratic trap potential. As we show

that demonstrates this phenomenon is a laser-cooled atofflow. a suitable sequence of laser pulses enables us to re-
moving under the dipole force of a standing wave with peri-2/iZ€ the nonlinear quantum dynamics specified by the map

odically modulated nodal positiori8,4]. Recently, this pre- |n+1)=UnLUpal ), (1)
diction achieved experimental confirmation in the work of

Moore et al. [5]. The quantum and classical dynamics canWhere

also differ through the existence of quantum tunneling be- w

tween fixed points of the classical Poinca®ction, a phe- UNL=eXp( —i t9a;ra—i5(a*)2<’:12 2
nomenon that has not yet been observed. In this paper we

consider yet another way in which quantum and classical

motion can differ for systems that classically do not show .
diffusion. In this case the transition to chaos in the classical e
system is manifested in the quantum case by a transitior / HHH

from regular collapse and revivals of average values with
time to a highly irregular collapse and revival sequence
[2(b)]. An example of such a system is the parametrically
kicked nonlinear oscillatof6]. A nonlinear oscillator, in

which the frequency is linearly dependent on energy, is pe- = 0
riodically kicked by a parametric amplification process,
which momentarily turns the origin into a hyperbolic fixed
point. The classical dynamics of this system exhibits regions |

HEE

1
i
! a|
. . . . - . | / EHH ==
of regular and chaotic motion in the Poincaction. b S
!
|
I

In Ref. [6] it was proposed to realize this system using a
combination of a Kerr optical nonlinearity and an optical ‘ ‘
parametric amplifier. Unfortunately, the required optical o0 10 20 30 40
nonlinearity is usually rather small and accompanied by a
large amou_nt of dis_sipati_on. For this reason, _it is unlikely FIG. 1. Bifurcation diagram for the origin and the period-1 or-
that an optical version will ever show interesting quantumps cose to the origin. The bifurcation curves for the origin are
features. However, the system does show some interestingyresented as solid lines, while those for the period-1 orbits are
classical chaotic behavior including a strange attractor ifjashed. The regions are labeled by a finite sequengésaindH’s,
which unstable periodic orbits can be stabilized by Ott-standing for elliptic and hyperbolic. The first letter refers to the
Grebogi-Yorke control[7]. In this paper we show that a stability of the origin, the second to that of the pair of period-1
much more promising realization of the quantum version oforbits closest to the origin in the second and fourth quadr@nise
this system may be achieved in the dynamics of a singlén the first and third are always hyperbolithe third to the pair of
trapped laser-cooled ion interacting with a sequence oferiod-1 orbits next closest to the origin, etc.
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describes an intensity-dependent rotation in the oscillatowhere R?=X3+ X3 and the parametric gain ig=€". The

phase plane, while parametery is simply a scaling parameter and the crucial
control parameters are the parametric ggiand 6. When

3) 0=21r, easily achievable in experiment as we show below,
this model reduces to that discussed in R&f. The origin is

_ _ _ _ then a saddle. If, howeveigosh cosf|<1, wherer =Ing, the

describes a parametn(; amplification kick. In these expresgigin is elliptically stable. The bifurcation diagram is shown

sions the operators,a’ are the ladder operators for the i Fig 1. The origin is elliptically stable in the regions

quantized harmonic motion of the trapped ion, which may bg,, ;nded by the solid curve= +arccos(1/cost)+ns and

written in terms of the dimensionless position and momenyapejedE«+ . Away from the origin an infinite number of

UPA=exp(£[(a*>2—a2]

tum operators<;, X; asa=X; +iX. period-1 orbits lie on lines with a slope afe(” "), indepen-
dent of # as in the original model. However, the radius at
Il. CLASSICAL DYNAMICS which the period-1 orbits lie does depend #and is deter-

The classical model corresponding to Efy) is closely mined by the equation

related to the model in Ref6],

_ 2\ b
X, =g[cog 0+ uRY)X,+sin(0+ uR)X,],  (4) a6+ uR%) = =sinfr. ®

As @is increased the period-1 orbits move inward, collapsing

1
r_ 2 i 2
Xz—g[cos{0+,uR )Xo sin(6+ uRHX4 ], ® on the origin and changing its stability. Those in the odd
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guadrants are always unstable. In the even quadrants a finite lll. QUANTUM DYNAMICS
number(maybe zerp lying closest to the origin are stable

depending on whether To compare the quantum and classical dynamics we com-

pute the mean energy as a function of the number of kicks. In
5 ) the quantum case we assume that the oscillator is initially
1>pRtan 0+ pR%)>0. (7)  prepared in the vibrational ground state, while in the classi-
cal case we use an initial Gaussian phase-space distribution
They lose stability on the curvesf=arctan(sinn) with the same moments as the initial quantum state. The
— 1/sinhr+nar, shown as dashedor n=—1,0,1) in Fig. 1.  detailed results are given in Rdb], which we summarize
The various parameter regions are labeled with a sequence bére. In the classical case, the average energy saturates at an
E's and H's standing for elliptic or hyperbolic. The first almost time-independent value, as the initial distribution be-
letter refers to the stability of the origin and the subsequentomes spread around the period-1 fixed points. The time
letters to the stability of the pairs of period-1 orbits in thetaken to reach the saturation value is longer for an initial
second and fourth quadrants starting with those closest to ttstate in the regular region than for one located in a chaotic
origin and moving out. Since the elliptic period-1 orbits al- region. In the quantum case, the mean energy follows the
ways occur closest to the origin in the regi®@EH, for  classical for a short time, but instead of saturating at an al-
instance, only one pair of period-1 orbits is elliptically stable.most stationary value it continues to oscillate with a charac-
In Fig. 2 we show typical Poincamgections of the classi- teristic collapse and revival envelope. The transition from
cal dynamics for various values gf and #=27. Note the regular to chaotic dynamics in the classical system is marked
transition to almost global chaos for large valuegof in the quantum system by a transition from a regular collapse
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and revival sequence to a highly irregular and more rapigdequired to realizely,, with 6=TQ#7? and u=TQ 7*/2,
collapse and revival sequence. This is due to the fact that §nere T is the time for which the standing-wave pulse is
state localized in the chaotic region has support on manypplied.
quasienergy eigenstates compared to a state localized in a|n order to realize the parametric kick we use a Raman
regular region. interaction with two laser pulses, one tuned to the first lower
We now show how this system may be realized in asideband, the other to the first upper sideband. This scheme
trapped ion experiment. Following de Matos Filho and Vogelhas been used successfully by Meekbb#l. to prepare the
[8], we first consider an ion trapped at an antinode of arion in a squeezed vibrational std&. In this case the inter-
optical standing wave tuned to the atomic frequency, theaction Hamiltonian, in an interaction picture at frequengy
carrier frequency. In an interaction picture at frequendige  is
interaction Hamiltonian is Hpoa=ifix[a2— (ah2], 9)
Q7 WhereK=Qlﬂzn§/85152 and(}; is the Rabi frequency for
H =-#hQn?atac+# T(aT)Zazax, (8)  each of the Raman pulses, each of which is detuned from the
atomic transition bys; such thaté;— d,=2v. The Lamb-
Dicke parameter for the Raman transition %= 6kXg,
where () is the Rabi frequency angy is the Lamb-Dicke where 6k is the wave-vector difference for the two Raman
parameter. If the ion is first prepared in an eigenstate,of beams andx, is the rms fluctuations of position in the
by the application of ar/2 pulse, it will remain in this state. ground state of the trap. Note that this Hamiltonian is inde-
In that case the vibrational motion experiences a linear and pendent of the ion electronic state. The ion evolves accord-
nonlinear phase shift. The interaction is precisely the kindng to the parametric kick transformation wigh=e“T for a
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Raman pulse of duratiofi. In summary, we first prepare the where ¢=Q7?%/2. A set of readouts of the atomic state a
ion electronic state by the application ofrd2 pulse and then time after an appropriate number of kicks thus enables a
apply the pulse at the carrier frequency, followed by themoment of the photon number to be constructed directly.
Raman parametric kick pulses. Pulses at the carrier frethis is similar to the scheme used by Meeklebfal. to ob-
guency and the Raman pulses then alternate to effect easkerve the Jaynes-Cummings collapse and revival sequence
kick. [9].

A particular advantage of this realization is that it is easy In Figs. 3 and 4 we pIoPg(r)z(co§¢7ﬁ> for the same
to read out the energy of the vibrational motion at any stagetwo initial states and parameter values as discussed in Ref.
If we do not reprepare the ion in the ground electronic stat¢6]. In Fig. 3 the initial state is localized in a classically
at the end of the carrier frequency pulse, its evolution will beregular region of phase space. A regular collapse and revival
dominated by the first term in E@8). This is a QND mea- sequence is evident in the quantum ddgg. 3@)]. In Fig. 4,
surement interaction for the vibrational quantum number. Ithowever, we have the case of an initial state localized in the
causes the Bloch vector describing the two level system tehaotic part of the classical phase space, leading to an irregu-
precess around the axis by an angle proportional @'a. lar revival sequence. In both cases the corresponding classi-
The probability of finding the atom in the ground state a timecal moment is shown as well.
T after the last squeezing pulse is

IV. DISCUSSION AND CONCLUSION

(10) We can estimate reasonable values of the parameters
0,0, from recent experiments on trapped ions. From

Pg(r):Z,O P(n)cog¢n,
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Meekhofet al.[9], typical values ar€)=10°, »=0.2, and ture dynamics will not be described by our kick operators.
g=6. For an interaction time of =10 us, we have#~1.0  However, this source of decoherence is not significant in
andu~0.02. It is then apparent that the parameter values ofurrent experiments as long-lived metastable levels are used.
interest are achievable in an experiment. The other major source of decoherence is due to laser inten-
However, the real limitation to observing the regular andsity and phase fluctuations. While this has not been definitely
irregular collapse and revival sequence is decohergke identified as the observed source of decoherence in current
The departure of the quantum from the classical dynamicgxperiments, the decoherence that is observed is significant.
discussed in this paper is due to the preservation of quantufine rate of decoherence between the ground and first excited
coherence between the eigenstatBbquet statgsof the  giate of the vibrational motion if9] is quoted as of the order

kick operator. As these form a discrete set, the system mugk 10 kHz. Comparing Fias. (8 and 3b). we see that to
exhibit quasiperiodic behavior. The dynamics will depend on ' paring Figs. (8 3b),

two things: (i) how many Floquet states make a significantObserve a difference a kick number of about 100 must be
contribution to the initial state an@i) the commensurability reached. As the time between kicks is givenTby 10 s, it

of the Floguet eigenvalues. The primary reason why the cha clear that a decoherence at this rate would most likely

otic case has such an irregular revival sequence is that t & PPress the rewya}. The solution is to rgduce the t'me be-
initial state has almost uniform support on the Flogquet bas:%g;?n k'CkS by striving for a _Iarg_er effective nonlmear;ky
for these parameters. In both cases, however, the revivals af&y increasing laser powgmwhile simultaneously decreasing
due to quantum coherence. Decoherence will thus be a prolBhe decoherence rate. If the dominant source of decoherence
lem. is laser intensity fluctuations there will be a trade-off be-
There are two major sources of decoherence for this sygween these two imperatives. However, while our scheme
tem. The first is spontaneous emission of the ion. In oufmay be difficult to implement in present experiments, there
scheme it is necessary to reprepare the ion in a superpositiéh much more hope that the decoherence problem can be
of the ground and excited states between each pulse. If tHevercome in the ion realization than in a nonlinear optical
ion undergoes a spontaneous emission after this step the ftealization.
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