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The dynamics of a two-component dilute Bose-Einstein gas of atoms at zero temperature is described in the
mean-field approximation by a two-component Gross-Pitaevskii equation. We solve this equation assuming a
Gaussian shape for the wave function, where the free parameters of the trial wave function are determined
using a moment method. We derive equilibrium states and the phase diagrams for the stability for positive and
negatives-wave scattering lengths, and obtain the low-energy excitation frequencies corresponding to the
collective motion of the two Bose-Einstein condensat84050-294{@7)04110-3

PACS numbd(s): 03.75.Fi, 03.65.Ge

[. INTRODUCTION late the equilibrium points and the low-energy eigenmodes.
In addition, we analyze the stability of the system. Finally, in
Since the first observations of Bose-Einstein condensatioff€C. IV we consider the case of displaced trap centers, and
in an alkali-metal vapof1—3] considerable effort has been compare with the results of Sec. Ill.
made t_o characterize these systems both_ experlment_ally and Il BASIC EQUATIONS
theoretically. One of the latest advances is the experimental
preparation of two-component Bose-Einstein condensates in A. The model

different internal states, exhibiting a spatial over(a. In Zero-temperature mean-field theory provides an accurate
this experimenf’Rb atoms in two different hyperfine states, theoretical description of dilute Bose-Einstein condensed
|1)=|1,—1) and |2)=1|2,2), are loaded into a magneto- systems. In particular, the dynamics of a two-component
optical trap, are cooled down to effectively zero temperatureBose-Einstein gas can be modeled by the coupled Gross-
and subsequently undergo a phase transition toward a BosBitaeveskii equations
Einstein condensafé]. 1 2

The Gross-Pitaevskii equatidGPE), a nonlinear Schro : _|__ T w2 = 2
dinger equatioNLSE) for the macroscopic wave function e [ 2M v +V1(r)+nzl Un[ ¥l }\Pl' (13
of the Bose-Einstein condensed gas, provides an accurate
description of the ground state and of the excitation spectrum
of a dilute Bose-Einstein condensate at zero temperature

[6—20. Recently, several groups have solved the GPE for

single-component Bose-Einstein condensates, and found e¥/Nich are a set of nonlinear Schiiager equations for the
macroscopic wave functiong; and¥, for the two compo-

cellent agreement with experimef@,11]. The aim of this nents of the condensate. In E¢®) V,,(n=1, and 2 denotes

paper is to stuqu SOIUt'On.S of thwo-_componen(_SPE f_or 2 the trap potentials which we assume to be harmonic in agree-
harmonic trapping potential. In particular we will derive the ment with common experimental situations
Bose-Einstein ground state, investigate its stability proper-

ties,. .and determine_ the Iow—lyjng excitation frequencﬁes for Via(F)= 2 M A\2(x—X,)2+ )\iy2+ \272]. 2

positive and negative scattering lengths. Our technique of

solving the two-component GPE is based on a Gaussian af-he parameters, (7=X,y,z) account for the anisotropy of

satz for the condensate wave function where the open pararthe trap, and the trap centers for the first and second compo-

eters are determined by moment methd@4] (which is  nents are displaced in thedirection byx; andx,, respec-

equivalent to a variational techniqli24]). This allows one tively. The coupling constantd,,,, are related to the scatter-

to obtain essentially analytical solutions of the GPE, and thuing lengthsa,,, by U,,=4m#%%a,,/M. In this paper we

complements numerical studies of this equafia4. allow only for the following elastic scattering processes:
The paper is organized as follows. In Sec. Il of this papef1)|1)—|1)|1), |2)|2)—|2)|2), and|1)|2)—|1)|2). Up to

we first define our model, and derive the equations of motiomow, Egs.(1) have been solved in the Thomas-Fermi ap-

for the parameters of our Gaussian wave function. In particuproximation, exploring the spatial densities of the mixtures

lar, we study in detail the simple case of of isotropic traps[22] and the long-wavelength excitatiofig3]. Numerical

and isotropic condensates. In Sec. lll we investigate first thetudies of these systems have been carried out in[R&f.

case where the centers of the two trapping potentials for the For noninteracting particles, Eqggl) are solved for the

two condensates coincide. For this configuration we calcuground state by Gaussian functions, which are no more so-

2

. 1 .
0¥ ,= —mvz+v2(r)+;lu2n|wn|2}~p2 (1b)
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lutions in the general case due to the nonlinear self-
interaction and coupling terms. The basic assumption behind
the following derivations is that, in the case of weak interac-

tions, the wave function is still well approximated by a
Gaussian,

<772>l: J‘imd:sr? 7]2|\P1(F1t)|2: %leinv (5a)

” 2a
<772>2:J 43 72| W,(F, )%= 5 Now3, 1+W—2>
- »

\Pn( F't) = An(t)e* (1/2)[:3nx(t)(xfxn0)2+Bny(t)y2+ﬁnz(t)22] , (Sb)

)

and

where B,,= B, +iBy, are complex numbers. The adjust-

able parameters in it can be interpreted as the amplitude$a§7>n=
A,, the width Wn,,=1/\/E§;, and the curvature

(Mo, \BR,) " Y2=(By,,) 2 of the wave function. To derive

reliable results for the corresponding equations of motion, it

is necessary to take also the imaginary part of the wave fungespectively. These 14 variables provide a complete descrip-
tion into account, as shown in R4R5] for a similar case. tion of the system within the previously mentioned approxi-
One has to keep in mind when applying this ansatz to probmation. To obtain a closed set of equations of motion for
lems where losses are included that the loss terms usuallyn(t), wy,(t), andMp,(t), we take the time derivative of
induce aberrations, thus making the profile non-Gaussiarkgs. (4), (5), and(6), eliminate the time derivatives of the
When nonlinear loss or gain terms are substantially imporwave function with the help of the Schifimger equations
tant, these aberrations make the information that can be ol§1), and work out the resulting integrals owewith the help
tained form an ansatz like Eq&3) only qualitative. How-  of the Gaussian ansat3). We obtain

N
— 5 (W + M7,

(6)

f d3F W (7,)* W (7 1)

ever, in the present case when losses are small corrections
and do not determine the dynamics the solutions of (E).
can be well approximated by Gaussian functions.

In the following we find it convenient to work with scaled
variables. We will measure energies in unitsiaf, and will
scale lengths with respect #yv2, whereay=[#/(Mv)]*?
is the size of the ground state of the bare harmonic oscillator.

B. Moment equations )

In Ref.[14], a solution of the single-component Gross- Wix
Pitaevskii equation was formulated as a variational problem,
where a Lagrangian density is derived so that the station-
ary point of the corresponding action gives the nonlinear
Schralinger equation. An approximate solution of the GPE
was then derived by finding the extremum of the action
within a set of Gaussian trial functions which give “Newton-
type” equations for the variational parameters. In contrast to
such a variational analysis, we will solve the two-componen(iv

GPE by means of a moment method. In the case of rea =T

Unm, i.€. No losseg26], this method is equivalent to the
variational approach. In principle, this approach is more gen-
eral, as it can also be applied in a situation where loss terms
are included in Eqs(1).

Using the Gaussian ansatz for a system where one con-
densate is centered »{=0 and the second one &= «, it
is possible to calculate the number of particles in each con-
densaten=1 and 2 as a function of the parameters

Nn

Jl d3F|\Pn(Fyt)|2:|An(t)|2773/2anWnyan- 4)

In a similar way, the second moments of the spatial coordi-
natesy=Xx,y,z and the second moments of the momenta are
given by

WixW1yW1,

I\/llx

2qI11N§ | 2702 2 2 2
+2/80 N Noe™ Wi Wad (i, +w3,)

(7a)

2 2 2 2 \1- 12
X(Wiy+ W5 ) (W1, +W5,)] ,

qulll

—_ M N
2W1yW12

+ V8GN (W2, + W3 ) (Wi, +wW3))

3

Wix 2 2 2
)2 [Wlx_WZX_ 2a7]

2 2 \1— 1/2
X(wW7,+wW
( 1z 22)] (Wix"_ng

2,2 2
X~ « /Wlx+W2X,

(70)

N1q|11
— ——— + /89! N[ (W2, +W2,) (W2, + w2
1y 2W1XW12 \/—q12 2[( 1x 2x)( ly 2y)
3
W7 2,2 | 2
X(WE,+W5,) | 2 g ige” e, (70)
W1y, W3,
N 3 qf
2 1 | 11
=Wy~ 3~ ——————| 5 QM+ —
o Wix Wlxwlywlz 2 * Wiy

+ VBN [ (W2, + W5, (W3, +W3,) (Wi, +w3,)]~ 12

q|12

Xy i(w2 + w2, —2a?)
(Wix—i_ng)z Mlx 1x 2X

4 4 2,2 2,2
-M lx(W1x+ 2W2x+ 3W1xw2x+ 2a Wlx))

2502 2
_Zcﬁzwlx[W%X*‘ng—Zaz] g Wyt wo)

(7d)
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. 1 N 3 qR B. Equilibrium points
My =Wy A2 —g — ————| gl M+ —— . N
y— Wiyty W_le Wi, W Wi, | 2 e T, If we now examine the state in equilibrium of the system,

we find that the requirement of equal scattering lengths im-
+ VBN (WE, +W3,) (W2, +W3) (W3, +w3,) ]~ 12 plies that the condensates must have equal widths
w;=w,=w. Equilibrium points are obtained from the ex-

1 2 . . .

X— — qllz( = (W2, +W2,) — My (wh, trema of the potential9), which gives

(W1X+W2X) 1x 1 N

W= —3+ —2(011+0d12). (10
+2w5, +3w2 w3, ) weow
In the hydrodynamic approximation this equation of mo-
T 2 . .
— 20wy W2, + W2, ]| @ Wy, (79 t|?12_ reSéJces furthltla;, and can be .a.nalyt|cally solvg_d as
Weq= N"(d111d12) 7. To test for stability of these equilib-

rium points requires us to check for minima with the help of
where we replaced,,=U,m/87 [26]. The corresponding the Hessian matrixi 2[92Veﬁ/((7W1n(9W2n)]weq- This analysis
equations for the second condensate are obtained by ewdll be carried out in Sec. Il C.
changing every index 1 and 2, and the corresponding equa-
tions for thez direction are obtained by exchanging the in-

) ] ) / - C. Low-energy eigenmodes and stability
dicesy andz in the equations for thg direction.

To obtain the frequencies of small-amplitude oscillations
around the equilibrium positions we linearize the full equa-

1. ISOTROPIC TRAPS AND IDENTICAL CONDENSATES: tions (8) around the equilibrium pointsy,,=we3+ sw,,.
NO DISPLACEMENT OF TRAP CENTERS We find the following four frequencies:
A. Equations 3 N 1/2
The simplest case which is amenable to analytical treat- wa=| 1+ WJF Vﬁ(chl_(hz)) ' (11a

ment corresponds to an isotropic trapping potential

A=Ay=\,=1 with (nondisplaceyl trap centersx,=0 3 N 1/2
(n=11and 3 [27]. We will study the case of a fixed number wp=| 1+ 7+ s (dut Q12)) , (11b
of particles in each condensatd,;=U5,=U3,=0, and, in
particular, consider them equdl; =N,=N. With these as- 3 N 12
sumptions, and the initial condition of two isotropic conden- =14+ = 4 L (4g..+ 4 ) 110
satesw,,=W,,=W,,=w, (n=1 and 2, the equations of @e wi s (ddutaan) | (119
motion for the widths of the condensates have the form
3 N 1/2
. 1 Nan NQWy wg=| 1+ —+ _5(4CI11_Q12)) ) (11d
Wi=—w;+ —5+ +2\8 ., (® wt o w
o wlow (wi+w3)*?

which can be interpreted as collective oscillations depicted in
whereby exchanging the indices we obtain the correspondingig- 1. The modesa) and(b) are twofold degenerate, corre-
one forw,. sponding to oscillation, e.g., in the-y plane and thex-z
Similar to Ref.[14], we can find a “potential” for these ~Plane[28]. Modes(c) and (d) correspond to isotropic oscil-
equations. Hence the evolution of the width of the condenlations.
sates can be viewed as the coordinates of a fictitious classical The order in which these motions appear with increasing

particle moving in a three-dimensional potential energy depends strongly on the values of the scattering
lengths involved. In Fig. 2 we display the spectrum for a
positive value ofa;;. For large, negative values af,, the
L2 iwd) s L two modes with the lowest energies are those with the maxi-
Vei(Wq,W5) = 3 (Wi +W53) + 2 —+t— ; 9
Wy W3 mum spatial overlap, namely, modés and(c). If we now
N consider the region whei,, is positive and large, we natu-
iN Gu1, Y22 g\/g _ N2 rally find that the modesa) and (d), for which the spatial
+ 3 + + 3 2 2\30 . e
Wi Wy (wi+ws) overlap is minimized, are the lowest-energy modes. The

(9) point at which this crossing happens changes with changing
values ofa;;. Again we find, as in Ref.14], that the widths
of the condensates remain finite up to the point of collapse.

where the first_term on t_he right-hand side stems from the Eigenfrequencie$l1) provide the stability region of the
harmonic trapping potential, the second term results from th%quilibrium points(10)

kinetic-energy term, and the third and fourth terms are due to

the interaction between alike particles and between particles N n __a1\U4 12
in different states. Below, we further reduce the number of CEERRNEE) 5 (5) (123
open parameters by assuming the scattering leragthand

ay to be equal. —(2)°N*05;+ 4 d11=01,. (12b
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FIG. 3. Phase diagram for the stability of the two-condensate
system forN= 2000 particles. For positiva;, the region of stabil-
ity is increased due to the positive energy contribution from the
repulsive interaction. However, it does not expand linearly with
increasinga,,.

\
«r ’A‘ IV. ISOTROPIC TRAPS AND IDENTICAL
: CONDENSATES: DISPLACED TRAP CENTERS
FIG. 1. Diagrammatical representation in tkey plane of the A. Equations

four collective excitations with the lowest energy. Oscillations of
particles in statel) are visualized by solid line arrows, and oscil-
lations of particles in statf) by dashed line arrows.

Let us now consider the case of two spatially displaced
traps, and work out the differences from the above situation.
We assume a displacement in thelirection and make an
ansatz analogous to Ed8) and(1), where one condensate is
Since fora;,=0 we recover the single-component resultscentered ak,; =0 and the second ab= «. Also in this case
[14] where only particles in one state are present, we see thale assume that the number of particles is conserved, which
for positive values o#, the region of stability increases and implies that the imaginary parts of the coupling constants are
for negative ones it decreases. This is due to contributions tagain zero. We apply the moment method as in the previous
the total system energy from either the repulsive or attractivease and arrive, since the spatial symmetry is now broken in
interaction. However, this effect is nonlinear due to the nathe x direction, at the following set of equations of motion
ture of this interaction. It is illustrated in Fig. 3. for the widths of the two condensates in theirection,wy,
and in they andz directions,w,,

N.q
; ) 1011
Wi = =Wyt 3+ —5—
Er ; . x  WiWi
6| 2 2 2
W (W7, +W5, —2a s o
+2/8N, qlz2 bl e 2) - @),
sl (Wit W5,) (Wi +Wws5)
(13a
4t
Niq
.. ) 1011
Wi=—W A2+ 5+ ———
mode (d) quW
mode (c) 12W1 2502 2
2t +2V8N, ——— iy Wi 2d,
mode (b) (Wi +W5,) " (Wi +w5)
(13b)
1r mode (a)

Again one obtains the equations faw, andw, by simply

exchanging the indices. We can also, as in the nondisplaced
FIG. 2. Spectrum of the low-lying excitation frequencies for a Case, find a potential of the form of E@), which is suitable

fixed, positive valueq;;=2.3x10"%. With q,, increasing from for the derivation of these equations. However, in this case

negative values to positive ones, the two low-lying modes and théhe term originating from the interaction of the particles in
two high-lying ones are exchanged. the different states is multiplied by an additional factor,

-5 0 [« %Y 5 x10-4 10
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112 E mode (a)
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1.081
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1.04} Al

1.02

0 1 2 3 o 4 5 6 "
mode (d) ~T°de (@
1.12 . . — : .
w 3.5¢ mode (e)

1.1 1

117 1 mode (f)

1.09} : &l
1.08 ] 2 3 o 4 5 A 0 1 2 3 o 4 5 6

. . L ) FIG. 5. Spectrum of the low-lying excitation energies for
FIG. 4. Width of the condensates in thalirection and in they 011=0q.,=6X 104, The degeneracies are lifted with increasing

andz directions forg;,=0.2x 10" andqy,=0.2x10". Due to the 3 fora>2 it reduces to the case of two isotropic, single conden-
repulsive interaction between particles from different states, th%tates again.

condensate is squeezed in thélirection at a certain distance, and

then expands once the region of overlap diminishes further.
P g P mod€a),

mode€b),
modec),

)

)

) 14
“ys 1 1yg—-1-1 ) moddd), ¥

)

)

these interactions becomes weaker the more the condensates
are displaced. This then implies an even smaller region of modéde)
spatial overlap. Note that the widths of the condensates are '

included in this factor, and that it therefore has a non- modef).

negligible effect on the physics of the system in addition t01he members of these vectors represent the oscillation am-
weakening the magnitude of effects found in the ”Ond's'plitude in the directionsdy, 1y 81, 82x 52y 527), Wherey,
placed case. (I=a,b,c,d) depends on the parameters of the system. The
Let us start by calculating the equilibrium states for thisjifting of the degeneracies is mainly due to the fact that the
case from Eqs(13). In Fig. 4 we plotted the widthe/, and  spatial displaced system is not invariant under an exchange
w of the condensates far;; anda;, to be positive and equal. of the variablesv;, andw,, and not ofw,, andw,,, as can
Once the condensates are separated by a distanpe seen from Eqg13).
a= ‘/(W21X+W22x)/21 the repulsive interaction between par- Let us now look at the stability of the stationary states,
ticles from different states becomes an effectively attractivevhich we again retrieve from the analysis of the Hessian
one (and vice versg as can be seen from the fact that thematrix. As can be seen from Fig. 6, the further the conden-
width in thex direction becomes smaller than the width in Sates separate from each other, the weaker the effect of ad-
they andz directions. The explanation for this effect is that ditional stabilization(destabilization becomes, since it re-
the direction of the repulsive force, with respect to the sur-

0-1 10-1 1

(
(
exf — @/(W2,+w5)], which ensures that the influence of ( ye—1-1r.-1-1
(
(
(0 1-10-1 1

faces of the condensates, changes in these regions where the x10™ x10™
no longer overlap. At large distances, when the interaction
between the particles in different states again becomes neg 5 o=0 q' 5 o=0.4
ligible, the case of two independent, isotropic condensates is q‘% %
again recovered.
-5 -5
B. Low-energy eigenmodes and stability -5 0441 5,19 -5 0dy 5,49
- -4
Looking at the excitation spectrum of the two-component x10* 10
system by analyzing it again via a linear expansion around 5
the equilibrium points, we find, as can be seen from Fig. 5, aq,, 0=0.8 P o=1.2
that the degeneracies existing in the nondisplaced case arc 0 0
lifted with increasing distance. Bringing the condensates that
far from each other that they can be considered as two inde- S
pendent condensatE®s4], the spectrum again reduces to two 5 0an 5,10+ 5 017 5,104
threefold-degenerate values, since the condensates again be- X -
come isotropic. FIG. 6. Stability region for displaced traps with a displacement

In this Gaussian ansatz we can again easily interpret thegsrametew. For far displaced traps the result for independent con-
modes to be of the following types: densates is recovered.
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sults from the repulsivéattractive interaction between the lyzed their stability. We found that, in comparison to the
condensates. Far~>1.5, one recovers the stability condi- case of one pure condensate, the region of stability can be

tion for the case of two separate condensates. extended(shrunken if the interaction energy between par-
ticles in different states is positivenegative. Due to the
V. CONCLUSIONS nonlinear character of the interaction, this effect is also of a

. _nonlinear nature. It appears strongest for nondisplaced traps,
We used a moment method to describe the behavior ofng becomes weaker the farther apart the centers of the two
two overlapping Bose-Einstein condensates in different inyraps are from each other. We were also able to calculate the
ternal states, assuming that the shapes of the individual wavgergies of the first excited states and interpret the collective
functions do not deviate too much from a Gaussian shapgnotions. For the case of displaced traps, the degeneracies
With this method it is straightforward to derive equations of existing in the nondisplaced case are lifted.
motion for the open parameters, defining the exact form of
the Gaussian function, especially the width of the conden-

sate_s. They can, for the general cases, easjly be trgated nu- ACKNOWLEDGMENTS
merically, and for special cases even analytical solutions are
possible. This work was supported by TMR Network ERBFMRX-

For the case of isotropic traps and isotropic condensate€;T96-0002 and the Austrian Fond zurrBerung der wissen-
we calculated the equilibrium points for the system and anaschaftlichen Forschung.
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