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Stability and collective excitations of a two-component Bose-Einstein condensed gas:
A moment approach
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1Institut für Theoretische Physik, Universita¨t Innsbruck, A-6020 Innsbruck, Austria

2Fakultät für Physik, Universita¨t Konstanz, Postfach 5560, 78434 Konstanz, Germany
3Departamento de Matema´ticas, Escuela Te´cnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha,

13071 Ciudad Real, Spain
~Received 29 April 1997!

The dynamics of a two-component dilute Bose-Einstein gas of atoms at zero temperature is described in the
mean-field approximation by a two-component Gross-Pitaevskii equation. We solve this equation assuming a
Gaussian shape for the wave function, where the free parameters of the trial wave function are determined
using a moment method. We derive equilibrium states and the phase diagrams for the stability for positive and
negatives-wave scattering lengths, and obtain the low-energy excitation frequencies corresponding to the
collective motion of the two Bose-Einstein condensates.@S1050-2947~97!04110-3#

PACS number~s!: 03.75.Fi, 03.65.Ge
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I. INTRODUCTION

Since the first observations of Bose-Einstein condensa
in an alkali-metal vapor@1–3# considerable effort has bee
made to characterize these systems both experimentally
theoretically. One of the latest advances is the experime
preparation of two-component Bose-Einstein condensate
different internal states, exhibiting a spatial overlap@4#. In
this experiment87Rb atoms in two different hyperfine state
u1&5u1,21& and u2&5u2,2&, are loaded into a magneto
optical trap, are cooled down to effectively zero temperatu
and subsequently undergo a phase transition toward a B
Einstein condensate@5#.

The Gross-Pitaevskii equation~GPE!, a nonlinear Schro¨-
dinger equation~NLSE! for the macroscopic wave functio
of the Bose-Einstein condensed gas, provides an accu
description of the ground state and of the excitation spect
of a dilute Bose-Einstein condensate at zero tempera
@6–20#. Recently, several groups have solved the GPE
single-component Bose-Einstein condensates, and found
cellent agreement with experiment@6,11#. The aim of this
paper is to study solutions of thetwo-componentGPE for a
harmonic trapping potential. In particular we will derive th
Bose-Einstein ground state, investigate its stability prop
ties, and determine the low-lying excitation frequencies
positive and negative scattering lengths. Our technique
solving the two-component GPE is based on a Gaussian
satz for the condensate wave function where the open pa
eters are determined by moment methods@21# ~which is
equivalent to a variational technique@14#!. This allows one
to obtain essentially analytical solutions of the GPE, and t
complements numerical studies of this equation@24#.

The paper is organized as follows. In Sec. II of this pa
we first define our model, and derive the equations of mot
for the parameters of our Gaussian wave function. In part
lar, we study in detail the simple case of of isotropic tra
and isotropic condensates. In Sec. III we investigate first
case where the centers of the two trapping potentials for
two condensates coincide. For this configuration we ca
561050-2947/97/56~4!/2978~6!/$10.00
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late the equilibrium points and the low-energy eigenmod
In addition, we analyze the stability of the system. Finally,
Sec. IV we consider the case of displaced trap centers,
compare with the results of Sec. III.

II. BASIC EQUATIONS

A. The model

Zero-temperature mean-field theory provides an accu
theoretical description of dilute Bose-Einstein condens
systems. In particular, the dynamics of a two-compon
Bose-Einstein gas can be modeled by the coupled Gr
Pitaeveskii equations

i ] tC15F2
1

2M
¹21V1~rW !1 (

n51

2

U1nuCnu2GC1 , ~1a!

i ] tC25F2
1

2M
¹21V2~rW !1 (

n51

2

U2nuCnu2GC2 ~1b!

which are a set of nonlinear Schro¨dinger equations for the
macroscopic wave functionsC1 andC2 for the two compo-
nents of the condensate. In Eqs.~1! Vn,~n51, and 2! denotes
the trap potentials which we assume to be harmonic in ag
ment with common experimental situations

Vn~rW !5 1
2 Mv2@lx

2~x2xn!21ly
2y21lz

2z2#. ~2!

The parameterslh (h5x,y,z) account for the anisotropy o
the trap, and the trap centers for the first and second com
nents are displaced in thex direction byx1 andx2 , respec-
tively. The coupling constantsUnm are related to the scatter
ing lengthsanm by Unm54p\2anm /M . In this paper we
allow only for the following elastic scattering processe
u1&u1&→u1&u1&, u2&u2&→u2&u2&, andu1&u2&→u1&u2&. Up to
now, Eqs.~1! have been solved in the Thomas-Fermi a
proximation, exploring the spatial densities of the mixtur
@22# and the long-wavelength excitations@23#. Numerical
studies of these systems have been carried out in Ref.@24#.

For noninteracting particles, Eqs.~1! are solved for the
ground state by Gaussian functions, which are no more
2978 © 1997 The American Physical Society
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56 2979STABILITY AND COLLECTIVE EXCITATIONS OF A . . .
lutions in the general case due to the nonlinear s
interaction and coupling terms. The basic assumption beh
the following derivations is that, in the case of weak intera
tions, the wave function is still well approximated by
Gaussian,

Cn~rW,t !5An~ t !e2 ~1/2![bnx~ t !~x2xn0!21bny~ t !y21bnz~ t !z2] ,
~3!

where bnh5bnh
R 1 ibnh

I are complex numbers. The adjus
able parameters in it can be interpreted as the amplitu
An , the width wnh51/Abnh

R , and the curvature
(MnhAbnh

R )21/25(bnh
I )21/2 of the wave function. To derive

reliable results for the corresponding equations of motion
is necessary to take also the imaginary part of the wave fu
tion into account, as shown in Ref.@25# for a similar case.
One has to keep in mind when applying this ansatz to pr
lems where losses are included that the loss terms usu
induce aberrations, thus making the profile non-Gauss
When nonlinear loss or gain terms are substantially imp
tant, these aberrations make the information that can be
tained form an ansatz like Eqs.~3! only qualitative. How-
ever, in the present case when losses are small correc
and do not determine the dynamics the solutions of Eq.~1!
can be well approximated by Gaussian functions.

In the following we find it convenient to work with scale
variables. We will measure energies in units of\v, and will
scale lengths with respect toa0&, wherea05@\/(Mn)#1/2

is the size of the ground state of the bare harmonic oscilla

B. Moment equations

In Ref. @14#, a solution of the single-component Gros
Pitaevskii equation was formulated as a variational proble
where a Lagrangian densityL is derived so that the station
ary point of the corresponding action gives the nonlin
Schrödinger equation. An approximate solution of the GP
was then derived by finding the extremum of the act
within a set of Gaussian trial functions which give ‘‘Newto
type’’ equations for the variational parameters. In contras
such a variational analysis, we will solve the two-compon
GPE by means of a moment method. In the case of
Unm , i.e. no losses@26#, this method is equivalent to th
variational approach. In principle, this approach is more g
eral, as it can also be applied in a situation where loss te
are included in Eqs.~1!.

Using the Gaussian ansatz for a system where one
densate is centered atx150 and the second one atx25a, it
is possible to calculate the number of particles in each c
densaten51 and 2 as a function of the parameters

Nn5E
2`

`

d3rWuCn~rW,t !u25uAn~ t !u2p3/2wnxwnywnz . ~4!

In a similar way, the second moments of the spatial coo
natesh5x,y,z and the second moments of the momenta
given by
f-
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^h2&15E
2`

`

d3rW h2uC1~rW,t !u25 1
2 N1w1h

2 , ~5a!

^h2&25E
2`

`

d3rW h2uC2~rW,t !u25 1
2 N2w2h

2 S 11
2a

w2h
2 D

~5b!

and

^]h
2&n5E

2`

`

d3rW Cn~rW,t !* ]h
2Cn~rW,t !52

Nn

2
~wnh

221Mnh
2 !,

~6!

respectively. These 14 variables provide a complete desc
tion of the system within the previously mentioned approx
mation. To obtain a closed set of equations of motion f
Nn(t), wnh(t), andMnh(t), we take the time derivative of
Eqs. ~4!, ~5!, and ~6!, eliminate the time derivatives of the
wave function with the help of the Schro¨dinger equations
~1!, and work out the resulting integrals overrW with the help
of the Gaussian ansatz~3!. We obtain

Ṅ15
2q11

I N1
2

w1xw1yw1z
12A8q12

I N1N2e2 a2/w1x
2

1w2x
2

@~w1x
2 1w2x

2 !

3~w1y
2 1w2y

2 !~w1z
2 1w2z

2 !#2 1/2, ~7a!

ẇ1x52M1x2
N1q11

I

2w1yw1z
1A8q12

I N2@~w1x
2 1w2x

2 !~w1y
2 1w2y

2 !

3~w1z
2 1w2z

2 !#2 1/2
w1x

3

~w1x
2 1w2x

2 !2 @w1x
2 2w2x

2 22a2#

3e2 a2/w1x
2

1w2x
2

, ~7b!

ẇ1y52M1y2
N1q11

I

2w1xw1z
1A8q12

I N2@~w1x
2 1w2x

2 !~w1y
2 1w2y

2 !

3~w1z
2 1w2z

2 !#2 1/2
w1y

3

w1y
2 1w2y

2 e2 a2/w1x
2

1w2x
2

, ~7c!

Ṁ1x5w1xlx
22

1

w1x
3 2

N1

w1xw1yw1z
F3

2
q11

I M1x1
q11

R

w1x
G

1A8N2@~w1x
2 1w2x

2 !~w1y
2 1w2y

2 !~w1z
2 1w2z

2 !#2 1/2

3
1

~w1x
2 1w2x

2 !2 Fq12
I S 2

M1x
~w1x

2 1w2x
2 22a2!

2M1x~w1x
4 12w2x

4 13w1x
2 w2x

2 12a2w1x
2 ! D

22q12
R w1x@w1x

2 1w2x
2 22a2#Ge2a2/(w1x

2
1w2x

2 ), ~7d!
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Ṁ1y5w1yly
22

1

w1y
3 2

N1

w1xw1yw1z
F3

2
q11

I M1y1
q11

R

w1y
G

1A8N2@~w1x
2 1w2x

2 !~w1y
2 1w2y

2 !~w1z
2 1w2z

2 !#2 1/2

3
1

~w1x
2 1w2x

2 !2 Fq12
I S 2

M1x
~w1x

2 1w2x
2 !2M1x~w1x

4

12w2x
4 13w1x

2 w2x
2 ! D

22q12
R w1x@w1x

2 1w2x
2 #Ge2 a2/w1x

2
1w2x

2
, ~7e!

where we replacedqnm5UnmA8p3 @26#. The corresponding
equations for the second condensate are obtained by
changing every index 1 and 2, and the corresponding eq
tions for thez direction are obtained by exchanging the i
dicesy andz in the equations for they direction.

III. ISOTROPIC TRAPS AND IDENTICAL CONDENSATES:
NO DISPLACEMENT OF TRAP CENTERS

A. Equations

The simplest case which is amenable to analytical tre
ment corresponds to an isotropic trapping poten
lx5ly5lz51 with ~nondisplaced! trap centersxn50
~n51 and 2! @27#. We will study the case of a fixed numbe
of particles in each condensate,U11

I 5U22
I 5U12

I 50, and, in
particular, consider them equal,N15N25N. With these as-
sumptions, and the initial condition of two isotropic conde
sateswnx5wny5wnz[wn ~n51 and 2!, the equations of
motion for the widths of the condensates have the form

ẅ152w11
1

w1
3 1

Nq11

w1
4 12A8

Nq12w1

~w1
21w2

2!5/2, ~8!

whereby exchanging the indices we obtain the correspon
one forw2 .

Similar to Ref.@14#, we can find a ‘‘potential’’ for these
equations. Hence the evolution of the width of the cond
sates can be viewed as the coordinates of a fictitious clas
particle moving in a three-dimensional potential

Veff~w1 ,w2!5 1
2 ~w1

21w2
2!1

1

2 S 1

w1
2 1

1

w2
2D

1 1
3 NS q11

w1
1

q22

w2
D1 2

3 A8
Nq12

~w1
21w2

2!3/2,

~9!

where the first term on the right-hand side stems from
harmonic trapping potential, the second term results from
kinetic-energy term, and the third and fourth terms are du
the interaction between alike particles and between parti
in different states. Below, we further reduce the number
open parameters by assuming the scattering lengthsa11 and
a22 to be equal.
x-
a-

t-
l

-
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-
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e
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B. Equilibrium points

If we now examine the state in equilibrium of the syste
we find that the requirement of equal scattering lengths
plies that the condensates must have equal wid
w15w2[w. Equilibrium points are obtained from the ex
trema of the potential~9!, which gives

w5
1

w3 1
N

w4 ~q111q12!. ~10!

In the hydrodynamic approximation this equation of m
tion reduces further, and can be analytically solved
weq

ha5N1/5(q111q12)
1/5. To test for stability of these equilib

rium points requires us to check for minima with the help
the Hessian matrixH5@]2Veff /(]w1n]w2n)#weq

. This analysis
will be carried out in Sec. III C.

C. Low-energy eigenmodes and stability

To obtain the frequencies of small-amplitude oscillatio
around the equilibrium positions we linearize the full equ
tions ~8! around the equilibrium points,wnh5wnh

eq1dwnh .
We find the following four frequencies:

va5S 11
3

w4 1
N

w5 ~q112q12! D 1/2

, ~11a!

vb5S 11
3

w4 1
N

w5 ~q111q12! D 1/2

, ~11b!

vc5S 11
3

w4 1
N

w5 ~4q1114q12! D 1/2

, ~11c!

vd5S 11
3

w4 1
N

w5 ~4q112q12! D 1/2

, ~11d!

which can be interpreted as collective oscillations depicted
Fig. 1. The modes~a! and~b! are twofold degenerate, corre
sponding to oscillation, e.g., in thex-y plane and thex-z
plane@28#. Modes~c! and ~d! correspond to isotropic oscil
lations.

The order in which these motions appear with increas
energy depends strongly on the values of the scatte
lengths involved. In Fig. 2 we display the spectrum for
positive value ofa11. For large, negative values ofa12, the
two modes with the lowest energies are those with the m
mum spatial overlap, namely, modes~b! and ~c!. If we now
consider the region wherea12 is positive and large, we natu
rally find that the modes~a! and ~d!, for which the spatial
overlap is minimized, are the lowest-energy modes. T
point at which this crossing happens changes with chang
values ofa11. Again we find, as in Ref.@14#, that the widths
of the condensates remain finite up to the point of collap

Eigenfrequencies~11! provide the stability region of the
equilibrium points~10!,

N~q111q12!52 4
5 ~ 1

5 !1/4 ~12a!

2~ 5
4 !5N4q11

5 1 1
4 q115q12. ~12b!
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56 2981STABILITY AND COLLECTIVE EXCITATIONS OF A . . .
Since for a1250 we recover the single-component resu
@14# where only particles in one state are present, we see
for positive values ofa12 the region of stability increases an
for negative ones it decreases. This is due to contribution
the total system energy from either the repulsive or attrac
interaction. However, this effect is nonlinear due to the
ture of this interaction. It is illustrated in Fig. 3.

FIG. 1. Diagrammatical representation in thex-y plane of the
four collective excitations with the lowest energy. Oscillations
particles in stateu1& are visualized by solid line arrows, and osc
lations of particles in stateu2& by dashed line arrows.

FIG. 2. Spectrum of the low-lying excitation frequencies for
fixed, positive valueq1152.331024. With q12 increasing from
negative values to positive ones, the two low-lying modes and
two high-lying ones are exchanged.
at

to
e
-

IV. ISOTROPIC TRAPS AND IDENTICAL
CONDENSATES: DISPLACED TRAP CENTERS

A. Equations

Let us now consider the case of two spatially displac
traps, and work out the differences from the above situat
We assume a displacement in thex direction and make an
ansatz analogous to Eqs.~3! and~1!, where one condensate
centered atx150 and the second atx25a. Also in this case
we assume that the number of particles is conserved, w
implies that the imaginary parts of the coupling constants
again zero. We apply the moment method as in the previ
case and arrive, since the spatial symmetry is now broke
the x direction, at the following set of equations of motio
for the widths of the two condensates in thex direction,wnx ,
and in they andz directions,wn :

ẅ1x52w1xl1x
2 1

1

w1x
3 1

N1q11

w1x
2 w1

2

12A8N2

q12w1x~w1x
2 1w2x

2 22a2!

~w1x
2 1w2x

2 !5/2~w1
21w2

2!
e2 a2/(w1x

2
1w2x

2 ),

~13a!

ẅ152w1l1
21

1

w1
3 1

N1q11

w1xw1
3

12A8N2

q12w1

~w1x
2 1w2x

2 !1/2~w1
21w2

2!2 e2 a2/(w1x
2

1w2x
2 ).

~13b!

Again one obtains the equations forw2x and w2 by simply
exchanging the indices. We can also, as in the nondispla
case, find a potential of the form of Eq.~9!, which is suitable
for the derivation of these equations. However, in this c
the term originating from the interaction of the particles
the different states is multiplied by an additional facto

f

e

FIG. 3. Phase diagram for the stability of the two-condens
system forN52000 particles. For positivea12 the region of stabil-
ity is increased due to the positive energy contribution from
repulsive interaction. However, it does not expand linearly w
increasinga12.
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exp@2a2/(w1x
2 1w2x

2 )#, which ensures that the influence
these interactions becomes weaker the more the conden
are displaced. This then implies an even smaller region
spatial overlap. Note that the widths of the condensates
included in this factor, and that it therefore has a no
negligible effect on the physics of the system in addition
weakening the magnitude of effects found in the nond
placed case.

Let us start by calculating the equilibrium states for th
case from Eqs.~13!. In Fig. 4 we plotted the widthswx and
w of the condensates fora11 anda12 to be positive and equal
Once the condensates are separated by a dist
a5A(w1x

2 1w2x
2 )/2, the repulsive interaction between pa

ticles from different states becomes an effectively attrac
one ~and vice versa!, as can be seen from the fact that t
width in the x direction becomes smaller than the width
the y andz directions. The explanation for this effect is th
the direction of the repulsive force, with respect to the s
faces of the condensates, changes in these regions where
no longer overlap. At large distances, when the interac
between the particles in different states again becomes
ligible, the case of two independent, isotropic condensate
again recovered.

B. Low-energy eigenmodes and stability

Looking at the excitation spectrum of the two-compone
system by analyzing it again via a linear expansion aro
the equilibrium points, we find, as can be seen from Fig
that the degeneracies existing in the nondisplaced case
lifted with increasing distance. Bringing the condensates
far from each other that they can be considered as two in
pendent condensates@14#, the spectrum again reduces to tw
threefold-degenerate values, since the condensates aga
come isotropic.

In this Gaussian ansatz we can again easily interpret th
modes to be of the following types:

FIG. 4. Width of the condensates in thex direction and in they
and z directions forq1150.23104 and q1250.23104. Due to the
repulsive interaction between particles from different states,
condensate is squeezed in thex direction at a certain distance, an
then expands once the region of overlap diminishes further.
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2ga

gb

gc

2gd

0
0

21
1

21
1

21
1

21
1

21
1
1

21

ga

gb

gc

gd

0
0

1
1

21
21
21
21

1
1

21
21

1
1

)
)
)
)
)
)

mode~a!,
mode~b!,
mode~c!,
mode~d!,
mode~e!,
mode~f!.

~14!

The members of these vectors represent the oscillation
plitude in the directions (d1x d1y d1z d2x d2y d2z), whereg l
( l 5a,b,c,d) depends on the parameters of the system. T
lifting of the degeneracies is mainly due to the fact that
spatial displaced system is not invariant under an excha
of the variablesw1y andw1z and not ofw2y andw2z , as can
be seen from Eqs.~13!.

Let us now look at the stability of the stationary state
which we again retrieve from the analysis of the Hess
matrix. As can be seen from Fig. 6, the further the cond
sates separate from each other, the weaker the effect o
ditional stabilization~destabilization! becomes, since it re

e

FIG. 5. Spectrum of the low-lying excitation energies f
q115q125631024. The degeneracies are lifted with increasinga,
and fora.2 it reduces to the case of two isotropic, single conde
states again.

FIG. 6. Stability region for displaced traps with a displaceme
parametera. For far displaced traps the result for independent c
densates is recovered.
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56 2983STABILITY AND COLLECTIVE EXCITATIONS OF A . . .
sults from the repulsive~attractive! interaction between the
condensates. Fora'.1.5, one recovers the stability cond
tion for the case of two separate condensates.

V. CONCLUSIONS

We used a moment method to describe the behavio
two overlapping Bose-Einstein condensates in different
ternal states, assuming that the shapes of the individual w
functions do not deviate too much from a Gaussian sha
With this method it is straightforward to derive equations
motion for the open parameters, defining the exact form
the Gaussian function, especially the width of the cond
sates. They can, for the general cases, easily be treate
merically, and for special cases even analytical solutions
possible.

For the case of isotropic traps and isotropic condensa
we calculated the equilibrium points for the system and a
an
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n,
tt.
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lyzed their stability. We found that, in comparison to th
case of one pure condensate, the region of stability can
extended~shrunken! if the interaction energy between pa
ticles in different states is positive~negative!. Due to the
nonlinear character of the interaction, this effect is also o
nonlinear nature. It appears strongest for nondisplaced tr
and becomes weaker the farther apart the centers of the
traps are from each other. We were also able to calculate
energies of the first excited states and interpret the collec
motions. For the case of displaced traps, the degenera
existing in the nondisplaced case are lifted.
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