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Effective Hamiltonian approach to the bound state: Positronium hyperfine structure

Krzysztof Pachucki*
Institute of Theoretical Physics, Warsaw University, Hoz˙a 69, 00-681 Warsaw, Poland

~Received 17 March 1997!

An effective Hamiltonian approach is developed for the perturbative calculation of bound state energies in
quantum electrodynamics. In this approach a recoil correction of ordera2EF to the hyperfine structure of
hydrogenic systems with the arbitrary mass ratio is obtained. In the case of the positronium it amounts to
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I. INTRODUCTION

The treatment of bound states in quantum electrodyn
ics is a challenging task. Particularly interesting are syste
consisting of two or three bodies where the calculation co
parable with the precision of measurements could be
formed. The Bethe-Salpeter formalism is a good start
point for the derivation and a subsequent calculation of v
ous corrections to energy levels of simple atomic syste
This approach with its application to the positronium w
presented in detail by Adkins in@1#. We present here an
alternative approach based on an effective Hamiltonian.
approach joins three original ideas of Lepage nonrelativi
quantum electrodynamics@2#, calculations of Khriplovich
and co-workers@3# using Breit Hamiltonians, and ours whic
was used in the evaluation of hydrogen Lamb shift@4# and
hyperfine splitting@5#. We construct an effective Hamil
tonian in the two-body subspace with the regularized C
lomb potential by introducing an extra parameterl. This
Hamiltonian is obtained by the Breit expansion of effecti
two-body interactions and by addingd-like terms derived
from correspondingS-matrix elements. The presence of
regulator ensures that the Breit Hamiltonian is finite. W
apply this approach to the Dirac-Coulomb equation,
present the perturbative calculation of hydrogen energy
els ina6 order. Next, we demonstrate our method on a l
simple model described by the Hamiltonia
H5Ap21m22a/r . This model resembles some features
real two-body systems. The calculation of itsnSenergy lev-
els through the order ofa6 is presented in detail. After thes
simple examples we consider a hyperfine structure of a t
body system in the order ofa6 with the arbitrary mass ratio
and check results against already known special cases o
muonium and positronium ground state hyperfine struct
~hfs!. In the summary we analyze the possible extension
this approach to the calculation of corresponding correcti
to the helium energy levels.

II. DIRAC-COULOMB ENERGY LEVELS
FROM PERTURBATIVE APPROACH

The Dirac-Coulomb Hamiltonian is given by the expre
sion

*Electronic address: krp@fuw.edu.pl
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HDC5a–p1bm2
a

r
. ~1!

The corresponding eigenvalue problemHDCuc&5Euc& has
the following solution:

E~n, j !5mS 11
a2

@n2 j2 1
2 1A~ j1 1

2
!22a2#2

D 21/2

,

~2!

wheren is the principal number andj is the total angular
momentum of the electron. The expansion ofE in a reads

E~n, j !5mH 12
a2

2 n2
1a4F 3

8 n4
2

1

2~ 1
2 1 j !n3G

1a6F2
5

16n6
1

3

4~ 1
2 1 j !n5

2
3

8~ 1
2 1 j !2n4

2
1

8 ~ 1
2 1 j !3n3G J . ~3!

We would like here to calculate the energy levels up to
order ofa6 using perturbative methods as an introduction
the more complex positronium case. The leading te
2ma2/(2n2) is derived from the Schro¨dinger-Coulomb
HamiltonianHS ,

HS5
p2

2m
2

a

r
. ~4!

The first relativistic correction could be calculated from t
Foldy-Wouthuysen transformed Hamiltonian, namely,

DH ~4!52
1

8m3 p
41

pa

2m2 d3~r !1
a

4m2r 3
s–L . ~5!

wheres are Pauli matrices andL is an angular-momentum
operator. The correction to energy

DE~4!5^fuDH ~4!uf& ~6!

coincides with the third term in Eq.~3!. The problem appears
in the evaluation of the next order correction, i.e.,DE(6).
Matrix elements of, for example,^fup6uf& and
297 © 1997 The American Physical Society
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K fUd~3!~r !
1

~E2HS!8
d~3!~r !Uf L ~7!

are divergent forS states. This divergence, when prope
regularized, would cancel out where all terms are summ
up. So, we modify the Coulomb potential near the singula
by the following replacement in Eq.~1!:

V52
a

r
→2

a

r
~12e2lmar !. ~8!

The Schro¨dinger equation with this potential is no long
solvable, but it is not a problem. One calculates all corr
tions to the energy in the limit of largel. The l divergent
terms are kept till they cancel out in the final expression. T
Foldy-Wouthuysen transformation could be extended to
tain higher order terms in the regularized Hamiltoni
DH (6). An equivalent method for finding higher order term
which is at the base of our approach, relies on the resolv
One finds such an effective Hamiltonian that the correspo
ing resolvents are equal up to the specified order ofan in the
limit of infinitely large l, namely,

K 1,p,bU 1

E2HDC
Ub8,p8,1 L ~n!

5 lim
l→`

K p,bU 1

E2HEF~l,E!
Up8,b8L ~n!

, ~9!

where ^1,p,bu denotes a four-component bispinor corr
sponding to a positive energy solution of the free Dirac eq
tion, and ^p,bu denotes a two-component spinor. In thea
expansion in Eq.~9! we keep energyE and momentap,p8 of
ordera2 anda, respectively. The first terms describing co
rections to the energy take a form

DE5^f uDH~E0!uf&1^fuDH~E0!
1

~E02HS!8
DH~E0!uf&

1^f uDH~E0!uf&
d

dEU
E5E0

^fuDH~E!uf&. ~10!

Using Eq.~9! one obtains forDH (6)

DH ~6!5
p6

16m5 2
1

8m3Fp; a

r G22 3

64m4S p2Fp;Fp; a

r G G
1Fp;Fp; a

r G Gp2D2
5

128m4 Fp2;Fp2;ar G G
1

3

32m4s–L S p2 a

r 3
1

a

r 3
p2D . ~11!

DH (6) for the regularized potential is obtained by the r
placement~8!. The terms proportional tos–L do not need to
be regularized because they act on states withlÞ0. Having
DH (4) and DH (6) the correction to energy in the order o
a6 could be expressed as
d
y

-

e
-

,
nt.
d-

-

-

DE~6!5^fuDH ~6!uf&1 K fUDH ~4!
1

~E2H !8
DH ~4!Uf L .

~12!

The statef in the above fulfills the Schro¨dinger equation
with the regularized potential and from now it hasl50. We
subsequently use this equation and commutation rules to
press Eq.~12! in terms of known matrix elements:

^H&5E52
1

2 n2
, ~13!

K 1r L 5
1

n2
, ~14!

K 1r 2L 5
2

n3
, ~15!

K p 1

r 2
pL 5

8

3n3
2

2

3n5
, ~16!

K 1r 4pd3~r !L
l

5 K 1r 4L
l

12K 1r 3L
l

2
8

3n3
2

4

3n5
. ~17!

The subscriptl means the expression to be regularized, i

K 1r 4L
l

[^V8 2&, ~18!

K 1r 3L
l

[2^V3&, ~19!

K 1r 4pd3~r !L
l

[2^VD~V!&. ~20!

The first term in Eq.~12! denoted byDE1
(6) is transformed to

the following form:

DE1
~6!5

1

32K 1r 4L
l

1
1

8K 1r 3L
l

1
1

2n3
2

7

8n5
2

5

16n6
. ~21!

The calculation of the second term in Eq.~12! denoted by
DE2

(6) is more complicated.DH (4) is to be regularized ac
cording to Eq.~8!, namely,

4pad3~r !→4pad3~r !l[D~V!. ~22!

DE2
(6) could be rewritten as

DE2
~6!5 K fU p48 1

~E2H !8

p4

8 Uf L
1 K fU p

2
d3~r !l

1

~E2H !8

p

2
d3~r !lUf L

22K fU p48 1

~E2H !8

p

2
d3~r !lUf L 5EA1EB1EC .

~23!
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Each matrix element is divergent whenl goes to infinity.
We extract this divergence in the form of the matrix elem
of ^1/r 3& and ^1/r 4&, and the remainders become finite.

EA52
1

4K S 1r 2 1
2E

r D 1

~H2E!8S 1r 2 1
2E

r D L 2
1

8K 1r 4L
l

2
1

2K 1r 3L
l

1
2

n5
2

1

2 n6
, ~24!

EB5
1

16K p•pS 1r D 1

~H2E!8
pS 1r D •pL 2

1

32K 1r 4L
l

2
1

8K 1r 3L
l

1
1

6n3
1

1

3n5
, ~25!

EC52
1

8K S 1r 2 1
2E

r D 1

~H2E!8
pS 1r D •pL

1
1

8K p–pS 1r D 1

~H2E!8S 1r 2 1
2E

r D L 1
1

8K 1r 4L
l

1
1

2K 1r 3L
l

2
1

3n3
2

5

3n5
1

1

4n6
, ~26!

wherep(1/r ) denotes@p;1/r #. All the divergent terms cance
out in DE(6),

DE~6!5S1
1

3n3
2

5

24n5
1

1

16n6
, ~27!

S52
1

4K F 1r 2 1
2E

r
2
1

2
p•pS 1r D G 1

~H2E!8

3F12 pS 1r D •p1
1

r 2
1
2E

r G L . ~28!

S is already finite, it is calculated with the help of a relatio
which holds forl50,

pS 1r D •p52 i FH2E;
r

r
•pG2

1

r 2
, ~29!

and using the fact that the radial Schro¨dinger equation could
be solved for any real, positivea and l ,

S52
11

24n3
2

3

8n4
1

23

24n5
2

3

8n6
. ~30!

The complete correction to energy in the order ofa6,

DE~6!52
1

8n3
2

3

8n4
1

3

4n5
2

5

16n6
, ~31!

coincides with the corresponding term in the expansion
the Dirac-Coulomb energy in powers ofa, Eq. ~3!. This
calculation shows that the Dirac-Coulomb energy lev
could be calculated perturbatively with the use of an eff
tive Hamiltonian. The cancellation effect, i.e., the cance
tion of all divergent terms is a specific feature of the Dir
equation. In the case of the positronium, for example, thl
t

f

s
-
-

divergence does not cancel out. This means that there
some extra terms, which are forgotten in the nonrelativis
expansion. Before passing to the positronium we cons
first a model which resembles some features of the pos
nium system and demonstrate that the effective Hamilton
approach works for the calculation of its energy levels.

III. ENERGY LEVELS OF A MODEL HAMILTONIAN

The model, which demonstrates an effective Hamilton
approach, is given by

H5Ap21m22m2
a

r
. ~32!

The corresponding eigenvalue problem is not solvable.
calculate energy levels in the order ofa6 one introduces an
effective HamiltonianHEF which is determined by the con
dition ~9!,

HEF5
p2

2m
2

a

r
~12e2lmar !2

p4

8m3 1
p6

16m5 1a2M5d
3~r !

1a3M6d
3~r !. ~33!

p4 andp6 terms are obtained by the expansion of the squ
root in Eq.~32!. These extraMi terms are necessary to fulfi
the condition~9!. It is our ansatz that they are proportional
the d3(r ). The coefficients are calculated by comparing t
difference in the forward scattering amplitude at zero m
mentum betweenH andHEF and they depend on our regu
latorl. This Hamiltonian is used to determine energy leve

E~2!52
ma2

2n2
, ~34!

DE~4!5 K fU2 p4

8m3 Uf L , ~35!

DE~5!5^fua2M5d
3~r !uf&, ~36!

DE~6!5 K fU p6

16m5 Uf L 1 K fU p4

8m3

1

~E2H !8

p4

8m3 Uf L
1^fua2M5d

3~r !uf&~6!1^fua3M6d
3~r !uf&.

~37!

These matrix elements are calculated in a way similar to
in the previous case:

DE~4!52
ma4

n3 S 12
3

8nD , ~38!

K fU p6

16m5 Uf L 5
1

4K 1r 4L
l

1
1

2K 1r 3L
l

2
3

2n5
1

5

16n6
,

~39!
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K fU p4

8m3

1

~E2H !8

p4

8m3 Uf L 52
1

8K 1r 4L
l

2
1

2K 1r 3L
l

2
1

n3

2
3

2n4
1

3

n5
2

5

8n6
. ~40!

The matrix element̂1/r 4&l does not cancel out in the sum
so we give its value

K 1r 4L
l

5
8

n3Fl41 lnS 3l D2
11

12
1

1

6n2
1

1

2n

1C~n!1C2 ln~n!G . ~41!

To complete the evaluation of energy levels one need
determineM5 andM6. M5 is given by the two-photon sub
tracted forward scattering amplitude at zero momentum,

M55E d3p

~2p!3H ~4p!2

p4 F 1

m2Ap21m2
1

1

2m
1
2m

p2 G
2

~4p!2

p4
L4

~p21L2!2
p2

8m3J 5
1

m2S 832
pL

4mD , ~42!

whereL5lma. The corresponding correction to the ener
in the order ofa5 is

DE~5!5
ma5

n3
8

3p
. ~43!

M6 is given by three-photon subtracted forward scatter
amplitude,

M652
1

p3E d3p1d
3p2

p1
4p2

4 H 1q2 @~m1Am21p1
2!~m1Am21p2

2!

24m22p1
22p2

2#

2
L2

p1
21L2

1

q2
L2

q21L2

L2

p2
21L2

~p1
2p2

22p1
42p2

4!

4m2

2
1

p2
2 @2m~m1Am21p2

2!24m22p2
2#

1
L2

p1
21L2

1

p2
2

L4

~p2
21L2!2

~2p2
4!

4m2

2
1

p1
2 @2m~m1Am21p1

2!24m22p1
2#

1
L2

p2
21L2

1

p1
2

L4

~p1
21L2!2

~2p1
4!

4m2 J
5

p

m2F lnS L

mD2
3

2
1

7

p2 z~3!2
2

p2 2 ln~3!G . ~44!

The matrix element of theM5 term in the order ofa6 re-
quires additional treatment,
to

g

^fua2d3~r !M5uf&~6!5fl
2~0!a2S 2

pla

4m2 D5
ma6

n3 S 12
l

4D .
~45!

We can now sum up all the terms ina6 order. The result is

DE~6!5
ma6

n3 F ln~a!1
7

p2 z~3!2
2

p2 2
33

16
1S C~n!1C

2 ln~n!2
1

n
1

5

3n2
2

5

16n3
2
17

48D G . ~46!

The correction to energyDE(6) contains ln(a), so the expan-
sion ina is nonanalytic. It is the general feature of the bou
state problems in QED. There are two energy scales in
problem: the binding energy and the electron mass. This
fective Hamiltonian approach splits these two scales and
lows us to treat them separately.

IV. POSITRONIUM HYPERFINE STRUCTURE

We will present here an effective Hamiltonian approa
to the calculation of recoil effects of ordera2 to the positro-
nium hyperfine structure. By recoil effects we mean
Feynman diagrams with photon exchanges, without phot
created and absorbed by the same particle. We neglect
diagrams with closed fermion loops, they have already b
calculated. The derivation of the effective Hamiltonian, fro
which one finds the energy spectrum, consists of two ste
The starting point is the Hamiltonian of full QED. The firs
step is the construction of an intermediate Hamiltonian in
two-body subspace and the reference frame with total m
mentum equal to zero,

K p8,2p8U 1

E2HQED
Up,2pL 5K p8U 1

E2HEF8 ~E!
UpL ,

~47!

where this equation holds for any momentum and up
three-photon exchange, i.e., up to the ordera3. In the second
step we limit momenta and energy to be of the ordera and
a2, respectively, by introducing parameterl as it was in Eq.
~9!,

K p8U 1

E2HEF8 ~E!
UpL ~n!

5 lim
l→`

K p8U 1

E2HEF~l,E! UpL ~n!

.

~48!

This effective HamiltonianHEF is obtained in parts by the
application of Breit expansion to the higher order, and
adding the forward scattering amplitude terms. Since hig
order terms would be divergent, we regularize the pho
propagator by introducing a factor:

1

k2
→

1

k2
L2

k21L2 , ~49!

whereL5lma andm is a reduced mass. This constructio
allows for an extension of the calculation of Khriplovich an
co-workers@3# to the states with a zero angular momentu
In the case of, for example,P states the wave function van
ishes at origin and all the Breit-type terms are finite and
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contribution fromMi vanishes. In the case ofS states we
have to include alsod-like terms that correspond to the fo
ward scattering amplitude to obtain a completeHEF ,

HEF5
p2

2m
2

a

r
~12e2lmar !1DH ~4!1DH ~6!1a2M5d

3~r !

1a3M6d
3~r !. ~50!

We start the calculation with the second order contrib
tion from the Breit Hamiltonian for two charged particle
with massesm1 andm2. We will keep both masses differen
for comparing with other results. The regularized Br
Hamiltonian reads

DH ~4![HB52
p4

8m1
3 2

p4

8m2
3 1

pa

2 S 1

m1
2 1

1

m2
2D d3~r !l

2
a

2m1m2r
S p21 r i r j

r 2
pipj D

l

2
a

4m1m2
S s1•s2

r 3

2
3s1•r s2•r

r 5
2
8

3
ps1•s2d

3~r ! D
l

, ~51!

whered3(r )l was defined in Eq.~20!, and

1

r S p21 r i r j

r 2
pipj D

l

5E d3k

~2p!3
L2

k21L2

4p

k2 S d i j2
kikj

k2 D
3e2 ikrpipj , ~52!

S s1•s2

r 3
2
3s1•r s2•r

r 5 D
l

5E d3k

~2p!3
L2

k21L2

4p

k2

3S kikj2 d i j

3
k2De2 ikrs1

i s2
j .

~53!

The second order correction to hyperfine structure is a s
of five terms calculated as follows.

EA52K S 2
p4

8m1
3 2

p4

8m2
3D 1

~E2H !8

3
8

3
ps1•s2d

3~r !lL a

4m1m2

5
m6a6

6m1m2
S 1

m1
3 1

1

m2
3D

3H 4K 1r 4L
l

116K 1r 3L
l

1
16

3n3
1
48

n4
2
136

3n5J , ~54!
-

t

m

EB52K pa

2 S 1

m1
2 1

1

m2
2D d3~r !l

1

~E2H !8

3
8

3
ps1•s2d

3~r !lL a

4m1m2

52
m5a6

6m1m2
S 1

m1
2 1

1

m2
2D

3H 2K 1r 4L
l

18K 1r 3L
l

2
40

3n3
1
24

n4
2

8

3n5J , ~55!

EC52K 2
a

2m1m2r
S p21 r i r j

r 2
pipj D

l

1

~E2H !8

3
8

3
ps1•s2d

3~r !lL a

4m1m2

5
4m5a6

3m1
2m2

2H 2K 1r 3L
l

1
4

n3
lnS 43D1

12

n3
1
12

n4
2
10

n5J ,
~56!

ED5 K 83ps1•s2d
3~r !l

1

~E2H !8

8

3
ps1•s2d

3~r !lL
3S a

4m1m2
D 2

5
2m5a6

9m1
2m2

2H 2K 1r 4L
l

18K 1r 3L
l

2
40

3n3
1
24

n4
2

8

3n5J ,
~57!

EE5K S s1•s2

r 3
2
3s1•r s2•r

r 5 D
l

1

~E2H !8

3S s1•s2

r 3
2
3s1•r s2•r

r 5 D
l
L S a

4m1m2
D 2 ~58!

52
m5a6

18n3m1
2m2

2H 4l220 lnS l

4D220 ln~n!

120 @C~n!1C#16 lnS 43D1
3

n2
1
10

n
2
61

3 J . ~59!

Matrix element̂ 1/r 4&l was given in Eq.~41!, and

K 1r 3L
l

5
4

n3F lnS l

4D1 lnS 34D1 ln~n!2C~n!2C1
1

2
2

1

2 nG .
~60!

The extension of the Breit Hamiltonian to the next ord
requires the calculation of diagrams presented in Fig. 1. O
some of them contribute to the hfs. The double-transver
double-pair diagrams nominally contribute in the order
a6 order but the retarded part and the single Coulomb
change cancel out. Another cancellation effect allows us
treat theZ subdiagram as a point interaction. The calculati
is done in the Coulomb gauge, as the most appropriate
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this problem. The dashed line denotes Coulomb interact
and the wave line denotes transverse photon. The si
Coulomb term is

E25E d3p

~2p!3
d3p8

~2p!3
f~p!f~p8!

4pa

q2
L2

L21q2
1

16m1
2m2

2

3~p83p•s1!~p83p•s2!

5
m5a6

6m1
2m2

2F K 1r 3L
l

1
2

n3
lnS 34D2

1

3n3
2

5

3n5G . ~61!

The single transverse term without retardation is

E45E d3p

~2p!3
d3p8

~2p!3
f~p!f~p8!

4pa

q2
L2

L21q2

3S d i j2
qiqj

q2 D 1

4m1m2
H F 1

4m1
2 ~p21p82!~q3s1!

i

2
1

8m1
2 ~p22p82!„~p1p8!3s1…

j G~s23q! j

1F 1

4m2
2 ~p21p82!~q3s2!

i2
1

8m2
2 ~p22p82!„~p1p8!

3s2…
i G~s13q! j J

5H 2
m5a6

3m1m2
S 1

m1
2 1

1

m2
2D F3K 1r 4L

l

14K 1r 3L
l

2
16

3n3
2

20

3n5G J . ~62!

The retardation terms with 0,1,2 Coulomb exchanges is

FIG. 1. Diagrams contributing to energy levels ina6 order.
n,
le

E56752e2E d3k

~2p!3
1

2kS d i j2
kikj

k2 D L2

L21k2

3 K i

2m1
~s13k! ieik–r1

1

E2k2H

~2 i !

2m2
~s2

3k! je2 ik–r2L ~3!

1~1↔2!52
2m5a6

3m1
2m2

2K 1r 4L
l

.

~63!

The single Coulomb, single transverse, and singleZ term is

E852E d3p

~2p!3
d3q1

~2p!3
d3q2

~2p!3
f~p2q1!f~p1q2!

3
L2

L21q1
2

L2

L21q2
2

e2

q1
2

e2

q2
2

1

4m1
2m2

S d i j2
q1
i q1

j

q1
2 D

3~s13q2!
i~s23q1!

i1~1↔2!5
2m3a6

3m1m2
K 1r 4L

l

.

~64!

All other Ei terms do not contribute to hfs.
The high energy contribution denoted in analogy with t

previous example byM5 andM6 is given by the subtracted
two- and three-photon scattering amplitude, respectively,
Fig. 2. The expression forM5 is simple,

M552
8

m2
22m1

2 lnSm2

m1
D1

2plam2

3m1
2m2

2 . ~65!

The contribution fromM5 to energy in the order ofa
6 reads

^a2M5d
3~r !&~6!5

2la6m5

3m1
2m2

2 S 12
4

l D . ~66!

It was convenient in this calculation to combine the seco
term in parentheses in the above withM6. ThereforeM5 will
only cancel out the linear divergence inl and the construc-
tion of the high energy part follows:

EH5
8

3
a6

m5

m1
2m2

2T, ~67!

FIG. 2. Three-photon exchange forward scattering amplitud
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T5
1

16p4E d3p1d
3p2

1

p1
4q2p2

4H g~p1 ,q,p2!

2
L2

p1
21L2

L2

q21L2

L2

p2
21L2g

~4!~p1 ,q,p2!2g~0,p2 ,p2!

1S L2

p2
21L2D 2g~4!~0,p2 ,p2!2g~p1 ,p1,0!

1S L2

p1
21L2D 2g~4!~p1 ,p1,0!J ~68!

522lnS L

m D1 f ~x!, ~69!

wherex5(m12m2)
2/(m11m2)

2. The function f is calcu-
lated numerically, and the results are presented in Fig. 3.
integration with respect to two-photon frequencies is do
analytically, giving a long (' 100 kB! algebraic expression
denoted by a functiong in Eq. ~68! that depends on
p1 ,p2 ,q, three scalar momenta. Since theL dependence is
exactly logarithmic we setL5m in the numerical evalua
tion. Although this expression in Eq.~68! is finite, it is not
numerically stable. Some singularities are avoided by
proper parametrization of the integral,

1

16p4E d3p1d
3p2

1

p1
2q2p2

2 f ~p1 ,p2 ,q!

5
1

2p2E
0

`dD

D E
0

p

daE
0

p

dbu~p2a2b!

3 f „Dsin~a!,Dsin~b!,Dsin~a1b!…, ~70!

and the other by a symmetrization off in (p1 ,p2 ,q). The
numerical work is performed in quadruple precision us
three dimensional Gauss integration with 15 and 30 po
@6#. Errors are estimated by comparing both values. Si
there are spurious singularities atm15m2 in the integrand,
we calculate four points at smallx and perform linear ex-

FIG. 3. Results of numerical integration off in M6,
x5(m12m2)

2/(m11m2)
2; the value forx51 is a known analytic

result of Bodwinet al. @7#.
he
e

e

ts
e

trapolation. The result forx50 is f (0)520.70(2). We ex-
pect from independent analysis a log-type singularity arou
x51, which agrees with the numerical results. The value
x51 is a known result of Bodwinet al. @7# for the recoil
correction to muonium hfs, and this forms a crucial test
our calculation.

The sum of all terms reads

DE~6!5
8

3n3
a6

m3

m1m2
F116 2

11

6n2
1

3

2nG1
8

3n3
a6

m5

m1
2m2

2

3F22ln~a!1F~x!1S 4

3n2
1
1

n
12ln~n!

22@C~n!1C#2
7

3D G , ~71!

where

F~x!5 139
36 1 13

2 ln~3!2 17
2 ln~4!1 f ~x!. ~72!

We recovered the Breit term and got an agreement with
result of Bodwinet al. @7#; see Fig. 3. For the ground sta
positronium hfs we obtained

DE~6!5 1
3ma6~1.130~5!2 1

2 ln~a!!. ~73!

It does not agree with the Lepage result 0.5(1)@2#. We were
unable to identify the reason for this discrepancy. Our res
is dominated by the Breit correction 1.5; the remaining ter
are smaller due to the extram2/(m1m2) factor.

V. CONCLUSIONS

We have developed an effective Hamiltonian approach
bound state problems in quantum electrodynamics and
culated recoil corrections to the hyperfine structure of hyd
genic systems in the order ofa6. This correction in the case
of positronium contributes 6.22 MHz, which is a significa
contribution in comparison to the precision of the most
cent experimental result by Ritteret al. @8#,

E5203 389.10~74! MHz. ~74!

Remaining corrections of this order due to the single-pho
anihilation channel are investigated by Sapirstein and Adk
@9#.

The main motivation for our work is the calculation o
helium energy levels in the order ofa6. There have been
several high precision measurements of the Lamb shift of
singlet 1S ground state@10#, and metastable triplet 2S state
@11#. The last measurement by Dorreret al. of the 23S1
Lamb shift @12#,

EL~2
3S1!54057.276~60! MHz, ~75!

is two orders of magnitude more precise than the curr
theoretical predictions, mostly limited by the unknowna6

correction. It is a challenge for theorists to formulate a fo
malism for the calculation of this correction. There are
ready several partial results obtained by Zhang@13#. We
think that our approach is very well suited for this proble
Positronium is a simpler system to start with. In fact
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Hamiltonian is a part of the helium effective Hamiltonia
and, for example, theMi terms remain exactly the sam
Therefore this approach could be tested and verified here
summary, the calculation of thea6 correction to helium en-
ergy levels would be a significant step in testing QED.
d
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and A. I. Milstein, Zh. Éksp. Teor. Fiz.105, 229~1994! @JETP
78, 159 ~1994!#.

@4# K. Pachucki, Ann. Phys.~N.Y.! 226, 1 ~1993!.
@5# K. Pachucki, Phys. Rev. A54, 1994~1996!.
@6# The numerical integration was done on a Cray YMP in t

Interdisciplinary Center of Mathematical and Computer Mo
eling ~ICM! Warsaw University.
-

@7# G. T. Bodwin, D. R. Yennie, and M. Gregorio, Phys. Re
Lett. 48, 1799~1982!.

@8# M. Ritter, P. O. Egan, V. W. Hughes, and K. A. Woodle, Phy
Rev. A 30, 1331~1984!.

@9# J. Sapirstein and G. Adkins~private communication!.
@10# K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervo

Phys. Rev. Lett.76, 1216~1996!.
@11# D. Shiner, R. Dixson, and P. Zhao, Phys. Rev. Lett.72, 1802

~1994!; F. S. Pavone, F. Marin, P. De Natale, M. Inguscio, a
F. Biraben,ibid. 73, 42 ~1994!.

@12# C. Dorrer, F. Nez, B. de Beauvoir, L. Julien, and F. Birab
~unpublished!.

@13# T. Zhang, Phys. Rev. A54, 1252~1996!.


