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Effective Hamiltonian approach to the bound state: Positronium hyperfine structure
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An effective Hamiltonian approach is developed for the perturbative calculation of bound state energies in
quantum electrodynamics. In this approach a recoil correction of ardEE to the hyperfine structure of
hydrogenic systems with the arbitrary mass ratio is obtained. In the case of the positronium it amounts to
AE=3ma®1.130(5) 3Ina]. [S1050-2947@7)06807-§

PACS numbd(s): 36.10.Dr, 06.20.Jr, 12.20.Ds, 31.30.Jv

I. INTRODUCTION @
Hpc=a-p+pm-—. @
The treatment of bound states in quantum electrodynam-

ics is a challenging task. Particularly interesting are system$he corresponding eigenvalue probléiac|)=E|#) has
consisting of two or three bodies where the calculation comyne following solution:

parable with the precision of measurements could be per-

formed. The Bethe-Salpeter formalism is a good starting a? —172
point for the derivation and a subsequent calculation of vari- E(n,j)=m ,

ous corrections to energy levels of simple atomic systems. [n—j—3+(j+ %)2—012]2)

This approach with its application to the positronium was 2
presented in detail by Adkins ifil]. We present here an ) o o

alternative approach based on an effective Hamiltonian. Oufn€ren is the principal number and is the total angular
approach joins three original ideas of Lepage nonrelativisticnomentum of the electron. The expansionton « reads
guantum electrodynamicg2], calculations of Khriplovich 2 3 1

and co-worker$3] using Breit Hamiltonians, and ours which E(n,j)=m{ 1— a_2 ‘ol g ———
was used in the evaluation of hydrogen Lamb shiftand 2n 8n" 2(1+j)nd
hyperfine splitting[5]. We construct an effective Hamil-

1+

tonian in the two-body subspace with the regularized Cou- a8l - S n 3 _ 3

lomb potential by introducing an extra parameker This 16n° 41 +)n° 8(%+j)%n*
Hamiltonian is obtained by the Breit expansion of effective

two-body interactions and by addinglike terms derived 1

from correspondingS-matrix elements. The presence of a _m : )

regulator ensures that the Breit Hamiltonian is finite. We

apply this approach to the Dirac-Coulomb equation, toye would like here to calculate the energy levels up to the

present the perturbative calculation of hydrogen energy |eVa qar of 46 using perturbative methods as an introduction to
els in a® order. Next, we demonstrate our method on a les

fhe more complex positronium case. The leading term
simple  model described by the Hamiltonian P p g

: —ma?/(2n?) is derived from the Schidinger-Coulomb
H=JpZ+m?—a/r. This model resembles some features OfHamiItoniaan

real two-body systems. The calculation of iitS energy lev-

els through the order af® is presented in detail. After these P> a

simple examples we consider a hyperfine structure of a two- Hfﬁ— T (4)
body system in the order af® with the arbitrary mass ratio

and check results against already known special cases of thge first relativistic correction could be calculated from the

muonium and positronium ground state hyperfine structurgo|dy-Wouthuysen transformed Hamiltonian, namely,
(hfs). In the summary we analyze the possible extension of

this approach to the calculation of corresponding corrections AH@ 1 , ma 5 a
: H¥=—- _—p*+-— + ——0o-L.
to the helium energy levels. P T oo N+ oot )
Il. DIRAC-COULOMB ENERGY LEVELS where o are Pauli matrices and is an angular-momentum
FROM PERTURBATIVE APPROACH operator. The correction to energy
The Dirac-Coulomb Hamiltonian is given by the expres- AE®=(g|AHP)| ¢) (6)
sion

coincides with the third term in E¢3). The problem appears
in the evaluation of the next order correction, i.AE®).
*Electronic address: krp@fuw.edu.pl Matrix elements of, for examplé ¢|p®|#) and
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).
(12

are divergent forS states. This divergence, when properly he states in the above fulfills the Schirbnger equation

regularized, would cancel out where all terms are summed ' ) . :
with the regularized potential and from now it Has0. We

up. So, we modify the Coulomb potential near the singularity ! . .
by the following replacement in Eql): subsequently use this equation and commutation rules to ex-

press Eq(12) in terms of known matrix elements:

¢>> (7 AE<6>=<¢|AH<G>I¢>+<¢AH“‘);AH(‘”

1
<¢‘5(3)(r)—(E_HS),5<3>(r) E=H)’

a a

— — AMmar 1
V= o pdmen ™), ® (H)=E=-52 (13)

The Schrdinger equation with this potential is no longer 1

solvable, but it is not a problem. One calculates all correc- <—> =—, (14
tions to the energy in the limit of largke. The N divergent

terms are kept till they cancel out in the final expression. The

Foldy-Wouthuysen transformation could be extended to ob- <
tain higher order terms in the regularized Hamiltonian

AH®). An equivalent method for finding higher order terms,

which is at the base of our approach, relies on the resolvent. i _i_ i 16
One finds such an effective Hamiltonian that the correspond- PP =33 7 3n5 (16

ing resolvents are equal up to the specified ordet'oiin the

1 2
F> " 19

limit of infinitely large \, namely, 1 3 1 1 8 4
—Amsi(r)) ={z) +2(3) —33~ 335 (17)
r r r 3n°  3n
1 (n) A A A
< * ,p,ﬂ’ E- HDC‘B P ’+> The subscriph means the expression to be regularized, i.e.,
1 (n) 1
=lm{p,Bl=—r0———=1P.B ) , 9 =) =(v'?
xLx<pB E—HEF()\,E)’p ﬂ> © <r4>A V. (18
where (+,p, 3| denotes a four-component bispinor corre- i — (@ (19
sponding to a positive energy solution of the free Dirac equa- r3 A_ Vo,

tion, and(p,B| denotes a two-component spinor. In the

expansion in Eq(9) we keep energf and momentg,p’ of 1

order? and «, respectively. The first terms describing cor- <—4wé\3(r)> =—(VA(V)). (20
rections to the energy take a form r A

The first term in Eq(12) denoted byAE(®) is transformed to

- AH(Eg)|¢)  the following form:

1
AE=(¢ |AH(Eo)|¢>+<¢|AH(Eo)m

d A (6)_1 1 1/1 1 7
(¢ |AH(Eg)|6) d—E‘ (#AH®|®). (10 B 3 8\ Tz Tend
Eo

E=

(21)

The calculation of the second term in Ed2) denoted by
Using Eq.(9) one obtains foAH(®) AE® is more complicatedAH® is to be regularized ac-
cording to Eq.(8), namely,

6) p® 1 al? 3 ’ e
AH® =Te s =53 P | “eamd PP P T 4mas(r)—4mad®(r),=A(V). (22)
al| 5 | L AES® could be rewritten as
+|p; p!? p >_ 128,n4 PP 1? 4 L 4
AEO—(gP = P,
3 ,a 2 8 (E—-H)’' 8

g

¢> = EA+ EB+ EC .

T 1 T
_ o _ +<¢§é\3(r)xwgb\3(”x
AH® for the regularized potential is obtained by the re- ( )
placement8). The terms proportional to-L do not need to p* -
be regularized because they act on states Wwth. Having - 2< ¢ ) (E——H)’ >
AH® and AH®) the correction to energy in the order of
a® could be expressed as (23

é\g(r)x
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Each matrix element is divergent whangoes to infinity.  divergence does not cancel out. This means that there are

We extract this divergence in the form of the matrix elementsome extra terms, which are forgotten in the nonrelativistic

of (1/r3) and(1/r%), and the remainders become finite. expansion. Before passing to the positronium we consider
first a model which resembles some features of the positro-

E__ 1<( 1 ZE) 1 ( 1 ZE)> 1< 1> nium system and demonstrate that the effective Hamiltonian
A=
N

4 r_2Jr rJ(H=-E)Y\r2" r )] 8\r* approach works for the calculation of its energy levels.
— 1 i + E — i (24) Ill. ENERGY LEVELS OF A MODEL HAMILTONIAN
2\r*/ " n> 2n®

The model, which demonstrates an effective Hamiltonian

1 1) 1 1 1/1\ 1/1 approach, is given by
Fe= 16\ PPl Y e Pl v P T 32\ ) TR\,

o
L1 H=\p?+m?—m-— - (32)
+em3t 3E (25
The corresponding eigenvalue problem is not solvable. To
1 1 calculate energy levels in the order @f one introduces an
<( ) - p< ) p> effective HamiltoniarHgg which is determined by the con-
(H-E) dition (9),
< 1 Ly 2E N 1/1
(H E) Iz 8\r’ A _p_Z_E — @ \mar —p—4 —pe 2
HEF_Zm r(l e ) amd " 1eme T ¢ Ms%(r)
5 1
ns ETERTE (26) +a*Mgs%(r). (33
wherep(1/r) denoteg p;1/r]. All the divergent terms cancel p’ and p° terms are obtained by the expansion of the square
out in AE(®), root in EQ.(32). These extrdM; terms are necessary to fulfill
the condition(9). It is our ansatz that they are proportional to
) 1 5 1 the 6°(r). The coefficients are calculated by comparing the
AE®™ =3+ W_WJF Ik (27 difference in the forward scattering amplitude at zero mo-
mentum betweeid andHgr and they depend on our regu-
1/[1 2E 1 1 1 lator X. This Hamiltonian is used to determine energy levels:
=l T ol e
ma?
IENEI 2E 08 E(2)=—W, (34
SP\ TPt~ (28
3, is already finite, it is calculated with the help of a relation
which holds forl =0, AE(4)=<¢‘ — 23 > (39)
(1) il H-E;- } ! (29
r r re =(¢|la®Ms8%(r)|¢), (36)

and using the fact that the radial Sctiimger equation could
be solved for any real, positive andl, 1 p*

p4
¢>+<¢’ 8m (E—H)’ 8m°

p6
AE(G):<¢—5 ¢>
11 3 23 3 16m

2= o’ Bt T o ane 30 +($la®Ms ()] 6O+ (] a*M ()| ).
The complete correction to energy in the orderadf (37)
1 3 3 5 These matrix elements are calculated in a way similar to that
AE® = — e et T s I (31)  in the previous case:
coincides with the corresponding term in the expansion of . ma? 3
the Dirac-Coulomb energy in powers of, Eq. (3). This AE )___T 1=3n) (39

calculation shows that the Dirac-Coulomb energy levels
6

could be calculated perturbatively with the use of an effec- 1/1 1/1 3 5
tive Hamiltonian. The cancellation effect, i.e., the cancella- <¢ p_5 ¢> :_< _4> + _<_3> ——t+ —,
tion of all divergent terms is a specific feature of the Dirac 16m a\rtf o 2\r?/, 2n° 16n

equation. In the case of the positronium, for example,Xhe (39
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p* 1)1 1/1 1 2SIl ) O G20 mha| mab A
¢ (E- H) Bm? )= 8\ 1% x 5\ 3 . P (¢ (N Ms|$)(®=¢Z(0)a? TaZ | T 1l
(45
3 3 ) )
o T 5 T Bt (400 We can now sum up all the terms irP order. The result is
) ) ab 2 33
The matrix elemen{1/r#), does not cancel out in the sum, AE<G)— In(a)+ 2g(?.)— —- 15" ¥(n)+C
so we give its value ™
1 8\ 3) 11 1 1 In(n) l+ S 17” (46)
Bl R e ooy Sy n 3n? 16n° 48
<r4>)\ nez tIn )\) 12" 6n? " 2n

The correction to energyE(®) contains Ing), so the expan-
sion in« is nonanalytic. It is the general feature of the bound
state problems in QED. There are two energy scales in the
problem: the binding energy and the electron mass. This ef-
To complete the evaluation of energy levels one needs téective Hamiltonian approach splits these two scales and al-
determineMs andMg. M is given by the two-photon sub- lows us to treat them separately.

tracted forward scattering amplitude at zero momentum,

+W¥(n)+C—In(n)|. (41)

IV. POSITRONIUM HYPERFINE STRUCTURE

3 2

MS:I p3J (472) [ L + i 2_m We will present here an effective Hamiltonian approach
(2m) l p {m— \/p7+ m? 2m to the calculation of recoil effects of ordesf to the positro-

5 A 5 nium hyperfine structure. By recoil effects we mean all

_(4m) A pe|_1(8 mA Feynman diagrams with photon exchanges, without photons

p* (p°+A%?8m*| m?\3 4m)’ (42 reated and absorbed by the same particle. We neglect also

diagrams with closed fermion loops, they have already been
whereA = \ma. The corresponding correction to the energycalculated. The derivation of the effective Hamiltonian, from

in the order ofa?® is which one finds the energy spectrum, consists of two steps.
The starting point is the Hamiltonian of full QED. The first

ma® 8 step is the construction of an intermediate Hamiltonian in the

AE “’F? 3 (43)  two-body subspace and the reference frame with total mo-

mentum equal to zero,

Mg is given by three-photon subtracted forward scattering
amplitude, <p P =g —
E_ HQED

oo

where this equation holds for any momentum and up to
5 three-photon exchange, i.e., up to the oraérIn the second
—4m°— Pl— p2] step we limit momenta and energy to be of the ordeand
2, respectively, by introducing parametesas it was in Eq.
A2 1 A* A% (pp3-pi-pd) G | PecivEy. BY 9p q

9),

E—H’EF<E>"°>’
(4

:__f d3p1d P

op? [ —[(m+m2+p?)(m+ ym?+ p3)

CpZ+AZ QP g+ AZp3+AZ Am? )
1 (n) 1 (n
1 N—Ip) =lim(p|=—p) .
—p7[2m(m+ JmZ+p2) — 4m?—p2] <p E—HEF(E)’p> Hm<p E—HEF(?\,E)p>
2

(48)

2 4 _p?
A 1 A (—p2) This effective HamiltoniarHgg is obtained in parts by the

+ P
pi+AZ ps (p3+A%?2 4m? application of Breit expansion to the higher order, and by
1 adding the forward scattering amplitude terms. Since higher
— S[2m(m+ m?+ p2) — 4m2—p?] order terms would be divergent, we regularize the photon
P1 propagator by introducing a factor:
LA 1 At (e 1 1 A2
p3+AZ bl (|oi+A2>2 4’ K I KT AT (49
_m In ﬁ 3 5(3) 2 “In(3)|. (44) whereA=\ua andu is a reduced mass. This construction
m?\m allows for an extension of the calculation of Khriplovich and

co-workers[ 3] to the states with a zero angular momentum.
The matrix element of thél5 term in the order ofa® re-  In the case of, for examplé® states the wave function van-
quires additional treatment, ishes at origin and all the Breit-type terms are finite and the



56 EFFECTIVE HAMILTONIAN APPROACH TO THE BOUND ... 301

contribution fromM; vanishes. In the case & states we
have to include als@-like terms that correspond to the for-
ward scattering amplitude to obtain a completgr,

2

p

o
HEF:ﬂ_ ?(1—e_}"‘“’”)+AH(4)+AH(6)+a2M5b\3(r)

+a®Mg83(r).

We start the calculation with the second order contribu-
tion from the Breit Hamiltonian for two charged particles
with massesn; andm,. We will keep both masses different
for comparing with other results. The regularized Breit

Hamiltonian reads

4 4

p T

p

A== =— = _
AHT=Hs 8m: 8md 2

1+1
m2

2mymyr 4m;m,

30’1'I’ 0'2-I’ 8
—r—s—gﬂﬂl'(fzb\o’(r)> ,
A

where 5%(r), was defined in Eq(20), and

1, rirl o d3k  A? 4x( . KK
TP +—z-pp 27 K AZ KE
Xe—ikrpipj’
g1 07 30'1'r 0'2-1’ _ d3k AZ 4’7T
ré r° ) @mEiErAT K

The second order correction to hyperfine structure is a sum

of five terms calculated as follows.

- p* - p*
A 8m: 8m3)(E—H)’

><8 88
3701 02 (r) 4mym,

uba®

1+1
6m1m25g Hg

4 1 16 1 16 48 136 54
“1Hre) T8 Fane T g Y

53(r)>\

a riel a [o-0,
(p2+r—2p'p') - ( 3
A

K

4
X k'kJ—?kz) “ikrgl ol

1 1
—t+—
1

1

6G(r))\(E H)r

E.—2 T
2=2\ 7

m;

X;’ﬂ(fl' a’zée(r))\>

_ wdab [ 1 1
o emmy\mi m;

21 81 40 24 8 55
“12\77) T8\ et g

- a 2+r'ri - 1
c 2mym,r Pz PP L(E—H)’

4mim,

X§7T(Tl' 0'26\3(I’))\>

3 4mym,
_ 4pla® ) 1 +4| 4 +12+12 10
-~ 3mZm3| 7\ 3/, B3 TR R [
(56)
8 1 8
ED:<§770'1'0'2¢5\3(V)>\(E H)’ 370 azbﬂ(r))\>
x| -2 i
4m1m2
2uba ) 1 8 1 40+24 8
—9m1m2 v T8\ a3t )
(57)
E.— g1 0y 30'1'r 0'2~I‘ 1
E™ r3 r-5 )\(E_H)/
01-0, 30711050 a \?
5222 N 9
wda® A
= W 4N—20 In 20In(n)
20[¥ C]+6 1 4 A 59
+ [P(n)+C]+ n§+ﬁz+F—§. (59
Matrix element(1/r*), was given in Eq(41), and
1—4I)\+I3+I R4 C+1 1
3] ~n3 Mg tinlg)tin) =M =G g = o)
(60)

The extension of the Breit Hamiltonian to the next order
requires the calculation of diagrams presented in Fig. 1. Only
some of them contribute to the hfs. The double-transverse—
double-pair diagrams nominally contribute in the order of
«® order but the retarded part and the single Coulomb ex-
change cancel out. Another cancellation effect allows us to
treat theZ subdiagram as a point interaction. The calculation
is done in the Coulomb gauge, as the most appropriate for
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FIG. 1. Diagrams contributing to energy levelsdfi order.

this problem. The dashed line denotes Coulomb interaction,
and the wave line denotes transverse photon. The single

Coulomb term is

E _f d®p dp’ ,Ama A? 1
2= W%ﬂﬂp)d’(p ) @ A2+ 2 1omimd

X(p'Xp-oy)(p' Xp- o)
1 2I 3 1 5
7 T a) Tan T ans

The single transverse term without retardation is

15ab

~ mi @

£ d®p d%p’  Ama A?
4= (27)3(27)3¢(P)¢(p)?/\2—+q2

gg) 1 1 _
L R I R 2 12 i
o= )4mlm2”4mi(p +p' 9 (ax o)

1 . .
- 8—nﬁ(p2—p’2)((p+ p’)Xol)J}(azx q)]

+

i(|02+ P’ (X op)' — 1 p2—p'?)((p+p)
am; 2 8mj

XUz)i}(‘HXQ)j

B wia® 1+1 31 +41
S 3mumpimiom3)| T\t 3

16 20

~3n® 3n°

} | (62

The retardation terms with 0,1,2 Coulomb exchanges is

A X
AL A

FIG. 2. Three-photon exchange forward scattering amplitude.

A2
AT

. zf dh 1 KWK
se7- € ) 2m3 2kl T K

(—1)

i .
_ iqik-r
><<2m1(01><k)e "E—k—H 2m2(02

ik ® wdab /1
xk)le ™™ "2)  +(1o2)=———=| 7| -
re > (1=2) 3m1m2<r4>}\
(63)
The single Coulomb, single transverse, and singkerm is

d®p d%q; d®q

E8:_ (277)3 (277)3 (2#)3¢(p_Q1)¢(p+q2)
A2 A2 e 1 /5i,._q‘1q£)
AZ+qi A%+03 0 g3 4mim,| q3

(64)

All other E; terms do not contribute to hfs.

The high energy contribution denoted in analogy with the
previous example bl and Mg is given by the subtracted
two- and three-photon scattering amplitude, respectively, see
Fig. 2. The expression fa¥l5 is simple,

Mo — 8 | (m2)+277)\a,u2 65
5T m2—me \my) T 3mem2 69

The contribution fromMs to energy in the order ok® reads

2 6 5
(a®M5%(r))©= 37::%%(1—3. (66)

It was convenient in this calculation to combine the second
term in parentheses in the above witly. ThereforeM 5 will

only cancel out the linear divergencelnand the construc-
tion of the high energy part follows:

5

)%
En=5a’—5—>
m;m;

3 T, (67)
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£ trapolation. The result fox=0 is f(0)=—0.70(2). We ex-
x pect from independent analysis a log-type singularity around
0.2 0.4 0.6 0.8 ! x=1, which agrees with the numerical results. The value for
-0.2 x=1 is a known result of Bodwiret al. [7] for the recoil
correction to muonium hfs, and this forms a crucial test of
0.4 our calculation.
0.6 The sum of all terms reads
(XX XY 4 3 5
-0.8 HL T B . Ap®_ 8 e #1111 31 8 o 4
' 3n°" mmy[ 6 6n° 2n| 3n®" mimj
-1 +
. 4 1
X| =2In(a)+F(x)+ W+ ﬁ+2In(n)

FIG. 3. Results of numerical integration of in Mg, _ _ Z
x=(m;—m,)?/(m; +m,)?; the value forx=1 is a known analytic 2A¥(n+C] 3/ (7
result of Bodwinet al. [7].
where
1 1
T:16’7T4J d3p1d3p2m{ g(p1,9,p2) F(x)=35+3In(3)—FIn(4)+f(x). (72)

We recovered the Breit term and got an agreement with the
A? A? A? “ result of Bodwinet al. [7]; see Fig. 3. For the ground state
_pi_'_ AZ g2+ A2 p§+Azg (P1,9,p2) —9(0,p2,p2) positronium hfs we obtained

s 1 AE® =1ma®(1.1305)—iIn(a)). (73

(4 —
* p22+ az) 9 (0p2,p2) =9(P1,P1.0) It does not agree with the Lepage result 0.5{2) We were
unable to identify the reason for this discrepancy. Our result

A2 \2 is dominated by the Breit correction 1.5; the remaining terms
+ P A2 9(4)(p1,p1,0)] (68 are smaller due to the extya?/(m,;m,) factor.
A V. CONCLUSIONS
=—20n ﬁ) 1), (69) We have developed an effective Hamiltonian approach to

bound state problems in quantum electrodynamics and cal-
where x=(m;—m,)?/(m;+m,)?. The functionf is calcu- culated recoil corrections to the hyperfine structure of hydro-
lated numerically, and the results are presented in Fig. 3. Thgenic systems in the order ef. This correction in the case
integration with respect to two-photon frequencies is donef positronium contributes 6.22 MHz, which is a significant
analytically, giving a long £ 100 kB) algebraic expression, contribution in comparison to the precision of the most re-
denoted by a functiong in Eg. (68) that depends on cent experimental result by Rittet al. [8],
pP1,P2,q, three scalar momenta. Since thedependence is
exactly logarithmic we sef\ = in the numerical evalua- E=203 389.1074) MHz. (74)
tion. Although this expression in E@68) is finite, it is not

numerically stable. Some singularities are avoided by thékemaining corrections of this order due to the single-photon
proper parametrization of the integral, anihilation channel are investigated by Sapirstein and Adkins

[9].
The main motivation for our work is the calculation of
1 3 43 helium energy levels in the order af®. There have been
16774f d°pad°p; piqugf(pl'p%@ several high precision measurements of the Lamb shift of the
singlet 1S ground statd10], and metastable triplet2state
[11]. The last measurement by Dorret al. of the 23S,

1 =dD (7 T -
:ﬁfo FL dafo dBo(m—a—p) Lamb shift[12],
EL(23S,)=4057.27660) MHz, (75)

X f(Dsin(@),Dsin(B),Dsin(a+ B)), (70

is two orders of magnitude more precise than the current
and the other by a symmetrization bfin (p;,p,,q). The theoretical predictions, mostly limited by the unknowsi
numerical work is performed in quadruple precision usingcorrection. It is a challenge for theorists to formulate a for-
three dimensional Gauss integration with 15 and 30 pointsnalism for the calculation of this correction. There are al-
[6]. Errors are estimated by comparing both values. Sinceeady several partial results obtained by zZhdag]. We
there are spurious singularities @ =m, in the integrand, think that our approach is very well suited for this problem.
we calculate four points at smatl and perform linear ex- Positronium is a simpler system to start with. In fact its
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