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Atom-interferometric study of Bose-Einstein condensation
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We investigate the influence of a Bose-Einstein condensate on the coherence properties of a traversing
atomic beam. We derive a master equation describing the interaction between beam atoms and the condensate
in s-wave approximation. Scattering rates are calculated and compared with the case of an ordinary Boltzmann
gas. Special attention is paid to the decoherence of the beam, i.e., the decay of spatial coherence in the presence
of the condensate. As an application, we explicitly calculate the visibility of the interference pattern in a
double-slit experiment and indicate signs for the onset of the condeng&it®50-294707)02010-9

PACS numbdss): 03.75.Dg

I. INTRODUCTION sion between a beam of heavy atoms and a gas of light atoms
strongly favors forward scattering of the beam whereas, in
The recent successes in the production of Bose-Einsteithe case of light scattering, spontaneous emission of a photon
condensates in magneto-optical traps-4] create a demand from a gas is rather isotropic. Thus using a heavy atomic
for specific means to investigate the condensate. AlthougRrobe beam one can collect very efficiently information
commonly used methods like light scattering do produce a@Pout the condensate with a minimum of scattering events
image of the condensate’s distribution in position or momensuffered by the gas.
tum space, these methods are not especially sensitive to the In this article we will consider a condensindeal Bose
peculiar coherence properties of this “macroscopic quantungas infree spaceA realistic Bose gas is neither in free space
state.” In particular, there is no clear signature of the onsefior ideal but trapped and at least weakly interacting. How-
of the Bose-Einstein condensation. Since coherence is mo8ver, what we want to demonstrate are the qualitative
easily detected in an interferometric experiment, it seem§hanges in the beam properties due to condensation of the

promising to think about aimterferometricstudy of Bose-  9as. o .
Einstein condensation. The organization of the paper is as follows. In Sec. Il we

In this article we focus our interest on the possibility of derive a master equation in Lindblad form for the interaction

using atominterferometric methods to investigate the con-Petween a beam atom and the gas in thermodynamic equilib-
densation process. We consider an atomic probe beam thd¢m, describing the loss of beam coherence. In the third
passes through a diffraction apparatus, i.e., a grating or &€ction we calculate the decoherence rates for a Boltzmann
beam splitter. Subsequently it traverses a region filled with &1d @ Bose gas and compare the two cases. Relating the
gaseous medium. In our case this medium will be either aflecoherence rates to the loss of visibility, we discuss the
ordinary Boltzmann gas or a Bose-Einstein condensate. Figiigns for the onset of the condensation. Finally we summa-
ure 1 shows the principal setup of such an experiment. ~ fize the results in a conclusion.
The interaction between the gas and the beam atoms wiill

in general lead to a loss of coherence between spatially sepa- ||, MASTER EQUATION FOR AN ATOMIC BEAM

rated wave-packet components which manifests itself in a IN A GASEOUS ENVIRONMENT
reduced visibility of the diffraction pattern. This is an ex- _ _ o _ .
amp|e of environment-induced decohererﬁ5§3 We Study We consider an atomic probe beam in interaction with a

how the interference pattern is altered by the presence of th@aseous medium. The collisions between gas and beam at-
condensate. This is compared with the case where the bea@ins introduce a dephasing of the beam. We are only inter-
passes an ordinary Boltzmann gas. The interesting point igsted in the coherence properties of the beam. Therefore we
that the observation of the visibility may provide a signatureregard the gas as a background medium. It is described as a
for the coherence properties of the gas and especially th&@servoirwhich can be removed from the beam dynamics by
onset of condensation. an adiabatic elimination procedure very similar to that in the
There are two main advantages in using atomic interferderivation of quantum optical master equatidns., [6,7]).
ometry instead of light scattering: First, the collisional crossUsing a different approach, a master equation for an atom in
section, roughly estimated by the square of the scatterinfjiteraction with a Boltzmann gas has recently been derived
length, is much smaller than the cross section of near resdd [8]. However, this phenomenologically motivated deriva-
nant photons which is of the order of the square of the photion of a master equation is not valid for a cold gas, which is
tonic wavelength. Therefore, for the scattering of an atomidhe situation we would like to describe here. We start from
beam by adilute gas—as it is realized in the experiments the Hamiltonian of the interaction between beam atoms and
[1-4l—multiple scattering events can be avoided. The infor-gas in second quantization:
mation carried by the scattered beam will refer only to a
single interaction event. Second, the kinematics of the colli- H=T+Tg+U, (@h)
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For simplicity, we will not mark the operators in the interac-

FIG. 1. Principal setup of an atom-interferometric experiment.tIon picture. In .a pgrturbatlve approach, the problem can .be
An incident atomic beam is diffracted at a grid, realized, for ex- SO'Ve?' by COﬂSIderlng_the equation of mqtlon for the atomic
ample, by a standing light wave. The interference pattern on theam's reduced density operator, summing up all orders of
screen is characterized by the visibility The interaction with a ladder diagrams but taking into account only two-body col-

background gas in the path of the atomic beam can be described t_Bi;'iionS ins-wave approximat.ion. This is physically justified '
the decoherence rafe; . in the present case of a dilute, low-temperature gas. It is

known[11] that it isformally equivalent to an approach us-

where T defines the kinetic energy of the beam atoifig,  Nd Second order perturbation theory with factorization of the

the kinetic energy of the gas atoms, addthe interaction initial conditions and the replacement of the coupling con-
potential: stants by an expression involving the actual scattering cross

section as obtained in all orders of perturbation theory.
p2
_ ot
=2 %l/,plppy

) A. Iteration of the von Neumann equation

Pursuing the above line of reasoning, we formally iterate
2

PG ~: ~ the von Neumann equation for the interaction Hamiltonian in

Te=2 5

G P 2mG PG 7'PG’ Eq (4)1

: ~IH(,pa- o] (5)
“p o~ ~ A PAa+G=ix 1PA+Gls
U=2 J HU(r=r6)ihnibg, ) '
e
and obtain

In writing down the Hamiltonian(1), we have assumed an
ideal background gas. In the Bose-Einstein condensation
(BEC) experiments mentioned above, an interaction between 1
the atoms is present, although it is much weaker as in the pa,g(t)=—[H(0),pa+g(0)]
case of superfluidity. The standard theoretical treatment of i
the effects of interactions within the Bose condensate makes 1 (t
use of Bogoliubov methods. This scheme is valid at low __f dH(),[H(t—7),parc(t— D11
temperatures T~0). Near the transition temperature,, n2Jo
which is the physical regime we are interested in, it breaks (6)
down, however. It is therefore not possible to take the back-
ground gas interactions fully into account. An ideal gas treat-
ment is the only viable theoretical approximation to a weaklyBefore the beam reaches the gas the total density operator
interacting gas nedf;, and we will only include the gas- factorizes into the beam’s initial stajg0) and the initial
beam interaction in our calculation. state of the gag)g(0). Virtually no beam atom will encoun-

In the following the quantities without index refer to the ter the same gas atom twice before the gas rethermalizes.
beam atom while those indexed with correspond to the Therefore the reservoir of background atoms remains in its
background gas. The two-body potentidlcan be decom- stationary state for all time. We assume that a factorization is

posed into its Fourier components: practically valid at any time before gas and atom interact:
u =§ V(q% Uheqbe-aollog: 3) para(t=m)=p(t=7)®pc(0). (7)
PG

We assume that gas and beam atoms are physically differeAssuming thermal equilibrium, we trace over the gas degrees
and can be distinguished. Therefore field operators creatingf freedom and obtain an equation of motion for the beam
and annihilating gas atoms commute with those for the bearatoms alone. We neglect many-body effects in the atomic
atoms. In an interaction picture with respect to the kineticbeam. This allows us a single-atom description of the beam,
energy of the beam and the gas atoms we obtain for thand we use a bra-ket notation for the beam operators. After
Hamiltonian some rearrangement we find
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=——| dr X n(pe)V(q)[3) X e EE|p) (15)
R0 pgaq’ P
Since the thermal equilibrium density operator of the gas is
x(p|p(t—7)— D ei/hT(Equf’)lp,Jrq) diagqnal in the momentum re_presentation,_the first term on
o’ the right hand side of Eq15) simply results in the popula-
tion numbernge(pg) of the momentum statps) as given
X(p'|(V)p(t—7)|p)p+al(t) | +H.c. (8) by the one-particle density operator:

~ T ~
TrG{wpé’ppeﬁpGr7q’,pG—qPG(O)
Here, the kinetic energy of the system consisting of beam

and gas i<E; before ancE; after the collision: = Sqq Tre{ ¥ PpePc(0)} =Nee(Pc) Sqqr Spg g -
16
e P PG o o
" 2m o 2mg’ Here,nge(pg) is the population number according to Bose-

Einstein statistics:

2 —_ )2
Ef:(p+q) . (Pc—q)

. (10 1
2m 2m =
G Nge(Pc) oxdl (pé/Z . )}_1,

The e.fne’rvgiefi_ and E; refer to the momentL_mp - The where <0 is the chemical potential for the Bose gas. The
quantity n(pg) in Eq. (8) denotes the “effective popula- second right hand side term of E45) describes the creation
tion” of the gas one-particle momentum stafs) in ther-  and annihilation of two particlesin normal ordering For

mal equilibrium. It is defined as the expectation value of thQ_‘],q’ #0 [otherwise the integrand of thgpspace integration
gas operators in the doubly iterated interaction Hamiltonianin Eq. (8) vanishes anywaywe obtain

17

~ st e ep - stoar o s

n(pG) 5pG’pG/ :TrG{lﬂp;Glﬂp(’;_qrlﬁ;e_qlﬂpepe(o)}. TrG{wp’Gwpefql//pG q prpG(o)}
(11) At oA A -

:TrG{l//pé‘//pelﬁge—qué—q’pG(o)}

B. Effective population n(pg) _ ~n

’ pop Pe _ = Spg p%aq Tra{NpNps—qPc(0)}
All thermal properties of the gas reservoir are represented
by the effective populatiom(pg) of the state|pg). In the = pg ., Pqq' NBe(Pe) Nee(Pe — Q) (18)

case of an ideal Boltzmann gag(0) is given by ) ) ) _
Collecting these results yields the effective population of

N state|pg) for a bosonic gas:

pG:ze—ﬁﬁé/ZmG, (12)
N(Pg) = Sqq'Nee(Pc)[ 1+ Nge(Pc—a) - (19

whereg=1KkT defines as usual the inverse temperathres  compared with a Boltzmann gas the effective population of
the total number of gas atoms, adAdhe partition function. the gas momentum stalgs) in a Bose gas is altered due to
Since the field creation and annihilation operaltqiv{,%5 and  a typical bosonic enhancement factor[&f+ nge(pg—q)].

How does the effective population defined in E49)
change with temperature? At very low temperatures,
nge(pe) is very small except fopg=0. Since the additional
bosonic contribution involves the product
(13) Nee(Pe)Nee(Pc—4a), i.e., the bosonic population number at

two different momenta, the bosonic enhancement will vanish
at T=0, because only one of the two factors can be nonzero
For a Bose gas we have to take care of the bosonic comm@t T=0. At temperatures much higher than the critical tem-

Yp, for a classical Boltzmann gas commute(pg) is
readily evaluated:

~ N o>
n(pG)zgq,q’nB(pG):5q,q’ze Argl2me,

tation relation for the field operators: peraturesT., on the other hand, the distributiamsg(pg)
becomes classical for BEC in a gas with a fixed number of
[ ‘}T 1= (14) particles: For an ideal free particle gas the fugaeffy be-
yPrrd— /.

haves aff> T, asymptotically ag9]

Applying Eq. (14) to Eq. (11) we obtain for the effective ” (TC)3’2g 3
e ~ —

population numben (pg), 5) <1, T>T.. (20)
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Therefore, in the high-temperature limitze(pg) can be ex- mation which effectively consists in neglecting thelepen-

panded as dence of the beam’s density operator and in shifting the up-
) per limit of the 7 integration to infinity.
Nge(Pg) ~ePre PPePMe<1, T>T, forallpg. This approximation is valid in the present case since it can

(22 be shown by averaging E) over all possible momentum
. N . transfers that the time scale for the decay of correlations is
The additional contrlpu_tlon to the scattermg in a Bose ga%/Ecm (where E. ., is the kinetic energy in the center-of-
vv_|II theref_ore be negl|g|_ble fol>T.. _OnIy in an interme- << éysteDnThu's,' even for a cold ga8oltzmann or Bose-
diate regime ofT~T, is the bosonic enhancement non- gingtein, the correlations between gas and beam decay fast,
negligible. ForT~T,, a considerable departure from the ,,\ided the kinetic energy of the collision in the center-of-
behavior of a Boltzmann gas can be expected. mass system is large enough. This is analogous to the situa-
tion considered in the quantum optical master equation
C. s-wave scattering where the correlation time is essentially set by the inverse

Taking advantage of the thermal blurring of the positiontransition frequency7]. o
of the gas atoms on the length scale of the gas'’s thermal de After the Born-Markov approximation, the master equa-

Broglie wavelength\ 45, tion has the form
3 . 1
Nag=Fi \/ =, (22) p(t)==2 ST (P.a){Ip)XpPlp(t)+p(t)|P)(pl}
2mg a.p
. . . . 1
we will approximate the interaction potentid((r—rg) by a + gy +T(p’ i
hard-coreé potential, since distances smaller thegs are qu, 2{ (p.a)+T(p" @}’ +a)
not resolved: ,
X(p'[(D)p(D)|p)(p+al(t). 27

U(Ar)=Uydé(Ar). (23
Here, we have defined scattering ralgp,q):
This, of course, implies a flat pseudopotentid{q). In
s-wave scattering at a hard-cofepotential the pseudopoten- I~ )
tial V(g)=V(0)=U,/V is connected to the scattering am- I'(p,a)= gsz n(pe)|V(a)|*278(Ei—Ef),  (28)
plitude f by [10]
which contains the integration over all possible gas momenta
1 . 2Myey 1 2meq
f=——f dre kT —=U(r)=— — ——U,. Pe. . 9 .
47 52 A 2 Using the explicit form(26) for |V(q)|?, the scattering
(24) rate for the Boltzmann gas becomes

2(27h)3
9’V

For the scattering of two distinguishable particles, namely, — 1 {Aggq(1+56)
the gas atom and the beam atom, the scattering amplitude I'(P.@)=nov B 27
respectively, the scattering lengé= —f, is related to the
Nag|? )
><exp|’ - (g) (1+96)

total cross section by

26 2
q+ mp00$ )

o= [ dolt@)P=anltP-ama. (29 29
Therefore with the help of Eq$25) and(24) we will replace  wheren is the gas density,
the Fourier transform of the potenti(q) by an expression
i Iving the total tteri tior: m
involving the total scattering cross section 52?@ (30)

, 1 omh?
|V(C])| :—2 2 (26) . . — . .
VZ m is the mass ratio, andg the average velocity of atoms in a

red
Boltzmann gas,

Note thato represents the actual total cross section, as found

by considering all orders of the Born series. This enables us _ 24

to treat consistently singular hard-core potentials as in Eq. e (31)
(23) (cf. [11]). Vrmehge

Note that the contributions tB(p,q) decay with increasing

g according to a Gaussian profile gn Thus all details of the
The iterated von Neumann equatig¢d) is an integro- interatomic potential on a length scale smaller thag are

differential equation and is therefore delocalized in time: Andamped out and irrelevant. This is consistent withgiveave

exact solution requires the knowledgegdt) for all timest. approximation used heref. Sec. Il Q.

In order to obtain from Eq(8) a master equation local in Similarly, the scattering rate for the Bose gas is defined

time we will perform in Eq.(8) the Born-Markov approxi- by

D. Master equation and scattering rates
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2w 3/2
F(D,Q):7|V(Q)|2; Nge(Pe)[ 1+ Nge(Pc—d) ] NO:N[J’_(T_C) }[1_9(T_Tc)], (34

X 8(Ei—Ey). (32 . . .
andT. is the critical temperature for a fixed number of gas

Transforming the discrete sum oveg in a continuous inte- atoms in a constant volume:
gral we must consider the gas phase with a condensate sepa-

rately, which arises below the critical point because the con- N 23952

tinuous phase space cannot accommodate all gas atoms. The Tc:( ) i (35
transformation is V{(3/2) Mgk

E Nee(Pe)[ 1+ Nee(Ps—a)] The coexistence of two phases motivates the separation of

the total scattering ratE(p,q) into a ratel'¢(p,q) for scat-
tering by the excited phagéncluding the bosonic enhance-
ment due to events which scatter a gas atom into the conden-
satg, and a ratd"%(p,q) for scattering by the condensate.

\Y (27h)3
_>(27Tﬁ)3f d?’pG(No v 5(pG)+nBE(pG))

(27h)3

><1+<No v 5(pG—q)+nBE(pG—q)), (33 I'(p,a)=T“(p,a) +I°p,q). (36)

whereN, is the number of atoms in the free space condenUsing the transformatiof83) we obtain for the rate of scat-
sate, tering by the excited phase after some manipulations

. 27 ) ) 1 1) @
r (D,Q):7|V(Q)| 2 ﬁ)3J d°penee(Pe)[ 1+ Nee(Pe) 1 S(E —E )+_|V a)|*nee(—a)Nod| p-q me m  2m
C@ah)®  — 1 [Aga(l+9))? 1
qiv Neav BE2mg,(2)| 24 1 — ehagd/h? (@ +2pacos)
L 1(Ngs)? 1t 52 26 2
| —zex A7 (1+96) 1+5pcoszt9
an Yo" ) L 52l s 22 pcoss)] + (M| g2+ 2pqeom) s
zex 27 (1+6) 1_’_5pco +7 (g°+2pqgcow)
(27h)3 1 (1+6)2 1 1) ¢? 3
+ V; nOO'nBE(_Q)E mé p-q m—G—a _ﬂ , (37)
|
whereny=Ny/V designates the condensate densitya_gg 0 (277%1)3 1 (146)2
the average velocity of an atom in a Bose gas, (p.a)= Mooz — M2 [1+nge(—q)]
. 2
U BE= 2h 92(2) (38) X 0 p—mq+ ;— . (41
\/—mG)\dB g3/2(Z) I
Herez is the fugacity, The scattering raté&'(p,q) describes the dependence of
the momentum transfer on the beam momentum Energy
z=ef¥, (39  and momentum conservation are included in the scattering
rates, thus selecting the possible values of the momentum
and the functiong;(z) are defined as usual by transferq for a givenp and a fixed distribution of the gas
momentaps . The “resonance condition” for zero gas mo-
-1 mentum,
z _ 40
%2 F(J)f e¥z—-1 40 ,
P9 + q—=0, (42

The scattering rate by the condensate is: m 2u
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is exactly fulfilled for scattering by the condensété. Eq.

(41)]. Fq=§ VL (p.a)|p+a)(pl. (47)

E. Lindblad form of the master equation

So far we have derived a Hermitian master equation wittHowever, at very low temperatures, as, for example, when
constant trace for the dynamics of a beam atom that scattetee condensate forms, conditi¢#4) is not well obeyed. In
off a Boltzmann or Bose gas in thermal equilibrium. Treatingthis case we take advantage of the special setup studied here:
the problem, we concentrate on two-body collisions andFor an atomidbeamwe assume
s-wave scattering. Although the dynamics of the beam’s mo-
mentumdistribution due to collisions with the gas is well
described by Eq(27), a correct treatment of the coherence p>Ap. (48)
properties demands the positivity of the density operator.
This requirement is fulfilled if the master equation can be

brought into Lindblad form: Since we deal with heavy beam atomé<{(1) even for
_ 1 1 slightly differentp andp’ the same momentum transfegqs
p=—2, EFiTFip+§pF;rFi— FipFlt. (43)  are selected by the scattering rates so that we can substitute
|

However, it is not possible to cast E@Q7) exactly into the 1

Lindblad form (43). This problem occurs generally in situa- ~[C(p,q)+T(p".q)]=L(p.,q), (49)

tions where a continuous energy spectrum of the operators 2

produces a continuous range of oscillation frequencies in the

interaction picture: Because the evaluation of #hdunc-

tions, which leads to Eq27) being performed once from the using an average beam momentlﬁn'nstead ofp andp’.

left and once from the right side pf the resonant oscillation  This results in a simple master equation in Lindblad form

frequencies in Eq(27) corresponding to these two possibili- describing the scattering of an atomic beam at a low-

ties in general are not equal, thus rendering the statisticabmperature condensate:

weights different, albeit the corresponding combinations of

operators are the same. Since the oscillation frequencies are

arbitrarily close to each other, these cross terms cannot be o . .

removed by a secular approximation as, for example, in the p(t)=— >, T['(p,q)[p(t)—eli/MaTt 5t)e=({ar®],

master equation for a multilevel atom with well separated 4

discrete energy levels. (50)
Nevertheless, if the variance of the beam velocity

Av=Ap/m is small compared with the width of the thermal

velocity distribution of the gag=7/(\4gm) ] so that the con-

dition

This equation will allow us to study the loss of beam coher-
ence due to the collisions with a background gas and the
consequences for the visibility of the interference pattern.
1> 6\ ggAplt (44) Let us comment briefly on the status of the approxima-
tions required in the derivation of the master equation. The
is fulfilled, i.e., if the beam is monochromatic compared with main assumption is that the background gas acts as a reser-
its gas environment, we can approximate voir with a fast decay of correlations. The Lindblad form is
L then necessary for the positivity of the density matrix. A
, N =yl =y consistent calculational scheme is therefore only possible if
E[F(p,q)+l“(p I=VT (P VT (p".0). (49 the physical conditions allow us to perform the further ap-
proximations required for the Lindblad form. In the present
This factorization of the scattering rates replaces the arithsection, this has been shown for two cases: for a beam which
metic mean by the geometric mean. Using this approximais monochromatic compared with the gas environment, and
tion we obtain from Eq(27) the master equation for a beam with a very low momentum spreadp<p). The
last condition is met in a typical atom optics experiment.

p=-2 [%E C(p.a)p)plo+ 30 T(p.a) p)(R
q p p

IIl. DECOHERENCE AND VISIBILITY

In order to apply the master equatidd$) and (50) to the
problem of an atomic beam traversing a diffraction apparatus
and a background gas before being detected on a screen we

J , (46)  transform the master equations back from the interaction pic-

—(2 VI(p'.q)lp +a)(p’|

Xp

% VI (p.a)lp)(p+al)

ture. In the position representation we obtain from EH)
the equation of motion for the beam coherence between
which is equivalent to the Lindblad form in E43) with pointsr andr’:
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1ip 1
p(r!r’ =2 5P - 2 _F(D,Q)
i 2m , " 2
rr q.p.r =N
X e(i/h)p~(r—r") r o)+ p(r,r” e(i/h)p-(r”—r') 1.0 ¢
{ p(r",r")+p(r,r") } >
+E ei/hq-(rr’)( E F(pr,q)ei/hp’-(rr”)> >C\
q p' " é — TM,=02
~%os5. 4 0 - TIT,=0.6
e i -—= TM=1.0
f m ' )\«=40
xp(r',rm| 2 T(p,ge™ "= (51 P —-=- Tt
p’rm """" T/To=18
From Eq.(51) we see that in principle the decay of coher- 0.0 :
ence between two positionsandr’ involves a nonlocal 2 AX‘;X 6 8
average in position space. However, the radius of the average 0

depend; reciprocally on the V\_/idth of the scattering rate FIG. 2. The decoherence rdfg(Ax) due to collisions of a fast
I'(p,9) in momentum space which we assumed to be 1arg@,mic heam in a Boltzmann gas versus the width of the coherence
[cf. Eq. (44]. Hence we consistently perform one further ap- Ay The parameters amph o/ =40 and5=0.1 (A, is the gas’s
proximation in Eq(51) by replacing the scattering rate by its hermal de Broglie wavelength at a temperaftige. I'p, is given in

average: units of the collision rate of the beam at a resting gas,
nov =nop/m, Ax in units of the thermal de Broglie wavelength of
_ the gas at a reference temperatilige Since the beam is fast the
> JL(p,qe™r ="~ (p,q) >, eliMpr=r") decoherence strength is essentially given by the beam'’s collision
p p rate at a resting gas. An increase in the gas temperature leads to a
_ \/T Y further, but small increase in the collision rate. The typical length
=NL(p.)Vé(r—r").  (52)  gcale of the decoherence is hardly temperature dependent, but given
by the de Broglie wavelength of the momentum transfer,

Substituting this into Eq(51) we obtain rlq=h/p(1+ 6)/ 6. Because this is rather sharply defined there are
oscillations inI'p(AX), which will wash out with increasing tem-
perature.

. 1| p?
p(rr )= 5—p| —Tollr=r"Da(r,r), (53

" FD(AXL):nUU_f dcosﬂf dkke (ktw)?

where I'p(|r—r’|) defines the decoherence rate between . 2 Ax,
wave-packet components at the positiorendr’: X11=Jo ks'nam)\—dB . (59
. L where we use the abbreviations
To(r=r'h=2 (1-e"=")I(p,g). (54 \ .
q _
k= Zd;q(1+5), W=%|p|)\dB5COS€. (56)

The structure of this formula is as follows: The decoherence ]

rate is obtained by summing up all possible variations in the Figures 2 and 3 show th@umerically evaluatgddeco-
beam atom’s phase due to the randomly directed recoil in thB€rence rates according to E§5). Figure 2 treats the situ-
collision with the background gas. The momentum transfergtion of an atomic beam that is fast compared with the ther-
q will be selected according to the scattering rii@,q). mal velocmes_of the gas. The relevgint length segjdor the
Note that the loss of coherence only depends on the distan&&coherence is set by the de Broglie wavelength of the beam,

A=|r—r’| between the components of the beam. scaled by a mass factor,

Equation(53) is of course the same result we would have
obtained if we had re-transformed E&O) from the kinetic N o+1 ﬁ (57)
frame to the position representation. Therefore the following b 5 p—

results are equally valid for a beam traversing a Bose gas or

a Boltzmann gas. In the following we will focus on the loss  The strength of decoherence is governed by the rate of
of transverse coherence. This is realistic when we consider allisionsI"; between gas and bedmf. Eq. (54)],

diffraction apparatus a grating or double slit.

=2 T'(p,9). (58)
A. Decoherence in a Boltzmann gas q

SettingAx;=0, we obtain for the transverse decoherenceor a fast beam is basically given by the collision rate of
rate of the atomic beam due to collisions with a Boltzmannthe beam with resting gas atoms, iB,~=nov, wherev is
gas the beam velocity. In this case, the decoherence rate reflects
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12 ‘ . . phase and, if present, a contribution due to collisions with
— TT=0.2 the condensate:
T — o Ag=2 :
e TT14 P Co([r=r'D=Ts(r=r'D+Tp(r=r'h. (59
, o TITg=1.8
g " —
< 6l / ---------------------------- ] From Eq.(54), one obtains the decoherence rate due to the
\é/ ;”f“’/'// ——————————————————————— scattering by the condensate:
L? 4 // S emmmemmr T TTI IR
T(Ax)=2 (1-e"*7)I%p.g)

0 > 4 6 8 B[, sinax o)
Ax/M, T T T A, g

FIG. 3. The decoherence rat&,(Ax) due to collisions of a

slow atomic beam in a Boltzmann gas. The parameters are _ fo cosy
2| dcow

PAo/%=2 ands=0.1.T is given in units of the collision rate at a -1 (1/z)exp{A3g/ (2 p)%coS 6} — 1
resting gasAx in units of the thermal de Broglie wavelength in the
gas at temperatur€,. The decoherence length is given by the de
Broglie wavelength of the gas, the decoherence strength is given by X
the collision rate. Since the gas velocities decrease with decreasing
temperature the collision rate and thus the decoherence strength are
decreasing.

_AXy
1—Jo| 2 co¥singd—
Ap

] . (60)

The first term of the second line of EG0) gives the deco-

basically the properties of the beam itself. However, theherence rate due to collisions with the condensate without
background gas subtly leaves its trace in the damping of thBosonic enhancement. It resembles the decoherence found

oscillations in the decoherence rate with increasing gas tenfor light scattering 12—14, thus referring to the similarities
perature. between the two systems. The second term describes the

In Fig. 3 the opposite situation of a slow atomic beam isbosonic enhancement of the condensate-induced decoher-

shown. Here, the |ength scale of decoherence is given by thence. It still involves an integration over the Scattering angle
thermal de Brog"e Wave|ength of the gas, and the Strength O? and must be evaluated numerically. The Bose-Einstein dis-
the decoherence is set by the rate of collisions between tHébution included in the integrand favors small values of
thermally moving gas atoms and the beam atoms. Thus with0OS\ge/Ap . However, since at c@s-0 the integrand van-
decreasing temperature the decoherence gets weaker becaigf®s, the realized scattering angles depend on the ratio
of the increasing thermal de Broglie wavelength and the deras/Ap: A fast beam will result in smaller values of abs
creasing rate of collisions. and therefore in a smaller bosonic enhancement of transverse
decoherence than a slow beam. Note that in accordance with
the case of a fast beam colliding with a slow Boltzmann gas
the decoherence length scale here is sex py

For a Bose background gas the decoherence rate can be The decoherence rate due to the beam scattering at the
split up in a contribution due to the scattering at theexcitecexcited phase is given by

B. Decoherence in a Bose gas

Fo(Ax) =2 (1-e"* I p,g)
q

=n.ov- fdcosef dk k

92(2)
(—1) [ 1—ze kv)? 13 ks 2 Ax,
X 1_b n 1_Zbe_<k+v)2 Y Sln01+5 )\dB
P (0 5—1)/(8+1)]%cosd 5—1\2Ax
_2nooBJ dcosy L M 3 )2] > {1—J0 2 cogsing ﬂ) X * ’
mj_ (1i2)expl[(6—1)(5+ 1) 12\ 5g/ (2N p)%cog 6} — 1 + D

(61)
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FIG. 4. The decoherence rdig(Ax) due to collisions of a fast FIG. 5. The decoherence rafg,(Ax) due to collisions of a

atomic beam in a Bose gas versus the width of the coher&mce slow atomic beam in a Bose gas. The parameterprgés =2 and

The parameters arp\./f =40 and6=0.1 (\. defines the gas’s §=0.1.T is given in units of the collision rate at a resting gAs,

thermal de Broglie wavelength at the critical temperaiife I'n is  in units of the thermal de Broglie wavelength in the gas at the

given in units of the collision rate of the beam at a resting gascritical temperaturel .. Above the critical temperature the length

nov =nop/m, Ax in units of the thermal de Broglie wavelength of scale of the coherence decay is essentially given by the the gas

the gas at the critical temperatufg. The bosonic enhancement of thermal de Broglie wavelength, the decoherence strength by the

the fast beam’s scattering is small because of the large momentugiow beam collision rate. In this regime the situation resembles the

transfer in a collision. The situation resembles Figure 2. In contras§low beam scattering in a Boltzmann dgaé Fig. 3. However, at

to Figure 2 the oscillations df (Ax) are less strongly damped.  and below the critical temperature the decoherence length is wid-
ened and the decoherence strength increased due to the strong

Here, we used the abbreviations bosonic enhancement of scatterings with smallThe bosonic en-
hancement of the scattering is at first increased, reaches a maximum
_ a2 /hzﬁ(q2+pqcos<)) —
b=e"d (62 aroundT=0.6T., and weakened for lower temperature.
and is given by\p, the strength is set by the collision rate of the

beam. Thus, again, the decoherence rate is governed mainly
N 812 by beam properties. Nevertheless, the thermal properties of
”e:v 0<T_Tc)+(T_C) OTe=T) . 63 the gas are displayed in the smoothing of the oscillatory
behavior of the decoherence rate with increasing tempera-
n.=(N—Ng)/V describes the density of the gas atoms in theture. Note that because of the higher coherence of the
excited phase. The integrals in E@1) must be evaluated bosonic gas compared to a Boltzmann gas at the same tem-
numerically, taking special care of the integrand’s singularityperature the oscillations are somewhat stronger in the
at z=1. The first term of the second line of E¢0) de-  bosonic case.
scribes the decoherence by the bosonic enhanced fluctuationsHowever, the scattering of a slow beam at low tempera-
within the continuous phase, the second term gives théures shows a remarkable departure from the behavior for the
bosonic enhancement of the scattering due to collision8oltzmann gas: Figure 5 shows the decoherence rate for a
which push a gas atom into the condensate. As we haveumber of different gas temperatures. While for temperatures
already observed for the scattering at the condensate, smalbove the critical point the strength and length of the deco-
values of the transferred momentum are favored. ThereforBerence is similar to the Boltzmann case, we observe for
we expect the strongest impact of the bosonic nature of thtemperatures at and below the critical point two new fea-
gas for relatively slow atomic beams. tures. First, the length scale of the decoherence is increas-
In Figs. 4 and 5 the decoherence rates are shown for thagly stretched the deeper the temperature drops. Compari-
scattering of an atomic beam from a Bose background gas. Ison with Fig. 3 for the Boltzmann gasiote the different
comparison to a Boltzmann gas one could expect a numbeganges of the abcissahows that this is not only due to the
of new features in the scattering from a Bose gas: On the oni@crease in the number of very slow atoms but a consequence
hand the bosonic momentum distribution is different, favor-of the strongly augmented number of collisions with very
ing generally smaller gas momertspecially zero momen- small momentum transfeg.. Since the dephasing imposed
tum if a condensate exisgtson the other hand there is the onto the beam is less effective for smallthis will produce
bosonic enhancement of the scattering due to quantum sta-larger decoherence length.
tistical correlations within the Bose gas. This unique charac- Second, the rate of collisioribere defined as the plateau
teristic of the Bose gas is not present in the classical Boltzvalue of the decoherence rate for lar§&) increases with
mann gas. decreasing temperature due to the enhanced scattering until it
Figure 4 displays the decoherence rate for a fast atomiceaches a maximum a@t=0.6T. For lower temperatures the
beam traversing the gas. The situation turns out to be vergollision rate—and accordingly the decoherence rate—drops
similar to that for a Boltzmann gas: The decoherence lengtiagain. AtT=0 the collision rate corresponds to the classi-



2968 ALTENMULLER, MULLER, AND SCHENZLE 56

pxc;z o1 )= 27 e(i/h)p-(rfr)ef(i/h)(p2/2m)t
______ pA=6 p.p’,r.r’
= - p?»c=10 _ - —
r§°50 Xe Ip(r—r |)tp(r,r”0)
S 40 X gli/m(p 2mtg=(p’-(r' =) (64)
<
2‘030 r wherep(r,r’;0) is the initial density operator of the beam.
= The consequences of the loss of coherence after the beam’s
\520 passage through a background gas in an atomic interferom-
~ 10 eter can be read off from the interference pattern produced
by the beam. The intensity on the screen is proportional to
0 , . . the probabilityp(rg,rq;t) of finding a single beam atom at
0.0 0.5 1.0 1.5 2.0 positionrg and timet on the screen. The initial condition,

T/Tc p(r,r’;0), isgiven by the beam atom’s density matrix at the
o ) _ entry of the interferometer at time=0.
FIG. 6. The rate of collisions of an atomic beam in a Bose gas | there are no collisions the evolution is entirely coherent

versus the temperature for different momenta of the beam ator;TD(|r_—F|)=0]. In this case the probabilitP,(r,t) to

Here, the rate of collisions is defined as saturation value of the. dab t t itian in the interf tt
decoherence rate for very wide coherenckg40\.). It is given tlf?e :cr::nn’]isa om at posiuan in the interierence patiern on

in units of no/(m\.). For the slow atomic beampd./2=2) a
strong bosonic enhancement of scattering is visible even before the

critical point is reached. Its maximum lies aroufie-0.6T,.. For Po(ro)= 2 e(i/h)p~(ro—r_)e—(i/h)(p2/2m)t
larger beam momenta the bosonic enhancement of scattering is only oo —

L ) p.p’ir.r’
weak. At very low temperatures the rate of collisions is reduced to , L
nov, as is to be expected classically. The quantum statistical en- X p(r,r';0)elm® P2mitg=(i/h)p’ -(ro=r')_
hancement of the scattering does not play a major role here, since
the number of atoms that could be accommodated in the continuous (65
phase space and along with it the number of final states for the gas . . .
atom after the scattering is steadily reduced. In the case of an incoherent evolution in the presence of

collisions, we can calculate from E@64) the probability

, P.on Of finding a beam atom at positiary on the screen:
cally expected resulf .= nowv for the scattering of the beam

at a collection of gas atoms at rest.

Figure 6 displays the dependence of the collision rate on Peai(ro,t)= >, e Todr=rhty gli/p-(ro=r)
the temperature for a number of different beam momenta. r.r’ p.p’
While for a fast atomic beam the bosonic enhancement of the Xe—(i/h)(pZ/Zm)tp(W;o)
scattering is barely visible, we find for the slow beam a
strong increase in the scattering due to the bosonic enhance- s glim)(p 2r2m)tg—(it)p’ - (ro=1"). (66)

ment of the scattering. The enhancement factor
[1+nge(ps—0) ] results in an additional scattering contribu- By inserting
tion proportional tonge(pe) Nee(Pe—4q) due to the bosonic
enhancement. However, this bosonic enhancement does not 3 2 ik (r—p —
- . o - 1=fdAfdke'”rA> (67)
prevail all down to zero temperature: The additional bosonic
contribution due tongg(pg)nee(pec—4q) depends on the
availability of phase space for the gas atom not only beforeve obtain
the scattering[ngg(pg)] but also after the scattering

(nge(pg—0q)). Because the amount of available phase space 1

. . Peoi= | d3Ae To(aDt™>
at|pg|>0 shrinks down to zero ak=0, nge(pg) vanishes coll P (2m)°
for |pg|>0 and so does any bosonic enhancement propor- o
tional to nBE(pG)nBE(pG—q): Thu_s the quantu_m statistical < [ gokeik- 1A~
enhancement of the scattering will find a maximum value at
some temperature between zero dpadvhere phase space at B
|pc|>0 as well as phase spacepgt=0 in the condensate is XD glitp-(ro=ng=(im)(p?2mt 7. )
available. p.p’

Xe(i/h)(p’%Zm)te—(i/ﬁ)p'.(ro—ﬁ)_ (69)

C. Effects of decoherence
Using the definition ofPy (the probability without back-
In the absence of an external potential the solution of theground gay the probability of finding a beam atom at posi-
master equation0), respectively, Eq(53), is given by tion ry in the presence of collisions can be expressed as
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1 W(Xg) = e—tar?aa2§2/4ﬁ2ei(1/2)tamx0(ﬁh (€ (L/2)tanex, (p/h)

(2m)®

Peoi(ro,t)= f d*kG(K)Pq(ro+7Akt/m,t), (69)

+ ei(1/2)tanaxR(aﬁ))_ (76)

where we have defined This yields

G(k)= f d3Aeid ke TollADt, (70)

1 p
1+co Etana%(xL—xR
Hence the position density in the presence of collisions, (77)

Peon(ro,t), is the convolution of the coherent position distri- In the limit of a wide slit separationai<|xg—x,|) we can

butionPy(ro,t), in the absence of collisions, with & collision o460t the modification of the central interference pattern by

"e”.“?' G(k). The momentaik here do not refer to sir)gle e diffraction at the single slits. This yields for the diffrac-
collisions, but correspond to the sum of recoils experienceg,, pattern

by the atom in the course of the interaction. Thus the coher-
ent position distributiorP(rg,t) is smeared out due to the 1 P

collisions with the background gas. The smearing factor is Po(xo)oc1+cos( Etana%(xL—xR)). (78)
given by the Fourier transform of the decoherence rate

To(lA]). The position distributiorPy(x) is directly proportional to
o the diffraction pattern on the screen.
D. Visibility The resolution of the pattern can be characterized by the

We will now investigate the influence of decoherence onVisibility V:
the interference pattern behind a double slit in greater detail.

PO( XO) o eftanzaaZEZ/th

The coherent probability distribution is given by the modulus V= Pg—Pg" (79
square of the beam wave functigrry,t) on the screen, Pl pgﬂn'
Poro.t)=4(ro,b)[?, (7)) From Eq.(77) we calculate the visibility of the coherent
where diffraction pattern(without collisions as
Veor= 1. (80
— (ilh)r ~p7(i/h)(p2/2m)t —ilhp-r . . . .
¥(ro.t) zp: e ° Z € ¢(r.0). Relation(69) allows us to obtain the incoherent diffrac-
(72)  tion pattern easily in terms d?:
The initial wave functiony(r,0) describes the beam atom (X —xe)(Imip) 1 p_
within the double slit: Peoi(Xp) <1+ pPL*RIIMPIcog Stana - (X~ Xg) | -

(81)

1
H(r,0)= E[S(X_XL) +s(x=xr)]¢|(y,2). (73  Because of the collision-induced decoherence effect, the vis-
ibility is reduced to

Here, s(x) gives the wave function’s profile within one of
the slits. ¢|(y,z) describes the longitudinal degrees of free-

dom of the beam, which will be neglected in the following. 1,4 \isibility of the incoherent diffraction pattern renders a

In a first approximation to an experimentally realistic trans-gj ot image of the decay of the beam’s coherence behind the
mission profile we takes(x) to be a Gaussian of width.  gjiis The result82) in principle holds for a grid as well,

After integrating Eq(72) and replacing the time of flightof  gjnce the visibility behind a grid is essentially determined by

the beam over the distanteto the screen by=Im/p, we  the interference between neighboring slits.

obtain for the wave function on the screen Figures 7 and 8 show the visibility of the interference
pattern produced by a slo(fast atomic beam traversing a
Boltzmann gas as a function of the gas temperature for a
number of different slit separations. Since for a slow beam
the decoherence length is essentially given by the gas’s ther-

(74) mal de Broglie wavelength, a decrease in temperature results
in a longer decoherence length and thus in a higher visibility

If the screen is in the far field of the diffractioxd>x_ ,Xg) in Fig. 7. However, in Fig. 8 the temperature dependence is

Vegr=e ot -sime), (82

W(Xg) <€ [xo—xV2/21(p/h) g~ [(Xg—x) 1?1 (a?p?/41%)

+ @il(xo=xR) %211 (p/t) g~ [(xo = xR)2/1?](a®p?/4h?)

we can approximate the diffraction angle by mainly due to the smoothing of the oscillations in the deco-
herence ratécf. Fig. 2. This leads to an “anomalous” be-
Xo— XL X0~ XR havior of the visibility, producing lower visibility with lower
e — (79) temperature.

In Figs. 9 and 10 the visibility of the interference pattern
and obtain after traversing a Bose gas are presented. Figure 9 treats the
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FIG. 7. The visibility V versus the temperatur for a slow, FIG. 9. The visibility) versus the temperatufiefor Ax=2A.

heavy beam traversing a Boltzmann gaa{/% =2,6=0.1). Here, T_he curve is plotted for si_x different beam momenta. The time of
the time of flight through the gas is=T'.(To) "%, i.e., at tempera-  flight through the gas is given such that the fastest beam
ture T, there is approximately one collision between the double slit(PAc/%=22) experiences on average one collision. Since for slow
and the screen. Enlarging the width of the coherekkdeads to a  °€ams below the critical point the decoherence length scale is ex-
stronger decay of the visibility with temperature. tended the visibility is improved in this regime. However, for fast
beams, due to the only weak temperature dependence of the deco-

) ) ) ) _ herence the improvement of the visibility is small.
case of a relatively narrow slit separation: Here, the situation

is qualitatively similar to the results for a Boltzmann gas.

The lower the temperature, the higher the visibility. Al- tered in a Boltzmann gas. Nevertheless, for a wide slit sepa-

though for slow beams the quantum statistical enhanceme §ti(_)n the quantum §tafcisticglly enhan_ced scatterir.]g. hgs its
of the scattering is considerable, it does not contribute esse ull impact on the visibility: Figure 10 displays the visibility

tially to the decoherence of the beam, since for a narrow €rsus temperature for a number of different beam velocities.

coherence the enhancement in scattering is compensated bgﬁ already pointed out, around the critical point the decoher-

stretching of the decoherence length, so that the decoheren Qece _andbtgerefoere ?EO thedloss r']g \gs'be'““; arelstrol?é;ly m,-a\t
rate does not depart considerably from the situation encou -reasing because of tné wide coherence of a Slow beam.
ixed volume and particle number, the visibility reaches a

minimum at around=0.6T.. For even lower temperatures

0.70 ' ‘ ‘ the visibility increases again, according to the diminished
pA,=40 — AX/AA
------ AXIA= 1.0 .
-——— AXA=3 = — PAS
065+ Ax/7\,0=4 | AxXA=40 . pA.=6
° 0.8 | ———- pA=10
v : ) —-—-- pA=14
N e 06 f
0'60 [ //,,—‘———§_.=-_‘_-="“--;;\“‘\---__;u: ] D )
g 0.4
0.55 : : : 0.2 |
0.0 0.5 1.0 15 2.0
T/T,
0.0 : : :
FIG. 8. The visibility V versus the temperaturg for a fast, 0.0 0.5 1.0 15 2.0
heavy beam traversing a Boltzmann gash{/#=40,6=0.1). T/Tc

Here, the time of flight through the gas is=0.25(ov) 7}, i.e.,

there are approximately 0.25 collisions between the double slit and FIG. 10. The visibilityV versus the temperature fax=40\..

the screen. Since dtx=\, the decoherence rate is maximyai- The curve is plotted for six different beam momenta. The time of
most independent of temperatyitbe visibility for this curve does flight through the gas is given by=ng#/(m\.). For small mo-

not vary appreciably with temperature. Rok= 2\, the visibility menta there is a marked reduction of the visibility due to the
shows an anomalous temperature dependence: In spite of a decred®sonic enhancement of scattering around the critical temperature.
in temperature the visibility worsens. This relates to the damping oHowever, for very low temperatures the excited phase begins to be
the oscillations in the decoherence rate with increasing temperaturdepleted, so the bosonic enhanced scattering is reduced, leading to a
which leads to an increase of decoherence for dropping temperaecovery of the visibility. AtT=0 this results in the expected clas-
tures atAx=2A\,. sical picture of beam collision with a resting gas.
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scattering. The loss of beam coherence around the criticaollisions between gas and atoms. If we study the scattering
point as observed in the diffraction pattern is entirely due tan a condensing Bose gas we encounter a quantum statistical
the quantum fluctuations of the Bose gas around the criticanhancement of the scattering, especially for small momen-
point. Thus we see here the signature of Bose-Einstein cortum transfer. Whereas the smallness of the momentum trans-

densation taking place. fer for narrow beam coherences compensates the enhanced
scattering, thereby masking the quantum correlations in the
IV. CONCLUSION gas as observed in the interference pattern, one can see the

) ) ) full impact of the quantum statistically enhanced decoher-

In this paper we have studied how atom interferometryence in the marked decrease of visibility around the critical
may be used to investigate the coherence properties of Goint, Although we have treated here the decoherence of an
dilute gas traversed by an atomic beam. Special attentiogtomic beam in an ideal and free gas the results here point to
was paid to a condensing Bose gas. Since the visibility of thene possibility of observing the signature of Bose-Einstein
interference pattern depends on the coherence of the beaghngensation in trapped gas via atomic interferometry. How-
one can infer the decoherence suffered by the beam from thg/er very close to temperatufe= 0 weak interatomic inter-
loss of visibility. In turn the decqherence may be used as @ctions will spoil the picture given by an ideal gas: Diago-
probe for the coherence properties of the traversed mediumy)ization of the weak interaction, e.g., by a Bogoliubov
interacting with the beam. Thus the strong forward scatteringyansformation, will lead to a linear quasiparticle dispersion
of a heavy beam in connection with the small probability of rejation for small energies. Since the excitation of a quasi-
multiple scattering constitutes an effective probe for investiparticle from the quasiparticle vacuum to a quasiparticle
gating a gas. To study the probing theoretically we derived &tate on the linear branch of the dispersion relation by a
master equation for the beam atom, restricting ourselves tgg|lision with a beam atom is forbidden due to energy and
two-body collisions and-wave approximation. Special care omentum conservation a gasTat 0 will not transfer mo-
was taken to derive a Lindblad form of the master equationinentum to the beam, the gas thus being transparent to the
thereby ensuring the positivity of the beam’s density operapeam, This effect analogous to superfluidity will prevent de-
tor in the course of the interaction. We have found that ong.gnerence and therefore lead to perfect visibilityTat 0.
ghould distingqish between_twc_; qualitatively different situa-This means that via atom interferometry it is not only pos-
tions: An atomic beam that is either fast compared to the gasiple to observe the onset of Bose-Einstein condensation
velocities or slow. In the first situation, the decoherencepanks to quantum statistically enhanced scattering but also
length is essentially determined by the de Broglie waveyne transition to a regime in the vicinity af=0 where the
length of the atomic beam itself, scaled by a factor accountyeak interactions within the gas become dominant compared

ing for the ratio between gas and beam masses. The strengif) the near ideal behavior of the gas at higher temperatures.
of the decoherence is set by the classical rate of collisions

between the beam atom and the almost resting gas atoms.
The second situation, namely, the slow beam, enables an
observation of the gas properties in the beam decoherence:
The decoherence length is set by the gas thermal de Broglie The authors appreciate valuable discussions with M.
wavelength, the decoherence strength is given by the rate dfaraschewski.
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