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Atom-interferometric study of Bose-Einstein condensation

Thomas P. Altenmu¨ller, Rainer Müller, and Axel Schenzle
Max-Planck-Institut fu¨r Quantenoptik, 85748 Garching, Germany

and Sektion Physik der Ludwig-Maximilians-Universita¨t München, Theresienstraße 37, 80333 Mu¨nchen, Germany
~Received 2 January 1997!

We investigate the influence of a Bose-Einstein condensate on the coherence properties of a traversing
atomic beam. We derive a master equation describing the interaction between beam atoms and the condensate
in s-wave approximation. Scattering rates are calculated and compared with the case of an ordinary Boltzmann
gas. Special attention is paid to the decoherence of the beam, i.e., the decay of spatial coherence in the presence
of the condensate. As an application, we explicitly calculate the visibility of the interference pattern in a
double-slit experiment and indicate signs for the onset of the condensation.@S1050-2947~97!02010-6#

PACS number~s!: 03.75.Dg
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I. INTRODUCTION

The recent successes in the production of Bose-Eins
condensates in magneto-optical traps@1–4# create a demand
for specific means to investigate the condensate. Altho
commonly used methods like light scattering do produce
image of the condensate’s distribution in position or mom
tum space, these methods are not especially sensitive to
peculiar coherence properties of this ‘‘macroscopic quan
state.’’ In particular, there is no clear signature of the on
of the Bose-Einstein condensation. Since coherence is m
easily detected in an interferometric experiment, it see
promising to think about aninterferometricstudy of Bose-
Einstein condensation.

In this article we focus our interest on the possibility
using atom-interferometric methods to investigate the co
densation process. We consider an atomic probe beam
passes through a diffraction apparatus, i.e., a grating
beam splitter. Subsequently it traverses a region filled wit
gaseous medium. In our case this medium will be either
ordinary Boltzmann gas or a Bose-Einstein condensate.
ure 1 shows the principal setup of such an experiment.

The interaction between the gas and the beam atoms
in general lead to a loss of coherence between spatially s
rated wave-packet components which manifests itself i
reduced visibility of the diffraction pattern. This is an e
ample of environment-induced decoherence@5#. We study
how the interference pattern is altered by the presence o
condensate. This is compared with the case where the b
passes an ordinary Boltzmann gas. The interesting poin
that the observation of the visibility may provide a signatu
for the coherence properties of the gas and especially
onset of condensation.

There are two main advantages in using atomic inter
ometry instead of light scattering: First, the collisional cro
section, roughly estimated by the square of the scatte
length, is much smaller than the cross section of near re
nant photons which is of the order of the square of the p
tonic wavelength. Therefore, for the scattering of an atom
beam by adilute gas—as it is realized in the experimen
@1–4#—multiple scattering events can be avoided. The inf
mation carried by the scattered beam will refer only to
single interaction event. Second, the kinematics of the co
561050-2947/97/56~4!/2959~13!/$10.00
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sion between a beam of heavy atoms and a gas of light at
strongly favors forward scattering of the beam whereas
the case of light scattering, spontaneous emission of a ph
from a gas is rather isotropic. Thus using a heavy atom
probe beam one can collect very efficiently informati
about the condensate with a minimum of scattering eve
suffered by the gas.

In this article we will consider a condensingideal Bose
gas infree space. A realistic Bose gas is neither in free spa
nor ideal but trapped and at least weakly interacting. Ho
ever, what we want to demonstrate are the qualitat
changes in the beam properties due to condensation o
gas.

The organization of the paper is as follows. In Sec. II w
derive a master equation in Lindblad form for the interacti
between a beam atom and the gas in thermodynamic equ
rium, describing the loss of beam coherence. In the th
section we calculate the decoherence rates for a Boltzm
and a Bose gas and compare the two cases. Relating
decoherence rates to the loss of visibility, we discuss
signs for the onset of the condensation. Finally we summ
rize the results in a conclusion.

II. MASTER EQUATION FOR AN ATOMIC BEAM
IN A GASEOUS ENVIRONMENT

We consider an atomic probe beam in interaction with
gaseous medium. The collisions between gas and beam
oms introduce a dephasing of the beam. We are only in
ested in the coherence properties of the beam. Therefore
regard the gas as a background medium. It is described
reservoirwhich can be removed from the beam dynamics
an adiabatic elimination procedure very similar to that in t
derivation of quantum optical master equations~i.e., @6,7#!.
Using a different approach, a master equation for an atom
interaction with a Boltzmann gas has recently been deri
in @8#. However, this phenomenologically motivated deriv
tion of a master equation is not valid for a cold gas, which
the situation we would like to describe here. We start fro
the Hamiltonian of the interaction between beam atoms
gas in second quantization:

H5T1TG1U, ~1!
2959 © 1997 The American Physical Society
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2960 56ALTENMÜLLER, MÜLLER, AND SCHENZLE
whereT defines the kinetic energy of the beam atoms,TG
the kinetic energy of the gas atoms, andU the interaction
potential:

T5(
p

p2

2m
ĉp

†ĉp ,

TG5(
pG

pG
2

2mG
ĉpG

† ĉpG
,

U5(
r ,r G

ĉ r G

† ĉ r
†U~r2rG!ĉ r ĉ r G

. ~2!

In writing down the Hamiltonian~1!, we have assumed a
ideal background gas. In the Bose-Einstein condensa
~BEC! experiments mentioned above, an interaction betw
the atoms is present, although it is much weaker as in
case of superfluidity. The standard theoretical treatmen
the effects of interactions within the Bose condensate ma
use of Bogoliubov methods. This scheme is valid at l
temperatures (T'0). Near the transition temperatureTc ,
which is the physical regime we are interested in, it bre
down, however. It is therefore not possible to take the ba
ground gas interactions fully into account. An ideal gas tre
ment is the only viable theoretical approximation to a wea
interacting gas nearTc , and we will only include the gas
beam interaction in our calculation.

In the following the quantities without index refer to th
beam atom while those indexed withG correspond to the
background gas. The two-body potentialU can be decom-
posed into its Fourier components:

U5(
q

V~q! (
p,pG

ĉp1q
† ĉpG2q

† ĉpĉpG
. ~3!

We assume that gas and beam atoms are physically diffe
and can be distinguished. Therefore field operators crea
and annihilating gas atoms commute with those for the be
atoms. In an interaction picture with respect to the kine
energy of the beam and the gas atoms we obtain for
Hamiltonian

FIG. 1. Principal setup of an atom-interferometric experime
An incident atomic beam is diffracted at a grid, realized, for e
ample, by a standing light wave. The interference pattern on
screen is characterized by the visibilityV. The interaction with a
background gas in the path of the atomic beam can be describe
the decoherence rateGD .
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H~ t !5(
q

V~q!(
p

ĉp1q
† ĉp

3e~ i /\![ ~p1q!2/2m2p2/2m] t(
pG

ĉpG2q
† ĉpG

3e~ i /\![ ~pG2q!2/2mG2pG
2 /2mG] t. ~4!

For simplicity, we will not mark the operators in the intera
tion picture. In a perturbative approach, the problem can
solved by considering the equation of motion for the atom
beam’s reduced density operator, summing up all order
ladder diagrams but taking into account only two-body c
lisions in s-wave approximation. This is physically justifie
in the present case of a dilute, low-temperature gas. I
known @11# that it is formally equivalent to an approach us
ing second order perturbation theory with factorization of t
initial conditions and the replacement of the coupling co
stants by an expression involving the actual scattering c
section as obtained in all orders of perturbation theory.

A. Iteration of the von Neumann equation

Pursuing the above line of reasoning, we formally itera
the von Neumann equation for the interaction Hamiltonian
Eq. ~4!,

ṙA1G5
1

i\
@H~ t !,rA1G#, ~5!

and obtain

ṙA1G~ t !5
1

i\
@H~0!,rA1G~0!#

2
1

\2E0

t

dt†H~ t !,@H~ t2t!,rA1G~ t2t!#‡.

~6!

Before the beam reaches the gas the total density ope
factorizes into the beam’s initial stater(0) and the initial
state of the gas,rG(0). Virtually no beam atom will encoun-
ter the same gas atom twice before the gas rethermal
Therefore the reservoir of background atoms remains in
stationary state for all time. We assume that a factorizatio
practically valid at any time before gas and atom interac

rA1G~ t2t!5r~ t2t! ^ rG~0!. ~7!

Assuming thermal equilibrium, we trace over the gas degr
of freedom and obtain an equation of motion for the be
atoms alone. We neglect many-body effects in the ato
beam. This allows us a single-atom description of the be
and we use a bra-ket notation for the beam operators. A
some rearrangement we find
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ṙ~ t !52
1

\2E0

t

dtTrG$†H̃~ t !,@H̃~ t2t!,r~ t2t! ^ rG~0!#‡%

52
1

\2E0

t

dt (
pG ,q,q8

ñ~pG!uV~q!u2H(p
ei /\t~Ei2Ef !up&

3^pur~ t2t!2 (
p,p8

ei /\t~Ei82Ef8!up81q&

3^p8u~ t !r~ t2t!up&^p1qu~ t !J 1H.c. ~8!

Here, the kinetic energy of the system consisting of be
and gas isEi before andEf after the collision:

Ei5
p2

2m
1

pG
2

2mG
, ~9!

Ef5
~p1q!2

2m
1

~pG2q!2

2mG
. ~10!

The energiesEi8 and Ef8 refer to the momentump8. The

quantity ñ(pG) in Eq. ~8! denotes the ‘‘effective popula
tion’’ of the gas one-particle momentum stateupG& in ther-
mal equilibrium. It is defined as the expectation value of
gas operators in the doubly iterated interaction Hamiltoni

ñ~pG!dpG ,pG8
5TrG$ĉp

G8
†

ĉp
G8 2q8ĉpG2q

† ĉpG
rG~0!%.

~11!

B. Effective population ñ „pG…

All thermal properties of the gas reservoir are represen
by the effective populationñ(pG) of the stateupG&. In the
case of an ideal Boltzmann gasrG(0) is given by

rG5
N

Z
e2b p̂G

2 /2mG, ~12!

whereb51/kT defines as usual the inverse temperature,N is
the total number of gas atoms, andZ the partition function.
Since the field creation and annihilation operatorsĉpG

† and

ĉpG
for a classical Boltzmann gas commute,ñ(pG) is

readily evaluated:

ñ~pG!5dq,q8nB~pG!5dq,q8

N

Z
e2bpG

2 /2mG. ~13!

For a Bose gas we have to take care of the bosonic com
tation relation for the field operators:

@ĉk ,ĉk8
†

#5dkk8. ~14!

Applying Eq. ~14! to Eq. ~11! we obtain for the effective
population numberñ(pG),
m

e
:

d

u-

ñ~pG!dpG ,p
G8
5TrG$ĉp

G8
†

ĉpG
dp

G8 2q8,pG2qrG~0!%

1TrG$ĉp
G8

†
ĉpG2q

† ĉp
G8 2q8ĉpG

rG~0!%.

~15!

Since the thermal equilibrium density operator of the gas
diagonal in the momentum representation, the first term
the right hand side of Eq.~15! simply results in the popula
tion numbernBE(pG) of the momentum stateupG& as given
by the one-particle density operator:

TrG$ĉp
G8

†
ĉpG

dpG82q8,pG2qrG~0!

5dqq8TrG$ĉpG

† ĉpG
rG~0!%5nBE~pG!dqq8dpG ,pG8 .

~16!

Here,nBE(pG) is the population number according to Bos
Einstein statistics:

nBE~pG!5
1

exp$b~pG
2 /2mG2m!%21

, ~17!

wherem,0 is the chemical potential for the Bose gas. T
second right hand side term of Eq.~15! describes the creation
and annihilation of two particles~in normal ordering!. For
q,q8Þ0 @otherwise the integrand of theq-space integration
in Eq. ~8! vanishes anyway# we obtain

TrG$ĉp
G8

†
ĉpG2q

† ĉp
G8
2q8ĉpG

rG~0!%

5TrG$ĉp
G8

†
ĉpG

ĉpG2q
† ĉp

G8 2q8rG~0!%

5dpG ,p
G8
dqq8TrG$n̂pG

n̂pG2qrG~0!%

5dpG ,p
G8
dqq8nBE~pG!nBE~pG2q!. ~18!

Collecting these results yields the effective population
stateupG& for a bosonic gas:

ñ~pG!5dqq8nBE~pG!@11nBE~pG2q!#. ~19!

Compared with a Boltzmann gas the effective population
the gas momentum stateupG& in a Bose gas is altered due t
a typical bosonic enhancement factor of@11nBE(pG2q)#.

How does the effective population defined in Eq.~19!
change with temperature? At very low temperatur
nBE(pG) is very small except forpG50. Since the additional
bosonic contribution involves the produc
nBE(pG)nBE(pG2q), i.e., the bosonic population number
two different momenta, the bosonic enhancement will van
at T50, because only one of the two factors can be nonz
at T50. At temperatures much higher than the critical te
peraturesTc , on the other hand, the distributionnBE(pG)
becomes classical for BEC in a gas with a fixed number
particles: For an ideal free particle gas the fugacityebm be-
haves atT@Tc asymptotically as@9#

ebm;S Tc

T D 3/2

zS 3

2D!1, T@Tc . ~20!
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Therefore, in the high-temperature limit,nBE(pG) can be ex-
panded as

nBE~pG!;ebme2bpG
2 /2mG!1, T@Tc for all pG .

~21!

The additional contribution to the scattering in a Bose g
will therefore be negligible forT@Tc . Only in an interme-
diate regime ofT'Tc is the bosonic enhancement no
negligible. ForT'Tc , a considerable departure from th
behavior of a Boltzmann gas can be expected.

C. s-wave scattering

Taking advantage of the thermal blurring of the positi
of the gas atoms on the length scale of the gas’s therma
Broglie wavelengthldB ,

ldB5\A b

2mG
, ~22!

we will approximate the interaction potentialU(r2rG) by a
hard-cored potential, since distances smaller thanldB are
not resolved:

U~Dr !5U0d~Dr !. ~23!

This, of course, implies a flat pseudopotentialV(q). In
s-wave scattering at a hard-cored potential the pseudopoten
tial V(q)5V(0)5U0 /V is connected to the scattering am
plitude f by @10#

f 52
1

4pE d3re2 ik–r
2mred

\2
U~r !52

1

4p

2mred

\2
U0 .

~24!

For the scattering of two distinguishable particles, name
the gas atom and the beam atom, the scattering amplitudf ,
respectively, the scattering lengtha52 f , is related to the
total cross section by

s5E dVu f ~V!u254pu f u254pa2. ~25!

Therefore with the help of Eqs.~25! and~24! we will replace
the Fourier transform of the potentialV(q) by an expression
involving the total scattering cross sections:

uV~q!u25
1

V2

sp\4

mred
2

. ~26!

Note thats represents the actual total cross section, as fo
by considering all orders of the Born series. This enables
to treat consistently singular hard-core potentials as in
~23! ~cf. @11#!.

D. Master equation and scattering rates

The iterated von Neumann equation~8! is an integro-
differential equation and is therefore delocalized in time:
exact solution requires the knowledge ofr(t) for all timest.
In order to obtain from Eq.~8! a master equation local in
time we will perform in Eq.~8! the Born-Markov approxi-
s

de

,

d
s

q.

mation which effectively consists in neglecting thet depen-
dence of the beam’s density operator and in shifting the
per limit of thet integration to infinity.

This approximation is valid in the present case since it c
be shown by averaging Eq.~8! over all possible momentum
transfers that the time scale for the decay of correlation
\/Ec.m. ~whereEc.m. is the kinetic energy in the center-o
mass system!. Thus, even for a cold gas~Boltzmann or Bose-
Einstein!, the correlations between gas and beam decay
provided the kinetic energy of the collision in the center-o
mass system is large enough. This is analogous to the s
tion considered in the quantum optical master equat
where the correlation time is essentially set by the inve
transition frequency@7#.

After the Born-Markov approximation, the master equ
tion has the form

ṙ~ t !52(
q,p

1

2
G~p,q!$up&^pur~ t !1r~ t !up&^pu%

1 (
q,p,p8

1

2
$G~p,q!1G~p8,q!%up81q&

3^p8u~ t !r~ t !up&^p1qu~ t !. ~27!

Here, we have defined scattering ratesG(p,q):

G~p,q!5
1

\(
pG

ñ~pG!uV~q!u22pd~Ei2Ef !, ~28!

which contains the integration over all possible gas mome
pG .

Using the explicit form~26! for uV(q)u2, the scattering
rate for the Boltzmann gas becomes

G~p,q!5ns v̄ B

1

2pFldBq~11d!

2\ G2 ~2p\!3

q3V

3expH 2S ldB

2\ D 2

~11d!2S q1
2d

11d
pcosu D 2J ,

~29!

wheren is the gas density,

d5
mG

m
~30!

is the mass ratio, andv̄ B the average velocity of atoms in
Boltzmann gas,

v̄ B5
2\

ApmGldB

. ~31!

Note that the contributions toG(p,q) decay with increasing
q according to a Gaussian profile inq. Thus all details of the
interatomic potential on a length scale smaller thanldB are
damped out and irrelevant. This is consistent with thes-wave
approximation used here~cf. Sec. II C!.

Similarly, the scattering rate for the Bose gas is defin
by
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G~p,q!5
2p

\
uV~q!u2(

pG

nBE~pG!@11nBE~pG2q!#

3d~Ei2Ef !. ~32!

Transforming the discrete sum overpG in a continuous inte-
gral we must consider the gas phase with a condensate s
rately, which arises below the critical point because the c
tinuous phase space cannot accommodate all gas atoms
transformation is

(
pG

nBE~pG!@11nBE~pG2q!#

→
V

~2p\!3E d3pGS N0

~2p\!3

V
d~pG!1nBE~pG! D

3F11S N0

~2p\!3

V
d~pG2q!1nBE~pG2q! D G , ~33!

whereN0 is the number of atoms in the free space cond
sate,
pa-
-

The

-

N05NF12S T

Tc
D 3/2G@12u~T2Tc!#, ~34!

andTc is the critical temperature for a fixed number of g
atoms in a constant volume:

Tc5S N

Vz~3/2! D
2/32p\2

mGk
. ~35!

The coexistence of two phases motivates the separatio
the total scattering rateG(p,q) into a rateGe(p,q) for scat-
tering by the excited phase~including the bosonic enhance
ment due to events which scatter a gas atom into the con
sate!, and a rateG0(p,q) for scattering by the condensate.

G~p,q!5Ge~p,q!1G0~p,q!. ~36!

Using the transformation~33! we obtain for the rate of scat
tering by the excited phase after some manipulations
Ge~p,q!5
2p

\
uV~q!u2

V

~2p\!3E d3pGnBE~pG!@11nBE~pG!#d~Ei2Ef !1
2p

\
uV~q!u2nBE~2q!N0dS p•qS 1

mG
2

1

mD2
q2

2m D
5

~2p\!3

q3V
nes v̄ BE

1

2pg2~z!FldBq~11d!

2\ G2 1

12eldB
2 d/\2~q212pqcosu!

3 lnF 12zexpH 2
1

4S ldB

\ D 2

~11d!2S q1
2d

11d
pcosu D 2J

12zexpH 2
1

4S ldB

\ D 2

~11d!2S q1
2d

11d
pcosu D 2

1S ldB

\ D 2

~q212pqcosu!dJ G
1

~2p\!3

V
n0snBE~2q!

1

4p

~11d!2

mG
2

dS p•qS 1

mG
2

1

mD2
q2

2m D , ~37!
of

ring
tum
s
-

wheren05N0 /V designates the condensate density andv̄ BE
the average velocity of an atom in a Bose gas,

v̄ BE5
2\

ApmGldB

g2~z!

g3/2~z!
. ~38!

Herez is the fugacity,

z5ebm, ~39!

and the functionsgj (z) are defined as usual by

gj~z!5
1

G~ j !E0

`

dx
xj 21

ex/z21
. ~40!

The scattering rate by the condensate is:
G0~p,q!5
~2p\!3

V
n0s

1

4p

~11d!2

mG
2 @11nBE~2q!#

3dS p•q

m
1

q2

2m D . ~41!

The scattering rateG(p,q) describes the dependence
the momentum transferq on the beam momentump. Energy
and momentum conservation are included in the scatte
rates, thus selecting the possible values of the momen
transferq for a givenp and a fixed distribution of the ga
momentapG . The ‘‘resonance condition’’ for zero gas mo
mentum,

p•q

m
1

q2

2m
50, ~42!
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is exactly fulfilled for scattering by the condensate@cf. Eq.
~41!#.

E. Lindblad form of the master equation

So far we have derived a Hermitian master equation w
constant trace for the dynamics of a beam atom that sca
off a Boltzmann or Bose gas in thermal equilibrium. Treati
the problem, we concentrate on two-body collisions a
s-wave scattering. Although the dynamics of the beam’s m
mentumdistribution due to collisions with the gas is we
described by Eq.~27!, a correct treatment of the coheren
properties demands the positivity of the density opera
This requirement is fulfilled if the master equation can
brought into Lindblad form:

ṙ52(
i

H 1

2
Fi

†Fir1
1

2
rFi

†Fi2FirFi
†J . ~43!

However, it is not possible to cast Eq.~27! exactly into the
Lindblad form ~43!. This problem occurs generally in situa
tions where a continuous energy spectrum of the opera
produces a continuous range of oscillation frequencies in
interaction picture: Because the evaluation of thed func-
tions, which leads to Eq.~27! being performed once from th
left and once from the right side ofr, the resonant oscillation
frequencies in Eq.~27! corresponding to these two possibi
ties in general are not equal, thus rendering the statis
weights different, albeit the corresponding combinations
operators are the same. Since the oscillation frequencies
arbitrarily close to each other, these cross terms canno
removed by a secular approximation as, for example, in
master equation for a multilevel atom with well separa
discrete energy levels.

Nevertheless, if the variance of the beam veloc
Dv5Dp/m is small compared with the width of the therm
velocity distribution of the gas@.\/(ldBm)# so that the con-
dition

1@dldBDp/\ ~44!

is fulfilled, i.e., if the beam is monochromatic compared w
its gas environment, we can approximate

1

2
@G~p,q!1G~p8,q!#.AG~p,q!AG~p8,q!. ~45!

This factorization of the scattering rates replaces the ar
metic mean by the geometric mean. Using this approxim
tion we obtain from Eq.~27! the master equation

ṙ52(
q H 1

2(p
G~p,q! up&^pur1

1

2
r(

p
G~p,q! up&^pu

2S (
p8

AG~p8,q! up81q&^p8u D
3rS (

p
AG~p,q! up&^p1qu! D J , ~46!

which is equivalent to the Lindblad form in Eq.~43! with
h
rs

d
-

r.

rs
e

al
f

are
be
e

d

-
-

Fq5(
p

AG~p,q!up1q&^pu. ~47!

However, at very low temperatures, as, for example, wh
the condensate forms, condition~44! is not well obeyed. In
this case we take advantage of the special setup studied
For an atomicbeamwe assume

p@Dp. ~48!

Since we deal with heavy beam atoms (d!1) even for
slightly different p and p8 the same momentum transfersq
are selected by the scattering rates so that we can subs

1

2
@G~p,q!1G~p8,q!#.G~ p̄,q!, ~49!

using an average beam momentump̄ instead ofp and p8.
This results in a simple master equation in Lindblad fo
describing the scattering of an atomic beam at a lo
temperature condensate:

ṙ~ t !52(
q

G~ p̄,q!@r~ t !2e~ i /\!q• r̂ ~ t !r~ t !e2~ i /\!q• r̂ ~ t !#.

~50!

This equation will allow us to study the loss of beam coh
ence due to the collisions with a background gas and
consequences for the visibility of the interference pattern

Let us comment briefly on the status of the approxim
tions required in the derivation of the master equation. T
main assumption is that the background gas acts as a r
voir with a fast decay of correlations. The Lindblad form
then necessary for the positivity of the density matrix.
consistent calculational scheme is therefore only possibl
the physical conditions allow us to perform the further a
proximations required for the Lindblad form. In the prese
section, this has been shown for two cases: for a beam w
is monochromatic compared with the gas environment,
for a beam with a very low momentum spread (Dp!p). The
last condition is met in a typical atom optics experiment.

III. DECOHERENCE AND VISIBILITY

In order to apply the master equations~46! and~50! to the
problem of an atomic beam traversing a diffraction appara
and a background gas before being detected on a scree
transform the master equations back from the interaction
ture. In the position representation we obtain from Eq.~46!
the equation of motion for the beam coherence betw
points r and r 8:
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ṙ~r ,r 8!5
1

i\
F p̂2

2m
,rG

rr 8

2 (
q,p,r 9

1

2
G~p,q!

3$e~ i /\!p•~r2r9!r~r 9,r 8!1r~r ,r 9!e~ i /\!p•~r92r8!%

1(
q

ei /\q•~r2r8!S (
p8,r 9

AG~p8,q!ei /\p8•~r2r9!D
3r~r 9,r-!S (

p,r-
AG~p,q!ei /\p•~r-2r8!D . ~51!

From Eq.~51! we see that in principle the decay of cohe
ence between two positionsr and r 8 involves a nonlocal
average in position space. However, the radius of the ave
depends reciprocally on the width of the scattering r
G(p,q) in momentum space which we assumed to be la
@cf. Eq. ~44#. Hence we consistently perform one further a
proximation in Eq.~51! by replacing the scattering rate by i
average:

(
p

AG~p,q!e~ i /\!p•~r2r9!.AG~ p̄,q!(
p

e~ i /\!p•~r2r9!

5AG~ p̄,q!Vd~r2r 9!. ~52!

Substituting this into Eq.~51! we obtain

ṙ~r ,r 8!5
1

i\
F p̂2

2m
,rG

rr 8

2GD~ ur2r 8u!r~r ,r 8!, ~53!

where GD(ur2r 8u) defines the decoherence rate betwe
wave-packet components at the positionsr and r 8:

GD~ ur2r 8u!5(
q

~12e~ i /\!q•~r2r8!!G~ p̄,q!. ~54!

The structure of this formula is as follows: The decohere
rate is obtained by summing up all possible variations in
beam atom’s phase due to the randomly directed recoil in
collision with the background gas. The momentum transf
q will be selected according to the scattering rateG(p,q).
Note that the loss of coherence only depends on the dist
D5ur2r 8u between the components of the beam.

Equation~53! is of course the same result we would ha
obtained if we had re-transformed Eq.~50! from the kinetic
frame to the position representation. Therefore the follow
results are equally valid for a beam traversing a Bose ga
a Boltzmann gas. In the following we will focus on the lo
of transverse coherence. This is realistic when we conside
diffraction apparatus a grating or double slit.

A. Decoherence in a Boltzmann gas

SettingDxi50, we obtain for the transverse decoheren
rate of the atomic beam due to collisions with a Boltzma
gas
ge
e
e
-

n

e
e
e

rs

ce

g
or

as

e
n

GD~Dx'!5ns v̄ E dcosuE dkke2~k1w!2

3F12J0S ksinu
2

11d

Dx'

ldB
D G , ~55!

where we use the abbreviations

k5
ldBq

2\
~11d!, w5

1

\
up̄uldBdcosu. ~56!

Figures 2 and 3 show the~numerically evaluated! deco-
herence rates according to Eq.~55!. Figure 2 treats the situ
ation of an atomic beam that is fast compared with the th
mal velocities of the gas. The relevant length scalelD for the
decoherence is set by the de Broglie wavelength of the be
scaled by a mass factor,

lD5
d11

d

\

p̄
. ~57!

The strength of decoherence is governed by the rate
collisionsGc between gas and beam@cf. Eq. ~54!#,

Gc5(
q

G~p,q!. ~58!

For a fast beam,Gc is basically given by the collision rate o
the beam with resting gas atoms, i.e.,Gc.nsv, wherev is
the beam velocity. In this case, the decoherence rate refl

FIG. 2. The decoherence rateGD(Dx) due to collisions of a fast
atomic beam in a Boltzmann gas versus the width of the cohere
Dx. The parameters arepl0 /\540 andd50.1 (l0 is the gas’s
thermal de Broglie wavelength at a temperatureT0). GD is given in
units of the collision rate of the beam at a resting g
nsv5nsp/m, Dx in units of the thermal de Broglie wavelength o
the gas at a reference temperatureT0. Since the beam is fast th
decoherence strength is essentially given by the beam’s colli
rate at a resting gas. An increase in the gas temperature leads
further, but small increase in the collision rate. The typical len
scale of the decoherence is hardly temperature dependent, but
by the de Broglie wavelength of the momentum transf
\/q.\/p(11d)/d. Because this is rather sharply defined there
oscillations inGD(Dx), which will wash out with increasing tem
perature.
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basically the properties of the beam itself. However,
background gas subtly leaves its trace in the damping of
oscillations in the decoherence rate with increasing gas t
perature.

In Fig. 3 the opposite situation of a slow atomic beam
shown. Here, the length scale of decoherence is given by
thermal de Broglie wavelength of the gas, and the strengt
the decoherence is set by the rate of collisions between
thermally moving gas atoms and the beam atoms. Thus
decreasing temperature the decoherence gets weaker be
of the increasing thermal de Broglie wavelength and the
creasing rate of collisions.

B. Decoherence in a Bose gas

For a Bose background gas the decoherence rate ca
split up in a contribution due to the scattering at theexci

FIG. 3. The decoherence rateGD(Dx) due to collisions of a
slow atomic beam in a Boltzmann gas. The parameters
pl0 /\52 andd50.1.GD is given in units of the collision rate at
resting gas,Dx in units of the thermal de Broglie wavelength in th
gas at temperatureT0. The decoherence length is given by the
Broglie wavelength of the gas, the decoherence strength is give
the collision rate. Since the gas velocities decrease with decrea
temperature the collision rate and thus the decoherence streng
decreasing.
e
e
-

s
he
of
he
th
use
-

be
d

phase and, if present, a contribution due to collisions w
the condensate:

GD~ ur2r 8u!5GD
e ~ ur2r 8u!1GD

0 ~ ur2r 8u!. ~59!

From Eq.~54!, one obtains the decoherence rate due to
scattering by the condensate:

GD
0 ~Dx'!5(

q
~12ei /\q•~r2r8!!G0~ p̄,q!

5n0s
p̄

mH S 12
sin~Dx' /lD!

Dx' /lD
D

22E
21

0

dcosu
cosu

~1/z!exp$ldB
2 /~2lD!2cos2u%21

3F12J0S 2 cosusinu
Dx'

lD
D G J . ~60!

The first term of the second line of Eq.~60! gives the deco-
herence rate due to collisions with the condensate with
bosonic enhancement. It resembles the decoherence f
for light scattering@12–14#, thus referring to the similarities
between the two systems. The second term describes
bosonic enhancement of the condensate-induced deco
ence. It still involves an integration over the scattering an
u and must be evaluated numerically. The Bose-Einstein
tribution included in the integrand favors small values
cosuldB /lD . However, since at cosu50 the integrand van-
ishes, the realized scattering angles depend on the
ldB /lD : A fast beam will result in smaller values of cosu
and therefore in a smaller bosonic enhancement of transv
decoherence than a slow beam. Note that in accordance
the case of a fast beam colliding with a slow Boltzmann g
the decoherence length scale here is set bylD .

The decoherence rate due to the beam scattering a
excited phase is given by

re

by
ing
are
GD
e ~Dx'!5(

q
~12ei /\q•~r2r8!!Ge~ p̄,q!

5nes v̄
1

g2~z!
E dcosuE dk k

3
~21!

12b
lnF 12ze2~k1v !2

12zbe2~k1v !2G F12J0S ksinu
2

11d

Dx'

ldB
D G

22n0s
p̄

mE
21

0

dcosu
@~d21!/~d11!#2cosu

~1/z!exp$@~d21!~d11!#2ldB
2 /~2lD!2cos2u%21

H 12J0F2 cosusinuS d21

d11D 2Dx'

lD
G J .

~61!
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Here, we used the abbreviations

b5eldB
2 /\2d~q21pqcosu! ~62!

and

ne5
N

VFu~T2Tc!1S T

Tc
D 3/2

u~Tc2T!G . ~63!

ne5(N2N0)/V describes the density of the gas atoms in
excited phase. The integrals in Eq.~61! must be evaluated
numerically, taking special care of the integrand’s singula
at z51. The first term of the second line of Eq.~60! de-
scribes the decoherence by the bosonic enhanced fluctua
within the continuous phase, the second term gives
bosonic enhancement of the scattering due to collisi
which push a gas atom into the condensate. As we h
already observed for the scattering at the condensate, s
values of the transferred momentum are favored. There
we expect the strongest impact of the bosonic nature of
gas for relatively slow atomic beams.

In Figs. 4 and 5 the decoherence rates are shown for
scattering of an atomic beam from a Bose background ga
comparison to a Boltzmann gas one could expect a num
of new features in the scattering from a Bose gas: On the
hand the bosonic momentum distribution is different, fav
ing generally smaller gas momenta~especially zero momen
tum if a condensate exists!; on the other hand there is th
bosonic enhancement of the scattering due to quantum
tistical correlations within the Bose gas. This unique char
teristic of the Bose gas is not present in the classical Bo
mann gas.

Figure 4 displays the decoherence rate for a fast ato
beam traversing the gas. The situation turns out to be v
similar to that for a Boltzmann gas: The decoherence len

FIG. 4. The decoherence rateGD(Dx) due to collisions of a fast
atomic beam in a Bose gas versus the width of the coherenceDx.
The parameters areplc /\540 andd50.1 (lc defines the gas’s
thermal de Broglie wavelength at the critical temperatureTc). GD is
given in units of the collision rate of the beam at a resting g
nsv5nsp/m, Dx in units of the thermal de Broglie wavelength o
the gas at the critical temperatureTc . The bosonic enhancement o
the fast beam’s scattering is small because of the large mome
transfer in a collision. The situation resembles Figure 2. In cont
to Figure 2 the oscillations ofGD(Dx) are less strongly damped.
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is given bylD , the strength is set by the collision rate of th
beam. Thus, again, the decoherence rate is governed m
by beam properties. Nevertheless, the thermal propertie
the gas are displayed in the smoothing of the oscillat
behavior of the decoherence rate with increasing temp
ture. Note that because of the higher coherence of
bosonic gas compared to a Boltzmann gas at the same
perature the oscillations are somewhat stronger in
bosonic case.

However, the scattering of a slow beam at low tempe
tures shows a remarkable departure from the behavior for
Boltzmann gas: Figure 5 shows the decoherence rate f
number of different gas temperatures. While for temperatu
above the critical point the strength and length of the de
herence is similar to the Boltzmann case, we observe
temperatures at and below the critical point two new fe
tures. First, the length scale of the decoherence is incr
ingly stretched the deeper the temperature drops. Comp
son with Fig. 3 for the Boltzmann gas~note the different
ranges of the abcissa! shows that this is not only due to th
increase in the number of very slow atoms but a conseque
of the strongly augmented number of collisions with ve
small momentum transferq. Since the dephasing impose
onto the beam is less effective for smallq, this will produce
a larger decoherence length.

Second, the rate of collisions~here defined as the platea
value of the decoherence rate for largeDx) increases with
decreasing temperature due to the enhanced scattering u
reaches a maximum atT.0.6Tc . For lower temperatures th
collision rate—and accordingly the decoherence rate—dr
again. AtT50 the collision rate corresponds to the clas

,

m
st

FIG. 5. The decoherence rateGD(Dx) due to collisions of a
slow atomic beam in a Bose gas. The parameters areplc /\52 and
d50.1.GD is given in units of the collision rate at a resting gas,Dx
in units of the thermal de Broglie wavelength in the gas at
critical temperatureTc . Above the critical temperature the lengt
scale of the coherence decay is essentially given by the the
thermal de Broglie wavelength, the decoherence strength by
slow beam collision rate. In this regime the situation resembles
slow beam scattering in a Boltzmann gas~cf. Fig. 3!. However, at
and below the critical temperature the decoherence length is
ened and the decoherence strength increased due to the s
bosonic enhancement of scatterings with smallq. The bosonic en-
hancement of the scattering is at first increased, reaches a maxi
aroundT50.6Tc , and weakened for lower temperature.
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cally expected resultGc5nsv for the scattering of the beam
at a collection of gas atoms at rest.

Figure 6 displays the dependence of the collision rate
the temperature for a number of different beam mome
While for a fast atomic beam the bosonic enhancement of
scattering is barely visible, we find for the slow beam
strong increase in the scattering due to the bosonic enha
ment of the scattering. The enhancement fac
@11nBE(pG2q)# results in an additional scattering contrib
tion proportional tonBE(pG)nBE(pG2q) due to the bosonic
enhancement. However, this bosonic enhancement doe
prevail all down to zero temperature: The additional boso
contribution due tonBE(pG)nBE(pG2q) depends on the
availability of phase space for the gas atom not only bef
the scattering @nBE(pG)# but also after the scatterin
(nBE(pG2q)). Because the amount of available phase sp
at upGu.0 shrinks down to zero atT50, nBE(pG) vanishes
for upGu.0 and so does any bosonic enhancement pro
tional to nBE(pG)nBE(pG2q). Thus the quantum statistica
enhancement of the scattering will find a maximum value
some temperature between zero andTc where phase space a
upGu.0 as well as phase space atpG50 in the condensate is
available.

C. Effects of decoherence

In the absence of an external potential the solution of
master equations~50!, respectively, Eq.~53!, is given by

FIG. 6. The rate of collisions of an atomic beam in a Bose
versus the temperature for different momenta of the beam a
Here, the rate of collisions is defined as saturation value of
decoherence rate for very wide coherences (Dx540lc). It is given
in units of ns/(mlc). For the slow atomic beam (plc /\52) a
strong bosonic enhancement of scattering is visible even before
critical point is reached. Its maximum lies aroundT50.6Tc . For
larger beam momenta the bosonic enhancement of scattering is
weak. At very low temperatures the rate of collisions is reduced
nsv, as is to be expected classically. The quantum statistical
hancement of the scattering does not play a major role here, s
the number of atoms that could be accommodated in the contin
phase space and along with it the number of final states for the
atom after the scattering is steadily reduced.
n
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e

e
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e

r~r ,r 8,t !5 (
p,p8, r̄ , r̄ 8

e~ i /\!p•~r2 r̄ !e2~ i /\!~p2/2m!t

3e2GD~ u r̄ 2 r̄ 8u!tr~ r̄ , r̄ 8;0!

3e~ i /\!~p82/2m!te2~ i /\!p8•~r82r 8̄!, ~64!

wherer( r̄ , r̄ 8;0) is the initial density operator of the beam
The consequences of the loss of coherence after the be
passage through a background gas in an atomic interfer
eter can be read off from the interference pattern produ
by the beam. The intensity on the screen is proportiona
the probabilityr(r0 ,r0 ;t) of finding a single beam atom a
position r0 and timet on the screen. The initial condition
r( r̄ , r̄ 8;0), isgiven by the beam atom’s density matrix at th
entry of the interferometer at timet50.

If there are no collisions the evolution is entirely cohere

@GD(u r̄ 2 r̄ 8u)50#. In this case the probabilityP0(r0 ,t) to
find a beam atom at positionr0 in the interference pattern o
the screen is

P0~r0!5 (
p,p8, r̄ , r̄ 8

e~ i /\!p•~r02 r̄ !e2~ i /\!~p2/2m!t

3r~ r̄ , r̄ 8;0!e~ i /\!~p8 2/2m!te2~ i /\!p8•~r02r 8̄!.

~65!

In the case of an incoherent evolution in the presence
collisions, we can calculate from Eq.~64! the probability
Pcoll of finding a beam atom at positionr0 on the screen:

Pcoll~r0 ,t !5 (
r̄ , r̄ 8

e2GD~ u r̄ 2 r̄ 8u!t (
p,p8

e~ i /\!p•~r02 r̄ !

3e2~ i /\!~p2/2m!tr~ r̄ , r̄ 8;0!

3e~ i /\!~p82/2m!te2~ i /\!p8•~r02r8!. ~66!

By inserting

15E d3DE d2ke2 ik•~r2r82D! ~67!

we obtain

Pcoll5E d3De2GD~ uDu!t (
r̄ , r̄ 8

1

~2p!3

3E d3keik•[ D2~ r̄ 2 r̄ 8!]

3 (
p,p8

e~ i /\!p•~r02 r̄ !e2~ i /\!~p2/2m!tr~ r̄ , r̄ 8;0!

3e~ i /\!~p82/ 2m!te2~ i /\!p8•~r02 r̄ 8!. ~68!

Using the definition ofP0 ~the probability without back-
ground gas!, the probability of finding a beam atom at pos
tion r0 in the presence of collisions can be expressed as
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Pcoll~r0 ,t !5
1

~2p!3E d3kG~k!P0~r01\kt/m,t !, ~69!

where we have defined

G~k!5E d3Dei D•ke2GD~ uDu!t. ~70!

Hence the position density in the presence of collisio
Pcoll(r0 ,t), is the convolution of the coherent position dist
butionP0(r0 ,t), in the absence of collisions, with a collisio
kernel G(k). The momenta\k here do not refer to single
collisions, but correspond to the sum of recoils experien
by the atom in the course of the interaction. Thus the coh
ent position distributionP0(r0 ,t) is smeared out due to th
collisions with the background gas. The smearing facto
given by the Fourier transform of the decoherence r
GD(uDu).

D. Visibility

We will now investigate the influence of decoherence
the interference pattern behind a double slit in greater de
The coherent probability distribution is given by the modu
square of the beam wave functionc(r0 ,t) on the screen,

P0~r0 ,t !5uc~r0 ,t !u2, ~71!

where

c~r0 ,t !5(
p

e~ i /\!r0•p2~ i /\!~p2/2m!t(
r

e2 i /\p•rc~r ,0!.

~72!

The initial wave functionc(r ,0) describes the beam ato
within the double slit:

c~r ,0!5
1

A2
@s~x2xL!1s~x2xR!#f i~y,z!. ~73!

Here, s(x) gives the wave function’s profile within one o
the slits.f i(y,z) describes the longitudinal degrees of fre
dom of the beam, which will be neglected in the followin
In a first approximation to an experimentally realistic tran
mission profile we takes(x) to be a Gaussian of widtha.
After integrating Eq.~72! and replacing the time of flightt of
the beam over the distancel to the screen byt5 lm/ p̄ , we
obtain for the wave function on the screen

c~x0!}ei [x02xL)2/2l ] ~ p̄ /\!e2[ ~x02xL!2/ l 2] ~a2 p̄2/4\2!

1ei [ ~x02xR!2/2l ] ~ p̄ /\!e2[ ~x02xR!2/ l 2] ~a2 p̄2/4\2!.

~74!

If the screen is in the far field of the diffraction (x0@xL ,xR)
we can approximate the diffraction angle by

x02xL

l
.tana.

x02xR

l
~75!

and obtain
,

d
r-

is
e

n
il.

-

-

c~x0!}e2tan2aa2 p̄2/4\2
ei ~1/2!tanax0~ p̄ /\!~ei ~1/2!tanaxL~ p̄ /\!

1ei ~1/2!tanaxR~ p̄ /\!!. ~76!

This yields

P0~x0!}e2tan2aa2 p̄2/2\2F11cosS 1

2
tana

p̄

\
(xL2xRD G .

~77!

In the limit of a wide slit separation (a!uxR2xLu) we can
neglect the modification of the central interference pattern
the diffraction at the single slits. This yields for the diffra
tion pattern

P0~x0!}11cosS 1

2
tana

p̄

\
~xL2xR! D . ~78!

The position distributionP0(x0) is directly proportional to
the diffraction pattern on the screen.

The resolution of the pattern can be characterized by
visibility V:

V5
P0

max2P0
min

P0
max1P0

min
. ~79!

From Eq. ~77! we calculate the visibility of the coheren
diffraction pattern~without collisions! as

Vcoh51. ~80!

Relation ~69! allows us to obtain the incoherent diffrac
tion pattern easily in terms ofP0:

Pcoll~x0!}11e2GD~xL2xR!~ lm/ p̄ !cosS 1

2
tana

p̄

\
~xL2xR! D .

~81!

Because of the collision-induced decoherence effect, the
ibility is reduced to

Vcoll5e2GD~xL2xR!~ lm/ p̄ !. ~82!

The visibility of the incoherent diffraction pattern renders
direct image of the decay of the beam’s coherence behind
slits. The result~82! in principle holds for a grid as well,
since the visibility behind a grid is essentially determined
the interference between neighboring slits.

Figures 7 and 8 show the visibility of the interferen
pattern produced by a slow~fast! atomic beam traversing a
Boltzmann gas as a function of the gas temperature fo
number of different slit separations. Since for a slow be
the decoherence length is essentially given by the gas’s t
mal de Broglie wavelength, a decrease in temperature res
in a longer decoherence length and thus in a higher visib
in Fig. 7. However, in Fig. 8 the temperature dependenc
mainly due to the smoothing of the oscillations in the dec
herence rate~cf. Fig. 2!. This leads to an ‘‘anomalous’’ be
havior of the visibility, producing lower visibility with lower
temperature.

In Figs. 9 and 10 the visibility of the interference patte
after traversing a Bose gas are presented. Figure 9 treat
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case of a relatively narrow slit separation: Here, the situa
is qualitatively similar to the results for a Boltzmann ga
The lower the temperature, the higher the visibility. A
though for slow beams the quantum statistical enhancem
of the scattering is considerable, it does not contribute es
tially to the decoherence of the beam, since for a narr
coherence the enhancement in scattering is compensated
stretching of the decoherence length, so that the decoher
rate does not depart considerably from the situation enco

FIG. 7. The visibility V versus the temperatureT for a slow,
heavy beam traversing a Boltzmann gas (pl0 /\52,d50.1). Here,
the time of flight through the gas ist5Gc(T0)21, i.e., at tempera-
tureT0 there is approximately one collision between the double
and the screen. Enlarging the width of the coherenceDx leads to a
stronger decay of the visibility with temperature.

FIG. 8. The visibility V versus the temperatureT for a fast,
heavy beam traversing a Boltzmann gas (pl0 /\540,d50.1).
Here, the time of flight through the gas ist50.25(nsv)21, i.e.,
there are approximately 0.25 collisions between the double slit
the screen. Since atDx5l0 the decoherence rate is maximum~al-
most independent of temperature! the visibility for this curve does
not vary appreciably with temperature. ForDx52l0 the visibility
shows an anomalous temperature dependence: In spite of a dec
in temperature the visibility worsens. This relates to the damping
the oscillations in the decoherence rate with increasing tempera
which leads to an increase of decoherence for dropping temp
tures atDx52l0.
n
.
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tered in a Boltzmann gas. Nevertheless, for a wide slit se
ration the quantum statistically enhanced scattering has
full impact on the visibility: Figure 10 displays the visibility
versus temperature for a number of different beam velocit
As already pointed out, around the critical point the decoh
ence and therefore also the loss in visibility are strongly
creasing because of the wide coherence of a slow beam
fixed volume and particle number, the visibility reaches
minimum at aroundt50.6Tc . For even lower temperature
the visibility increases again, according to the diminish

it
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re,
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FIG. 9. The visibilityV versus the temperatureT for Dx52lc .
The curve is plotted for six different beam momenta. The time
flight through the gas is given such that the fastest be
(plc /\522) experiences on average one collision. Since for s
beams below the critical point the decoherence length scale is
tended the visibility is improved in this regime. However, for fa
beams, due to the only weak temperature dependence of the d
herence the improvement of the visibility is small.

FIG. 10. The visibilityV versus the temperature forDx540lc .
The curve is plotted for six different beam momenta. The time
flight through the gas is given byt5ns\/(mlc). For small mo-
menta there is a marked reduction of the visibility due to t
bosonic enhancement of scattering around the critical tempera
However, for very low temperatures the excited phase begins t
depleted, so the bosonic enhanced scattering is reduced, leadin
recovery of the visibility. AtT50 this results in the expected clas
sical picture of beam collision with a resting gas.
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scattering. The loss of beam coherence around the cri
point as observed in the diffraction pattern is entirely due
the quantum fluctuations of the Bose gas around the crit
point. Thus we see here the signature of Bose-Einstein c
densation taking place.

IV. CONCLUSION

In this paper we have studied how atom interferome
may be used to investigate the coherence properties
dilute gas traversed by an atomic beam. Special atten
was paid to a condensing Bose gas. Since the visibility of
interference pattern depends on the coherence of the b
one can infer the decoherence suffered by the beam from
loss of visibility. In turn the decoherence may be used a
probe for the coherence properties of the traversed med
interacting with the beam. Thus the strong forward scatter
of a heavy beam in connection with the small probability
multiple scattering constitutes an effective probe for inve
gating a gas. To study the probing theoretically we derive
master equation for the beam atom, restricting ourselve
two-body collisions ands-wave approximation. Special car
was taken to derive a Lindblad form of the master equat
thereby ensuring the positivity of the beam’s density ope
tor in the course of the interaction. We have found that o
should distinguish between two qualitatively different situ
tions: An atomic beam that is either fast compared to the
velocities or slow. In the first situation, the decoheren
length is essentially determined by the de Broglie wa
length of the atomic beam itself, scaled by a factor accou
ing for the ratio between gas and beam masses. The stre
of the decoherence is set by the classical rate of collisi
between the beam atom and the almost resting gas at
The second situation, namely, the slow beam, enables
observation of the gas properties in the beam decohere
The decoherence length is set by the gas thermal de Bro
wavelength, the decoherence strength is given by the ra
et
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collisions between gas and atoms. If we study the scatte
in a condensing Bose gas we encounter a quantum statis
enhancement of the scattering, especially for small mom
tum transfer. Whereas the smallness of the momentum tr
fer for narrow beam coherences compensates the enha
scattering, thereby masking the quantum correlations in
gas as observed in the interference pattern, one can se
full impact of the quantum statistically enhanced decoh
ence in the marked decrease of visibility around the criti
point. Although we have treated here the decoherence o
atomic beam in an ideal and free gas the results here poi
the possibility of observing the signature of Bose-Einst
condensation in trapped gas via atomic interferometry. Ho
ever, very close to temperatureT50 weak interatomic inter-
actions will spoil the picture given by an ideal gas: Diag
nalization of the weak interaction, e.g., by a Bogoliub
transformation, will lead to a linear quasiparticle dispersi
relation for small energies. Since the excitation of a qua
particle from the quasiparticle vacuum to a quasiparti
state on the linear branch of the dispersion relation b
collision with a beam atom is forbidden due to energy a
momentum conservation a gas atT50 will not transfer mo-
mentum to the beam, the gas thus being transparent to
beam. This effect analogous to superfluidity will prevent d
coherence and therefore lead to perfect visibility atT50.
This means that via atom interferometry it is not only po
sible to observe the onset of Bose-Einstein condensa
thanks to quantum statistically enhanced scattering but
the transition to a regime in the vicinity ofT50 where the
weak interactions within the gas become dominant compa
to the near ideal behavior of the gas at higher temperatu
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