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Paraxial light and atom optics: The optical Schralinger equation and beyond
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Paraxial light and atom optics are compared. To lowest order the slowly varying amplitude of a light field
in a dielectric medium with a spatially dependent refractive index satisfies an equation which has the form of
a Schralinger equation: the “optical Schdinger equation.” The unsystematic procedure of neglecting certain
second-order derivatives is replaced by a systematic expansion which allows the calculation of consecutive
corrections. The general theory is applied to harmonic motion in a graded index fiber and to tunneling between
coupled fibers. The physical relations between wave evolution of massive particles and paraxially propagating
waves are elucidatefiS1050-2947®7)00710-5

PACS numbegp): 03.75-b, 42.50-p, 42.25.Bs, 03.65:w

[. INTRODUCTION evolution of a massive particle, and Sctiimger-like behav-
ior emerges. Marcuse argues that this is approximately cor-
Much interest in physics has recently been directed torect, provided that the variation of the refractive index is
wards time-dependent phenomena connected with wavemall over the distance of the optical wavelendih but no
propagation. Waves appear in many forms, but the two moststimate of the error is given. To investigate the consistency
fundamental ones are derived from the propagation of elemf the paraxial approximation, one must find the wave cor-
tromagnetic radiation and the matter-wave picture of massiveections to the particlelike behavior. This has been done by
particles. The former are described by Maxwell's equationd.ax, Louisell, and McKnigh{6] (cf. also the Appendix in
and the latter by the nonrelativistic Scinger equation. [7]). They find that the approach is consistent, since devia-
Experimentally the demand for fast optical communicationtions from the simple scalar paraxial wave equation are of
has inspired investigations into pulsed propagation, and thkhigher order in a small parameter; their work can form the
technology of pulsed lasers has enabled the researchers ltasis for a more detailed discussion of the “radiation correc-
follow microscopic time evolution in atoms, molecules, andtions” to the paraxial equations.
semiconductor structures. In this work, we compare the Schiimger wave mechan-
The physical properties of matter waves differ from thoseics with the classical electromagnetic theory. From a funda-
of electromagnetic radiation. Schiinger’'s equation leads to mental point of view this is the correct procedure. The theo-
dispersion of the wave packets and distortion of the initialries are at the same conceptual level, the wave function of a
pulse shape. In Maxwell's case an initial pulse can propagatphoton is just the classical electromagnetic field; this fact has
in a passive dielectric without distortion. The massless elecrecently been emphasized by Bialynicki-Birul&]. Both
tromagnetic waves have a constant velocity independent afiave theories can, of course, be subjected to second quanti-
energy in contrast to the matter waves. In addition, the eleczation. This has been discussed within the paraxial approxi-
tromagnetic field is a vector quantity. It is, however, knownmation by Deutsch and Garris¢f].
that in the paraxial approximatiofi,2], propagation along We are going to follow the work in Ref6] and develop
the principal axis of the wave vector can simulate the timea consistent approximation scheme giving the paraxial
evolution in the Schidinger case with the position variables matter-wave equation in the lowest order. Because this de-
representing the transverse coordinates of the paraxial rayscribes the wave dynamics of a massive particle, we can
If we, in addition, assume that the dielectric properties of thediscuss many of the phenomena recently investigated in
medium depend on position, the lowest-order paraxial equaatom optics, such as dispersion, interference, and tunneling.
tions are found to be identical with the wave equation ofin the lowest paraxial approximation, these will appear ex-
guantum mechanics; this analogy can be developed to a coactly as in the Schidinger case, except that the propagation
siderable extenit3,4]. follows the axial direction instead of time. Experimentally all
In a homogeneous dielectric, the electromagnetic wavef these phenomena can be investigated in optical fibers
propagation can always be discussed from a frame movinfR,10], and because of their interest to communication tech-
with the velocity of light in the medium. In an inhomoge- nology, the experiments may be both interesting and fea-
neous medium, moving along the axis of the system does natible. As long as the fiber can be regarded as a linear me-
correspond exactly to the progress of time because the melium, it may be used for analogous simulations of various
dium introduces a velocity dependence into the equationsnatter-wave phenomena of recent interest in atom optics
Introducing a scalar paraxial wave equation destroys some ¢il1-14.
the vector properties of the radiation fields. The formulation, So far the analogy is precise but also a little trivial. Inter-
however, allows the interpretation of the propagation as thesting questions arise if we ask when and how the electro-
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magnetic wave propagation starts to differ from Sclimger  where ¢(x,y;7) is the scalar amplitude of the electromag-
propagation. This can, of course, be investigated by solvingetic field, andv? is the two-dimensional transverse Laplac-
the exact Maxwell equations and comparing the result withan; see below for a systematic derivation. It is easily seen
that of the paraxial approximation. Here we take a differenthat this equation is identical with the nonrelativistic Schro
approach; we compute the lowest-order correction to thelinger equation describing the propagation of a massive par-
paraxial result. In this manner we can see directly where thécle in two dimensions, cf. Ref3]. The optical effective
approximation has to be corrected and what form the correamass is found to be

tions will take. Because we are especially interested in these

corrections, it is advantageous to evaluate them directly. By Mop= (fikoNo) 2.

solving the corresponding Maxwell equations, we can then

estimate when the approximation used becomes inadequatEhus the heavy mass limit, corresponding to semiclassical
which defines the range of validity of our conclusions. Non-behavior, appears when the wavelength of the propagating
paraxial corrections to light wave propagation are currentlyfield becomes short compared with the rate of change of the
an active field of researctcf., for example, Ref[15] for ~ optical potential

optical applications or Ref[16] for a mathematical ap-

proach, but the aim of the present paper differs from these 1
investigations in its intention to compare the propagation of opt— " o
light and matter waves.

In Sec. Il the paraxial wave equations are derived startingor g detailed discussion of the emergence of this limit, see
from Maxwell’'s equations: First the paraxial approximationsec. v. The validity of the paraxial approximation does,
is carried out in the usual way, then a systematic expansiofowever, impose a limitation on the optical potential. This
which enables the calculation of higher-order corrections isnystnecessarilybe a small perturbation on the free propa-

formulated. The general theory is applied to the examples ofation for the condition Eq(1) to make sense. The ampli-

Section IV provides a summary and discussion of the result 2(x,y,7-)—n§] is small in a definite sense that will be
and an outlook to possible extensions of the theory. The ful o

) X A pecified below.
vector equations and alternative forms of the expansion are
given in an Appendix.

nZ 4

nz(r)—ngl

B. Maxwell theory in an inhomogeneous medium

We start our discussion from the Maxwell equations in

Il. SETTING UP THE PROBLEM the ordinary form

A. Aims and scope

J J

We are going to consider the propagation of electromag- ~ —-D(r,t)=VXH(r,t), —B(r,t)=—VXE(r,1),
netic waves in anonochromatic and paraxial approxima-
tion; this assumes that the amplitude of the fields varies spa- V.D(r,t)=0, V-B(r,t)=0 )
tially much more slowly than the wave propagation in the ' ' ’ '
principle directionko=koe;, so that all propagation vectors The equations are supplemented by the relations
transverse to this are assumed small. Thus we introduce the
approximation D(r,t)=&(r)eoE(r,1),

J°E

972

<kof;_'; n B(r,t)= oH(r.1), ()

wheree(r) gives the spatial dependence of the inhomoge-
neous medium(at the optical frequencw); the magnetic

whereE is the slowly varying electric field amplitude. polarizability of the medium is neglected. The spatially vary-
Within the approximation defined, the steady statejng gielectric constant is used to define a position-dependent
paraxial propagation occurs in the direction refractive index
_ T . n%(r)=e(r). )

In free spaceaadiation problems, we introduce the potentials
A and® through the definitions
wheren, is the constant bulk refractive index of the back-

ground medium. In the steady state, we can interpret the AA(r,t)
variabler as a time and write the propagation equation in the E(r,)=- at +Vo |,
form
B(r,t)=VXA(r,t). (8)
4 ?
1 —— (XY )=~ 5 tVf H(X,y;7) With the Lorentz gauge condition, the wave equations for the
op

two potentials separate, and in the Coulomb gauge all radia-
+Vopl X, Y: 1) (XY 7), (3)  tion effects can be restricted to the transverse components of
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the electromagnetic fields. Then the vector poterfialon-
tains all radiation effects and the scalar poterfiadlescribes

XA

the electrostatic interactions.
In an inhomogeneous medium the choice

V-A=0,

d=0 9

is not consistent, even when there are no external charge
present, except in some very special cases, some of whic
are discussed below. However, for monochromatic radiation
propagating through an inhomogeneous dielectric it is still
possible to eliminate one of the electromagnetic field vectors,
as in the vacuum case, but the ensuing equations contai
additional terms deriving from the space variation of the me-
dium. We find

2
(V2+s(r)w—2)E=V(V-E)=—V[V(Ins(r))-E] (10
C

and FIG. 1. Polarization configuration that gives rise to a scalar
wave equation for th& field in a plane-stratified medium.

H=—V(Ine(r))X[VXH(r,t)]. (11)

2
V2t o(r) e _ 2
c2 E(x,2) =g&(x)e'" (15

For the second form of Eq10) we have made use of the Here, as throughoutz is the propagation direction. Obvi-
third of Maxwell's equationg5), ously this field is transverse, and the field amplitdidg) is
from Eqg. (10) found to satisfy

V-E=—-V(Ine(r))-E. (12
2 2
Since a nonzero divergence Ex_ﬂea_tds to a coupling betwee_n d_ + S(X)“’_ — k2| |&x) =0, (16)
the components of the electric field vector, these equations dx? c?

are much harder to solve than the corresponding vacuum

equations. But certain simple cases which are characterizeghich is clearly of the form of a time-independent Sehro

by dinger equation. With this solution, the magnetic field vector
cannot be chosen transverse, but becomes

E LVe(r), (13
I ; L 1 ‘
resulting in ascalarwave equation for the electric fie[d 7], H(x.z)= — P& (X)e+ kE(x)e ]e < 1
are easily treated. We proceed to discuss these special cases (x.2) w,uo[ (x)8, kE(x)e]e ™. 7

and relegate the general vector case to the first part of the
Appendix. This solution is sometimes also referred to as a TE mode
[2,10. It allows one to describe the propagation of the radia-
C. Stratified media tion in terms of transverse fields, and it leads to simple

Many physical systems, such as the atmosphere and tecgchr(dmger-llke behavior of the field amplitudes. In our ap-

nologically fabricated dielectric devices, possess a layere
structure[ 18], such as, for example, planar waveguides; tha
is, the dielectric properties vary only in one direction, as
depicted in Fig. 1. Foe =¢(X), for instance, the gradient of
the dielectric constant becomes

roximate expansion later in the paper we will concentrate
n this type of solution. In order to see the limitations of this
pproach, we briefly consider some other situations too.

2. H-wave solution

In this case we choose the magnetic field transverse to the
Ve(r)=¢'eg,. (14  gradient of the dielectric,

This allows several simple solutions as discussed in Refs. H _ ikz 18
[2,10,19,20. (X,2) =g H(x)e'"* (18)

1. E-wave solution Equation(11) now becomes

First we investigate a solution with the electric field vec- d( 1 dH(x 2 2
tor linearly polarized in a direction transverse to the gradient _< _) + ( il _K_) H(x)=0. (19
of the dielectric properties and set dx\e(x) dx c? e(x)
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This is not of the form of a simple Schiimger equation, but transverse Cartesian coordinates can of course be combined
is a similar eigenvalue problem. The electric field vector isinto a single equation for the tangential compon&pir),

now found to be
2

1d 1) ) 1
S(r)g—K _r_z

v dr

d

r—|+
dr

£4(r)=0. (26)

1 )
E(x,z)= Sos(—x)w[iH’(x)eﬁ kH(x)g]e'" % (20

. L The magnetic field has radial and longitudinal components,
This solution is also called a TM mode. 9 9 P

From Eq.(20) we can see that it is not always possible to 17 1d .
choose the electric field vector such that it is transverse to the H(r,z)=— —[i ——[réy(r)le,+ k&y(r)e e'z,
L . ool T dr
direction of propagation. Because of tlkedependence of 27)
e(x), the divergence oE is found to satisfy Eq(12). For a
wave propagating with a longitudinal field component, nOFor weakly confining cylindrical wave guides with a very
simple gauge allows a separation of the evolution equationgeak rate of change of the refractive index, it is even pos-
of the two potential functions. sible to approximate the solution by a linearly polarized TE
wave[10].

3. Normal incidence

A ftrivial solution in the stratified medium can be found IIl. A SYSTEMATIC EXPANSION
when the propagation coincides with the direction of the gra-
dient of the dielectric. Then we can choose the solution in
the form From now on we will concentrate on wave packets con-

) sisting of superpositions of TE-type solutions propagating,

E(z)=goexdie(2)], (2)  e.g., in a stratified medium or in a circularly symmetric fiber
with an appropriately chosen transverse refractive index pro-
file n(r,). Let us denote the generic component of the elec-

A. The perturbation equations

where ¢(z) satisfies an equation of the Riccatti type,

5 tric field satisfying the scalar wave equationBfr). Pulling
io"(2)— @’(z)2+w—s(z)=0. (22) out a “carrier plane wave” propagating in tlzedirection we
c? write
Assuming slow spatial variation and neglecting the second E(r)=exfikonoz—iwt]y(r), (28)

derivative, we obtain a solution of the eikonal type. The . . o
calculations in the Appendix also utilize the freedom toWhere the mean propagation vector in vacuum is introduced
choose the functionp(r) in an arbitrary way to eliminate S
some part of the spatial dependence of the solution. ®
Ko=— (29
D. Cylindrical symmetry ¢

In cylindrical waveguides and optical fibers, the refractiveand ny stands for the bulk refractive index of the medium.
index often changes radially only. If we choose the axis ofFrom Eq.(10) the slowly varying amplitude/(r) is found to
the cylinder to be the propagation directian we have satisfy the equation
e=¢&(YX?+y?). Such a symmetrical waveguide provides,
besides the TE waves in planar waveguides, and(ives- _ 5 n2(r,)w?
dimensional example allowing special solutions which sat- (V+ikonoe,) ‘ﬂ(r)_T (r)=0. (30)
isfy a scalar wave equation. As before, we seek a transverse

solution with&,=0, i.e., This equation is the starting point for our approximations.

- iz We next introduce a small parameter, the anglebe-
E(Xy,2) =[E(X,y) et Ey(X,y) e ]e . @39 tween thek vector and the vectdky=Kkqe,. Defining

Fields with zero component along the radial unit vector

& =cosp e,+sing g, in cylindrical coordinatesr(, ¢,2), ©=2(ko k), k=kotq 3D
&= Ex(x.y)cosp+E,(X,y)sing=0, (24 We et
are orthogonal to the gradient efr); from Eq. (12) it fol- 0 ~|sin®| :M, :M. (32)
lows immediately that the componerfigx,y) and&,(X,y) kot kot
then decouple, each satisfying the scalar @6). We thus .
choose Thus the transverse deviations of the wave vector scabe, as
and the longitudinal ones 2.
E(r,z)=8¢(r)e¢ei"z, (25) In order to obtain a series expansion@n we introduce

the appropriately scaled variables:
where e is the unit tangential vector _
e,= —Sing .+ cospe,. The two scalar equations for the r, =0koner, , (33
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F= ®2k0nOZE®27-/h. (34) TABLE I. The first felv “optlc':al E(}fgectlons" as a function of
a(z)=—(i/2)zE;.

In the latter expression far we have used the definitia@).

. i i 2w (3= (3)/c
Thus the plane wave exponential scales as Order Additive correction ternC***'(z)=c,”(z)/c,
- =1 CO(F) = a(z
exfdikonoz]=exdiz|0®?], (35 (2)=e(2)
w=2 a(z)?

CNZ)=a(Z)E,+

which gives rise to fast oscillations over rangeszobf the 2!
order unity. Introducing these scaled variables into 89) =3 _ i (D)~ a(Z)P
we obtain CO(z)=a(z)2E2+ 51 2B+ —5;
u=4 ~ —irmn a(2)%—, a(Z)® . a(Z)*
J = 7 ®)(Z)= B3+ B2+ E,+
02(1 KB~ K+ 21 O nBKE + 02k g 04 S S A TR AR N A
0z Jz
=0. (36) J o
i——H, [¢9(,;2)=0, u=0 (41)
Rearranging the terms, we obtain the equation in a form Jz

suitable for a perturbation treatment,

. d
i&—lﬂz —E’sz— 1 [nz(a_)—ng _2 azw {IE_HL
2 L 22\‘ ng

2

-~ 19 - -
P 2)= =g =y 2),

2 472
(37) p=123... (42)

9z

When the term of orde©(0?) is neglected, we find the With

Schralinger-like equation of the paraxial approximation. In

order for this to be consistent, we require that the deviations H =— E“V’z My (43)

of the refractive index from its bulk value, must be small + AR

in such a manner that _
and V,,; defined in Eq.(39). We see that only the lowest-
order amplitudey(?) is a solution of a proper Schdinger

=0(0?). (38  equation(41); the higher-order “optical corrections” are de-

termined by the inhomogeneous equati¢43).

Now we solve the above hierarchy of equations by deter-

- 2
nz(ri)_no

2
No

This assumption is similar to the one made in Réf. o i ~g~ _
When we neglect the last term in E@7) and restore the Mining the eigenbasi$e,(r,)} of H, and expanding the

original space variables and the “time?, we find the opti-  zero-order amplitude/)(t, ;Z) in this basis,
cal Schralinger equatiori3) with the “potential” given as in

Eq. (4). Because of the scalin@8) we introduce the effec- 0T 3y— (0) o iE, 7S/~ ”
tive potential po(r;2) EV: c,e @(ry), (44)
_ 1 [n?(r)—n} with “time"-independent coefficients(?) . Since the Hamil-
opt™— 202 n2 | (39 tonianH, is “time” independent in the present case, it com-
0

mutes with#?/9z2, which means that the right-hand side of
which is assumed to be of ord@°~1. Eq. (42) also represents a solution of the homogeneous equa-
tion (41). Setting

B. The iterated solution _
: . . Cw(Y Z)= (2u)(F\a—iE,z2S(T
In order to determine the lowest-order corrections explic- p(riz) Ey c,"(z)e @)(ry), w#0

itly, we expand the “wave function’y(T, ;Z) in a power (45)
series of®, _
with z-dependent coefficients, we get the recurrence relation

o

w(ri2)= 2 @ (T ;7). 40 i . i
=0 @) (3= _h2u=2)F\VLE ~u-2)F\_ _F2.2u-2)F
m c, " (z) 5Cy (z)+E,c, (z) 2Eycv (2),
From Eq.(36) it is obvious that only even powers éf are (46)

required here; this is a special simplification holding only for ] o ) _ )
solutions of the scalar type, where the right-hand side of Eqvhere dots represent differentiation with respecztoThis
(10), which introduces odd orders, is zefaf. the section on  €an easily be solved by iteration, assuming the “initial con-
the general vector case in the Appendixsertion and com- dition” ¢{?*)(Z=0)=0 for u>0; the first few orders are
parison of the coefficients ®2# directly yields given in Table I.
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Returning to unscaled variables and defining In this work we are satisfied with applying the straight-
forward perturbation approach leading to unbounded secular
E,=ES/0? (47)  terms. The reason is that we want to evaluate the validity of
the zeroth-order solution and compare this to the exact elec-
which gives rise to the notational identities tromagnetic propagation following from Maxwell's equa-
tions. It is then expedient to have an expression for the first-
E,z=E3kongz=E>7/#, (48)  order correction, which can be evaluated and compared both
with the zeroth-order solution and the correct result. It seems
we get, to first order, pointless to attempt a valid long time expansion, when the
exact result can be obtained from the computation of Max-
wr =3 c(VO)e*‘EET”‘goV(rL) well’s equations.

14

. IV. APPLICATIONS OF THE THEORY
| 2T .S
+EV C(VO)( - 5) ES 7 e B (r )+ A. General

In the present section we illustrate the theory by applying
it to some explicit examples of two-dimensional waveguide

Note that, due to the definition E42), #/# and therefore structures with a refractive index depending on only one

also Ef are dimensionless. The second term immediatel)}rgnusé‘iegieo;:?ﬁéd'?gé?érrg t:ona(lxs?c’:;:lgrlCc:rjag(lawgiyhilsogvesetr?ihown
gives a rough estimate for the typical propagation “times” P '

after which the validity of the truncation after the lowest- above. Such potentials can be manufactored by modern di-

order correction term breaks down; this happens for times o‘f'e‘:t.”c layer deposition technlques. We proceed as f.OIk.)WS:
the order i) First we solve the propagation of the scalar electric field

E(x,2z) by calculating the eigenfunctions of the Helmholtz
ool hi=2(ES )2 (50) equation;(ii) then we compare this with the time-dependent
cor C solution of the optical Schbnger equation for the same
. s . . . initial condition; (iii) finally we add the higher-order “opti-
with EVo being a typical eigenvalue of the problem. For cal corrections” to the Schubnger solution to get a better
7=~ Teorr the modulus of the first-order correction coefficient approximation of the Helmholtz solution.
approaches unity; clearly for such propagation times trunca- Before we carry out this procedure, let us first make a
tion after the first-order correction fails and more terms haveyeneral observation. The propagation of an initial wave
to be kept. Numerically it has turned out to be useful to takepacket along the waveguide is simply given by the superpo-
the eigenvalue belonging to the eigenfunction of maximunsition
overlap with the initial wave function as a typical choice for
E‘:’O. From Table | we infer that the correction coefficients

grow according to power laws ir, C?oc 7%, Thus the
truncation of the infinite series makes sense only provided
that the modulus of the highest-order coefficient taken intovhereh, represent the expansion coefficients of the initial
account is considerably less than unity; see the discussiofiave packet in the eigenfunctiofig! (x)} of the Helmholtz
about the validity of the numerical results at the end of theequation
next section.

Equations(41) and (42) give an example of a set of sin- V2E(x,2) +kgn?(x)E(x,2) =0. (52
gular perturbation equations; the zeroth-order solution turns
up as a singularity in the inversion required in all subsequenRewriting this equation as an eigenfunction problem
orders. Such perturbations are known from many problems
in physics, starting with the secular perturbation theory of
planetary motion. A straightforward computation of the cor- - ﬁﬁ(x)_ k5n2(x) @5 (x) =Ef ot (x),
rection terms leads to unbounded terms in the time evolution,
just as in the present case. These limit the range of validity of
the result and fail to describe the long time behavior cor-
rectly. Applied mathematics has developed a variety of . L . .
metgods EcJ(E)treat such systems; the most efrlzicient one is}tlaasggq companng this W'th.the time-independent form of the

: . . optical Schrdinger equation,

on a multiple-time-scale expansipai].

(49

E(x,2=2, h,¢l(x)e*?, (51)

2

with Ef'=—k2, (53)

The present problem shows many similarities with the 2
mathematical model for the operation of the free-electron —a—zpf(x)—kﬁ[nz(x)—né]gpf(x):Zkéanfgof(x),
laser[22]. Here the appearance of nonsecular unbounded X2
terms does not cause any complications, because the gain is (54

evaluated for a limited time period only. It has, however,

been show23] that the use of a multiple-time-scale expan-we immediately see that the corresponding eigenfunctions
sion allows one to construct a perturbation result that gives &¢''(x)} and{¢3(x)} coincide, but belong to different eigen-
good approximation for both short and long time periods. values, i.e.,
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Fy(x: 1) Fo(x; 1) - F(x: 1)
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J’ ‘ FIG. 2. Position distribution of the Schro
\\lV\ A dinger wave packet in the harmonic potential
1 \O}K | 1| Qﬁ | and differences between the Scttirmger and the
/‘ 0@Q Helmholtz position distributiongb) for an initial
‘ [ ' H Gaussian wave packet withx,=0 and
‘ \ N; AXo=0.8AXq, (“squeezed vacuumy; in (b) the
| ‘\‘!ﬁ ‘ i | @ i differences grow to a maximum of about 5%.
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(@) (b)
EY=k3n3(2ES—1) for ¢"(x)=¢3(x). (55)  vacuum;\ serves as a typical length scale of the problem.

The interaction timer increases to twice the harmonic oscil-
lation time 7yo=27/ wyo -

The differences between the Helmholtz and the Schro
One of the simplest possible examples to test our theordinger solutions are illustrated for two initial conditions. In
on is harmonic motion. We assume that the refractive indexig. 2 we have chosen an initial Gaussian wave packet with

is a quadratic function of the transverse coordingte its width Ax, being 80% of the widthA X o= 1/7/2kongx Of
2 the ground state in the harmonic potential and an initial dis-
n*(r)=ng(1-x*°). (56 placemenk,/A=0; i.e., a “squeezed vacuum” in the quan-
tum optics language. In Fig. 3 the initial width is equal to
nAxcoh andxy,/A=—1, i.e., a “coherent state.” In the first
case the width of the Schidinger position distribution, de-
picted in Fig. 2a), undergoes a “breathing” evolution,
Vip(X) = ;szz (57) which may be viewed as a built—in quulation of the paraxi-
ality paramete® ~ Ak /kq with Ak, being thek uncertainty
in the wave packet during the evolutionAk,
and an oscillation frequencyyo=«/fikong. Obviously = [(k?) —(k)2. The “butterfly corrections” in Fig. &) are
there is a restriction on zth? “coupling strengtht, since  geen to be relatively small, whenever the widk, of the
n?(r) has to stay close tog, i.e., k’x”<1, over the range of aye packet is large and thusk, small; simultaneously

interest ofx. they grow in time to a maximum value of about 5% in the

Figures 2 and 3 compare solutions for the time evolution,;,re |y the case in Fig. 3 the width of the wave packet
of an initial Gaussian wave packet obtained from the Helm-remains constant, but the mean transvérsector (k) , 0s-

holtz and Schrdinger equations. For the light wave, the cillates in time; thus the discrepancigshich grow to 20%)

axis 1 propqrtlonal to _th_e propagation dlrectlan_of. the are seen to be relatively small whenever the Sdimger
wave packet in the confining refractive index profile; for the . . . -
wave packet is near the turning points of the harmonic well,

corresponding fictitious Schdinger particler=#kgn,z has . h K ~0

the meaning of the evolution time in the harmonic well. on'€» W eneve(k),~0. . o

the left-hand side the Schiimger equation position distribu-  Clearly wave packets with large initial displacement from
tion F&(x; 7) = |#(x; 7)|? is illustrated by means of a contour the bottom of the harmonic well are less “paraxial” than
plot, and it is compared with the solution Wave packets with,/A=0. This intuitive fact is also evi-
Fu(x,2)=|E(x,2)|? of the Helmholtz equation on the right- dent in the typical time scalecor,~(E§0)‘2 over which the
hand side. We have taken=2 and«?=8x10"3/\? with lowest-order correction grows: for highly excited states the
A=2m/ky being the wavelength of the carrier wave in eigenvalueEf0 of the eigenfunction of maximal overlap with

B. The harmonic oscillator

In the zeroth-order paraxial approximation this leads to a
optical Schrdinger equation with a harmonic potential
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Fy(xi1) Fo(xi 1) - Fy(x: 1)
/T, : \\\\\\ T/ Tho
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25 | /WW» 125
2 b 2
\\\‘\\\ . o .
\ FIG. 3. Position distribution of the Schro
15 1.5 dinger wave packet in the harmonic potenfial
) ) and differences between the Scttirmger and the
Helmholtz position distributiongb) for an initial
1 1 Gaussian wave packet withxq=—1 and
AXg=AX¢op (“coherent state’); in (b) the differ-
ences grow to a maximum of about 20%.
0.5 0.5
0 0
-10 -5 0 5 10 -10 -5 0 5 10
X/A X/A
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the initial state is larger; consequently the propagation timeagain with the requirement fat that d*(x?—a?)2<1 over
scale over which the paraxial approximation is reasonabléhe spatial interval of interest, which scalesaasSetting
becomes correspondingly shorter.

In Fig. 4 the first few order optical corrections are shown . (1= 1ing) 60
for the case of Fig. 2: In Fig.(4) the differencebetween the - J1 ) 2 (60)
real parts of the slowly varying Schiimger and Helmholtz L%z —(alL)

solutions is compared with the first-order correction term;

the difference betweethese twas then compared with the  the refractive index takes on the vacuum vafife-L/2)=1
second-order correction in Fig.(l), the remaining differ-  at the end points of the interval-L/2,L/2]. For a givenL,
ence with the next-order correction in Figc# and so forth.  the depth and the location of the two potential wells are thus
We see that as long as the total interaction time is only &oth fixed by the parameter.

fracton — of 7o (in  Fig. 4 we have For our numerical illustrations we have choser5\
Tiinai= 1.57Ho=0.008r¢or), the first few terms of the above anda/L =0.225 throughout, and for reasons that will be ex-
series expansion indeed yield an excellent approximation tgjained below, instead of a Gaussian wave packet as initial
the exact Helmholtz field. The fast oscillations turning up incondition, we choose a superposition of the two lowest

Fig. 4(d) stem from numerical errors, as will be discussedeigenfunctions of the Schainger equation
briefly at the end of this section.

1
C. Tunneling (double-well potential) Pp(x;7=0)= E[‘PO(X) +e1(x)]. (62)

Now we proceed to a more challenging and physically )
more interesting problem: What kind of optical corrections is!n Fig. 5a), where we have sety=2.5, the tunneling of the
one to expect for tunneling in a double-well potential? OnWave packet between the two potential wells is clearly vis-
the optical side this could be viewed as a simple model fofble. The time scale of the motion back and forth is deter-
an optical coupler for a paraxial light beam initially confined Mined by the inverse tunneling rate
to one well[10].

A refractive index variation of the form _ ™
Ttun/ﬁ——Es 5 (62
n2(r)=n[1—d*(x*—a??] (58 (Ey—Eo)
) ] which depends on the difference between the lowest two
leads to a double-well optical potential eigenenergies of the optical Schinger equation. So far this

is only a simple Schidinger evolution, but is it possible to

Vg (X) = Ed"’(xz—az)z (59) get similar behavior in the corresponding paraxial Helmholtz

op 2 ' problem? In other words, can the “tunneling” of the wave
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gation time 74py=2.57,n(=1.017,,,) in Fig. 6, excellent
agreement is reached when including terms up to order
n=3,4.

Now we increase the refractive index value. This affects
the “mass” m,,=kjn of the fictitious Schidinger particle
and increases the difference between the Siihger
eigenenergiekin3{ES} and {E''=—k?} belonging to the
shared eigenfunction§e,}. For ng=3 the tunneling time
scale 7y, is now of the same order of magnitude as the
correction time scaler,,/ 7¢coir=1, in contrast to the previ-
ous case. This means that the tunneling to the other well may
be described only poorly in the paraxial approximation. This
is depicted in Fig. 7; as in Fig. 6 we plot the differences in
the amplitude of the two fields, including terms up to order
p. The final time of 74,5=2.5r,, now corresponds to
Tiina= 2.-87corr @Nd the truncation is seen to fail when
T~ Teorr; NOte the scaling factor at the height of about 50 as
compared with Fig. 6.

Since the Schidinger and the Helmholtz eigenfunctions
coincide, as explained above, any initial condition involving
a finite number of eigenstates, such as the example in the
preceding section, will again be restored exactly after some
finite time of evolution. Therefore for the initial condition
discussed above, we have a third time scale of relevance, the
“dephasing” time scale, which is proportional to the inverse
of the difference between the lowest level splittins and

FIG. 4. The optical corrections for the same initial condition asAH of the Schrdinger and Helmholtz eigenvalués appro-

in Fig. 2 after an evolution timeg,y= 1.5740=0.008r,,,: (@) dif-
ference of the real parts of the slowly varying amplitude of the
Helmholtz and the Schdinger field (solid curve and first-order
correction (dashed curve (b)—(d) remaining differenceqsolid
curve and the next higher-order correcti¢tashed curve

with

packet from one graded-index well to the other in a coupler
be calculated within the paraxial approximation?

It turns out that the relative size of two time scales is
relevant for this question. For the paraxial description to be
meaningful for times of the order of,,,, we require the
typical time scale of the correctionscorp(Ef)*z, intro-
duced previously, to satisfy

(63

Teorr Ttun-

For the parameters chosen in Fig. 5 we hayg/ 7¢= 0.40.
Therefore the discrepancies between the Stihger and the
Helmholtz position distributions remain small, at most 5% in
Fig. 5b). As in the harmonic oscillator example the devia-
tions are smallest around the turning points, where the trans-
verse velocity and thus the paraxiality parameter are small-
est.

The significance of the first few terms of the expansion is
demonstrated in Fig. 6, where tHéferencebetween the real
part R¢ ¢(9)(x;2)] of the Schidinger wave function and the
real part of the slowly varying Helmholtz field amplitude

v

7'dephaséﬁ: |AS_AH| )

priate dimensionless units for comparison

(64)

Fy(x; ) Fy(xit) - Fy(xi 1)
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FIG. 5. Position distribution of the Schiimger wave packet in

R E(x,z)exp{—ikonez}] is plotted. From(a) to (d) an in-  the double-well potential witmy=2.5, a=0.224_: (a) and differ-
creasing number of correction terms is taken into accountgnces between the Schiinger and the Helmholtz position distribu-
the more correction terms are included, the later the onset aions (b) for 7= 2 7un=0.87r; in (b) the differences grow to a
deviations. Note that even for the relatively long final propa-maximum of about 5%.
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Here 7fna= Tgephase 347wun= 133.5r¢or, @nd a truncation of
the expansion series would fail completely.

The convergence range of the expansion @&§) is not
clear, it is certainly not uniform in time. We stress that reli-
able results are only guaranteed 9§,<< 7, and recom-
mend the following practical approach for estimating the va-
lidity of the truncation of the infinite series to a given finite
number of terms: Higher-order contributions subtract from
the norm of the total wave function, canceling the over-
whelming power law growth of the low-order correction
terms. Checking the normalization of the total wave function
including terms up to ordew therefore has proven to be an
excellent way to test the validity of truncation at a given
order u. For the situation shown in Fig. 6, for instance, the

il
Re[E,- 2 y™’]

normalization of the wave function is
1.71,1.15,0.97,0.99. . when including corrections up to
©n=0,1,23.... Furthermore we want to mention that,

whenever possible, we have also solved the dynamics by
means of another independent method, e.g., fast Fourier
transform, in order to verify the numerical accuracy.

FIG. 6. The optical corrections for the same parameters as in Finally a word on choosing a superposition of the two
Fig. 6 andr,= 2.57,=1.01r.o,; from (a) to (d): difference be-  lowest eigenstates instead of a Gaussian located in one of the
tween the real part of the Helmholtz amplitude and the Gtinger ~ potential wells as initial condition. It turns out that one en-

amplitude with added corrections up to orger counters numerical problems, which become more serious
the more coefficients have to be taken into account when
Ag=ES-ES expanding the Gaussian in the eigenbasis. The reason for this

is that on a finite grid high-order eigenfunctions are not rep-

= = resented properly. Since the evaluation of the wave function

/_E — /_E . . . .
A= 1 0 (65) up to orderu involves a summation over the eigenindex
H Noko ' which involves terms with increasingly fast oscillations of

their phases, such errors are of critical importance.
SinceAg and Ay determine the individual tunneling rates,
for 7gephaskAs— Apl/fi=7 the two fields have run com- V. DISCUSSION
pletely out of phase, as shown in Fig. 8. After having tun- :
neled back and forth about 30 times, the fields are localized In this paper we have Compared three different calcula-
in opposite wells for the Schdinger and Helmholtz cases. tions, viz., the Schidinger propagation, which is identical
with the paraxial propagation of light, the systematic pertur-
Re[E, - § w®] bation corrections to this lowest-order result, and finally the
B 520 exact electromagnetic propagation described by the Helm-
holtz equation. The perturbation expansion is of the singular
kind, which produces unbounded corrections valid over a
limited interval only. Such terms, however, suffice for our
purpose to investigate the validity range of the paraxial ap-
proximation and its corrections. The correct result can al-
ways be obtained from the Helmholtz equation.

The theory is applied to simple models of wave propaga-
tion in graded-index media. In Figs. 2 and 3 we can see how
the paraxial evaluation of the harmonic motion becomes ex-
act whenever the wave packet focuses in the forward direc-
tion, making the transverse momentum components small.
0.1 The illustrations also show the steady growth of the error
over a few oscillation periods; this growth is illustrated in
Fig. 4.

2 i = 0 We also apply the general theory to the case of propaga-
T/t 0 /A tion in two coupled potential wells. Here the wave packet is
() (d) expected to tunnel betvyegn the wells, and we investigate the
differences between Schiimger theory tunneling and “tun-

FIG. 7. The optical corrections for a potential withj=3 and  neling” of electromagnetic waves. The results are reported
Thinal= 2.5Tun= 2.87corr; from (a) to (d): difference between the real in Figs. 5—7, where the main conclusions from the simple
part of Helmholtz amplitude and the ScHimger amplitude with harmonic case are verified. An interesting observation is that
added corrections up to ordgr. the electromagnetic wave and the massive particle develop a

0.2

0.2
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Fu(x; 1)
/Ty, - LZATNES
30 | 30
25 25+
20 20+ FIG. 8. Position distribution of the Schro
dinger (a) and the Helmholtzb) wave packet in
the double-well potential witmy=1.5a=0.3L
15 15+ after the timerng = Tgephase 347tun= 133.57¢or-
After having tunneled about 30 times, the two
1 fields have run out of phase and are localized in
10 0 opposite wells.
5 5+
0 0
phase difference when they propagate; this is shown in Fig. #iko
8. The failure of the straightforward perturbation approach Meft =" (66)

with increasing time is derived directly from this phase dif-

ference. When the theory tries to approximate this in a Perss we might expect on dimensional grounds.

turbative manner, it is bound to produce terms growing as h . ic| h ic|
some power of the propagation time. Only a uniform expan- F_or the massive particle case, we expect a heavy particle
' o display nearly classical behavior. It is now of interest to

. . . . f
sion like the multiple-time-scale one would be able to treat sk what this requirement implies for the electromagnetic

such effects appropriately. W? have not regarded it exped'er(':ase in the paraxial approximation. If we assume that the
to pursue such an approach in the present paper.

Our main objective here has been to extract those matrPOtent'al function is characterized by a length sdajewe

ematical terms which make the ScHiager evolution start can ldeflne a chkarac;erlsnc time sqzltic. If we inject Ian

to differ from electromagnetic wave propagation. It is, more-'?}'“%.wave_ pac e;{ of transverse widthx, we can neglect

over, of some interest to compare the physical pictures 01;E € dispersion as long as

fered by the two theories. In this spirit let us conclude by

looking at the scaling relations of the parameters occurring in s LAp

Ax>

the Schrdinger interpretation of the electromagnetic wave mc

and its wave characteristics. This can be done using some

elementary dimensional arguments in the following mannerwhereAp is the momentum width of the wave packet. From
As we have seen, the lowest order paraxial equai®n this relation and the uncertainty relation, we obtain the con-

can be written dition on the mass

a 1, s LA
- lﬂ: - Z_kOVL lp+v0ptwv eff CAXZ :

[
Jz

When the effective mas$6) is inserted into this condition

where for notational simplicity we have assunmeg=1. In- , ;
we find the relation

troducing a properly scaled time variahte z/c, we find the
effective Schrdinger equation

) N 67

V2 Y+ Venth,

J
ifh X =— 5
Meft which is the Fresnel condition for ray behavior; this is well
known to correspond to the classical limit of wave mechan-

where the role of the mass is played by the parameter ics. We can combine this with the condition for the validity
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of a semiclassical description, namely, that the potential Now we transform to scaled variables, which for conve-
structure changes slowly over the extent of the transverse dd@ence we write down again,

Broglie wavelength

?L = @konori y
N = A
1= @ - —_
Z2=0%kqnyz, (A4)
With our definition of the characteristic length we can ~ 5
write this as t=0%wt,
A<OL. and collect all terms of the same order@nin the differen-
tial operator on the right-hand side of EGA3). With the
Combined with Eq(67) this gives the condition definitions
O Jo(r
Ax)\? il xie{x,y}
o >0. r 9 (075(7)] KoNo 9
1 X= = r|=
Tk 1 oe)
This states the well known fact that a wave packet can be Kono 9 '
localized only to within a region much larger than its average (AS5)

wavelength; here it is applied to the transverse direction,
which in the paraxial approximation involves the expansionwe get the three coupled equations for the three Cartesian
angle®. When this goes to zero, the Fresnel condit{6i) =~ components
is sufficient to localize the particle wave packet.

Finally a few words on possible extensions of the present PRE, 92E,
work. In the future it might be worthwhile to address prob- 0=—0*—=+0°—=—=+06
lems that involve the true vector character of the electromag- 9z axdz
netic field: however, if the three spatial components do not
decouple, one can no longer associate one single optical _ __ X
Schralinger equation with the paraxial wave packet; it does ayay  Ixdy
not even seem possible to generalize this tthanlineay
Schralinger equation for coupled particles, since the equa-
tion is not homogeneous in the wave functions. Moreover, in
the present work we have only dealt with monochromatic
fields, that is, we have ignored temporal effects.

it o€, ar~5
| ~~— P
‘97 9z "

PE P, 9E, 9E, dI's
+ +i0?! I's—=+I';5—=+—=%¢,
0z X Jz

9& Ty o8y AT
rig,—2iry— —i—=2&+T% €,

Yoy o ay 8y 5)/

+0°

~05Y — 1T~ — 2 T T 2
+ry—~)—® 5736, 0 AT5T56,~T2E,),
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APPENDIX
1. The general vector case for monochromatic fields _,_FJ;_SV F~(a_6’x + 07_5)’) + ﬁg + ‘?FNS
z| ~ ~ ~ &x ~ Cy
For monochromatic fields the electric field vector is given 9z ox dy) 9z 9z
by E(r,t)=E(r)exp(—iwt), with E(r) satisfying ol ore ‘952+21~ o€, %, . &I’~ &F~ .
k2n2(r)E(r)= VX VXE. (A1) ! R A Il
G lr~(T7~ ~ -2/T~ -
Pulling out an appropriate phase factor O T(IREFTTE) +O AT+ TT)E,.
E(r)=&(r)el e (A2) When setting
vV, £=0, (A7)

this is equivalent to the envelope equation ¢

2 ) the complicated expressions simplify considerably; all odd-
NANEM) =[Ve (V- (1)) = VE(r)], (A3)  order terms vanish and all components decouple, each satis-
fying the same scalar equatiggiven in the next section
whereV ,=V+i(Vo). below). Writing this condition in scaled variables,
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9E 9E.  0E Assuming a quadratic scalirig8) in ® of the smoothness
®3(9_~Z+®2 (9_~X (9—.,y +iOI7E,+i1(I'35+T5&)=0, of the refractive index profile, we may rewrite
z X y
(A8)
Ng 1 1

makes it obvious that the longitudinal componépnt which ' (A13)

leads to a coupling between all components, is also respon-
sible for the odd-order terms 9.

(M) Vn(Man2 V1+e2en(m)

with sn(r)=0(1). Now one has texpand the whole ex-
2. An alternative form of the expansion pression inside the square brackets in &il1) in a power
for the scalar wave equation series of®, which may be cumbersome for complicated
. . o ) o transverse and/or longitudinal refractive index profiles and
In this section we will give an _altgrnatlve derlvanon' of appropriate exponents(r), which suppress the divergent
Egs.(41) and (42). Our starting point is the wave equation terms~A .
for the slowly varying amplituday(r,t)=E(rt)e ¢ *ie! From here on we specialize again to the case of mono-

for a solution of the scalar wave equation chromatic fields treated in the main textith (9/9t) =0

n2(r)( d 2 and ¢ =Kkgnyz]. We get
- (E—iwo P(r,t)=—Viy(r,t) (A9) . ,
1“;:1“;:0, FE=1 (A14)
or equivalently, by formally taking the square root on both
sides[9], and thus
nyla 92
T(E_Iw") P(r)=\=Voy(rt).  (A10) Ag=—,
9z2
Here we have generalized from a strictly monochromatic _
wave to a quasimonochromatic one. In scaled variables we Ay,=2H®+ 5n,
et
g (Al15)
Jd
i—u(T,7) Ao=1,
Jt
1| ng —— A-»=0,
=—| == VO* A4+ 0%+ Mg+ O A =1 1y(r,T),
6% n(r) where the operatdd(?) is defined as
(A11)
: _— J 1~
with the definitions HO=—j—-2V2. (A16)
iz 2
52
Ay=— ﬁ’ Now we expand the operator in the square brackets on the
z right-hand side of Eq(A1l) and the wave function in a
power series ofd,
=, oIz _ d
Apy=—Vi—-i—-2iI';5—=, o
az Jz = 2 @21y (21,
(A12) =0
Ap=T2—i ar;+ar;> 2'(1“ T ‘9) S
=l —=+—= |2 15—= v =1, - 2puT(2p)
0Tz ax  dy “ox Yy [...] ME:O(@”T M, (A17)
A72=F§‘+ T*f;, The contributions satisfy

Eqg. (Al1l) is still exact for arbitrarye(r). It contains all the u

information of spatial and temporal effects on the propagat- 0=, T@u=2ny(2v) (A18)
ing wave packetcf. right- and left-hand side, respectivgly v=0

except for the vector aspects of the field discussed in the

preceding section. In our case the lowest orders are found to be
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o 5 ON This expansion is equivalent to Eq4.1). We verify this
TO=HO - > by inserting Eq(A19) into Eq. (A17),
12 1 0=TO ),
TP =— = ——-onTO—- - (T®)2, (A19)
2 (922 2 1 2
0= T(0)¢(2)+ T(2)¢(0)=T(0) 1//(2)— > ﬂT ,p(O),
on o2 9z?
TW=—-T@TO 4+ >t Sn?(TO)2, (A20)

. . . _T7(0 4 2 2 4 0
In principle, for nonconstanén one has to be careful with O=TOY D+ T@y2 L Ty

the operator ordering while expanding the square root. But 2

since in Eq.(A11) én is to the left of all differential opera- = =TO g% l ‘9T¢<2>.

tors, it has to be treated as a constant and factored out to the 2 72

left in all terms of the above expressions. This and the fact

that #%/9z% and H(® commute, imply that in the present Here for every next higher order we have made iterative use
simple case one can expand the square root as if dealing withf the lower-order relations(treating én again as a
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