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Paraxial light and atom optics: The optical Schrödinger equation and beyond
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Paraxial light and atom optics are compared. To lowest order the slowly varying amplitude of a light field
in a dielectric medium with a spatially dependent refractive index satisfies an equation which has the form of
a Schro¨dinger equation: the ‘‘optical Schro¨dinger equation.’’ The unsystematic procedure of neglecting certain
second-order derivatives is replaced by a systematic expansion which allows the calculation of consecutive
corrections. The general theory is applied to harmonic motion in a graded index fiber and to tunneling between
coupled fibers. The physical relations between wave evolution of massive particles and paraxially propagating
waves are elucidated.@S1050-2947~97!00710-5#

PACS number~s!: 03.75.2b, 42.50.2p, 42.25.Bs, 03.65.2w
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I. INTRODUCTION

Much interest in physics has recently been directed
wards time-dependent phenomena connected with w
propagation. Waves appear in many forms, but the two m
fundamental ones are derived from the propagation of e
tromagnetic radiation and the matter-wave picture of mas
particles. The former are described by Maxwell’s equatio
and the latter by the nonrelativistic Schro¨dinger equation.
Experimentally the demand for fast optical communicat
has inspired investigations into pulsed propagation, and
technology of pulsed lasers has enabled the researche
follow microscopic time evolution in atoms, molecules, a
semiconductor structures.

The physical properties of matter waves differ from tho
of electromagnetic radiation. Schro¨dinger’s equation leads to
dispersion of the wave packets and distortion of the ini
pulse shape. In Maxwell’s case an initial pulse can propag
in a passive dielectric without distortion. The massless e
tromagnetic waves have a constant velocity independen
energy in contrast to the matter waves. In addition, the e
tromagnetic field is a vector quantity. It is, however, know
that in the paraxial approximation@1,2#, propagation along
the principal axis of the wave vector can simulate the ti
evolution in the Schro¨dinger case with the position variable
representing the transverse coordinates of the paraxial r
If we, in addition, assume that the dielectric properties of
medium depend on position, the lowest-order paraxial eq
tions are found to be identical with the wave equation
quantum mechanics; this analogy can be developed to a
siderable extent@3,4#.

In a homogeneous dielectric, the electromagnetic w
propagation can always be discussed from a frame mo
with the velocity of light in the medium. In an inhomoge
neous medium, moving along the axis of the system does
correspond exactly to the progress of time because the
dium introduces a velocity dependence into the equatio
Introducing a scalar paraxial wave equation destroys som
the vector properties of the radiation fields. The formulati
however, allows the interpretation of the propagation as
561050-2947/97/56~4!/2940~14!/$10.00
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evolution of a massive particle, and Schro¨dinger-like behav-
ior emerges. Marcuse argues that this is approximately
rect, provided that the variation of the refractive index
small over the distance of the optical wavelength@5#, but no
estimate of the error is given. To investigate the consiste
of the paraxial approximation, one must find the wave c
rections to the particlelike behavior. This has been done
Lax, Louisell, and McKnight@6# ~cf. also the Appendix in
@7#!. They find that the approach is consistent, since de
tions from the simple scalar paraxial wave equation are
higher order in a small parameter; their work can form t
basis for a more detailed discussion of the ‘‘radiation corr
tions’’ to the paraxial equations.

In this work, we compare the Schro¨dinger wave mechan
ics with the classical electromagnetic theory. From a fun
mental point of view this is the correct procedure. The the
ries are at the same conceptual level, the wave function
photon is just the classical electromagnetic field; this fact
recently been emphasized by Bialynicki-Birula@8#. Both
wave theories can, of course, be subjected to second qu
zation. This has been discussed within the paraxial appr
mation by Deutsch and Garrison@9#.

We are going to follow the work in Ref.@6# and develop
a consistent approximation scheme giving the para
matter-wave equation in the lowest order. Because this
scribes the wave dynamics of a massive particle, we
discuss many of the phenomena recently investigated
atom optics, such as dispersion, interference, and tunne
In the lowest paraxial approximation, these will appear e
actly as in the Schro¨dinger case, except that the propagati
follows the axial direction instead of time. Experimentally a
of these phenomena can be investigated in optical fib
@2,10#, and because of their interest to communication te
nology, the experiments may be both interesting and f
sible. As long as the fiber can be regarded as a linear
dium, it may be used for analogous simulations of vario
matter-wave phenomena of recent interest in atom op
@11–14#.

So far the analogy is precise but also a little trivial. Inte
esting questions arise if we ask when and how the elec
2940 © 1997 The American Physical Society
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56 2941PARAXIAL LIGHT AND ATOM OPTICS: THE . . .
magnetic wave propagation starts to differ from Schro¨dinger
propagation. This can, of course, be investigated by solv
the exact Maxwell equations and comparing the result w
that of the paraxial approximation. Here we take a differ
approach; we compute the lowest-order correction to
paraxial result. In this manner we can see directly where
approximation has to be corrected and what form the cor
tions will take. Because we are especially interested in th
corrections, it is advantageous to evaluate them directly.
solving the corresponding Maxwell equations, we can th
estimate when the approximation used becomes inadeq
which defines the range of validity of our conclusions. No
paraxial corrections to light wave propagation are curren
an active field of research~cf., for example, Ref.@15# for
optical applications or Ref.@16# for a mathematical ap
proach!, but the aim of the present paper differs from the
investigations in its intention to compare the propagation
light and matter waves.

In Sec. II the paraxial wave equations are derived star
from Maxwell’s equations: First the paraxial approximati
is carried out in the usual way, then a systematic expan
which enables the calculation of higher-order corrections
formulated. The general theory is applied to the example
harmonic motion and tunneling in a double well in Sec. I
Section IV provides a summary and discussion of the res
and an outlook to possible extensions of the theory. The
vector equations and alternative forms of the expansion
given in an Appendix.

II. SETTING UP THE PROBLEM

A. Aims and scope

We are going to consider the propagation of electrom
netic waves in amonochromatic and paraxial approxima
tion; this assumes that the amplitude of the fields varies s
tially much more slowly than the wave propagation in t
principle directionk05k0ez , so that all propagation vector
transverse to this are assumed small. Thus we introduce
approximation

U]2E

]z2U!k0

]E

]z
, ~1!

whereE is the slowly varying electric field amplitude.
Within the approximation defined, the steady sta

paraxial propagation occurs in the direction

z[
t

\k0n0
, ~2!

wheren0 is the constant bulk refractive index of the bac
ground medium. In the steady state, we can interpret
variablet as a time and write the propagation equation in
form

i\
]

]t
c~x,y;t!52

\2

2mopt
¹'

2 c~x,y;t!

1Vopt~x,y;t!c~x,y;t!, ~3!
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wherec(x,y;t) is the scalar amplitude of the electroma
netic field, and¹'

2 is the two-dimensional transverse Lapla
ian; see below for a systematic derivation. It is easily se
that this equation is identical with the nonrelativistic Schr¨-
dinger equation describing the propagation of a massive
ticle in two dimensions, cf. Ref.@3#. The optical effective
mass is found to be

mopt5~\k0n0!2.

Thus the heavy mass limit, corresponding to semiclass
behavior, appears when the wavelength of the propaga
field becomes short compared with the rate of change of
optical potential

Vopt52
1

2Fn2~r !2n0
2

n0
2 G . ~4!

For a detailed discussion of the emergence of this limit,
Sec. V. The validity of the paraxial approximation doe
however, impose a limitation on the optical potential. Th
must necessarilybe a small perturbation on the free prop
gation for the condition Eq.~1! to make sense. The ampl
tude can be a slowly varying function only
@n2(x,y,t)2n0

2# is small in a definite sense that will b
specified below.

B. Maxwell theory in an inhomogeneous medium

We start our discussion from the Maxwell equations
the ordinary form

]

]t
D~r ,t !5¹3H~r ,t !,

]

]t
B~r ,t !52¹3E~r ,t !,

¹•D~r ,t !50, ¹•B~r ,t !50. ~5!

The equations are supplemented by the relations

D~r ,t !5«~r …«0E~r ,t !,

B~r ,t !5m0H~r ,t !, ~6!

where«(r … gives the spatial dependence of the inhomo
neous medium~at the optical frequencyv); the magnetic
polarizability of the medium is neglected. The spatially var
ing dielectric constant is used to define a position-depend
refractive index

n2~r !5«~r …. ~7!

In free spaceradiation problems, we introduce the potentia
A andF through the definitions

E~r ,t !52S ]A~r ,t !

]t
1¹F D ,

B~r ,t !5¹3A~r ,t !. ~8!

With the Lorentz gauge condition, the wave equations for
two potentials separate, and in the Coulomb gauge all ra
tion effects can be restricted to the transverse componen
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2942 56MONIKA A. M. MARTE AND STIG STENHOLM
the electromagnetic fields. Then the vector potentialA con-
tains all radiation effects and the scalar potentialF describes
the electrostatic interactions.

In an inhomogeneous medium the choice

¹•A50,

F50 ~9!

is not consistent, even when there are no external cha
present, except in some very special cases, some of w
are discussed below. However, for monochromatic radia
propagating through an inhomogeneous dielectric it is s
possible to eliminate one of the electromagnetic field vect
as in the vacuum case, but the ensuing equations con
additional terms deriving from the space variation of the m
dium. We find

S ¹21«~r !
v2

c2 D E5¹~¹•E!52¹@¹„ln«~r ……•E# ~10!

and

S ¹21«~r !
v2

c2 D H52¹~ ln«~r …!3@¹3H~r ,t !#. ~11!

For the second form of Eq.~10! we have made use of th
third of Maxwell’s equations~5!,

¹•E52¹„ln«~r !…•E. ~12!

Since a nonzero divergence ofE leads to a coupling betwee
the components of the electric field vector, these equat
are much harder to solve than the corresponding vacu
equations. But certain simple cases which are character
by

E '¹«~r !, ~13!

resulting in ascalarwave equation for the electric field@17#,
are easily treated. We proceed to discuss these special
and relegate the general vector case to the first part of
Appendix.

C. Stratified media

Many physical systems, such as the atmosphere and t
nologically fabricated dielectric devices, possess a laye
structure@18#, such as, for example, planar waveguides; t
is, the dielectric properties vary only in one direction,
depicted in Fig. 1. For«5«(x), for instance, the gradient o
the dielectric constant becomes

¹«~r …5«8ex . ~14!

This allows several simple solutions as discussed in R
@2,10,19,20#.

1. E-wave solution

First we investigate a solution with the electric field ve
tor linearly polarized in a direction transverse to the gradi
of the dielectric properties and set
es
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E~x,z!5eyE~x!eikz. ~15!

Here, as throughout,z is the propagation direction. Obvi
ously this field is transverse, and the field amplitudeE(x) is
from Eq. ~10! found to satisfy

F d2

dx2
1S «~x!

v2

c2
2k2D GE~x!50, ~16!

which is clearly of the form of a time-independent Schr¨-
dinger equation. With this solution, the magnetic field vec
cannot be chosen transverse, but becomes

H~x,z!52
1

vm0
@ iE8~x!ez1kE~x!ex#e

ikz. ~17!

This solution is sometimes also referred to as a TE m
@2,10#. It allows one to describe the propagation of the rad
tion in terms of transverse fields, and it leads to sim
Schrödinger-like behavior of the field amplitudes. In our a
proximate expansion later in the paper we will concentr
on this type of solution. In order to see the limitations of th
approach, we briefly consider some other situations too.

2. H-wave solution

In this case we choose the magnetic field transverse to
gradient of the dielectric,

H~x,z!5eyH~x!eikz. ~18!

Equation~11! now becomes

d

dxS 1

«~x…

dH~x!

dx D1S v2

c2
2

k2

«~x…

DH~x!50. ~19!

FIG. 1. Polarization configuration that gives rise to a sca
wave equation for theE field in a plane-stratified medium.
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56 2943PARAXIAL LIGHT AND ATOM OPTICS: THE . . .
This is not of the form of a simple Schro¨dinger equation, but
is a similar eigenvalue problem. The electric field vector
now found to be

E~x,z!5
1

«0«~x…v
@ iH8~x!ez1kH~x!ex#e

ikz. ~20!

This solution is also called a TM mode.
From Eq.~20! we can see that it is not always possible

choose the electric field vector such that it is transverse to
direction of propagation. Because of thex dependence o
«(x), the divergence ofE is found to satisfy Eq.~12!. For a
wave propagating with a longitudinal field component,
simple gauge allows a separation of the evolution equat
of the two potential functions.

3. Normal incidence

A trivial solution in the stratified medium can be foun
when the propagation coincides with the direction of the g
dient of the dielectric. Then we can choose the solution
the form

E~z!5eyE0exp@ iw~z!#, ~21!

wherew(z) satisfies an equation of the Riccatti type,

iw9~z!2w8~z!21
v2

c2
«~z!50. ~22!

Assuming slow spatial variation and neglecting the sec
derivative, we obtain a solution of the eikonal type. T
calculations in the Appendix also utilize the freedom
choose the functionw(r … in an arbitrary way to eliminate
some part of the spatial dependence of the solution.

D. Cylindrical symmetry

In cylindrical waveguides and optical fibers, the refracti
index often changes radially only. If we choose the axis
the cylinder to be the propagation directionz, we have
«5«(Ax21y2). Such a symmetrical waveguide provide
besides the TE waves in planar waveguides, another~two-
dimensional! example allowing special solutions which sa
isfy a scalar wave equation. As before, we seek a transv
solution withEz50, i.e.,

E~x,y,z!5@Ex~x,y!ex1Ey~x,y!ey#e
ikz. ~23!

Fields with zero component along the radial unit vec
er5cosf ex1sinf ey in cylindrical coordinates (r ,f,z),

Er5Ex~x,y!cosf1Ey~x,y!sinf50, ~24!

are orthogonal to the gradient of«(r ); from Eq. ~12! it fol-
lows immediately that the componentsEx(x,y) andEy(x,y)
then decouple, each satisfying the scalar Eq.~16!. We thus
choose

E~r ,z!5Ef~r !efeikz, ~25!

where ef is the unit tangential vecto
ef52sinf ex1cosf ey . The two scalar equations for th
s
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transverse Cartesian coordinates can of course be comb
into a single equation for the tangential componentEf(r ),

F1

r

d

drS r
d

dr D1S «~r !
v2

c2
2k2D 2

1

r 2GEf~r !50. ~26!

The magnetic field has radial and longitudinal componen

H~r ,z!52
1

vm0
F i

1

r

d

dr
@rEf~r !#ez1kEf~r !er Geikz.

~27!

For weakly confining cylindrical wave guides with a ve
weak rate of change of the refractive index, it is even p
sible to approximate the solution by a linearly polarized T
wave @10#.

III. A SYSTEMATIC EXPANSION

A. The perturbation equations

From now on we will concentrate on wave packets co
sisting of superpositions of TE-type solutions propagati
e.g., in a stratified medium or in a circularly symmetric fib
with an appropriately chosen transverse refractive index p
file n(r'). Let us denote the generic component of the el
tric field satisfying the scalar wave equation byE(r ). Pulling
out a ‘‘carrier plane wave’’ propagating in thez direction we
write

E~r !5exp@ ik0n0z2 ivt#c~r !, ~28!

where the mean propagation vector in vacuum is introdu
as

k05
v

c
~29!

and n0 stands for the bulk refractive index of the medium
From Eq.~10! the slowly varying amplitudec(r … is found to
satisfy the equation

~¹1 ik0n0ez!
2c(r …2

n2~r'!v2

c2
c~r !50. ~30!

This equation is the starting point for our approximations
We next introduce a small parameter, the angleQ be-

tween thek vector and the vectork05k0ez . Defining

Q5/~k0 ,k!, k5k01q ~31!

we get

Q;usinQu5
uq'u

uk01qu
, cosQ5

uk01qzu
uk01qu

. ~32!

Thus the transverse deviations of the wave vector scale aQ,
and the longitudinal ones asQ2.

In order to obtain a series expansion inQ, we introduce
the appropriately scaled variables:

r̃'5Qk0n0r' , ~33!
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z̃5Q2k0n0z[Q2t/\. ~34!

In the latter expression forz̃ we have used the definition~2!.
Thus the plane wave exponential scales as

exp@ ik0n0z#5exp@ i z̃ uQ2#, ~35!

which gives rise to fast oscillations over ranges ofz̃ of the
order unity. Introducing these scaled variables into Eq.~30!
we obtain

n2~r'!k0
2c2n0

2k0
2c12iQ2n0

2k0
2]c

] z̃
1Q2n0

2k0
2¹̃'

2 c1Q4
]2c

] z̃2

50. ~36!

Rearranging the terms, we obtain the equation in a fo
suitable for a perturbation treatment,

i
]c

] z̃
5H 2

1

2
¹̃'

2 2
1

2Q2Fn2~ r̃'!2n0
2

n0
2 G J c2

Q2

2

]2c

] z̃2
.

~37!

When the term of orderO(Q2) is neglected, we find the
Schrödinger-like equation of the paraxial approximation.
order for this to be consistent, we require that the deviati
of the refractive index from its bulk valuen0 must be small
in such a manner that

Fn2~ r̃'!2n0
2

n0
2 G5O~Q2!. ~38!

This assumption is similar to the one made in Ref.@6#.
When we neglect the last term in Eq.~37! and restore the

original space variables and the ‘‘time’’t, we find the opti-
cal Schro¨dinger equation~3! with the ‘‘potential’’ given as in
Eq. ~4!. Because of the scaling~38! we introduce the effec-
tive potential

Ṽopt52
1

2Q2Fn2~r'̃!2n0
2

n0
2 G , ~39!

which is assumed to be of orderQ0;1.

B. The iterated solution

In order to determine the lowest-order corrections exp
itly, we expand the ‘‘wave function’’c( r̃' ; z̃) in a power
series ofQ,

c~ r̃' ; z̃ !5 (
m50

`

Q2m c~2m!~ r̃' ; z̃ !. ~40!

From Eq.~36! it is obvious that only even powers ofQ are
required here; this is a special simplification holding only
solutions of the scalar type, where the right-hand side of
~10!, which introduces odd orders, is zero~cf. the section on
the general vector case in the Appendix!. Insertion and com-
parison of the coefficients}Q2m directly yields
s

-

r
q.

F i
]

] z̃
2H'Gc~0!~ r̃' ; z̃ !50, m50 ~41!

F i
]

] z̃
2H'Gc~2m!~ r̃' ; z̃ !52

1

2

]2

] z̃2
c~2m22!~ r̃' ; z̃ !,

m51,2,3, . . . ~42!

with

H'52
1

2
¹̃'

2 1Ṽopt ~43!

and Ṽopt defined in Eq.~39!. We see that only the lowest
order amplitudec (0) is a solution of a proper Schro¨dinger
equation~41!; the higher-order ‘‘optical corrections’’ are de
termined by the inhomogeneous equations~42!.

Now we solve the above hierarchy of equations by de
mining the eigenbasis$w̃n

S( r̃')% of H' and expanding the

zero-order amplitudec (0)( r̃' ; z̃) in this basis,

c~0!~ r̃' ; z̃ !5(
n

cn
~0!e2 i Ẽn z̃w̃n

S~ r̃'!, ~44!

with ‘‘time’’-independent coefficientscn
(0) . Since the Hamil-

tonianH' is ‘‘time’’ independent in the present case, it com
mutes with]2/] z̃2, which means that the right-hand side
Eq. ~42! also represents a solution of the homogeneous eq
tion ~41!. Setting

c~2m!~ r̃' ; z̃ !5(
n

cn
~2m!~ z̃ !e2 i Ẽn z̃w̃n

S~ r̃'!, mÞ0

~45!

with z̃-dependent coefficients, we get the recurrence rela

ċn
~2m!~ z̃ !5

i

2
c̈n

~2m22!~ z̃ !1Ẽnċn
~2m22!~ z̃ !2

i

2
Ẽn

2cn
~2m22!~ z̃ !,

~46!

where dots represent differentiation with respect toz̃ . This
can easily be solved by iteration, assuming the ‘‘initial co
dition’’ cn

(2m)( z̃50)50 for m.0; the first few orders are
given in Table I.

TABLE I. The first few ‘‘optical corrections’’ as a function of

a( z̃)[2( i /2) z̃ Ẽn
2 .

Order Additive correction termC(2m)( z̃)[cn
(2)( z̃)/cn

(0)

m51 C(2)( z̃)5a( z̃)

m52
C(4)( z̃)5a( z̃)Ẽn1

a( z̃)2

2!

m53
C(6)( z̃)5a( z̃) 5

4 Ẽn
21

a( z̃)2

2!
2Ẽn1

a( z̃)3

3!

m54
C(8)( z̃)5a( z̃) 7

4 Ẽn
31

a( z̃)2

2!
7
2 Ẽn

21
a( z̃)3

3!
3Ẽn1

a( z̃)4

4!
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56 2945PARAXIAL LIGHT AND ATOM OPTICS: THE . . .
Returning to unscaled variables and defining

Ẽn5En
S /Q2, ~47!

which gives rise to the notational identities

Ẽn z̃[En
Sk0n0z[En

St/\, ~48!

we get, to first order,

c~r' ;t!5(
n

cn
~0!e2 iEn

St/\wn~r'!

1(
n

cn
~0!S 2

i

2DEn
S2 t

\
e2 iEn

St/\wn~r'!1•••.

~49!

Note that, due to the definition Eq.~2!, t/\ and therefore
also En

S are dimensionless. The second term immediat
gives a rough estimate for the typical propagation ‘‘times’t
after which the validity of the truncation after the lowes
order correction term breaks down; this happens for time
the order

tcorr/\52/~En0

S !2, ~50!

with En0

S being a typical eigenvalue of the problem. F

t'tcorr the modulus of the first-order correction coefficie
approaches unity; clearly for such propagation times trun
tion after the first-order correction fails and more terms ha
to be kept. Numerically it has turned out to be useful to ta
the eigenvalue belonging to the eigenfunction of maxim
overlap with the initial wave function as a typical choice f
En0

S . From Table I we infer that the correction coefficien

grow according to power laws int, C(2m)}tm. Thus the
truncation of the infinite series makes sense only provi
that the modulus of the highest-order coefficient taken i
account is considerably less than unity; see the discus
about the validity of the numerical results at the end of
next section.

Equations~41! and ~42! give an example of a set of sin
gular perturbation equations; the zeroth-order solution tu
up as a singularity in the inversion required in all subsequ
orders. Such perturbations are known from many proble
in physics, starting with the secular perturbation theory
planetary motion. A straightforward computation of the co
rection terms leads to unbounded terms in the time evolut
just as in the present case. These limit the range of validit
the result and fail to describe the long time behavior c
rectly. Applied mathematics has developed a variety
methods to treat such systems; the most efficient one is b
on a multiple-time-scale expansion@21#.

The present problem shows many similarities with t
mathematical model for the operation of the free-elect
laser @22#. Here the appearance of nonsecular unboun
terms does not cause any complications, because the ga
evaluated for a limited time period only. It has, howev
been shown@23# that the use of a multiple-time-scale expa
sion allows one to construct a perturbation result that give
good approximation for both short and long time periods
ly
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In this work we are satisfied with applying the straigh
forward perturbation approach leading to unbounded sec
terms. The reason is that we want to evaluate the validity
the zeroth-order solution and compare this to the exact e
tromagnetic propagation following from Maxwell’s equa
tions. It is then expedient to have an expression for the fi
order correction, which can be evaluated and compared b
with the zeroth-order solution and the correct result. It see
pointless to attempt a valid long time expansion, when
exact result can be obtained from the computation of M
well’s equations.

IV. APPLICATIONS OF THE THEORY

A. General

In the present section we illustrate the theory by apply
it to some explicit examples of two-dimensional wavegui
structures with a refractive index depending on only o
transverse coordinate,n(r )5n(x), which trivially allows the
reduction of the problem to a scalar case, as has been sh
above. Such potentials can be manufactored by modern
electric layer deposition techniques. We proceed as follo
~i! First we solve the propagation of the scalar electric fi
E(x,z) by calculating the eigenfunctions of the Helmhol
equation;~ii ! then we compare this with the time-depende
solution of the optical Schro¨dinger equation for the sam
initial condition; ~iii ! finally we add the higher-order ‘‘opti-
cal corrections’’ to the Schro¨dinger solution to get a bette
approximation of the Helmholtz solution.

Before we carry out this procedure, let us first make
general observation. The propagation of an initial wa
packet along the waveguide is simply given by the super
sition

E~x,z!5(
n

hnwn
H~x!eiknz, ~51!

wherehn represent the expansion coefficients of the init
wave packet in the eigenfunctions$wn

H(x)% of the Helmholtz
equation

¹2E~x,z!1k0
2n2~x!E~x,z!50. ~52!

Rewriting this equation as an eigenfunction problem

2
]2

]x2
wn

H~x!2k0
2n2~x!wn

H~x!5En
Hwn

H~x!,

with En
H[2kn

2 , ~53!

and comparing this with the time-independent form of t
optical Schro¨dinger equation,

2
]2

]x2
wn

S~x!2k0
2@n2~x!2n0

2#wn
S~x!52k0

2n0
2En

Swn
S~x!,

~54!

we immediately see that the corresponding eigenfuncti
$wn

H(x)% and$wn
S(x)% coincide, but belong to different eigen

values, i.e.,
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FIG. 2. Position distribution of the Schro¨-
dinger wave packet in the harmonic potential~a!
and differences between the Schro¨dinger and the
Helmholtz position distributions~b! for an initial
Gaussian wave packet withx050 and
Dx050.8Dxcoh ~‘‘squeezed vacuum’’!; in ~b! the
differences grow to a maximum of about 5%.
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En
H5k0

2n0
2~2En

S21! for wn
H~x!5wn

S~x!. ~55!

B. The harmonic oscillator

One of the simplest possible examples to test our the
on is harmonic motion. We assume that the refractive in
is a quadratic function of the transverse coordinatex,

n2~r !5n0
2~12k2x2!. ~56!

In the zeroth-order paraxial approximation this leads to
optical Schro¨dinger equation with a harmonic potential

Vopt~x!5
1

2
k2x2 ~57!

and an oscillation frequencyvHO5k/\k0n0. Obviously
there is a restriction on the ‘‘coupling strength’’k, since
n2(r ) has to stay close ton0

2, i.e.,k2x2!1, over the range of
interest ofx.

Figures 2 and 3 compare solutions for the time evolut
of an initial Gaussian wave packet obtained from the He
holtz and Schro¨dinger equations. For the light wave, thet
axis is proportional to the propagation directionz of the
wave packet in the confining refractive index profile; for t
corresponding fictitious Schro¨dinger particlet5\k0n0z has
the meaning of the evolution time in the harmonic well. O
the left-hand side the Schro¨dinger equation position distribu
tion FS(x;t)5uc(x;t)u2 is illustrated by means of a contou
plot, and it is compared with the solutio
FH(x,z)5uE(x,z)u2 of the Helmholtz equation on the righ
hand side. We have takenn052 andk25831023/l2 with
l52p/k0 being the wavelength of the carrier wave
ry
x

n

n
-

vacuum;l serves as a typical length scale of the proble
The interaction timet increases to twice the harmonic osc
lation timetHO52p/vHO.

The differences between the Helmholtz and the Sch¨-
dinger solutions are illustrated for two initial conditions.
Fig. 2 we have chosen an initial Gaussian wave packet w
its width Dx0 being 80% of the widthDxcoh51/A2k0n0k of
the ground state in the harmonic potential and an initial d
placementx0 /l50; i.e., a ‘‘squeezed vacuum’’ in the quan
tum optics language. In Fig. 3 the initial width is equal
Dxcoh and x0 /l521, i.e., a ‘‘coherent state.’’ In the firs
case the width of the Schro¨dinger position distribution, de-
picted in Fig. 2~a!, undergoes a ‘‘breathing’’ evolution
which may be viewed as a built-in modulation of the para
ality parameterQ'Dkt /k0 with Dkt being thek uncertainty
in the wave packet during the evolution,Dkt

5A^k2&t2^k&t
2. The ‘‘butterfly corrections’’ in Fig. 2~b! are

seen to be relatively small, whenever the widthDxt of the
wave packet is large and thusDkt small; simultaneously
they grow in time to a maximum value of about 5% in th
picture. In the case in Fig. 3 the width of the wave pac
remains constant, but the mean transversek vector ^k&t os-
cillates in time; thus the discrepancies~which grow to 20%)
are seen to be relatively small whenever the Schro¨dinger
wave packet is near the turning points of the harmonic w
i.e., whenever̂ k&t'0.

Clearly wave packets with large initial displacement fro
the bottom of the harmonic well are less ‘‘paraxial’’ tha
wave packets withx0 /l'0. This intuitive fact is also evi-
dent in the typical time scaletcorr;(En0

S )22 over which the

lowest-order correction grows: for highly excited states
eigenvalueEn0

S of the eigenfunction of maximal overlap wit
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FIG. 3. Position distribution of the Schro¨-
dinger wave packet in the harmonic potential~a!
and differences between the Schro¨dinger and the
Helmholtz position distributions~b! for an initial
Gaussian wave packet withx0521 and
Dx05Dxcoh ~‘‘coherent state’’!; in ~b! the differ-
ences grow to a maximum of about 20%.
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the initial state is larger; consequently the propagation t
scale over which the paraxial approximation is reasona
becomes correspondingly shorter.

In Fig. 4 the first few order optical corrections are show
for the case of Fig. 2: In Fig. 4~a! thedifferencebetween the
real parts of the slowly varying Schro¨dinger and Helmholtz
solutions is compared with the first-order correction ter
the difference betweenthese twois then compared with the
second-order correction in Fig. 4~b!, the remaining differ-
ence with the next-order correction in Fig. 4~c!, and so forth.
We see that as long as the total interaction time is onl
fraction of tcorr ~in Fig. 4 we have
tfinal51.5tHO50.008tcorr), the first few terms of the abov
series expansion indeed yield an excellent approximatio
the exact Helmholtz field. The fast oscillations turning up
Fig. 4~d! stem from numerical errors, as will be discuss
briefly at the end of this section.

C. Tunneling „double-well potential…

Now we proceed to a more challenging and physica
more interesting problem: What kind of optical corrections
one to expect for tunneling in a double-well potential? O
the optical side this could be viewed as a simple model
an optical coupler for a paraxial light beam initially confine
to one well@10#.

A refractive index variation of the form

n2~r !5n0
2@12d4~x22a2!2# ~58!

leads to a double-well optical potential

Vopt~x!5
1

2
d4~x22a2!2, ~59!
e
le

;

a

to

y

r

again with the requirement ford that d4(x22a2)2!1 over
the spatial interval of interest, which scales asa. Setting

d45
~121/n0

2!

L4F1

4
2~a/L !2G2 ~60!

the refractive index takes on the vacuum valuen(6L/2)51
at the end points of the interval@2L/2,L/2#. For a givenL,
the depth and the location of the two potential wells are th
both fixed by the parametera.

For our numerical illustrations we have chosenL55l
anda/L50.225 throughout, and for reasons that will be e
plained below, instead of a Gaussian wave packet as in
condition, we choose a superposition of the two low
eigenfunctions of the Schro¨dinger equation

c~x;t50!5
1

A2
@w0~x!1w1~x!#. ~61!

In Fig. 5~a!, where we have setn052.5, the tunneling of the
wave packet between the two potential wells is clearly v
ible. The time scale of the motion back and forth is det
mined by the inverse tunneling rate

t tun/\5
p

~E1
S2E0

S!
, ~62!

which depends on the difference between the lowest
eigenenergies of the optical Schro¨dinger equation. So far this
is only a simple Schro¨dinger evolution, but is it possible to
get similar behavior in the corresponding paraxial Helmho
problem? In other words, can the ‘‘tunneling’’ of the wav
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packet from one graded-index well to the other in a coup
be calculated within the paraxial approximation?

It turns out that the relative size of two time scales
relevant for this question. For the paraxial description to
meaningful for times of the order oft tun, we require the
typical time scale of the correctionstcorr;(E1

S)22, intro-
duced previously, to satisfy

tcorr.t tun. ~63!

For the parameters chosen in Fig. 5 we havet tun/tcorr50.40.
Therefore the discrepancies between the Schro¨dinger and the
Helmholtz position distributions remain small, at most 5%
Fig. 5~b!. As in the harmonic oscillator example the devi
tions are smallest around the turning points, where the tra
verse velocity and thus the paraxiality parameter are sm
est.

The significance of the first few terms of the expansion
demonstrated in Fig. 6, where thedifferencebetween the rea
part Re@c (0)(x;z)# of the Schro¨dinger wave function and the
real part of the slowly varying Helmholtz field amplitud
Re@E(x,z)exp$2ik0n0z%# is plotted. From~a! to ~d! an in-
creasing number of correction terms is taken into acco
the more correction terms are included, the later the onse
deviations. Note that even for the relatively long final prop

FIG. 4. The optical corrections for the same initial condition
in Fig. 2 after an evolution timetfinal51.5tHO50.008tcorr : ~a! dif-
ference of the real parts of the slowly varying amplitude of t
Helmholtz and the Schro¨dinger field ~solid curve! and first-order
correction ~dashed curve!, ~b!–~d! remaining differences~solid
curve! and the next higher-order correction~dashed curve!.
r

e

s-
ll-

s

t;
of
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gation time tfinal52.5t tun(51.01tcorr) in Fig. 6, excellent
agreement is reached when including terms up to or
m53,4.

Now we increase the refractive index value. This affe
the ‘‘mass’’ mopt5k0

2n0
2 of the fictitious Schro¨dinger particle

and increases the difference between the Schro¨dinger
eigenenergiesk0

2n0
2$En

S% and $En
H52kn

2% belonging to the
shared eigenfunctions$wn%. For n053 the tunneling time
scale t tun is now of the same order of magnitude as t
correction time scale,t tun/tcorr'1, in contrast to the previ-
ous case. This means that the tunneling to the other well m
be described only poorly in the paraxial approximation. T
is depicted in Fig. 7; as in Fig. 6 we plot the differences
the amplitude of the two fields, including terms up to ord
m. The final time of tfinal52.5t tun now corresponds to
tfinal52.8tcorr and the truncation is seen to fail whe
t'tcorr; note the scaling factor at the height of about 50
compared with Fig. 6.

Since the Schro¨dinger and the Helmholtz eigenfunction
coincide, as explained above, any initial condition involvi
a finite number of eigenstates, such as the example in
preceding section, will again be restored exactly after so
finite time of evolution. Therefore for the initial conditio
discussed above, we have a third time scale of relevance
‘‘dephasing’’ time scale, which is proportional to the inver
of the difference between the lowest level splittingsDS and
DH of the Schro¨dinger and Helmholtz eigenvalues~in appro-
priate dimensionless units for comparison!,

tdephase/\5
p

uDS2DHu
, ~64!

with

FIG. 5. Position distribution of the Schro¨dinger wave packet in
the double-well potential withn052.5, a50.225L: ~a! and differ-
ences between the Schro¨dinger and the Helmholtz position distribu
tions ~b! for tfinal52t tun50.8tcorr ; in ~b! the differences grow to a
maximum of about 5%.
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DS5E1
S2E0

S,

DH5
A2E1

H2A2E0
H

n0k0
. ~65!

SinceDS and DH determine the individual tunneling rate
for tdephaseuDS2DHu/\5p the two fields have run com
pletely out of phase, as shown in Fig. 8. After having tu
neled back and forth about 30 times, the fields are locali
in opposite wells for the Schro¨dinger and Helmholtz cases

FIG. 6. The optical corrections for the same parameters a
Fig. 6 andtfinal52.5t tun51.01tcorr ; from ~a! to ~d!: difference be-
tween the real part of the Helmholtz amplitude and the Schro¨dinger
amplitude with added corrections up to orderm.

FIG. 7. The optical corrections for a potential withn053 and
tfinal52.5t tun52.8tcorr ; from ~a! to ~d!: difference between the rea
part of Helmholtz amplitude and the Schro¨dinger amplitude with
added corrections up to orderm.
-
d

Here tfinal5tdephase534t tun5133.5tcorr, and a truncation of
the expansion series would fail completely.

The convergence range of the expansion Eq.~40! is not
clear, it is certainly not uniform in time. We stress that re
able results are only guaranteed fortfinal!tcorr and recom-
mend the following practical approach for estimating the v
lidity of the truncation of the infinite series to a given fini
number of terms: Higher-order contributions subtract fro
the norm of the total wave function, canceling the ove
whelming power law growth of the low-order correctio
terms. Checking the normalization of the total wave functi
including terms up to orderm therefore has proven to be a
excellent way to test the validity of truncation at a give
orderm. For the situation shown in Fig. 6, for instance, t
normalization of the wave function is
1.71, 1.15, 0.97, 0.99, . . . when including corrections up to
m50,1,2,3, . . . . Furthermore we want to mention tha
whenever possible, we have also solved the dynamics
means of another independent method, e.g., fast Fou
transform, in order to verify the numerical accuracy.

Finally a word on choosing a superposition of the tw
lowest eigenstates instead of a Gaussian located in one o
potential wells as initial condition. It turns out that one e
counters numerical problems, which become more seri
the more coefficients have to be taken into account w
expanding the Gaussian in the eigenbasis. The reason fo
is that on a finite grid high-order eigenfunctions are not re
resented properly. Since the evaluation of the wave func
up to orderm involves a summation over the eigenindexn
which involves terms with increasingly fast oscillations
their phases, such errors are of critical importance.

V. DISCUSSION

In this paper we have compared three different calcu
tions, viz., the Schro¨dinger propagation, which is identica
with the paraxial propagation of light, the systematic pert
bation corrections to this lowest-order result, and finally t
exact electromagnetic propagation described by the He
holtz equation. The perturbation expansion is of the singu
kind, which produces unbounded corrections valid ove
limited interval only. Such terms, however, suffice for o
purpose to investigate the validity range of the paraxial
proximation and its corrections. The correct result can
ways be obtained from the Helmholtz equation.

The theory is applied to simple models of wave propa
tion in graded-index media. In Figs. 2 and 3 we can see h
the paraxial evaluation of the harmonic motion becomes
act whenever the wave packet focuses in the forward di
tion, making the transverse momentum components sm
The illustrations also show the steady growth of the er
over a few oscillation periods; this growth is illustrated
Fig. 4.

We also apply the general theory to the case of propa
tion in two coupled potential wells. Here the wave packe
expected to tunnel between the wells, and we investigate
differences between Schro¨dinger theory tunneling and ‘‘tun-
neling’’ of electromagnetic waves. The results are repor
in Figs. 5–7, where the main conclusions from the sim
harmonic case are verified. An interesting observation is
the electromagnetic wave and the massive particle devel

in
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FIG. 8. Position distribution of the Schro¨-
dinger ~a! and the Helmholtz~b! wave packet in
the double-well potential withn051.5,a50.3L
after the timetfinal5tdephase534t tun5133.5tcorr .
After having tunneled about 30 times, the tw
fields have run out of phase and are localized
opposite wells.
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phase difference when they propagate; this is shown in
8. The failure of the straightforward perturbation approa
with increasing time is derived directly from this phase d
ference. When the theory tries to approximate this in a p
turbative manner, it is bound to produce terms growing
some power of the propagation time. Only a uniform exp
sion like the multiple-time-scale one would be able to tr
such effects appropriately. We have not regarded it exped
to pursue such an approach in the present paper.

Our main objective here has been to extract those m
ematical terms which make the Schro¨dinger evolution start
to differ from electromagnetic wave propagation. It is, mo
over, of some interest to compare the physical pictures
fered by the two theories. In this spirit let us conclude
looking at the scaling relations of the parameters occurrin
the Schro¨dinger interpretation of the electromagnetic wa
and its wave characteristics. This can be done using s
elementary dimensional arguments in the following mann

As we have seen, the lowest order paraxial equation~3!
can be written

i
]

]z
c52

1

2k0
¹'

2 c1Voptc,

where for notational simplicity we have assumedn051. In-
troducing a properly scaled time variablet5z/c, we find the
effective Schro¨dinger equation

i\
]

]t
c52

\2

2meff
¹'

2 c1Veffc,

where the role of the mass is played by the parameter
g.
h

r-
s
-
t
nt

h-

-
f-

in

e
r.

meff5
\k0

c
, ~66!

as we might expect on dimensional grounds.
For the massive particle case, we expect a heavy par

to display nearly classical behavior. It is now of interest
ask what this requirement implies for the electromagne
case in the paraxial approximation. If we assume that
potential function is characterized by a length scaleL, we
can define a characteristic time scaleL/c. If we inject an
initial wave packet of transverse widthDx, we can neglect
the dispersion as long as

Dx@
LDp

mc
,

whereDp is the momentum width of the wave packet. Fro
this relation and the uncertainty relation, we obtain the c
dition on the mass

meff@
L\

cDx2
.

When the effective mass~66! is inserted into this condition
we find the relation

Dx2

lL
@1, ~67!

which is the Fresnel condition for ray behavior; this is w
known to correspond to the classical limit of wave mecha
ics. We can combine this with the condition for the validi
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of a semiclassical description, namely, that the poten
structure changes slowly over the extent of the transvers
Broglie wavelength

l'5
l

Q
.

With our definition of the characteristic lengthL we can
write this as

l!QL.

Combined with Eq.~67! this gives the condition

S Dx

l'
D 2

@Q.

This states the well known fact that a wave packet can
localized only to within a region much larger than its avera
wavelength; here it is applied to the transverse directi
which in the paraxial approximation involves the expans
angleQ. When this goes to zero, the Fresnel condition~67!
is sufficient to localize the particle wave packet.

Finally a few words on possible extensions of the pres
work. In the future it might be worthwhile to address pro
lems that involve the true vector character of the electrom
netic field: however, if the three spatial components do
decouple, one can no longer associate one single op
Schrödinger equation with the paraxial wave packet; it do
not even seem possible to generalize this to a~nonlinear!
Schrödinger equation for coupled particles, since the eq
tion is not homogeneous in the wave functions. Moreover
the present work we have only dealt with monochroma
fields, that is, we have ignored temporal effects.
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APPENDIX

1. The general vector case for monochromatic fields

For monochromatic fields the electric field vector is giv
by E(r ,t)5E(r )exp(2ivt), with E(r ) satisfying

k0
2n2~r !E~r !5¹3¹3E. ~A1!

Pulling out an appropriate phase factor

E~r !5E~r !eiw~r ! ~A2!

this is equivalent to the envelope equation

k0
2n2~r …E~r !5@¹w„¹w•E~r !…2¹w

2E~r !#, ~A3!

where¹w5¹1 i (¹w).
l
de

e
e
,

n

t

g-
t
al

s

-
n
c

to

Now we transform to scaled variables, which for conv
nience we write down again,

r̃'5Qk0n0r' ,

z̃5Q2k0n0z, ~A4!

t̃ 5Q2v0t,

and collect all terms of the same order inQ in the differen-
tial operator on the right-hand side of Eq.~A3!. With the
definitions

G x̃ i
5

]

] x̃ i

@Q2w̃~ r̃ !#[H Q

k0n0

]w~r !

]xi
for xiP$x,y%

1

k0n0

]w~r !

]xi
for xi5z

~A5!

we get the three coupled equations for the three Carte
components

052Q4
]2Ex

] z̃2
1Q3

]2Ez

] x̃] z̃
1Q2S 22iG z̃

]Ex

] z̃
2 i

]G z̃

] z̃
Ex

2
]2Ex

] ỹ] ỹ
1

]2Ey

] x̃] ỹ
D 1 iQ1S G x̃

]Ez

] z̃
1G z̃

]Ez

] x̃
1

]G x̃

] z̃
EzD

1Q0S G z̃
2Ex22iG ỹ

]Ex

] ỹ
2 i

]G ỹ

] ỹ
Ex1G x̃

]Ey

] ỹ
1 i

]G x̃

] ỹ
Ey

1G ỹ

]Ey

] x̃
D 2Q21G x̃G z̃Ez2Q22~G x̃G ỹEy2G ỹ

2Ex!,

05@•••#x↔y , ~A6!

05Q3S ]2Ex

] x̃] z̃
1

]2Ey

] ỹ] z̃
D 1Q2S ]2Ez

] x̃2
1

]2Ez

] ỹ2 D 1 iQ1FG x̃

]Ex

] z̃

1G ỹ

]Ey

] z̃
1G z̃S ]Ex

] x̃
1

]Ey

] ỹ
D 1

]G x̃

] z̃
Ex1

]G ỹ

] z̃
EyG

2 iQ0F2G x̃

]Ez

] x̃
12G ỹ

]Ez

] ỹ
1S ]G x̃

] x̃
1

]G ỹ

] ỹ
D EzG

2Q21G z̃~G x̃Ex1G ỹEy!1Q22~G x̃1G ỹ !Ez .

When setting

¹w•E50, ~A7!

the complicated expressions simplify considerably; all od
order terms vanish and all components decouple, each s
fying the same scalar equation~given in the next section
below!. Writing this condition in scaled variables,
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Q3
]Ez

] z̃
1Q2S ]Ex

] x̃
1

]Ey

] ỹ
D 1 iQG z̃Ez1 i ~G x̃Ex1G ỹEy!50,

~A8!

makes it obvious that the longitudinal componentEz , which
leads to a coupling between all components, is also resp
sible for the odd-order terms inQ.

2. An alternative form of the expansion
for the scalar wave equation

In this section we will give an alternative derivation
Eqs. ~41! and ~42!. Our starting point is the wave equatio
for the slowly varying amplitudec(r ,t)5E(r ,t)e2 iw(r )1 ivt

for a solution of the scalar wave equation

2
n2~r !

c2 S ]

]t
2 iv0D 2

c~r ,t !52¹w
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or equivalently, by formally taking the square root on bo
sides@9#,
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Here we have generalized from a strictly monochroma
wave to a quasimonochromatic one. In scaled variables
get
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D 22i S G x̃

]

] x̃
1G ỹ
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Eq. ~A11! is still exact for arbitraryw(r ). It contains all the
information of spatial and temporal effects on the propag
ing wave packet~cf. right- and left-hand side, respectively!,
except for the vector aspects of the field discussed in
preceding section.
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Assuming a quadratic scaling~38! in Q of the smoothness
of the refractive index profile, we may rewrite
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, ~A13!

with dn( r̃ )5O(1). Now one has toexpand the whole ex-
pression inside the square brackets in Eq.~A11! in a power
series ofQ, which may be cumbersome for complicate
transverse and/or longitudinal refractive index profiles a
appropriate exponentsw(r ), which suppress the divergen
terms;D22.

From here on we specialize again to the case of mo
chromatic fields treated in the main text@with (]/] t̃ )c50
andw5k0n0z#. We get
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and thus
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where the operatorH (0) is defined as
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Now we expand the operator in the square brackets on
right-hand side of Eq.~A11! and the wave function in a
power series ofQ,
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The contributions satisfy
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In our case the lowest orders are found to be
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In principle, for nonconstantdn one has to be careful with
the operator ordering while expanding the square root.
since in Eq.~A11! dn is to the left of all differential opera-
tors, it has to be treated as a constant and factored out to
left in all terms of the above expressions. This and the f
that ]2/] z̃2 and H (0) commute, imply that in the presen
simple case one can expand the square root as if dealing
c-numbers.
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This expansion is equivalent to Eqs.~41!. We verify this
by inserting Eq.~A19! into Eq. ~A17!,
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Here for every next higher order we have made iterative
of the lower-order relations~treating dn again as a
c-number!.
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