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Theory of ionization in ion-atom collisions: Spectra of ejected electrons
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A Galilean invariant theory of atomic collisions is constructed for straight-line trajectories of nuclei with
arbitrary impact parameters. The theory is based on Sturmian expansions in Fourier space, and provides an
exact description of excitation and ionization processes for a wide range of collision velocities. Advantages of
Sturmian sets over conventional eigenstates are emphasized. Detailed spectra of electrons ejected in head-on
ion-atom collisions are calculated.@S1050-2947~97!04210-8#
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I. INTRODUCTION

Ionization in ion-atom collisions is of continued theore
cal interest, especially at low collision energies. Because
relative velocity of nuclei is less than the mean electron
locity in the initial state, physical processes are often
scribed in terms of adiabatic eigenstates and the corresp
ing instantaneous energy values. The approximate separ
of nuclear and electronic motion is referred to here as
Born-Oppenheimer approximation. This approach has
considerable qualitative success, but well-formulated, co
pletely ab initio computations in this representation ha
proved problematical. For example, it is known that the ad
batic eigenstates must be supplemented by translational
tors to achieve a Galilean invariant theory. Even then, i
ization cannot be properly described owing to the failure
the Born-Oppenheimer approximation for electrons mov
slowly relative to the positively charged nuclei in the fin
state.

The failure of the Born-Oppenheimer separation of va
ables ultimately derives from the lack of Galilean covarian
of Schrödinger plane wavesfk(t,r ). Plane waves are no
invariant in form under the transformationr 85r1vt,
k85k1v, t85t, rather, the functions fk(t,r ) and
fk8(t8,r 8) differ by phase factors. These same phase fact
known as the Bates-McCarroll@1# translations factors, are
easily included in atomic basis expansions to obtain a G
ilean invariant theory, but are foreign to the Bor
Oppenheimer separation of variables. Several workers h
introducedad hoctranslation factors@2–4# better adapted to
the Born-Oppenheimer separation of variables. Such fac
prove superior to the plane-wave factors for transitions
volving bound states, although they meet with difficulties
breakup channels.

An alternative approach was used by Solov’ev and V
itsky @5#. They constructed a satisfactory theory by finding
coordinate frame in which the Born-Oppenheimer separa
of variables emerges naturally. In such a coordinate fra
the positions of the target-electron and projectile elect
potentials do not change with time. Transformations to t
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frame are accomplished by first transforming to a frame t
rotates with the internuclear axis. Because transformation
rotating frames are standard in the theory of ion-atom co
sions, this aspect of Solov’ev and Vinitsky’s representat
is not reviewed here.

Solov’ev and Vinitsky also introduced a coordinate sy
tem with a length scale that changes with time, such that
distance between the target and projectile is fixed in this n
system of scaled coordinates. The transformation to a fra
with a length scale that changes with time is nonlinear.
addition, a new time variable is introduced to write the tran
formed time-dependent Schro¨dinger equation in its familiar
form. Solov’ev and Vinitsky’s transformation is reviewed
Sec. III.

Although the scaled coordinates were introduced to ins
a Galilean invariant theory, they played no essential role
the theory of Ref.@5#. This role becomes apparent when w
consider Born-Oppenheimer wave functions for continu
states. Asr→0 the electron wave function approaches th
of an electron in the potential2Zua/r , where Zua is the
united-atom charge andr is the electron coordinate relativ
to the center of charge. It follows that the normalization
the continuum electron states of energyEk5k2/2 includes
the factorN5exp@pn/2#G(11 in), wheren5Zua/k is Som-
merfeld’s parameter. The square of the normalization c
stant ask→0 appears as a factor in the Galilean invaria
cross sectiond3s/dk3, and is singular in the limit ask→0.
This singularity atk50 is known to be incorrect, rather th
Galilean invariant cross section has two singularities
uk2vPu and uk2vTu, wherevP andvT are the final-state ve
locities of the projectile and target, respectively. The tw
singularities correspond physically to the well-known co
tinuum capture and electron loss cusps. It follows that Bo
Oppenheimer adiabatic basis functions cannot give the l
energy electron spectra correctly no matter what sort ofad
hoc translational factors are employed. This remark app
to all representations including Solov’ev and Vinitsky’s re
resentation used here and traces the difficulty to the adiab
basis set. For that reason we consider an alternative b
namely, the H2

1 Sturmian basis discussed in an earlier pa
@6# and reviewed in Appendix C.

Sturmian bases are defined such that the coefficientrn(v)
of the scaled potentialV(q) is used as an eigenvalue fo
fixed values of the energy parameterv5ER2. The corre-

rs-
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56 2873THEORY OF IONIZATION IN ION-ATOM . . .
sponding Sturmian eigenfunctions are denoted bySn(v;q),
and are defined for all values ofv, including positive, nega-
tive, and even complex values. In contrast to the adiab
functions, the Sturmian functions do not depend, even p
metrically, upon the internuclear distanceR. When this basis
set is used, theR and t dependences emerge from the so
tion of the dynamical equations.

The Sturmian functions depend parametrically uponv,
which is a frequency conjugate to the time variablet. For
that reason we transform the dynamical equations to the
quency domain via a Fourier transform. The transformat
to the frequency domain is discussed in Sec. IV.

The emergence of Sturmian functions in the time dom
can be understood by noting that two-center Coulomb po
tials scale asV(q)/R(t), where the scaled coordinat
q5r /R(t) is dimensionless. In the frequency domainR be-
comes a frequency-dependent operator. It is then natur
seek a representation where the coefficient of this operat
diagonal and proportional to the unit matrix. The Sturmi
basis is uniquely determined by this requirement.

The ‘‘advanced adiabatic theory’’ of Solov’ev@7# em-
ploys a philosophy very similar to the present work, but d
fers in two critical ways from the development presen
here. The ‘‘advanced adiabatic theory’’ does not employ
scaling transformation, thus it is based upon a Galilean n
invariant bases. To some extent this is a formal matter, b
does affect the mathematical form that the important inno
tion of Ref. @7# takes. This innovation was to define a fun
tion R(E) inverse to the adiabatic energy eigenvalueE(R)
and to employ a set of associated basis statesw„R(E),r …. It
can be shown that this set is not complete in the usual se
In contrast, the present theory uses the scaling transforma
to effect a Galilean invariant representation@5#. This trans-
formation introduces the productE(R)R2 in place ofE(R)
in the Schro¨dinger equation, and the potential has the sca
form RV(q). The coefficient ofV(q) in the Schro¨dinger
equation is used as an eigenvalue. The functions, thus
fined, are a complete set of Sturmian functions and are w
suited to exact calculations. The Sturmian eigenvaluesrn(v)
are seen to be roots of the equationE(r)r25v5const,
whereas the quantityR(E) of Ref. @7# is a root of the equa-
tion E(R)5E. The presence of ther2 factor gives a very
different spectrum of eigenvalues and eigenfunctions for
Sturmian functions than for the quantityR(E) and the asso-
ciated functionsw„R(E),r … of the advanced adiabatic theor

Recently, to calculate the spectra of electrons ejecte
head-on collisions~straight-line trajectories of nuclei with
zero impact parameter! with a very broad range of relativ
velocities, positive energy Sturmian functions for the tw
center Coulomb potential have been employed@8#. In this
manuscript we consider the general Sturmian theory
atomic collisions based on positive energy Sturmian fu
tions for straight line trajectories of nuclei with arbitrary im
pact parameter.~Atomic units are used throughout.!

II. TIME-DEPENDENT SCHRÖ DINGER EQUATION

The time-dependent Schro¨dinger equation used in th
theory of ion-atom collisions has the form
ic
a-

-

e-
n

n
n-

to
is

-
d
e
t-
it
-

se.
on

d

e-
ll

e

in

-

f
-

F i
]

]t
2H~R,r !Gc~ t,r !50, ~2.1!

whereR5RA2RB andRA ,RB ,5r are the vectors determin
ing the positions of two nucleiA and B, and the electron
with respect to the center of mass. We assume here
nuclear motion can be treated classically, and the tim
dependent internuclear distanceR(t)5uRu is defined by the
trajectory of relative motion of the nuclei. Usually, initia
conditions are imposed att→2` for c2(t,r ) andt→` for
c1(t,r ). The equalityc1(t,r )5c2(2t,2r )* allows us to
define the initial conditions for both initial and final states
t→2`, and describe collisional processes on the se
infinite time axis 2`,t<0. Transition amplitudes to the
continuum are given by the matrix elements@9#

Tk,i5^ck
1~ t !uc i

2~ t !&[E @ck
1~ t,r !#* c i

2~ t,r !d3r .

~2.2!

The initial conditions associated with an electron that
bound in an atomic statef i(ra) of the particleA with an
eigenenergyEi are

c i
2~ t,r ! ;

t→2`

f i~ra!e2 iEi teiva•ra1 iva
2t/2, ~2.3!

wherera5ur2RAu, va5MBv/(MB1MA), MA , andMB are
the masses of nucleiA andB, andv is the relative collision
velocity. In terms of adiabatic eigenstatesFn(R(t);r ) and
eigenvaluesEn(t) the initial conditions become

c i
2~ t,r ! ;

t→2`
(

n
an

i Fn~R~ t !;r !e2 i * tEn~ t !dteig trnsl~r ,t,v!,

an
i 5 lim

R→`
^Fn~R!uf i&, ~2.4!

whereEn(t)→Ei ast→2`, andg trnsl(r ,t,v) is a translation
factor that insures the Galilean invariance of the funct
c i

2(t,r ):

g trnsl~r ,t,v! ;
t→2`

va•ra1va
2t/2. ~2.5!

The incoming part of the final ionization state with a
electron of a wave vectork is represented explicitly as

ck
2~ t,r !5~2p!23/2 exp~ i r•k2 ik2t/2!Q~ t2T0!

1ck
scat~ t,r !, ~2.6!

with the initial conditionck
scat(t,r )50 as t<T0 . Then the

functionsc i
2(t,r ) andck

2(t,r ) are orthogonal asT0→2`:

^ck
2~ t !uc i

2~ t !&→0 as T0→2`. ~2.7!

It should be emphasized here that the$t,r % space is not
particularly convenient for the solution of dynamic problem
in atomic collisions, because the adiabatic basis sta
$Fn(R,r )% do not satisfy the initial conditions~2.3! ~not Gal-
ilean invariant!. Although this basis describes very well th
electron motion in the relevant potentials, it is difficult
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2874 56S. Yu. OVCHINNIKOV, J. H. MACEK, AND D. B. KHREBTUKOV
satisfy the initial conditions~2.3! without proper translation
factors. In particular, many matrix elements of the nonad
batic coupling remain finite even at infinitely large intern
clear distances@10#

K Fn8~R!U ]

]RUFn~R!L ;const asR→`. ~2.8!

This circumstance led to the development of a host of tra
lation factor theories@10#. In the Sec. III we present an ana
lytic approach to this problem that is the most suitable
use with the Sturmian representation.

III. SCALED SPACE

In order to take into account explicitly the Galilean pro
erties of the molecular basis sets discussed above, Solo
and Vinitsky @5# proposed the following scaled coordinate
in a rotating frame where thez axis points alongR(t),

q5r /R~ t !, ~3.1!

t5E
2`

t dt8

R2~ t8!
, ~3.2!

and a function transformation

w2~t,q!5R̃3/2~t!expF2 i
dR̃~t!/dt

2R̃~t!
q2Gc2@ t~t!,R̃~t!q#,

~3.3!

whereR̃2(t)5dt/dt.
It is possible to show that, whent→2`, the exponential

in Eq. ~3.3! goes to the correct Galilean factor. Thus t
translational part of the initial conditions Eq.~2.4! is satisfied
automatically by the Solov’ev-Vinitsky transformation, i.e

expF2 i
dR̃~t!/dt

2R̃~t!
q2G5exp„2 ig trnsl~r ,t,v!…. ~3.4!

The function w(t,q) satisfies the following time-
dependent Schro¨dinger equation in the$t,q% space:

F i
]

]t
2H0~q!2R̃~t!V~q!2 1

2 V2~t!q22V~t!L̂yGw~t,q!

50, ~3.5!

where

V~q!5S 2
Z1

uq2R̂/2u
2

Z2

uq1R̂/2u
D , H0~q!52 1

2 ¹q
2 ,

~3.6!

V2~t!5
1

R̃~t!

d2R̃~t!

dt2
22S 1

R̃~t!

dR̃~t!

dt
D 2

. ~3.7!

The term with the angular momentum operatorL̂y in Eq.
~3.5! occurs because a reference frame that rotates with
frequencyV~t! is employed. This rotation is essential to o
tain proper translational properties of the solution@11#. In
-

s-

r

’ev
,

he

this paper we will consider straightline trajectories of nuc
with impact parameterb and relative velocityv, where the
oscillator frequencyVs(t)5vb is a constant. The function
R̃(t) in this case is

R̃~t!52
b

sin vbt
. ~3.8!

The initial conditions for bound states~2.4! now become

w i
2~t,q! ;

t→0
R̃3/2~t!(

n
anFn~R̃~t!,q!e2 i *0

tEn~t!R̃2~t!dt.

~3.9!

Notice that there is no translation factor, and that functio
w i(t,q) are invariant under Galilean transformations.

For the final ionization state it can be shown@12# that the
plane-wave part ofck(t,r ) is transformed, according to Eq
~3.3!, into the propagator of electron motion in the oscillat
potential with rotationKosc(q,t;q0,0), and the wave function
that corresponds to the final ionization state is given by

wk
2~t,q!5~2 iv !23/2KoscS q,t;

k

v
,0D1wk

scat~t,q!,

~3.10!

with the initial conditionwk
scat(t,q)→0 ast→0. Using Eqs.

~2.2! and ~3.3!, one easily finds transition amplitudes to th
continuum,

Tk,i5^wk
1~t!uw i

2~t!&. ~3.11!

In this paper we will also consider a particular case
head-on collisions with zero impact parameter and no in
action between the colliding nuclei. The main simplificatio
thus obtained is that the frequencyV~t! in Eq. ~3.5! is equal
to zero, and we can avoid complications connected with
oscillator and rotational terms in Eq.~3.5!. It is important to
note that in this case the Hamiltonian in Eq.~3.5! depends on
t only through the factorR̃(t) multiplying the potential
V(q).

For zero impact parameter one has

R̃~t!52
1

vt
, 2`,t<0. ~3.12!

In this case the incoming plane-wave part of the final ioni
tion stateck(t,r ) is transformed, according to Eqs.~3.3! and
~3.12!, into a Gaussian wave packet, withKosc in Eq. ~3.10!
replaced by the free-particle propagatorK free given by

K free~q,t;q0,0!5~2p i t!23/2 expF i

2t
~q2q0!2G .

~3.13!

Note thatK free(q,t;k/v,0) of Eq. ~3.13! is covariant~in-
variant in form! under the Galilean transformatio
r 85r1vt, k85k1v. This covariance of the free-particle so
lutions suggest that Solov’ev’s representation has a m
fundamental basis that doad hoctranslational factors. Mani-
fest covariance is most important for ionization states.
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56 2875THEORY OF IONIZATION IN ION-ATOM . . .
In the representation described in this section the w
functions w i(t,q) and wk(t,q) are Galilean covariant. In
standard theories@13,14#, c(t,q) is expanded in scaled adia
batic ~fixed-nucleus! basis states, i.e., eigenstates
H01RV. These states cannot represent ionization spe
correctly, and capture-to-continuum cusps are always m
ing in such calculations. Another problem of scaled adiab
bases is thatall matrix elements of the nonadiabatic couplin
become infinite atR50. This means that a large number
basis functions must be used to obtain a good represent
of c. There is also a common problem for all adiabatic re
resentations, namely, the system starts out in one of the
est adiabatic states, and if it is to evolve to a state where
electron is free, it must cross an infinite number of bou
levels. Just how to represent this infinite number of crossi
without explicitly putting in all of the basis states is a seve
problem for standard basis set expansions. This problem
be addressed by using a sufficiently different set of ba
states.

The Solov’ev-Vinitsky transformation introduces an e
sential singularity att50 into all functions in$t,q% space
@see, for example, Eq.~3.13!#. As we will see in Sec. IV, the
essential singularities disappear when we perform a dyna
cal separation of variables.

IV. DYNAMICAL SEPARATION OF VARIABLES

A. General formulation

We have seen that adiabatic bases cannot describe io
tion, thus we introduce a closely related, but alternative
the H2

1-like Sturmian bases@6#. These functions, althoug
formally identical to the adiabatic bases at specific values
the parameterR, do describe ionization channels. The Stu
mian functions depend parametrically upon the frequencv
conjugate to the time variablet. In order to use the Sturmia
bases, we write the wave functions as Fourier transform

w6~t,q!5
1

A22p i
E

2`

`

dv exp~2 ivt!x6~v,q!,

~4.1!

and obtain the following equation forx6(v,q) in $v,q%
space:

iOv
VsH FH0~q!2

1

2
Vs

2q22VsL̂y2vGx6~v,q!J
5

1

v
V~q!x6~v,q!, ~4.2!

where

Vs5vb, ~4.3!

and the operatorOx
a is defined as

Ox
a f̂ ~x!5

f̂ ~x1a!2 f̂ ~x2a!

2a
~4.4!

for an arbitrary operatorf̂ (x).
e
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To satisfy the physical initial conditions~3.9! on the func-
tions w6(t,q), the functionsx6(v,q) must satisfy certain
initial conditions, but we defer this question to Sec. VI aft
we build a general solution in Sec. V. We assume here
the proper initial conditions are satisfied, and write the tra
sition amplitude according to Eqs.~2.2! and ~4.1!,

Tk,i5
i

2p E
2`

`

dvE
2`

`

dv8e2 i ~v2v8!t^xk
1~v8!ux i

2~v!&.

~4.5!

Notice that continuum functionsxk(v,q) can be ex-
pressed in terms of the Green’s functions of the oscilla
with rotation @15#,

xk~v,q!5
1

A2pv3/2
Gosc~v;q,k/v !1xk

scat~v,q!. ~4.6!

It is shown in Appendix A that transition amplitudes a
given in term of residues at the poles of certain integrals@see
Eq. ~A16!#. The situation is more complex in theb50 case
mostly because both discrete and continuum spectra
present in the problem~there is only a discrete spectrum
thebÞ0 case!. In what follows we consider specific feature
of the b50 case, which are not present whenbÞ0.

B. Specific features forb50

It can be seen that, whenVs→0,

Ov
Vs→

]

]v
, ~4.7!

and for the zero impact parameter Eq.~4.2! becomes

i
]

]v
$@H0~q!2v#x6~v,q!%5

1

v
V~q!x6~v,q!. ~4.8!

In theb50 case, one has to distinguish between incom
and outgoing solutions when dealing with the continuu
functions. For instance, wave functionsxk

out(v,q) that corre-
spond to the final continuum state in$v,q% space now be-
come

xk
2~v,q!5

1

A2pv3/2
Gout~v;q,k/v !1xk

scat~v,q!, ~4.9!

whereGout is the free-particle Green’s function defined b
Eq. ~C22!.

Asymptotically the bound-state functionsx i
2(v,q) and

continuum functionsxk
scat(v,q) have similar behavior to

short-range potential Sturmian functions, even ifV is a long-
range potential:

x i
2~v,q! ;

q→`

Ci~v,q̂!q21eiA2vq, ~4.10!

xk
scat~v,q! ;

q→`

Ck~v,q̂!q21eiA2vq. ~4.11!

When t→0 the variablet becomes infinite, andq5rvt
goes to infinity as well for allrÞ0. Therefore we can use th
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asymptotic forms of the wave functionsx i(v,q) and
xk

scat(v,q) given by Eqs.~4.10! and ~4.11! to evaluate the
integral in Eq. ~4.1!. Since t→`, the stationary phase
method gives asymptotically exact results, and we obtain

c i~0,r !5v3/2Ci~v0 , r̂ ! ~4.12!

and

ck
scat~0,r !5v3/2Ck~v0 , r̂ !, ~4.13!

wherev05v2r 2/2 is the point of the stationary phase. It
important to note here that functions

x2~v,q!5xout~v;v,q!

and

x1~v,q!5@x in~2v;v,2q!#* ~4.14!

automatically have outgoing-wave asymptotics. The inde
‘‘in’’ and ‘‘out’’ are meaningful only for v.0. Both incom-
ing and outgoing Sturmian functions have the same ana
continuation into thev,0 region. These analytic continua
tions satisfy bound-state boundary conditions, and, theref
one should not distinguish between in and out Sturm
functions forv,0. However, for simplicity of notation, in
the following sections we will be using indexes ‘‘in’’ an
‘‘out’’ even for v,0. We will use onlyx2 functions to find
the transition amplitude@see Eq.~4.14!#; therefore we omit
this index from now on.

V. STURMIAN EXPANSIONS AND COUPLED EQUATIONS

A. CasebÞ0

We expand the wave functionsx i(v,q) andxk
scat(v,q) in

terms of a discrete set of orthonormal Sturmian basis fu
tions:

x i~v,q!5(
n

Sn~v;q!Bn
i ~v!

and

xk
scat~v,q!5(

n
Sn~v;q!Bn

k~v!, ~5.1!

where the Sturmian functions satisfy the following equatio

FH0~q!2
1

2
Vs

2q22VsL̂y2vGSn~v;q!

52rn~v!V~q!Sn~v;q!. ~5.2!

The Sturmian normalization condition is

E S̃n~v;q!V~q!Sn~v;q!d3q521, ~5.3!

where S̃n(v;q) is a dual function toSn(v;q) obtained by
inverting the axis of rotation, i.e.,Vs→2Vs . The normal-
s

ic

e,
n

c-

:

ization with dual functions avoids complex conjugation, a
allows us to use the analyticity of Sturmian functions in t
complex plane ofv.

Our definition of the dual also plays an important role
the invariance of the Sturmian theory under a shift of t
coordinate system along the internuclear axis. This inv
ance was established earlier for the adiabatic representa
@11#. The invarience of the Sturmian theory employs simi
arguments, and is demonstrated in Appendix B.

Using Eq.~4.2!, one easily finds equations for the coef
cientsBn

i (v),

1

v
Bn

i ~v!1 i(
n8

^S̃n~v!u2V~q!Ov
VsuBn8

i
~v!rn8~v!Sn8~v!&

50. ~5.4!

When calculating the inhomogeneous parts in equati
for Bn

k(v), we use the Sturmian expansion of the oscilla
Green’s function with rotationGosc(v;q,k/v) in Eq. ~4.6!,

Gosc~v;q,k/v !5(
n

1

rn~v!
S̃n~v;k/v !Sn~v;q!,

~5.5!

to obtain the following equation:

1

v
Bn

k~v!1 i(
n8

^S̃n~v!u2V~q!Ov
VsuBn8

k
~v!rn8~v!Sn8~v!&

5
i

A2pv

S̃n~v;k/v !

v2rn~v!
. ~5.6!

Using quasiclassical methods@16#, one finds that at large
negativev the solutions of the recurrence relation Eqs.~5.4!
can be approximated by the formula

Bn
i ~v! ;

v→2`

An
i ~2`!

rn
out~v!

expF i

v E
v0

v dv8

rn
out~v8!G . ~5.7!

It is convenient to extract the fast variation explicitly, an
introduce slowly varying coefficientsAn

i (v) andAn
k(v) by

Bn
i ~v!5

An
i ~v!

rn~v!
expF i

v E
v0

v dv8

rn~v8!G
and

Bn
k~v!5

An
k~v!

rn~v!
expF i

v E
v0

v dv8

rn~v8!G .
B. Caseb50

In the particular caseb50 the equations for the coeffi
cients can be obtained in a similar fashion. Instead of rec
rence relations we now have differential equations, and i
necessary to use outgoing Sturmian functions forv.0. The
final equations forb50 are
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]An
i ~v!

]v
1 (

n8Þn

Qnn8~v!An8
i

~v!50 ~5.8!

and

]An
k~v!

]v
1 (

n8Þn

Qnn8~v!An8
k

~v!5Pn
k~v!, ~5.9!

where

Qnn8~v!5 K Sn
out~v!U2V

]

]v USn8
out

~v!L
3expH i

v E
v0

v

dv8F 1

rn8
out

~v8!
2

1

rn
out~v8!G J ,

Pn
k~v!5

i

A2pv
expF2

i

v E
v0

v dv8

rn
out~v8!GSn

out~v;k/v !

v2rn
out~v!

.

~5.10!

VI. INITIAL CONDITIONS

To define our problem uniquely, we must determine
integration limitv0 , and initial conditions forAn

i andAn
k , so

that the physical initial conditions~2.4! are satisfied. The
initial conditions for bound states and for the continuum
considered separately. Notice that the initial conditions
identical for b50 and bÞ0, and we shall not distinguish
between these two cases in this section.

A. Initial conditions for bound states

In order to set up initial conditions for Eqs.~5.4!, we
consider bound wave functions at large internuclear d
tancesR(t)→`. To this end, we replacet in Eq. ~4.1! by
R̃(t) using

t52
1

vR̃~t!
, ~6.1!

that is exact forb50 and asymptotic ast→0 for bÞ0.
Notice that the Fourier variablev associated with the
‘‘time’’ variable t is connected to the Fourier variable«
associated with the physical timet by

v5«R̃2~t!. ~6.2!

Then Eq.~4.1! becomes

w i
2

„t,r /R̃~t!…5
1

A22p i
R̃2~t!E

2`

`

d«

3exp@2 i«R̃~t!/v#x i
2

„«R̃2~t!,r /R̃~t!….

~6.3!

When R̃(t)→`, we can use asymptotic forms Eq.~5.7!
for coefficientsBn

i (v), and calculate the integral above b
the stationary phase method. The rapidly varying phase
e

e
e

-

f n~«!5
R̃2~t!

v
E

«0

« d«8

rn„«8R̃2~t!…
2

«R̃~t!

v
, ~6.4!

where«05v0 /R̃2(t).
The stationary pointEn is found from the equation

d fn(«)/d«50, that gives

rn„EnR̃2~t!…5R̃~t!. ~6.5!

We see that the stationary point coincides with adiabatic
ergy atR5R̃(t) defined by Eq.~C9! in Appendix C. Calcu-
lating the integral in Eq.~6.4! by parts

f n~En!5
R̃2~t!

v H «8

rn~«8R̃2!
U

«0

En
2
En

R̃~t!

1E
«0

En «8

@rn~«8R̃2!#2

drn

d«8
d«8J , ~6.6!

we see that the upper limit of the first term is canceled
actly by the second term if we take into account Eq.~6.5!,
and the lower limit of the first term usually goes away sin
R̃(t) andrn(«0R̃2)→`. We change the integration variab
from «8 to R using

R5rn~«8R̃2!, ~6.7!

and notice that

«85
@rn#21~R!

R̃2~t!
[

«n~R!

R̃2~t!
[

R2

R̃2~t!
En~R!, ~6.8!

where«n(R)5R2En(R) is the adiabatic energy in scaled c
ordinates, andEn(R) is the usual adiabatic energy withou
scaling. The phase at the stationary point now becomes

f n~En!5
1

v E
rn~«0R̃2!

R̃~t!
En~R!dR

[2E
2T0

t

En~ t !dt →
v0→2`

2E
2`

t

En~ t !dt. ~6.9!

Thus, settingv0→2` one finds that the phasef n(En) at
the stationary point is identical to the adiabatic phase use
the initial conditions~2.4!.

Taking integrals in Eq.~6.3! by the stationary phase
method, we obtain

w i
2~t,r /R̃~t!!5Av(

n
An

i ~2`!
Sn„EnR̃2~t!;r /R̃~t!…

A2
]rn

]vn

3expS 2 i E
2`

t

En~ t !dtD , ~6.10!

wherevn5EnR̃2(t).
We perform the Solov’ev-Vinitsky transformation Eq

~3.1!, ~3.2!, and~3.3!, and notice that, according to Eq.~C11!
in Appendix C,
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Fn~R;r !5
Sn~EnR2;r /R!

A2 ]rn/]vn

, ~6.11!

to obtain the initial wave function in$t,r% space

c~ t,r !5eig trnsl~r ,t,v!(
n

An
i ~2`!Fn„R~ t !,r …e2 i *2`

t En~ t !dt.

~6.12!

By inspection of Eq.~2.4! it is easy to see now that th
appropriate initial condition forAn

i (v) is

An
i ~2`!5

1

Av
an

i , ~6.13!

wherean
i is a constant given by Eq.~2.4!.

B. Initial conditions for continuum states

Since we have explicitly extracted the free-electron m
tion in the continuum wave functions Eqs.~2.6!, ~3.10!, and
~4.9!, initial conditions on the coefficientsAn

k(v) are deter-
mined by the orthogonality ofck to all c i . At large negative
v they are zero,

An
k~2`!50. ~6.14!

This simplicity of initial conditions comes at the expense
having inhomogeneous terms in Eq.~5.6!.

VII. SUMMARY OF THE GENERAL THEORY

At this point the theory is complete. To find the transitio
amplitudes one proceeds as follows. In case ofbÞ0, first, it
is necessary to solve the recurrence equation~5.4! to find the
coefficientsBn

i (v) for bound state initial conditions, or to
solve Eq. ~5.6! to obtain coefficientsBn

k(v) for the con-
tinuum initial conditions. Using expansions~5.1! for func-
tions x~v! it is straightforward now to obtain the transitio
amplitudes from Eq.~A16!. For b50 one solves differentia
equations~5.8! for bound states or~5.9! for the continuum to
find the coefficients in expansions~5.1!.

The caseb50 is different in that both discrete and co
tinuum parts of the problem have to be considered.~For b
Þ0 the oscillator potential eliminates the continuum part.! In
Sec. VIII we present applications of the theory forb50 to
emphasize the necessary modifications of the general th
in this important particular case.

VIII. APPLICATION: SPECTRA OF EJECTED
ELECTRONS FOR HEAD-ON COLLISIONS

In this section we present an application of the gene
theory in the caseb50. There is no oscillator potential in
this case, and all the potentials in the Schro¨dinger equation
Eq. ~3.5! go to zero at infinity. For this reason one has
distinguish between incoming and outgoing Sturmian fu
tions for v.0 ~see Appendix C!. Short-range and Coulom
potentials will be considered.
-

f

ry

l

-

A. Short-range potentials

When Z152Z2 , the two-Coulomb-center potential be
comes a short-range potential. Substituting Eqs.~4.9! and
~5.1! with outgoing Sturmian functions into Eq.~4.5!, we
obtain the following expression for the transition amplitud

Tk,i5
i

2p (
n
E

2`

`

dvBn8
i

~v!E
2`

`

dv8e2 i ~v2v8!t

3F 1

A2pv3/2
^k/vuGin~v8!uSn

out~v!&

1(
n8

Bn8
k

~v!^Sn8
in

~v8!uSn
out~v!&G , ~8.1!

where we usedSin5(Sout)* @see Eq.~C16!#. For short-range
potentials the matrix elementŝSn8

in (v8)uSn
out(v)& and

^k/vuGin(v8)uSn
out(v)& have first-order poles atv5v8 with

residuesRn8n(v) and Rn
~G!(v;k/v), respectively.@See Eqs.

~C18! and ~C28! in Appendix C.# Thus we obtain

Tk,i5(
n
E

0

`

dvBn
i ~v!F 1

A2pv3/2
Rn

~G!~v;k/v !

1(
n8

Bn8
k

~v!Rn8n~v!G . ~8.2!

For short-range potentials the outgoing~incoming! Stur-
mian functions behave at largeq as

Sn
out~in!~v;q!;Cn

out~in!~v!
e6 ipq

q
Fn

out~in!~v,q̂!, ~8.3!

where Cn
out~in!(v) are normalization constant

Cn
in(v)5@Cn

out(v)#* , andFn
out~in!(v,q̂) are normalized angu

lar parts of Sturmian functionsFn
in(v,q̂)5@Fn

out(v,q̂)#* :

E dq̂ Fn
out~in!~v,q̂!Fn

out~in!~v,q̂!51. ~8.4!

Using Green’s theorem and asymptotic forms of Sturm
functions Eq.~8.3!, it is easy to find residuesRnn8(v) of
matrix elementsMnn8(v,v8) at the polev5v8:

Rnn8~v!5^Sn
in~v!u2VuSn8

out
~v!&@rn8

out
~v!2rn

in~v!#

5^Sn
in~v!uH0uSn8

out
~v!&2^Sn8

out
~v!uH0uSn

in~v!&

5
1

2
lim
S→`

R
S
ds@Sn

in~v;q!¹qSn8
out

~v;q!

2Sn8
out

~v;q!¹qSn
in~v;q!#

5 ipCn8
out

~v!Cn
in~v!E dq̂ Fn8

out
~v,q̂!Fn

in~v,q̂!.

~8.5!

ResiduesRnn8
~G! (v;k/v) are found in the same manner a

Rnn8(v). Using the asymptotic forms of Green’s function
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Gout~v;q,k/v !'2
eipq

q (
l 50

`

i l j l~pq8! (
m52 l

l

Ylm* ~ k̂/v !Ylm~ q̂!,

~8.6!

whereYlm(q̂) are spherical harmonics andj l(x) are spheri-
cal Bessel functions, we find

Rn
~G!~v;k/v !5 ipCn~v!(

l 50

`

i l j l~pq8!

3 (
m52 l

l

Ylm* ~ k̂/v !E dq̂Fn
in~v,q̂!Ylm~ q̂!.

~8.7!

Using the orthogonality ofc i andck , which can be writ-
ten as

(
n
E

0

`

dvBn
i ~v!H 1

A2pv3/2
Rn8

~G!
~v;k/v !

1(
n8

@Bn8
k

~v!#* Rn8n~v!J 50, ~8.8!

we can eliminate the first term associated with the pla
wave in Eq.~8.2!. Then the transition amplitude is

Tk,i52(
n

(
n8

E
0

`

dvBn
i ~v!Rn8n~v!Im Bn8

k
~v!. ~8.9!

B. Coulomb potentials

From the asymptotic behavior of the functionsx @Eqs.
~4.10! and ~4.11!#, it follows that the matrix elemen
^xk

1(v8)ux i
2(v)& have only first-order poles atv5v8 and

v.0 even though the matrix elemen
^k/vuGin(v8)uSn8

out(v)& and ^Sn
in(v8)uSn8

out(v)& in Eq. ~8.1!
have more complicated singularities in two-Coulomb-cen
problems. This means that our solutions are good for finitq
but must fail asymptotically. Such situation are read
treated by the Pade´ summation. In actual practice we us
Padésummation to obtain an efficient algorithm. To this e
we first write x I(v,q) @x I(v,q) denotes x i(v,q) or
xk

scat(v,q)# as a power-series expansions in spheroidal co
dinates~j5q11q2 andh5q12q2! nearj51,

x I~v,q!5(
n

Bn
I ~v!Sn~v;q!

5 →
j→1

2

j11
eip~j21!/2(

s
as

I ~v,h,f!S j21

2 D s

,

~8.10!

whereas
I (v,h,f) are expansion coefficients and two Co

lomb center Sturmian functionsSn(v;q) are discussed in
Appendix C4. The Pade´ summation@17# gives
e

r

r-

x I~v,q!'
2

j11
eip~j21!/2

(
s

n

cs
I ~v,h,f!~j21!s

(
s

n

ds
I ~v,h,f!~j21!s

;
2

j
eip~j21!/2

cn
I ~v,h,f!

dn
I ~v,h,f!

, ~8.11!

where cn
I (v,h,f) and dn

I (v,h,f) are Pade´ coefficients.
Thus we construct asymptotic constants Eqs.~4.10! and
~4.11! asCI(v,q̂)'exp(ip/2)cn

I /dn
I .

The transition amplitude Eq.~4.5! becomes

Tk,i5E
0

`

Re sv5v8^xk
1~v8!ux i

2~v!&dv, ~8.12!

with

Re sv5v8^xk
1~v8!ux i

2~v!&

5A2vE dq̂Ci~v,v,q̂!@Ck~v,v,q̂!

2Ck* ~2v,v,2q̂!#. ~8.13!

In Eq. ~8.13! we used the orthogonality ofc i and ck to
eliminate the plane-wave contribution.

IX. RESULTS AND DISCUSSION

The actual solution of the problem can be divided in
three stages. First, we truncate the coupled equations~5.8!
and ~5.9! at N'10, and solve them with the initial condi
tions given by Eqs.~6.13! and~6.14! to find the coefficients
An

i (v) and An
k(v) for v,0. Since forv,0 T Sturmian

functions form a complete set, the solution of these equati
gives the values ofAn

i (v) and An
k(v) for the T Sturmian

functions atv50. As we have shown forv.0 the complete
set contains bothT and S Sturmian functions. In order to
preserve continuity of the solution the coefficientsAn

i (v)
andAn

k(v) of the S Sturmian functions should equal zero
v50. On the second stage of solution we use the compu
values ofAn

i (v) andAn
k(v) for the T Sturmian functions at

v50 and zero initial conditions for theS Sturmian functions
to solve Eqs.~5.8! from v50 to v51`. Notice that the
coupling terms are of orderv21 nearv50, and the differ-
ential equations~5.8! and ~5.9! are of first order. The solu-
tions nearv50, therefore have the form of a Frobeniu
rather than a Taylor series. As an alternative to using
Frobenius solution with a large basis set we can exploit
connection between one- and two-Coulomb-center functi
nearv50, to solve the coupled equations for smallv. We
constructCi(v,q̂) and Ck(v,q̂) using the Pade´ summation
@17#. The sequence of Pade´ approximants converges fairl
rapidly. It is interesting to notice that forv50.4 a.u. the one
Sturmian approximation already gives accurate enough
sults ~within 10%!.

Three spectra of electrons ejected in collisions of proto
with hydrogen atoms are displayed in Figs. 1–3. Two diff
ent kinds of Sturmian functions are responsible for these
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types of spectra. Figure 1 shows a spectrum related to thS
promotion forv50.4 a.u. The spectrum has two cusp pea
at k'50 andki56v/2 in the center-of-mass frame. That th
S-promotion mechanism gives cusp electrons can be un
stood from the corresponding classical trajectories given
Ref. @18#. These authors show that theS-promotion classical
orbits circle both protons an infinite number of times. Sin
the electron spends a large fraction of its time near the p
tons, the electron distribution peaks atk56v/2. The energy
distribution of the fast electrons is exponential. Figures 2 a
3 show a spectrum related to theT promotion of 2pp and
1ss states, respectively, forv50.4 a.u. The two peaks a
zero center-of-mass velocity in Fig. 2 are associated with
p symmetry of theT01 promotion. This agrees with calcula
tions reported in Ref.@19#. The distribution in Fig. 2 corre-
sponds toRion'110 a.u., in good agreement withRion550/v
used in Ref.@19#.

Standard low-energy theories employing perturbed
tionary states@13# cannot calculate energy and angular d
tributions of electrons, and especially cannot obtain the c
tinuum capture cusp which should be present in the spe
Previous calculations of total cross sections have identi
two ionization mechanisms@20,21# at low-energy collisions,
calledT promotion andS promotion, but have not been ab

FIG. 1. Differential ionization probabilitiesuTk,i u2 at v50.4 a.u.
andb50 for theS promotion of the 2ps state.

FIG. 2. Same as Fig. 1 for theT promotion of the 2pp state.
s
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to compute the corresponding electron distributions on anab
initio basis.

The electrons promoted to the continuum via aT promo-
tion are called saddle-point electrons. This reflects the
that the electrons are picked up in the saddle region of
potential energy and promoted to the continuum as the
charges recede from each other. The electrons locate in s
at the saddle point between the nuclei. For equal char
their velocitiesk are distributed around one-half of the v
locity of the incoming particles. Recent calculations@22,23#
obtain such a distribution for saddle-point electrons, but e
ploy an adjustable parameterRion , where adiabatic and di
abatic wave functions are matched. In the present calc
tions we eliminate this arbitrary parameter.

The S-promotion electrons are associated with classic
periodic, unstable trajectories which represent electron m
tion along the axis joining the charges@18#. The kinetic en-
ergy of electrons on these trajectories increases when
charges approach each other. The increase of kinetic en
leads to ionization even when the relative velocity is ins
ficient to ionize electrons in a single binary collision.
simple analog of this mechanism is the acceleration of ela
balls bouncing between two walls that slowly approach e
other. Present ‘‘hidden crossing’’ theory@20,21# cannot com-
pute the complete distribution of these electrons.

Our formulation in terms of Sturmian eigenfunctions pr
sents a completeab initio theory of ionization in ion-atom
collisions witharbitrary velocity, and especially in the low
and intermediate-energy regions (v,1 a.u.). Various Born
approximations usually break down at low and intermedi
energies, and neither ‘‘hidden crossing’’ nor close-coupli
theories are able to calculate complete electron spectr
their regions of validity. First calculations by the Sturmia
technique show that two previously identified ionizatio
mechanisms give dramatically different electron distrib
tions. The T-promotion mechanism gives a peak at t
center-of-mass velocity, equal tov/2 in lab frame, as in ear-
lier calculations, but without arbitrary adjustable paramete
The S-promotion mechanism gives rise to two cusps wh
electron velocities match the ion velocities. Our numeri
calculations provide a solid confirmation of the qualitati
considerations presented above. These theoretical result

FIG. 3. Same as Fig. 1 for theT promotion of the 1ss state.
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be used to interpret measured electron distributions in te
of T andS mechanisms.

While our calculations have been carried out in de
only for b50, the results may also be used, in lowest or
in v, for bÞ0, since the terms involvingb in Eq. ~3.5! van-
ish in lowest order. Terms of higher order may also be k
so that the solutions of the difference equation~5.4! become
relevant. Almost identical difference equations have be
used to treat ionization in the hyperspherical representat
Here it was shown that the hidden crossing theory for i
ization via theT-promotion series, computed in Ref.@24#,
emerges from the Sturmian theory even forbÞ0. In the
present manuscript we have computed both theS- and
T-promotion distributions essentially exactly forb50. We
can anticipate that theT distributions, thus obtained, wil
remain even for bÞ0, but cannot project how the
S-promotion mechanism will emerge in that case.
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APPENDIX A:
TRANSITION AMPLITUDES IN FOURIER SPACE

In this appendix we derive a very general expression
the transition amplitude in$v,q% space. It will be shown tha
causality imposes very significant restrictions on the tran
tion amplitude, and the final result can be reduced to
calculation of a residue at the pole of a certain function.

Two cases will be considered:~i! the general case whe
zero internuclear distanceR is never reached; and~ii ! the
special case when there is no interaction between the nu
and they can come infinitely close together. In practice
second case can be realized mostly for straight-line traje
ries and zero impact parameter. Although in both cases
final expression is essentially the same, the zero-imp
parameter case requires somewhat special treatment.

We look for the transition amplitude in (t,r ) space in the
form

T125^c2
1~ t !uc1

2~ t !&, ~A1!

where the indices$1,2% are associated with some initial con
ditions, the index ‘‘2’’ corresponds to propagation in th
positive direction in time, and the index ‘‘1’’ means that the
function is counterpropagated in time. It is important to n
tice here that although the wave function is calculated a
certain moment of timet, the transition amplitude is actuall
independent of time. The counterpropagating functionc1 is
connected toc2 by the well-known formula

c1~ t,r !5@c2~ t,2r !#* . ~A2!
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According to the Solov’ev-Vinitsky transformation, w
write

c2~ t,r !5
1

R3/2~ t !
expH i

2R~ t !

dR

dt
r 2J w2

„t~ t !,r /R~ t !…,

~A3!

wheret(t) is defined by Eq.~3.2!. According to Eq.~A2!,
for c1 we obtain @assuming for simplicity that
R(2t)5R(t)#

c1~ t,r !5
1

R3/2~ t !
expH i

2R~ t !

dR

dt
r 2J

3@w2
„t~2t !,2r /R~ t !…#* . ~A4!

Noticing that

t~2t !5tmax2t~ t !, ~A5!

it is easy to obtain the following expression for the transiti
amplitude:

T125E d3q w2
2~tmax2t,2q!w1

2~t,q!, ~A6!

where

tmax5E
2`

` dt8

R2~ t8!
. ~A7!

In order to separatet and q dependencies, we chose
work in the Fourier space

w2~t,q!5
1

A22p i
E

2`

`

dv exp~2 ivt!x~v,q!.

~A8!

The transition amplitude now becomes

T125
i

2p E
2`

` E
2`

`

dv dv8exp@2 i ~v2v8!t#

3exp~2 iv8tmax!E d3qx2~v8,2q!x1~v,q!.

~A9!

Notice that in this case there is no continuum~since there is
an oscillator potential!, and no distinction between ‘‘in’’ and
‘‘out’’ functions is needed.

To make the transition amplitude properly causal we ha
to define it for allt

T12~t!5 H0
T12

if t,0
if t.0 ~ independent oft!. ~A10!

We are now going to show that the condition above can
satisfied if, and only if, the integrand in Eq.~A9! has a
simple pole atv5v8. To this end we rewrite Eq.~A9! in the
form
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T12~t!5
i

2p E
2`

`

dV exp~2 iVt!E
2`

`

F~Dv,v8!dv8,

~A11!

where we changed the variablesDv5v2v8 and introduced
a new function

F~Dv,v8!5exp~2 iv8tmax!E d3q x2~v8,2q!

3x1~v81Dv,q!. ~A12!

Performing the inverse Fourier transformation, we obtain

E
2`

`

F~Dv,v8!dv852 i E
2`

`

dt T12~t!exp~ iDvt!.

~A13!

The integral on the right-hand side is well defined in t
upper half-plane of the complex variableDv, and we replace

Dv→Dv1 i«, «.0. ~A14!

It is now straightforward to obtain

E
2`

`

F~Dv1 i«,v8!dv85
T12

~Dv1 i«!
, ~A15!

and we deduce that the transition amplitude is proportiona
the residue atDv50 of the integral on the left-hand side o
Eq. ~A15!,

T125Re sDv50E
2`

`

F~Dv,v8!dv8. ~A16!

Thus it has been proved that if the transition amplitude
causal as defined by Eq.~A10!, then the integrand in Eq
~A9! has a simple pole. The proof of the inverse statemen
elementary, and we shall not give it here. The import
result of this section is the formula for the transition amp
tude Eq.~A16!.

APPENDIX B: INVARIANCE OF STURMIAN MATRIX
ELEMENTS FOR NONZERO IMPACT PARAMENTER

In this appendix we illustrate the invariance of the St
mian theory to shifts of the coordinate system along the
ternuclear axis. Our discussion follows closely the dem
stration in Ref.@11#.

The differential equation for the Sturmian functions is

@ 1
2 p21rn~v!V~q!1V2q21VLy#Sn~v;q!5vSn~v;q!

~B1!

which can be written in the magnetic-field form

@ 1
2 ~p2q3V!21rn~v!V~q!1 1

2 V2qy
2#Sn~v;q!

5vSn~v;q!. ~B2!

A shift of the origin along the internuclear ax
r5r 81aR(t) ẑ corresponds to the transformation in scal
coordinates,
to

s

is
t

-
-
-

q5q81a ẑ, ~B3!

where a is a constant that defines the origin of the ne
coordinate frame. The new Schro¨dinger equation is

@ 1
2 ~p82q83V2a ẑ3V!21rn~v!V~q8!

1 1
2 V2qy8

2#Sn~v;q81a ẑ!5vSn~v;q81a ẑ!.

~B4!

The gauge transformation

Sn~v;q81a ẑ!5exp@ ia ẑ3V•q8#Sn~v;q8! ~B5!

restores the original form of the equation definingSn(v;q),

@ 1
2 ~p82q83V!21rn~v!V~q8!1 1

2 V2qy8
2#Sn~v;q8!

5vSn~v;q8!. ~B6!

with q8 replacingq. Therefore we have

Sn~v;q81a ẑ!5exp@ ia ẑ3V•q8#Sn~v;q8!, ~B7!

while the dual transforms as

S̃n~v;q81a ẑ!5exp@2 ia ẑ3V•q8#S̃n~v;q8!. ~B8!

Even though the Sturmian functions change by a phase
tor, the matrix elements in Eq.~5.4! remain unchanged sinc
the phase factor is independent ofv and cancels in forming
the product of a Sturmian and a dual.

APPENDIX C: REVIEW OF STURMIAN THEORY

1. Analytic properties of Sturmian functions
and relation between Sturmian and scaled adiabatic sets

According to Demkov@25#, an infinite set of adiabatic
eigenvalues«n(R) represent different sheets of the sam
analytic function«(R) on a multisheeted Riemann surfac
Recall that a Riemann surface for a function is defined a
surface on which the function is single valued. On the r
axis, the value of the function on thenth sheet is equal to the
energy eigenvalue«n(R), by construction. At complexR
different sheets join at square root branch pointsRb , so that,
in the neighborhood ofRb , one has«(R)}AR2Rb. For
such functions it is possible to construct a Riemann surf
by plotting Re«n(R) vs R. The resulting surface is one o
which «(R) is single valued. Furthermore, the separation
tween the sheets now gives additional information not n
mally included in the definition of the Riemann surfac
namely, the intersection of this Riemann surface with a pla
passing through the real axis and perpendicular to theR
plane gives the multiplicity of potential curves«n(R). On
the realR axis the function«(R) is equal to a ‘‘scaled’’
adiabatic energy eigenvalue«n(R) defined by the eigenvalue
equation

@H0~q!1RV~q!#wn~R;q!5«n~R!wn~R;q!. ~C1!

The Riemann surface also defines a universal adiab
eigenfunctionw(R;q) for all complex values ofR. Adiabatic
functionswn(R;q) satisfy boundary conditions
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]wn~R;q!

]q
1A22«n~R!wn~R;q!;0, as q→`, ~C2!

which correspond to the Jost matrix. Some of the adiab
energy eigenvalues«n(R) on the realR axis may be com-
plex, and the corresponding eigenfunctionswn(R;q) expo-
nentially increase asq→`. This means that usual bounda
conditionsw(R;q);0 asq→` define functions only on a
small part of the Riemann surface withR close to the real
axis.

The inverse functionr~v!, which can be found from the
equation

«@r~v!#5v, ~C3!

is defined on its Riemann surface for allv @7#. In analogy to
the adiabatic case one defines a universal Sturmian ei
function S(v;q) on the Riemann surface ofr~v!. Different
sheets of the Riemann surface are joined together at squ
root branch pointsvb in the complex plane ofv. On the real
v axis, the value of the function on thenth sheet is equal to
the Sturmian eigenvaluesrn(v). These eigenvalues are a
sociated with the Sturm-Liouville problem

@H0~q!1rn~v!V~q!#Sn~v;q!5vSn~v;q!, ~C4!

with boundary conditions defined by theparameterv,

]Sn~v;q!

]q
1A22vSn~v;q!;0, as q→`. ~C5!

One of the most important differences between adiabatic
Sturmian functions should be pointed out here: it is essen
that Sturm-Liouville boundary conditions Eq.~C5! are inde-
pendent of Sturmian eigenvaluesrn(v). In other words,
givenanyv in Eq. ~C5! it is possible to find a correspondin
eigenvaluern(v). In contrast, boundary conditions for adi
batic functions Eq.~C2! depend explicitly on adiabatic ei
genvalues«n(R), and, therefore, solutions of adiabatic pro
lems require self-consistency between eigenvalues
boundary conditions. This fact makes Sturmian basis
much more versatile than adiabatic ones.

Although adiabatic and Sturmian basis sets are very
ferent, they are closely related. Comparison of Eqs.~C1! and
~C4! shows that adiabatic eigenfunctionswn(R;q) are, apart
from normalization constants, just the Sturmian functio
S(v;q) evaluated atv5«n(R):

wn~R;q!5Nn~R!S„«n~R!;q…. ~C6!

The particular sheet of the Riemann surfacer~v! to calculate
the functionS„«n(R);q… on should be chosen to satisfy th
condition

r„«n~R!…5R. ~C7!

If both R and«n(R) are real, one can assign indicesn to
different branches of the universal functionS„«n(R);q…, and
the relation between adiabatic and Sturmian functions
comes more explicit,

wn~R;q!5Nn~R!Sn„«n~R!;5q…, ~C8!
ic
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where Sturmian branch indexn is chosen so that

rn„«n~R!…5R ~C9!

is satisfied. This form@Eqs. ~C8! and ~C9!# is very useful
when establishing the correspondence betweenboundadia-
batic states and Sturmian functions. However, whenquasis-
tationarystates are involved one should use the more gen
prescription Eqs.~C6! and ~C7!.

Sturmian eigenfunctions are normalized according to

^Sn~v!u2VuSn8~v!&52E Sn~v;q!V~q!Sn8~v;q!d3q

5dnn8 . ~C10!

Note that dual functions ^Sn(v)u are defined as
^Sn(v)uq&5Sn(v;q), and we do not take the complex con
jugate ofSn(v;q) in Eq. ~C10!. The potential is diagonal in
the Sturmian representation. Since the potentialsV(q) of in-
terest are usually negative definite, normalizing the Sturm
potential matrix to21 ensures that the Sturmian function
are real for real negative energiesv. Sturmian normalization
constants are@6#

Nn~R!5S 2
]«n~R!

]R D 1/2

. ~C11!

There is also a very interesting analogy in behavior
coupling matrix elements calculated in adiabatic and S
mian bases in the vicinity of branch pointsRc and vb , re-
spectively. It has been shown@26# that the adiabatic matrix
elements have poles atR5Rb with residues6 i /4 indepen-
dent ofRc ,

K wn~R!U ]

]RUwn8~R!L '

6
i

4

R2Rb
, R'Rb . ~C12!

Similar considerations applied to the Sturmian case sh
that the Sturmian matrix elements also have poles atvb with
exactly the same residue as in the adiabatic case,

K Sn~v!U2V
]

]v USn8~v!L 5
^Sn~v!uSn8~v!&
rn~v!2rn8~v!

'

6
i

4

v2vb
, v'vb .

~C13!

2. Positive energy Sturmian functions

Both incoming and outgoing Sturmian functions at po
tive v are analytic continuations of the same set of Sturm
functions at negativev. ~i! Outgoing Sturmian functions sat
isfying outgoing wave boundary conditions,

]Sn
out~v;q!

]q
2 iA2vSn

out~v;q!;0 as q→`. ~C14!
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~ii ! Incoming Sturmian functions satisfying incoming wa
boundary conditions,

]Sn
in~v;q!

]q
1 ipSn

in~v;q!;0 as q→`. ~C15!

Both boundary conditions~C14! and ~C15! are obtained by
analytic continuation tov.0 of the boundary conditions
~C5!. For realv these two sets of Sturmian functions a
complex conjugate,

rn
in~v!5@rn

out~v!#* and Sn
in~v;q!5@Sn

out~v;q!#* .
~C16!

The overlap integrals between incoming and outgo
Sturmian functions,

^Sn
in~v!uSn8

out
~v8!&5

rn
in~v!2rn8

out
~v8!

v2v8
^Sn

in~v!

u2VuSn8
out

~v8!&, ~C17!

have a pole atv5v8 and, if the^Sn
in(v)u2VuSn8

out(v)& are
finite, then the pole is of the first order with residue,

Rnn8~v![Re sv→v8Mnn8~v,v8!5@rn
in~v!2rn8

out
~v!#

3^Sn
in~v!u2VuSn8

out
~v!&. ~C18!

The expansion of incoming Sturmian functions in terms
outgoing Sturmian functions is then

Sn
in~v,q!5(

n8

Rnn8~v!

rn8
in

~v!2rn
out~v!

Sn8
out

~v,q!, ~C19!

which converges, but not absolutely.

3. Sturmian expansions of Green’s functions

The Green’s functions Gout~in!(v;q,q8)
[^quGout~in!(v)uq8&, where Gout~in!5(H0(q)2v6 i«)21,
are solutions of equations

@H0~q!2v#Gout~in!~v;q,q8!5d~q2q8!, ~C20!

with outgoing ~incoming! boundary conditions for
Gout~in!(v;q,q8):

]Gout~in!~v;q,q8!

]q
7 ipGout~in!~v;q,q8!;0, as q→`.

~C21!

The outgoing ~incoming! Green’s functions of

H0(q)52 1
2 ¹q

2 in Eq. ~C27! are free-particle Green’s func
tions,

Gout~in!~v;q,q8!5
1

2p

exp~6 ipuq2q8u!
uq2q8u

. ~C22!

Overlap integrals with Green’s functions have the sa
structure as the Sturmian overlap integrals
g

f

e

^quGout~in!~v!Gout~v8!uq8&

5
Gout~in!~v;q,q8!2Gout~v8;q,q8!

v2v8
. ~C23!

Equation ~C23! shows, that atv5v8 overlap integrals
^quGout(v)Gout(v)uq8& are finite:

^quGout~v!Gout~v!uq8&5
]Gout~v;q,q8!

]v
, ~C24!

and integralŝ quGin(v)Gout(v8)uq8& have a first-order pole
at v5v8 with the residue

Re sv→v8^quGin~v!Gout~v8!uq8&

5Gin~v;q,q8!2Gout~v;q,q8!.
~C25!

To find Sturmian expansions of outgoing and incomi
Green’s functions, we consider matrix elements

^q8uGout~in!~v!VuSn
out~v8!&5

1

rn
out~v8!

@Sn
out~v8;q8!

1~v2v8!

3^q8uGout~in!~v!uSn
out~v8!&#.

~C26!

For short-range potentials the overlap integr
^q8uGout(v)uSn

out(v)& are finite, and Sturmian expansions
the outgoing Green’s functions,

Gout~v;q,q8!5(
n

Sn
out~v;q8!

rn
out~v!

Sn
out~v;q!, ~C27!

contain only outgoing waves~same for incoming waves!
@27#.

The overlap integralŝq8uGin(v)uSn
out(v8)& also have a

first-order pole atv5v8 with residue

Rn
~G!~v;q8![Re sv→v8^q8uGin~v!uSn

out~v8!&. ~C28!

The residueRn
~G!(v;q8) can be expanded in terms of outg

ing Sturmian functions,

Rn
~G!~v;q8!5(

n8

Rnn8~v!

rn8
out

~v!
Sn8

out
~v;q8!. ~C29!

4. Two-Coulomb-center Sturmian functions

The two-Coulomb-center Sturmian basis set is defined

F2
1

2
¹q

21rnS 2
Z1

q1
2

Z2

q2
D GSn~v;q!5vSn~v;q!,

~C30!

whereqi5r i /R.
This equation admits separation of variables in prol

spheroidal coordinates,
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j5q11q2 , h5q12q2 , f5arctanS x

yD ,

1<j,`, 21<h<1, 0<f,2p,

wherex andy are the Cartesian coordinates. Substituting
wave function

S~v;q!5C~v!G~j!F~h!exp~ imf! ~C31!

into Eq. ~C30! gives the set of differential equations@28#

F 1

j221

d

dj
~j221!

d

dj
2

lj

j221
1

v

2
1r

~Z11Z2!j

j221

2
m2

~j221!2GG~j!50, ~C32!

F 1

12h2

d

dh
~12h2!

d

dh
1

lh

12h2 1
v

2
1r

~Z12Z2!h

12h2

2
m2

~12h2!2GF~h!50, ~C33!

whereC(v) is a normalization factor andl is a separation
constant.

Equations~C32! and ~C33! with the boundary conditions

uG~61!u,`, uF~1!u,`,
]F~j!

]j
2 iA2vF~j! →

j→`

0

~C34!

are solved forlj5lj(r,v) andlh5lh(r,v), respectively.
The Sturmian eigenvaluesrn(v) are then calculated by solv
ing the equation

lj~r,v!5lh~r,v!. ~C35!

According to the general Sturm-Liouville theory, whe
v,0, the Sturmian eigenvalues and eigenfunctions are r
and the number of nodes of quasiradial wave functions (nj)
and quasiangular wave functions (nh) are conserved when
the parameterv varies. The Sturmian functions will be clas
sified according to the united-atom spherical quantum nu
bersn5(n,l ,m). These numbers are related tonj andnh by

n5nj1nh1m11, l 5nh1m, ~C36!

and are determined byrn(v) andln(v) in the limit v→0,

rn~v!5
A22vn

Z11Z2
1O~v3/2!, ln~v!5 l ~ l 11!1O~v!.

~C37!

There are two different types of Sturmian functions
v.0, which we callT- andS-type Sturmian functions. To
e

al,

-

t

gether, these two types of Sturmian functions form a co
plete set, but they otherwise have rather different propert
which we consider below.

The T-type Sturmian functions are analytic continuatio
of the negative energy Sturmian functions, and therefore
ist for all v. They have the valuern

T(0)50 atv50, and are
similar to the one-Coulomb-center Sturmian functions es
cially when v'0. In the classification ofT-type Sturmian
functions we will use spherical quantum numbe
n5(n,l ,m) in the limit v→0:

rn
T~v!5

iA2vn

Z11Z2
1O~v3/2!, ln

T~v!5 l ~ l 11!1O~v!.

~C38!

The quasiradial equation~C32! is only slightly different
from the one-Coulomb-center radial equation at sm
q5j21. But this slight difference brings different feature
to the Sturmian spectrum, namely,S-type Sturmian eigen-
functions. In contrast to theT-type Sturmian functions, the
S-type Sturmian functions are defined only forv.0 and
rn

S(0)Þ0. In the caseZ15Z2 the solutions of Eq.~C33! are
generalized Legengre polynomials andln

S(v)→ l ( l 11), as
v→0, and the value ofrn

S(0) can be calculated from th
semiclassical quantization equation

rn
S~0!'

~ l 11/2!2

Z11Z2
expF ip~2k1m11!

2l 11 G2
1

2
. ~C39!

From Eq.~C39! we see thatkm, 1
2 ( l 2m21/2). In the clas-

sification of S Sturmian functions we will use the quantu
numbersl , m, andn5 l 1k11. Then the set ofS-type Stur-
mian functions is 2ps, 3ds, 3dp, 4f s, 4f p, 4f d, 5f s,
5gs, 5gp, 5gd, . . . .

The asymptotic Sturmian eigenvaluesrn(v) for suffi-
ciently large positivev are just those of uncoupled harmon
oscillators onj andh coordinates, and forZ15Z2 have the
form

rn~v!52
v

2~Z11Z2!
1

1

Z11Z2
S v

2 D 1/2

3@2nh8111 i&~2nj81m11!#1O~1!,
~C40!

ln~v!52
v

2
1S v

2 D 1/2

~2nh811!1O~1!,

wherenj850,1, . . . andnh850,1, . . . are thequasiradial and
quasiangular quantum numbers of harmonic oscillators,
spectively, and related tonj andnh by

nj85nj1Int@ 1
2 ~ l 2m2 1

2 !#, nh85nh , ~C41!

where Int@x# is the integer part ofx.
When v→0 the functionCn

T(v) associated withT-type
Sturmian functions converges toCnl(v) associated with
united atom one-Coulomb-center Sturmian.
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For S-type Sturmian functions the normalization facto
Cn

S(v) diverge asv→0, and have the form

Cn
S~v!5A2p expFsn~v!2sn~v!lnS isn~v!

2A2v
D G1O~v1/2!,

~C42!

sn~v!52 i
r~v!~Z11Z2!

A2v
.

. A

s.
At large positivev the normalization factorsCn(v) asymp-
totically behave as

Cn~v!;vnj1~m11!/2. ~C43!

The coupling matrix elements betweenn5(nlm) and
n85(n11,lm) have pole singularities atv50. All other
coupling matrix elements are small.
s.
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