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Theory of ionization in ion-atom collisions: Spectra of ejected electrons
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A Galilean invariant theory of atomic collisions is constructed for straight-line trajectories of nuclei with
arbitrary impact parameters. The theory is based on Sturmian expansions in Fourier space, and provides an
exact description of excitation and ionization processes for a wide range of collision velocities. Advantages of
Sturmian sets over conventional eigenstates are emphasized. Detailed spectra of electrons ejected in head-on
ion-atom collisions are calculate51050-2947@7)04210-§

PACS numbss): 34.10+x

I. INTRODUCTION frame are accomplished by first transforming to a frame that
rotates with the internuclear axis. Because transformations to
lonization in ion-atom collisions is of continued theoreti- rotating frames are standard in the theory of ion-atom colli-
cal interest, especially at low collision energies. Because theions, this aspect of Solov'ev and Vinitsky’s representation
relative velocity of nuclei is less than the mean electron veis not reviewed here.
locity in the initial state, physical processes are often de- Solov’ev and Vinitsky also introduced a coordinate sys-
scribed in terms of adiabatic eigenstates and the correspontem with a length scale that changes with time, such that the
ing instantaneous energy values. The approximate separatigistance between the target and projectile is fixed in this new
of nuclear and electronic motion is referred to here as th&ystem of scaled coordinates. The transformation to a frame
Born-Oppenheimer approximation. This approach has hawith a length scale that changes with time is nonlinear. In
considerable qualitative success, but well-formulated, comaddition, a new time variable is introduced to write the trans-
pletely ab initio computations in this representation haveformed time-dependent Schiinger equation in its familiar
proved problematical. For example, it is known that the adiaform. Solov'ev and Vinitsky’s transformation is reviewed in
batic eigenstates must be supplemented by translational faec. lll.
tors to achieve a Galilean invariant theory. Even then, ion- Although the scaled coordinates were introduced to insure
ization cannot be properly described owing to the failure ofa Galilean invariant theory, they played no essential role in
the Born-Oppenheimer approximation for electrons movinghe theory of Ref[5]. This role becomes apparent when we
slowly relative to the positively charged nuclei in the final consider Born-Oppenheimer wave functions for continuum
state. states. A3 —0 the electron wave function approaches that
The failure of the Born-Oppenheimer separation of vari-of an electron in the potentiat-Z,,/r, whereZ, is the
ables ultimately derives from the lack of Galilean covarianceunited-atom charge andis the electron coordinate relative
of Schralinger plane wavesp,(t,r). Plane waves are not to the center of charge. It follows that the normalization of
invariant in form under the transformation’=r+wvt, the continuum electron states of energy=k?/2 includes
'=k+v, t'=t, rather, the functions ¢,(t,r) and the factorN=exdmv/2]I'(1+iv), wherev=2Z,/k is Som-
o (t',r") differ by phase factors. These same phase factorgnerfeld’s parameter. The square of the normalization con-
known as the Bates-McCarrdll] translations factors, are stant ask—0 appears as a factor in the Galilean invariant
easily included in atomic basis expansions to obtain a Galeross sectiom®o/dk®, and is singular in the limit ak— 0.
ilean invariant theory, but are foreign to the Born- This singularity atkk=0 is known to be incorrect, rather the
Oppenheimer separation of variables. Several workers hav@alilean invariant cross section has two singularities at
introducedad hoctranslation factor§2—4] better adapted to |k—vp| and|k—vy|, wherevp andv; are the final-state ve-
the Born-Oppenheimer separation of variables. Such factodscities of the projectile and target, respectively. The two
prove superior to the plane-wave factors for transitions insingularities correspond physically to the well-known con-
volving bound states, although they meet with difficulties fortinuum capture and electron loss cusps. It follows that Born-
breakup channels. Oppenheimer adiabatic basis functions cannot give the low-
An alternative approach was used by Solov'ev and Vin-energy electron spectra correctly no matter what soridf
itsky [5]. They constructed a satisfactory theory by finding ahoc translational factors are employed. This remark applies
coordinate frame in which the Born-Oppenheimer separatioto all representations including Solov'ev and Vinitsky’s rep-
of variables emerges naturally. In such a coordinate frameesentation used here and traces the difficulty to the adiabatic
the positions of the target-electron and projectile electrorbasis set. For that reason we consider an alternative basis,
potentials do not change with time. Transformations to thimamely, the H Sturmian basis discussed in an earlier paper
[6] and reviewed in Appendix C.
Sturmian bases are defined such that the coeffipig(t)
*Permanent address: loffe Physical Technical Institute, St. Petersf the scaled potentiaV/(q) is used as an eigenvalue for
burg, Russia. fixed values of the energy parameter=ER?. The corre-
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sponding Sturmian eigenfunctions are denotedSkiw;q), R,

and are defined for all values of, including positive, nega- = ~H(R,N|4(t.r)=0, 21

tive, and even complex values. In contrast to the adiabatic

functions, the Sturmian functions do not depend, even parawhereR=R,—Rg andR,,Rg,=r are the vectors determin-

metrically, upon the internuclear distane When this basis ing the positions of two nucleA and B, and the electron

set is used, th&® andt dependences emerge from the solu-With respect to the center of mass. We assume here that

tion of the dynamical equations. nuclear motion can be treated classically, and the time-
The Sturmian functions depend parametrically upan dependent internuclear distanBét) =|R| is defined by the

which is a frequency conjugate to the time variableFor trajectory of relative motion of the nuclei. Usually, initial

that reason we transform the dynamical equations to the fréioj‘d"“o”S are |mpo_sed+ap o~ for ¢ ('f,f)*andtﬂOc for

quency domain via a Fourier transform. The transformatiort’ (LF). The equalitys™ (t,r)= ¢~ (—t,—r)* allows us to

to the frequency domain is discussed in Sec. IV. define the initial conditions for both initial and final states at

The emergence of Sturmian functions in the time domairf_.}_.w’ .and dgscrlbe collisional processes on the semi-
can be understood by noting that two-center Coulomb poten'-nfm'.te time aX|s_—oo<ts0. Traq3|t|on amplitudes to the
tials scale asV(qg)/R(t), where the scaled coordinate continuum are given by the matrix elemepe
g=r/R(t) is dimensionless. In the frequency dom&rbe-

comes a frequency-dependent operator. It is then natural to Tk,i:<¢:(t)|¢i_(t)>zj [ (6,0 ]* g (t,r)dr.

seek a representation where the coefficient of this operator is (2.2
diagonal and proportional to the unit matrix. The Sturmian o - _ . _
basis is uniquely determined by this requirement. The initial conditions associated with an electron that is

The “advanced adiabatic theory” of Solov'el7] em- bound in an atomic state(r,) of the particleA with an
ploys a philosophy very similar to the present work, but dif- ©I9€nenergy; are
fers in two critical ways from the development presented _
here. The “advanced adiabatic theory” does not employ the i (4r)
scaling transformation, thus it is based upon a Galilean not- ‘
invariant bases. To some extent this is a formal matter, but fyherer ,=|r — R,|, va=Mgv/(Mg+M,), M, andMg are
does affect the mathematical form that the important innovathe masses of nuclé andB, andyv is the relative collision

tion of Ref.[7] takes. This innovation was to define a func- velocity. In terms of adiabatic eigenstatds,(R(t);r) and

tion R(E) inverse to the adiabatic energy eigenvakR)  eigenvalue< (t) the initial conditions become

and to employ a set of associated basis stal@qE),r). It

can be shown that this set is not complete in the usual sense.

In contrast, the present theory uses the scaling transformation

to effect a Galilean invariant representatid@]. This trans-

formation introduces the produ(R)R? in place of E(R) a = lim (@ (R)| &) (2.4

in the Schradinger equation, and the potential has the scaled " Row v

form RV(qg). The coefficient ofV(q) in the Schrdinger

equation is used as an eigenvalue. The functions, thus d&hereE (t) —E; ast— —o, andyy,s(r.t,v) is a translation

fined, are a complete set of Sturmian functions and are weflactor that insures the Galilean invariance of the function

suited to exact calculations. The Sturmian eigenvapués) i (t,r):

are seen to be roots of the equati@fp)p?= w=const,

whereas the quantitR(E) of Ref.[7] is a root of the equa- Yins(1,1V) ~ Vo T, +v3t/2, (2.9

tion E(R)=E. The presence of thp? factor gives a very tm e

different spectrum of eigenvalues and eigenfunctions for the

Sturmian functions than for the quanti®(E) and the asso-

ciated functionsp(R(E),r) of the advanced adiabatic theory.
Recently, to calculate the spectra of electrons ejected in i (t,r)=(2m) " ¥2 explir - k—ik2t/2)® (t—T)

head-on collisiongstraight-line trajectories of nuclei with

zero impact parametewith a very broad range of relative +t,r), (2.6

velocities, positive energy Sturmian functions for the two-

center Coulomb potential have been employ8H In this  with the initial condition¥{°(t,r)=0 ast<T,. Then the

manuscript we consider the general Sturmian theory ofunctionsy; (t,r) andy, (t,r) are orthogonal a$,— —o°:

atomic collisions based on positive energy Sturmian func-

tions for straight line trajectories of nuclei with arbitrary im- (o (O] (1))—0 as To——ce. 2.7

pact parameter(Atomic units are used throughout.

~ (j)i(ra)e*iEiteiVa'ra”‘fgt/zy (2.3

s —

g (D) ~ 2 a,d,(R)ine e dg iy,

t—s—ow V

The incoming part of the final ionization state with an
electron of a wave vectdc is represented explicitly as

It should be emphasized here that tha} space is not
particularly convenient for the solution of dynamic problems
in atomic collisions, because the adiabatic basis states
{®,(R,r)} do not satisfy the initial condition&.3) (not Gal-

The time-dependent Schiimger equation used in the ilean invarian). Although this basis describes very well the
theory of ion-atom collisions has the form electron motion in the relevant potentials, it is difficult to

IIl. TIME-DEPENDENT SCHRO DINGER EQUATION
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satisfy the initial condition$2.3) without proper translation this paper we will consider straightline trajectories of nuclei
factors. In particular, many matrix elements of the nonadiawith impact parameteb and relative velocitw, where the
batic coupling remain finite even at infinitely large internu- oscillator frequency}¢(7)=vb is a constant. The function
clear distancegl0] R(7) in this case is

(3.8

<¢)V,(R)%<I>V(R)>~const asR—x». (2.8 ﬁ(T):_

sinvb7’
This circumstance led to the development of a host of trans- he initial conditions for bound staté8.4) now become
lation factor theorie$10]. In the Sec. Il we present an ana-

lytic approach to this problem that is the most suitable for - - =

use with the Sturmian representation. o (7,0) ~ R¥(1) > a,®,(R(7),q)e b (IRI(Ndr

—0 v
ll. SCALED SPACE (3.9

erties of the molecular basis sets discussed above, Solov'et(7.d) are invariant under Galilean transformations.
and Vinitsky[5] proposed the following scaled coordinates, For the final ionization state it can be sholt] that the

in a rotating frame where the axis points alongR(t), plane-wave part off(t,r) is transformed, according to Eq.
(3.3), into the propagator of electron motion in the oscillator
g=r/R(t), (3.1)  potential with rotatiorK ,c{q, 7;qg,0), and the wave function
that corresponds to the final ionization state is given by
tdt’
T= B2 17! (32) k
—» R - Lo
(t) o (1,9)=(—iv) 3’2Kosc(q,7; ~0]+ etra),
and a function transformation (3.10
B ~u ~dR(n)/dr | - - with the initial conditiong;°®(7,q) —0 as7—0. Using Egs.
¢ (r,9)=R*(r)exg —i Tq ¢ [t(7),R(7)q], (2.2 and(3.3), one easily finds transition amplitudes to the
(7) continuum,
(3.3
whereR?(7) =dt/dr. Tei=(ec (Dler (7). (3.17

It is possible to show that, wher- — o0, the exponential
in Eqg. (3.3 goes to the correct Galilean factor. Thus the
translational part of the initial conditions E@.4) is satisfied
automatically by the Solov’ev-Vinitsky transformation, i.e.,

r{ dR(7/dr
expg —-I —=——q
2R(7)

In this paper we will also consider a particular case of
head-on collisions with zero impact parameter and no inter-
action between the colliding nuclei. The main simplification
thus obtained is that the frequen©yr) in Eq. (3.5 is equal
to zero, and we can avoid complications connected with the
=exp(—i yynsfT,1,V)). (3.4  oscillator and rotational terms in E(B.5). It is important to
note that in this case the Hamiltonian in E§.5 depends on

only through the factoR multiplying the potential
The function ¢(7,q) satisfies the following time- \C(q)_y g (7) PyIng P

dependent Schdinger equation in thé¢r,q} space: For zero impact parameter one has
i~ —H (@)~ R(NV(Q) - 3041 a?*~ Q(7)L, | o(7,0) R !
a7 old q)—3 q y|#(7.Q R(q-)z—v—T, —o<7r<0. (3.12
=0, (3.5

In this case the incoming plane-wave part of the final ioniza-
where tion statey (t,r) is transformed, according to E¢8.3) and
(3.12, into a Gaussian wave packet, with..in Eq. (3.10

Z Z replaced by the free-particle propagakofee given by
V<q>=( — e | Ho()= 3V, -
l[g—R/2| |g+R/2| i
36 Kired 8, 7:00,0) = (27 7) =2 exr{z—T (q—qo)z}.
02— d?R(7) 1 dR(n)\?2 . (3.13
v R(r) d7? ﬁ( 7)) dr ' Note thatK;.{q,7;k/v,0) of Eq.(3.13 is covariant(in-

R variant in form) under the Galilean transformation
The term with the angular momentum operatgr in Eq.  r’=r+vt, k' =k+v. This covariance of the free-particle so-
(3.5 occurs because a reference frame that rotates with thations suggest that Solov'ev’s representation has a more
frequency()(7) is employed. This rotation is essential to ob- fundamental basis that dal hoctranslational factors. Mani-
tain proper translational properties of the solutidd]. In  fest covariance is most important for ionization states.
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In the representation described in this section the wave To satisfy the physical initial condition8.9) on the func-
functions ¢;(7,q) and ¢,(7,q) are Galilean covariant. In tions ¢*(7,q), the functionsy™(w,q) must satisfy certain
standard theorigs 3,14], (7,q) is expanded in scaled adia- initial conditions, but we defer this question to Sec. VI after
batic (fixed-nucleuy basis states, i.e., eigenstates ofwe build a general solution in Sec. V. We assume here that
Ho+RV. These states cannot represent ionization spectrdne proper initial conditions are satisfied, and write the tran-
correctly, and capture-to-continuum cusps are always misssition amplitude according to Eq&.2) and (4.1,
ing in such calculations. Another problem of scaled adiabatic )
bases is thadll matrix elements of the nonadiabatic coupling L ” ra—i(@—0" )1t [
become infinite aR=0. This means that a large number of Thi=5, f_mdwf_xdw € O (@)l (@)
basis functions must be used to obtain a good representation (4.5
of ¢. There is also a common problem for all adiabatic rep- . ) )
resentations, namely, the system starts out in one of the low- Notice that continuum functiong(w,q) can be ex-
est adiabatic states, and if it is to evolve to a state where tharessed in terms of the Green’s functions of the oscillator
electron is free, it must cross an infinite number of boundWith rotation[15],
levels. Just how to represent this infinite number of crossings
without explicitly putting in all of the basis states is a severe
problem for standard basis set expansions. This problem will
be addressed by using a sufficiently different set of basis
states. It is shown in Appendix A that transition amplitudes are

The Solov'ev-Vinitsky transformation introduces an es-given in term of residues at the poles of certain integrsé®
sential singularity atr—=0 into all functions in{r,q} space Eg. (A16)]. The situation is more complex in the=0 case
[see, for example, E¢3.13)]. As we will see in Sec. IV, the mostly because both discrete and continuum spectra are
essential singularities disappear when we perform a dynampresent in the problertthere is only a discrete spectrum in
cal separation of variables. theb+# 0 caseé. In what follows we consider specific features

of theb=0 case, which are not present whe# 0.

1
xk(w,q)=WGOS&w;q,klv)+xi°atw,q). (4.6
mo

IV. DYNAMICAL SEPARATION OF VARIABLES

B. Specific features forb=0
A. General formulation
) ) . . ltcan be seen that, whe,— 0,
We have seen that adiabatic bases cannot describe ioniza-

tion, thus we introduce a closely related, but alternative set, a. 0

the H,"-like Sturmian base6]. These functions, although O, =70 (4.7)
formally identical to the adiabatic bases at specific values of

the parameteR, do describe ionization channels. The Stur-and for the zero impact parameter £4.2) becomes
mian functions depend parametrically upon the frequancy

conjugate to the time variabte In order to use the Sturmian . - 1 -
bases, we write the wave functions as Fourier transforms ' e {[Ho(a) —w]x™ (@,q)}= EV(Q)X (0,0). (4.8
1 Intheb=0 case, one has to distinguish between incoming

¢ (1,0)= J_wd‘” exp—iw7)x" (@,9), and outgoing solutions when dealing with the continuum
(4.1  functions. For instance, wave functiopf’((w,q) that corre-
spond to the final continuum state {m,q} space now be-

and obtain the following equation fox™(w,q) in {w,q}  COMe

—2i

space: 1
4 1, X Xk_(wYQ)=WGOUI(w;q.k/v)+XﬁcatwaQ), (4.9
10,5 Ho(@) — 50s0° = QsLy— w | x ™ (w,q)
where G° is the free-particle Green’s function defined by
1 N Eq. (C22).
—;V(q)x (@,0), 4.2 Asymptotically the bound-state functiong (»,q) and
continuum functionsy;**{w,q) have similar behavior to
where short-range potential Sturmian functions, eve¥ i a long-
range potential:
Qs=vb, 4.3 —
Xi (0,0) ~ Ci(w,G)q~'e"?9, (4.10
and the operato®; is defined as g
. f(x+a)—f(x—a) Xiw,q) ~ Cy(w,d)g e, (4.11
O (x)= (4.4 g

2a

A Whent—0 the variabler becomes infinite, and=rv 7
for an arbitrary operatof(x). goes to infinity as well for alt # 0. Therefore we can use the
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asymptotic forms of the wave functiong;(w,q) and ization with dual functions avoids complex conjugation, and
i w,q) given by Egs.(4.10 and (4.1)) to evaluate the allows us to use the analyticity of Sturmian functions in the
integral in Eq.(4.1). Since r—, the stationary phase complex plane ofo.

method gives asymptotically exact results, and we obtain ~ Our definition of the dual also plays an important role in
the invariance of the Sturmian theory under a shift of the

i(0r)=v%2C;(wy,F) (4.12  coordinate system along the internuclear axis. This invari-
ance was established earlier for the adiabatic representation
and [11]. The invarience of the Sturmian theory employs similar
arguments, and is demonstrated in Appendix B.
L 0r) =0v¥C(wq,f), (4.13 Using Eq.(4.2), one easily finds equations for the coeffi-

cientsB! (w),
where wo=v2r?/2 is the point of the stationary phase. It is
important to note here that functions 1. _ ~ O

SBU@)+12 (S)()| = V(D)0 1B, (©)p,(0)S,(w))

X (0,0)=x"v;0,0) ’
=0. (5.9
and
N . When calculating the inhomogeneous parts in equations
X (0,)=[x"(—v;0,— )] (4.14 k - - i
for B,(w), we use the Sturmian expansion of the oscillator

automatically have outgoing-wave asymptotics. The indexeg;reen s function with rotatioBos{ w;,k/v) in Eq. (4.6),

“in” and “out” are meaningful only for o>0. Both incom-

: : . ; : 1 -
ing and outgoing Sturmian functions have the same analytic  G_(w;q,k/v)=>, —— S,(w;k/v)S,(w;q),
continuation into thev<<0 region. These analytic continua- v puw)

tions satisfy bound-state boundary conditions, and, therefore, (5.9

one should not distinguish between in and out Sturmian . . )
functions for w<0. However, for simplicity of notation, in t0 obtain the following equation:
the following sections we will be using indexes “in” and .
“out” even for w<0. We will use onlyy™ functions to find  + o« - = _ Qg ok
the transition amplitudgésee Eq.4.14)]; therefore we omit v B”(w)ﬂ; (SU@)| =V(D)O, 7B, (@)p,(@)S, (@)
this index from now on. B

i S,(w;kiv)

= : 5.6
V. STURMIAN EXPANSIONS AND COUPLED EQUATIONS 2 vip() 5.6

A. Caseb#0

] sca ) Using quasiclassical method46], one finds that at large
We expand the wave functiong(,q) andxi"{®,q) in  negativew the solutions of the recurrence relation E¢s4)
terms of a discrete set of orthonormal Sturmian basis funccan be approximated by the formula
tions:

: Bi Aiv(_oc) I fw do’ .
xi(0.0=2 S,(0;0B}(0) (o)~ oy 0y ), e[ 7
and It is convenient to extract the fast variation explicitly, and
introduce slowly varying coefficienta! (w) andAi(w) by
scal _ . k .
XM, =2 S,(0;q)B(w), (5.1 A [i o do
Bl(w)= exp — f —
. . . , , po@) v Joy plo”)
where the Sturmian functions satisfy the following equation:
and
1 2.2 [
HO(Q)_Equ _QsLy_w S,(w;q) K )
B ()= ) exp - [ do”
=—p,(0)V(Q)S,(@;0). (5.2 ! po@) v Jog ple@))]

The Sturmian normalization condition is
B. Caseb=0
In the particular casé=0 the equations for the coeffi-
cients can be obtained in a similar fashion. Instead of recur-
_ rence relations we now have differential equations, and it is
where S,(w;q) is a dual function toS,(w;qg) obtained by necessary to use outgoing Sturmian functionsdor0. The
inverting the axis of rotation, i.eQ.— —Qg. The normal- final equations fob=0 are

f S, (0 PV(A)S,(w;q)d3q=—1, (5.3
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IA (o) . R2(r) (¢  de’ R
224 S QAL @=0 (68 fe)= o RO ey
w v £ v g0 p,(e'R(7)) v
and wheree o= wg /R3(7).
‘ The stationary point€, is found from the equation
A, (o) df,(¢)/de=0, that gives

+ 2 Q@A) (0)=Piw), (59 S
n PUERA(T)=R(7). (6.5

Jw

where We see that the stationary point coincides with adiabatic en-

9 ergy atR=R(7) defined by Eq(C9) in Appendix C. Calcu-
Qw,(w):<sf;“t(w) -V S‘V“,“(w)> lating the integral in Eq(6.4) by parts
i " 1 1 . (g)_ﬁZ(T) s! g, gV
Xexp{; fwodw [pggt(w')_Pgm(w’) ]r vy v p,,(S,RZ) . R(7)

v?p} () w0 [pu(e'R?)]? de’
(5.10

S)(w;klv) +J8V — dp”ds’}, (6.6

[ i (¢ do
P'f,(w)= V2mv ex;{_ v on P?;Ut(w/)

we see that the upper limit of the first term is canceled ex-

actly by the second term if we take into account E&5),

and the lower limit of the first term usually goes away since
To define our problem uniquely, we must determine theR(7) andp,(g,R?)— . We change the integration variable

integration limitwg, and initial conditions foA! andAX, so  from ¢’ to R using

that the physical initial condition$2.4) are satisfied. The ~

initial conditions for bound states and for the continuum are R=p,(¢'R?), (6.7)

considered separately. Notice that the initial conditions ar

identical forb=0 andb+#0, and we shall not distinguish

between these two cases in this section.

VI. INITIAL CONDITIONS

e .
and notice that

, [pTMR) (R R
g'=—= == ==
R*(7) R*(1) R?(7)

E.(R), (6.9
A. Initial conditions for bound states
In order to set up initial conditions for Eq$5.4), we  wheree ,(R)=R?E (R) is the adiabatic energy in scaled co-
consider bound wave functions at large internuclear disordinates, andE ,(R) is the usual adiabatic energy without
tancesR(t)—. To this end, we replace in Eq. (4.1) by  scaling. The phase at the stationary point now becomes
R(7) using
1 (®ro
1 fV(EV)_ ; ~§ EV(R)dR
T= (6.1) pileoR)

" WR(D)
—ft E,(hdt — —ft E,()dt. (6.9

_To l,[)o*}*OC

that is exact forb=0 and asymptotic ag—0 for b+#0.
Notice that the Fourier variablev associated with the
“time” variable 7 is connected to the Fourier variabke
associated with the physical timieby

Thus, settingng— —o0 one finds that the phadeg(¢&,) at
the stationary point is identical to the adiabatic phase used in
the initial conditions(2.4).

Taking integrals in EQ.(6.3 by the stationary phase

_.p2
w=eR(7). ©2  ethod, we obtain

Then Eq.(4.1) becomes SV(SVﬁZ( o r/ﬁ( )

o (TI/R(7)= o 2 Al(—2) -
~ 1 ~ * v _ Pv
(P;(T!r/R(T)): m RZ(T) J;ioodS \/ (9(1)1,
xexf —ieR(7)/v]x; (eR(7),r/R(7)). ><exp<—iJt E,,(t)dt), (6.10

(6.3 _
~ wherew,=&,R?(7).
WhenR(7)—, we can use asymptotic forms E@.7) We perform the Solov’ev-Vinitsky transformation Egs.
for coefficientsB' (w), and calculate the integral above by (3.1), (3.2, and(3.3), and notice that, according to B¢ 11)
the stationary phase method. The rapidly varying phase is in Appendix C,
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R2:r/R A. Short-range potentials
P, (R;r)= —S (ERLTR) (6.11 = m
v ;r il . = — - - 1 -
—op iw, When Z,=—Z,, the two-Coulomb-center potential be

comes a short-range potential. Substituting Egs9) and
(5.1) with outgoing Sturmian functions into Ed4.5), we

to obtain the initial wave function ift.r} space obtain the following expression for the transition amplitude:

lp(t,r):ei%ms”“)Ev Al(—)D (R(1),r)e=Eu0d, Tk’izzl—w > F deL,(w)F do'e i@=)7
(6.12 o :
By inspection of Eq.(2.4) it is easy to see now that the \/— 3,2<k/U|G'"(w 1S3 w))
appropriate initial condition foA' (w) is
. 1 +> Bk,(w)<Sin,(w’)|S?,m(w))], (8.1
A (—0)=—a,, (6.13 S v v
Vo
where we use@"=(S*")* [see Eq(C16)]. For short-range
Whereaiv is a constant given by Edq2.4). potentials the matrix eIements{S';',(w’)|S‘V’“‘(w)) and
(klv|G"(w")|S(w)) have first-order poles ab=w’ with
B. Initial conditions for continuum states residuesR, () and R®(w;k/v), respectively[See Egs.

Since we have explicitly extracted the free-electron mo—(C18) and(C2§ in Appendix C] Thus we obtain

tion in the continuum wave functions Eq&.6), (3.10, and

(4.9), initial conditions on the coefficientA‘;(w) are deter- 2 f dwB! ' (o) V O w;klv)
mined by the orthogonality af to all ¢; . At large negative V2 3/2
o they are zero,
AS(—o)=0, 6.14) +2 Bl(@)Ry(w)|. (82

This simplicity of initial conditions comes at the expense of oy short-range potentials the outgoifigcoming Stur-
having inhomogeneous terms in E§.6). mian functions behave at largpas

VIl. SUMMARY OF THE GENERAL THEORY Sout(m)(w q)~ Cout(ln)(w) - Fout(ln)( q) (8.3

q ®,q), .

At this point the theory is complete. To find the transition
amplitudes one proceeds as follows. In case#0, first, it ~ where = Co"() are  normalization  constants
is necessary to solve the recurrence equafod to find the C"(w) =[C(w)]*, andFout™ (w,d) are normalized angu-
coefficientsB! ,(w) for bound state initial conditions, or to |5 parts of Sturmian functlongm(w q) = [F°“‘(w ke
solve Eq.(5.6) to obtain coefficientsB¥ »(w) for the con-
tinuum initial conditions. Using expansiorS.1) for func-
tions x(w) it is straightforward now to obtain the transition
amplitudes from Eq(A16). Forb=0 one solves differential
equationg5.8) for bound states ai5.9) for the continuumto  Using Green’s theorem and asymptotic forms of Sturmian
find the coefficients in expansioins.1). functions Eq.(8.3), it is easy to find residueR,, (w) of

The caseéb=0 is different in that both discrete and con- matrix elements\,,,(w,0") at the polew=w':
tinuum parts of the problem have to be consider@&ar b o out out 0
+0 the oscillator potential eliminates the continuum part. R, (0)=(S(@)|=VI|S, (@))[p, (@)~ p)(w)]

Sec. VIII we present applications of the theory fo+0 to -
emphasize the necessary modifications of the general theory =(S(@)|HolS) (@)~ (S} (@)|Ho|S)())
in this important particular case.

f dg F" (0, F " (0,8=1. (8.4

1 H in . out, |
= lim Sds[SV(w,q)VqSV, (w:;q)
VIIl. APPLICATION: SPECTRA OF EJECTED *

ELECTRONS FOR HEAD-ON COLLISIONS — S q) VS (w3 0)]
In this section we present an application of the general
theory in the casé=0. There is no oscillator potential in =ipc‘:‘,’t(w)c:‘j(w)f dg F(@,§)F™(,q).
this case, and all the potentials in the Schinger equation
Eq. (3.5 go to zero at infinity. For this reason one has to (8.5

distinguish between incoming and outgoing Sturmian func- ©
tions for w>0 (see Appendix € Short-range and Coulomb ReS|duesR ,/(w;klv) are found in the same manner as
potentials will be considered. R, (). Usmg the asymptotic forms of Green’s function
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o]

ipq
G°”‘<w;q,k/v>w2%goi'j.<pq E Y (KI0) Vi (@),
(8.6

Ec's(w,n,¢><§—1)s

2 gpte-nn

Xl(qu)w §+1

Ed s(@,7,¢)(§-1)°
whereY,,(Q) are spherical harmonics agx) are spheri-

cal Bessel functions, we find
2 Ip(§ l)/2 n(w 77 ¢)

e dy(w,7,6)’

where c}(w,7,¢) and d\(,7,$) are Padecoefficients.
Thus we construct asymptotic constants EGs10 and
(4.11) asC,(w,q)~exp(p/2)c./d! .

The transition amplitude Eq4.5 becomes

(8.11

©

Ri@(w;k/v)=ipcy<w>go i'\(pa’)

X 2 YL (Kiv) fddF‘S(w,aw.m(a).

8. »
( 7) Tk,izf0 Resw=w’<X|:r(w,)|Xi7(w)>dwv (812

Using the orthogonality ofy; and ¢, , which can be writ-

ten as
f dwB' (w)|

+2 [Bb(w)]*Rw(m] =0,

with

ReS,— o Xk (0 )|xi (w))

©(w;kiv)

3/2 v'
Vam =@f dGCi(v,0,8)[ Celv,0,3)

(8.9 —q)]. (8.13
In Eg. (8.13 we used the orthogonality of; and ¢, to

we can eliminate the first term associated with the planeeliminate the plane-wave contribution.

wave in Eq.(8.2). Then the transition amplitude is

—C’k’(—v,w,

IX. RESULTS AND DISCUSSION

The actual solution of the problem can be divided into
three stages. First, we truncate the coupled equati:@s
and (5.9 at N~ 10, and solve them with the initial condi-
tions given by Eqs(6.13 and(6.14 to find the coefficients
Al(w) and A,k,(w) for @<<0. Since foro<0 T Sturmian

Tk,i=22v 2 f:deL(w)RV,V(wnm BX.(w). (8.9

B. Coulomb potentials

From the asymptotic behavior of the functiogs[Egs.
(4.10 and (4.11], it follows that the matrix element
{(x¢ (@")|xi (w)) have only first-order poles aé=w’ and
>0 even though the matrix elements
(klv]G"(@")|S% (@) and (SM(w")|S% (@) in Eq. (8.1)

functions form a complete set, the solution of these equations
gives the values oA!(w) and A,k,(w) for the T Sturmian
functions atw=0. As we have shown fap>0 the complete

set contains botil and S Sturmian functions. In order to
preserve continuity of the solution the coefficie®t$(w)

have more complicated singularities in two-Coulomb- centelandAk(w) of the S Sturmian functions should equal zero at
problems. This means that our solutions are good for fapite w=0. On the second stage of solution we use the computed
but must fail asymptotically. Such situation are readilyvalues ofA' () andAi(w) for the T Sturmian functions at
treated by the Padsummation. In actual practice we use w=0 and zero initial conditions for th® Sturmian functions
Padesummation to obtain an efficient algorithm. To this endto solve Egs(5.8) from w=0 to w= +. Notice that the

we first write x,(»,q) [x(w,q) denotes xi(w,q) or  coupling terms are of ordap ' nearw=0, and the differ-
i w,q)] as a power-series expansions in spheroidal coorential equationg5.8) and (5.9) are of first order. The solu-
dinates(¢=q,+q, and p=q;—Q,) nearé=1, tions nearw=0, therefore have the form of a Frobenius
rather than a Taylor series. As an alternative to using a
Frobenius solution with a large basis set we can exploit the
connection between one- and two-Coulomb-center functions
nearw=0, to solve the coupled equations for small We
constructC;(w,q) and Ck(w d) using the Padsummation
[17]. The sequence of Padgproximants converges fairly
rapidly. It is interesting to notice that fer=0.4 a.u. the one
Sturmian approximation already gives accurate enough re-
sults (within 10%).

whereal(w,7,¢) are expansion coefficients and two Cou-  Three spectra of electrons ejected in collisions of protons
lomb center Sturmian functionS,(w;q) are discussed in with hydrogen atoms are displayed in Figs. 1-3. Two differ-
Appendix C4. The Padsummation17] gives ent kinds of Sturmian functions are responsible for these two

Xl(w,OI)=EV B (0)S,(w;q)

_;15% elPe 1)’22 ag(w, 7, ¢)<§_ )

(8.10



2880 S. Yu. OVCHINNIKOV, J. H. MACEK, AND D. B. KHREBTUKOV 56

lTk,i |2

ky/v oL /o

FIG. 1. Differential ionization probabilitie§T, ;|? atv =0.4 a.u.
andb=0 for theS promotion of the Do state.

FIG. 3. Same as Fig. 1 for the promotion of the %o state.

types of spectra. Figure 1 shows a spectrum related t&the 1o compute the corresponding electron distributions oatan
promotion forv =0.4 a.u. The spectrum has two cusp peaksnitio basis.
atk, =0 andk;=*v/2 in the center-of-mass frame. Thatthe = The electrons promoted to the continuum vi@ @romo-
S-promotion mechanism gives cusp electrons can be undefion are called saddle-point electrons. This reflects the fact
stood from the corresponding classical trajectories given inhat the electrons are picked up in the saddle region of the
Ref.[18]. These authors show that tBepromotion classical potential energy and promoted to the continuum as the two
orbits circle both protons an infinite number of times. Sincecharges recede from each other. The electrons locate in space
the electron spends a large fraction of its time near the proat the saddle point between the nuclei. For equal charges,
tons, the electron distribution peakskat =v/2. The energy their velocitiesk are distributed around one-half of the ve-
distribution of the fast electrons is exponential. Figures 2 andocity of the incoming particles. Recent calculatidi2®,23
3 show a spectrum related to tiiepromotion of o7 and  obtain such a distribution for saddle-point electrons, but em-
1so states, respectively, far=0.4 a.u. The two peaks at ploy an adjustable paramet®,,, where adiabatic and di-
zero center-of-mass velocity in Fig. 2 are associated with thabatic wave functions are matched. In the present calcula-
7 symmetry of theTy; promotion. This agrees with calcula- tions we eliminate this arbitrary parameter.
tions reported in Refl19]. The distribution in Fig. 2 corre- The S-promotion electrons are associated with classical,
sponds tRj,,~110 a.u., in good agreement wigy,,= 50/ periodic, unstable trajectories which represent electron mo-
used in Ref[19]. tion along the axis joining the charggss]. The kinetic en-
Standard low-energy theories employing perturbed staergy of electrons on these trajectories increases when the
tionary stateg13] cannot calculate energy and angular dis-charges approach each other. The increase of kinetic energy
tributions of electrons, and especially cannot obtain the conleads to ionization even when the relative velocity is insuf-
tinuum capture cusp which should be present in the spectréicient to ionize electrons in a single binary collision. A
Previous calculations of total cross sections have identifiedimple analog of this mechanism is the acceleration of elastic
two ionization mechanism£0,21 at low-energy collisions, balls bouncing between two walls that slowly approach each
calledT promotion andS promotion, but have not been able other. Present “hidden crossing” thedr®0,21] cannot com-
pute the complete distribution of these electrons.

" Our formulation in terms of Sturmian eigenfunctions pre-
/7 sents a completab initio theory of ionization in ion-atom
" IT lz collisions witharbitrary velocity, and especially in the low-

/\ k,i and intermediate-energy regions<{1 a.u.). Various Born
o approximations usually break down at low and intermediate

\Q:\%" kJ_/’U

FIG. 2. Same as Fig. 1 for tHE promotion of the = state.

theories are able to calculate complete electron spectra in
their regions of validity. First calculations by the Sturmian
technique show that two previously identified ionization
mechanisms give dramatically different electron distribu-
tions. The T-promotion mechanism gives a peak at the
center-of-mass velocity, equal td2 in lab frame, as in ear-
lier calculations, but without arbitrary adjustable parameters.
The S-promotion mechanism gives rise to two cusps where
electron velocities match the ion velocities. Our numerical
calculations provide a solid confirmation of the qualitative
considerations presented above. These theoretical results can

\é . . . . .
‘ energies, and neither “hidden crossing” nor close-coupling
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be used to interpret measured electron distributions in terms According to the Solov’ev-Vinitsky transformation, we
of T and S mechanisms. write
While our calculations have been carried out in detail

only for b=0, the results may also be used, in lowest order  _ 1 i dR |
in v, for b#0, since the terms involving in Eq. (3.5 van- yo(tn= R¥7(t) ex 2R(t) TR (7(0),r/R(1)),
ish in lowest order. Terms of higher order may also be kept (A3)

so that the solutions of the difference equati{b¥) become

relevant. Almost identical difference equations have beenvhere 7(t) is defined by Eq(3.2). According to Eq.(A2),
used to treat ionization in the hyperspherical representatiorfior #* we obtain [assuming for simplicity that
Here it was shown that the hidden crossing theory for ionR(—t)=R(t)]

ization via theT-promotion series, computed in R¢R4],

emerges from the Sturmian theory even fo#0. In the N 1 i dR,

present manuscript we have computed both Seand yr(tn= Rt P 2r(1) at "

T-promotion distributions essentially exactly foe=0. We

can anticipate that th& distributions, thus obtained, will X[~ (r(=1),—r/R(1))]*. (A4)
remain even forb#0, but cannot project how the o

S-promotion mechanism will emerge in that case. Noticing that
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g Tmax— le RZ(tr) . (A7)
APPENDIX A: )
TRANSITION AMPLITUDES IN FOURIER SPACE In order to separate and g dependencies, we chose to

. _ . . work in the Fourier space
In this appendix we derive a very general expression for

the transition amplitude ifw,q} space. It will be shown that 1 o

causality imposes very significant restrictions on the transi- o (7,9)= . f do exp—iwr)x(w,q).

tion amplitude, and the final result can be reduced to the =27 J e

calculation of a residue at the pole of a certain function. (A8)

Two cases will be consideredi) the general case when
zero internuclear distand® is never reached; andi) the
special case when there is no interaction between the nuclei | Y
and they can come |nf|n|_tely close together_. In practice the Ty=— f do do’ex —i(w— ') 7]
second case can be realized mostly for straight-line trajecto- 27 ) ) -
ries and zero impact parameter. Although in both cases the
final expression is essentially the same, the zero-impact- xexn —iw' T fdg o — ®
parameter case requires somewhat special treatment. " ma) (o'~ axa(@.q).

We look for the transition amplitude irt,f) space in the (A9)
form

The transition amplitude now becomes

Notice that in this case there is no continu@smce there is
Too= (b5 (D] 91 (1)), (A1)  an oscillator potentia) and no distinction between “in” and
“out” functions is needed.
where the indice$l,2} are associated with some initial con-  To make the transition amplitude properly causal we have

ditions, the index “=" corresponds to propagation in the to define it for all~

positive direction in time, and the index+” means that the

function is counterpropagated in time. It is important to no- 0 if 7<0

tice here that although the wave function is calculated at a Tid7)= T, if >0 (independent ofr). (A10)

certain moment of time, the transition amplitude is actually
independent of time. The counterpropagating functidnis ~ We are now going to show that the condition above can be
connected ta~ by the well-known formula satisfied if, and only if, the integrand in EgA9) has a
simple pole aiv=w’. To this end we rewrite EQA9) in the
S =[y¢ (t,—r)]*. (A2)  form
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i[> _ °° g=q' +az, (B3)
T12(7')=2— j dQ eXF(—IQT)f FlAw,0")dw',
TS ’°° (ALD) where « is a constant that defines the origin of the new

coordinate frame. The new Scldinger equation is

where we changed the variablé® = w— o’ and introduced

a new function [3(p' =0’ XQ—azxQ)?+p(0)V(q)

/ . 3 , +3029/41S,(0;q' + a2) = 0S,(0;q’ + a2).
F(Aw,0")=exp —iw TmaX)J d°g xs(w’',—Qq)

(B4)
Xx1(o'+Aw,q). (A12)  The gauge transformation
Performing the inverse Fourier transformation, we obtain S (w;q' +az)=exdiazxQ-q']S,(w;q’) (B5)
fw F(Aw, o' )do' = —i f“ dr T P)expidwr). restores the original form of the equation definBgw;q),
- (A13) [ - X Q)2 p,(0)V(Q) + $0°G)7]S,(wid)
The integral on the right-hand side is well defined in the =wS,(w;q"). (B6)

upper half-plane of the complex variabl, and we replace . .
PP P P P with g’ replacingg. Therefore we have

A Aw+i >0. Al4 - A

w—aeTle, e (Al S,(0:q' +a2)=exdiazxQ-q'1S,(w;q'), (B7)
It is now straightforward to obtain while the dual transforms as
LEE:

Goris  (A19 S,(0:q' +a2)=exd —i22xQ-q'1S,(0iq’). (B8

J FlAotie,0")do'=

. ) . ) Even though the Sturmian functions change by a phase fac-
and we deduce that the transition amplitude is proportional t9,; the matrix elements in E@5.4) remain unchanged since
the residue al w=0 of the integral on the left-hand side of {he phase factor is independent@fand cancels in forming
Eq. (A15), the product of a Sturmian and a dual.

[

F(Aw,w")dw’. (A16) APPENDIX C: REVIEW OF STURMIAN THEORY

T12=Re SszoJ
1. Analytic properties of Sturmian functions
Thus it has been proved that if the transition amplitude is and relation between Sturmian and scaled adiabatic sets
causal as defined by EgA10), then the integrand in Eq.
(A9) has a simple pole. The proof of the inverse statement is;
elementary, and we shall not give it here. The importanta
result of this section is the formula for the transition ampli-

tude Eq.(A16).

According to Demkov[25], an infinite set of adiabatic
genvaluese (R) represent different sheets of the same
nalytic functione(R) on a multisheeted Riemann surface.
Recall that a Riemann surface for a function is defined as a
surface on which the function is single valued. On the real
axis, the value of the function on timth sheet is equal to the
APPENDIX B: INVARIANCE OF STURMIAN MATRIX energy eigenvalue (R), by construction. At complesR
ELEMENTS FOR NONZERO IMPACT PARAMENTER different sheets join at square root branch poRys so that,

In this appendix we illustrate the invariance of the Stur-in the neighborhood oR;,, one hass(R)=yR—R,. For
mian theory to shifts of the coordinate system along the insuch functions it is possible to construct a Riemann surface

ternuclear axis. Our discussion follows closely the demonby plotting Res,(R) vs R. The resulting surface is one on
stration in Ref[11]. which (R) is single valued. Furthermore, the separation be-

The differential equation for the Sturmian functions is  tween the sheets now gives additional information not nor-
mally included in the definition of the Riemann surface,
[£p%+ p,(@)V(Q) + Q2%+ QL ]S, (0;9) = S,(;q) namely, the intersection of this Riemann surface with a plane
(B1) passing through the real axis and perpendicular to Rhe
plane gives the multiplicity of potential curves,(R). On

which can be written in the magnetic-field form the realR axis the functione(R) is equal to a “scaled”
adiabatic energy eigenvalue(R) defined by the eigenvalue
[ (p—aX )%+ p(0)V(Q)+ 50%07]S,(w;q) equation
= 0S,(w;q). (B2) [Ho(@) +RV(D]e,(Rid)=¢,(R)¢,(Riq). (C1)

A shift of the origin along the internuclear axis The Riemann surface also defines a universal adiabatic
r=r’+aR(t)z corresponds to the transformation in scaledeigenfunctionp(R;q) for all complex values oR. Adiabatic
coordinates, functions¢,(R;q) satisfy boundary conditions
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de,(R;Q) where Sturmian branch indexis chosen so that
P +v—-2¢,(R)¢,(R;q)~0, asgq—x, (C2

p.(e,(R)=R (C9
which correspond to the Jost matrix. Some of the adiabatic - . .
energy eigenvalues,(R) on the realR axis may be com- is satisfied. Th!s form Egs. (C8) and (C9)] is very use_ful
plex, and the corresponding eigenfunctiopgR;q) expo- when establishing the correspondence betwsmind adia-
nentially increase ag— . This means that usual boundary batic states and Sturmian functions. However, whaasis-
conditions o(R;q)~0 asq— define functions only on a tationarystates are involved one should use the more general

small part of the Riemann surface wik close to the real prescription E_qs(C6) ar_1d (CD). . :
axis. Sturmian eigenfunctions are normalized according to

The inverse functiomp(w), which can be found from the
equat|0n <Sv(w)| _V|SV’(w)>: - f Sv(waq)v(q)sv’(qu)dsq

elp(w)]=w, (€3 =8, (C10

is defined on its Riemann surface for all[ 7]. In analogy to . i
the adiabatic case one defines a universal Sturmian eigel0t¢ that dual functions (S,(w)| are defined as
function S(w:q) on the Riemann surface {w). Different  (S«(@)|8)=S,(;q), and we do not take the complex con-

sheets of the Riemann surface are joined together at squadk9ate 0fS,(w;q) in Eq.(C10. The potential is diagonal in
root branch pointsoy, in the complex plane ab. On the real the Sturmian representation. Since the poten¥4ts) of in-

 axis, the value of the function on tmeh sheet is equal to terest are usually negative definite, normalizing the Sturmian

the Sturmian eigenvalugs,(w). These eigenvalues are as- potential matrix to—1 ensures that the Sturmian functions
sociated with the Sturm-Liouville problem are real for real negative energies Sturmian normalization

constants arg6]
[Ho(@) +p,(@)V(D)]S,(0;0)= 0S,(w;q), (CH

(98V(R) 1/2
- it i NL(R)=| - (C1D
with boundary conditions defined by tiparameterw, JR
(0;0) n ’_—Zwsv(w;q)fvo, asq—». (CH) There is also a very interesting analogy in behavior of

aq coupling matrix elements calculated in adiabatic and Stur-
mian bases in the vicinity of branch poin®& and w,, re-
One of the most important differences between adiabatic angpectively. It has been showW@6] that the adiabatic matrix
Sturmian functions should be pointed out here: it is essentiadlements have poles &= R, with residues*i/4 indepen-
that Sturm-Liouville boundary conditions E(C5) are inde-  dent ofR,,
pendent of Sturmian eigenvalugs(w). In other words,
givenany w in Eq. (C5) it is possible to find a corresponding i
eigenvaluep,(w). In contrast, boundary conditions for adia- P
batic functions Eq(C2) depend explicitly on adiabatic ei- <%(R) —
genvalues: (R), and, therefore, solutions of adiabatic prob- IR
lems require self-consistency between eigenvalues and _, . . . . .
boundary conditions. This fact makes Sturmian basis sets Similar considerations applied to the Sturmian case show
much more versatile than adiabatic ones. that the Sturmian ma;nx elem.ents alsq havg polesatith
Although adiabatic and Sturmian basis sets are very diféXactly the same residue as in the adiabatic case,

ferent, they are closely related. Comparison of EG4) and

4
GDV'(R)> ~ R——F\’b’ R~R,. (C12

(C4) shows that adiabatic eigenfunctiops(R;q) are, apart <S (o) v2ils ,(w)> _ (Su@)ISy(w))
from normalization constants, just the Sturmian functions Y o | pulw)=p,(w)
S(w;q) evaluated atv=¢,(R): i

+_

¢,(R;9)=N,(R)S(e,(R);0). (C6) 4 _
~ w—wp y W= Wy

The particular sheet of the Riemann surfate) to calculate
the functionS(e ,(R);q) on should be chosen to satisfy the (C13

condition
2. Positive energy Sturmian functions

p(e,(R)=R. (C7) , , , : : :
Both incoming and outgoing Sturmian functions at posi-
If both R ande ,(R) are real, one can assign indiceso  tive @ are analytic continuations of the same set of Sturmian
different branches of the universal functiste ,(R);q), and  functions at negative. (i) Outgoing Sturmian functions sat-
the relation between adiabatic and Sturmian functions beisfying outgoing wave boundary conditions,
comes more explicit, &S?,Ut(w;q)

i ute LN 00
e RA=N,(RIS,,(Ri=0), (Y g N2oSeid 0 asqm. (€14
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(i) Incoming Sturmian functions satisfying incoming Wave<q|Gouf(in)(w)Gout(w')|q’>
boundary conditions,
_ G™M"(0;9,9')~G™(w';q.q 2

IS™(@;0q) . oo

5 TiPS(0i9)~0 asq—x.  (C19
Equation (C23 shows, that atow=w' overlap integrals
Both boundary conditionéC14) and (C15) are obtained by (a|G*{w)G*"{w)|q’) are finite:
analytic continuation tow>0 of the boundary conditions - y
(C5). For realw these two sets of Sturmian functions are ou ou "o ;0,9
complex conjugate, (9IG*(w)G*(w)|q") Y (C2%

(C23

Nw)=[p(w)]* and SM(w;q)=[S"(w;q)]*. and integralg q|G™(w)G*{w')|q’) have a first-order pole
(C16 at w=w’ with the residue

The overlap integrals between incoming and outgoing Reswﬂw,<q|Gi”(w)G"“‘(w’)|q’>
Sturmian functions,
o) p ) =G"(0;0,9") ~G*(w;a,q").
(i) = 21D ) (€29
0@ To find Sturmian expansions of outgoing and incoming
|_V|5‘35‘t(wf)>, (c1p  Green’s functions, we consider matrix elements

have a pole a=w' and, if the(S!(w)|—V|S>(w)) are (q'| GO ) V| S 10 )y = o [Sout(w )
finite, then the pole is of the first order with residue, ) t(

+(w—w')
><<q’|G°u(in)(w)|5?lu{(w’)>].
(C26

RVV’(w)ERe Swﬂw’MW/’(wiw,) :[p:?(w)_p?,l;n(w)]
X(SM ()| = V|SX (). (C19

The expansion of incoming Sturmian functions in terms of

outgoing Sturmian functions is then For short-range potentials the overlap integrals

(q'|G"(w)|S*((w)) are finite, and Sturmian expansions of
the outgoing Green'’s functions,

S w;q")
G°“t(w;q,q’)=EV %Sﬁ”%w:q), (C27)

SN(w,q)=2, %Sﬁ"(w,q), (C19
w7 ph(@)—pd(w)

which converges, but not absolutely.

_ . ) contain only outgoing wavegssame for incoming waves
3. Sturmian expansions of Green’s functions [27].
The  Green's functions  G°"(w;q,q") The overlap integral¢q’|G"(w)|S2"( ")) also have a
=(q|G"(w)|q’), where GMW=(Hq(q)—w=*isc)" !, first-order pole atw=w’ with residue
are solutions of equations © _ .
. R,”(w;q' )=Res,_,{(q'|G"()|S)"(w')). (C28
[Ho(a) — ©]G*""(w;q,9")=48(q—q’),  (C20
The residueR'®(w;q’) can be expanded in terms of outgo-

with  outgoing (incoming boundary conditions for ing Sturmian functions

Gout(in)(w;q,q/):

R r((.())
_ RP(w:0)=2 —s—Si(wq’).  (C29
FipG™(w;q,q")~0, asg—. (@) 2 po(w) () (€29

(C21

ﬂGOUt(in)(a);q,q/)
a9

) . . ) 4. Two-Coulomb-center Sturmian functions

The outgoing (incoming Green's functions of

Ho(a) = — 3 V3 in Eq. (C27) are free-particle Green’s func-
tions,

The two-Coulomb-center Sturmian basis set is defined by
Viip, |- 222 ) S,(0;0)=wS,(v;q)

- = vl = - W 0w, w; f
2'arP dr Q2 ' a

1 exp=iplg—q'])
Gout(ln(w a,q9 )_ P |q q | (022) (C30)

1

whereq;=r;/R.
Overlap integrals with Green’s functions have the same This equation admits separation of variables in prolate
structure as the Sturmian overlap integrals spheroidal coordinates,
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gether, these two types of Sturmian functions form a com-
plete set, but they otherwise have rather different properties,
which we consider below.

1sf<eo, —1s9=<1, 0Os¢<2m7, The T-type Sturmian functions are analytic continuations
of the negative energy Sturmian functions, and therefore ex-
8st for all w. They have the vaIupI(O)ZO atw=0, and are
similar to the one-Coulomb-center Sturmian functions espe-

o) — ; cially when w~0. In the classification off -type Sturmian
S(@;0)=C(w)G(F ()expime) (€3 functions we will use spherical quantum numbers

X
§=0:+t0d2, 7=01—0y, ¢>=arctar6§,

wherex andy are the Cartesian coordinates. Substituting th
wave function

into Eq. (C30) gives the set of differential equatiofi28] v=(n,l,m) in the limit o —0:
iv2wn
[quig(gz_l)dig_ E)\éﬁ gﬂ,(ig_z_lz)g pl(w)= 21:;2 +0(0¥), A\T(w)=I(1+1)+O(w).
2 (C38
m
- (gz_—l)z}G(fFO, (C32

The quasiradial equatiofC32) is only slightly different
from the one-Coulomb-center radial equation at small
g=&—1. But this slight difference brings different features

(1) —+ — It —p—— " to th_e Sturmian spectrum, namels-,type.Sturm|ar_1 eigen-
[1— n°dy dp 1-n° 2 1-9 functions. In contrast to th&-type Sturmian functions, the
m2 Stype Sturmian functions are defined only far>0 and
- (1—7)2} F(7n)=0, (C33  p3(0)#0. In the cas&,=Z, the solutions of Eq(C33) are
-7

generalized Legengre polynomials ana(w)—>l(l+1), as
w—0, and the value obf(O) can be calculated from the

whereC(w) is a normalization factor anil is a separation Semiclassical quantization equation

constant.
Equations(C32) and(C33) with the boundary conditions (1+1/2)2 im(2k+m+1)] 1
S —~ N
e ex’][ 21+ 1 7 (C39
oF
|G(+1)|<», [F(1)|<e, a—(;)—' V2wF(£) — 0
g—oo

34 From Eq.(C39 we see thak,,< 3 (I—m—1/2). In the clas-
(C34 sification of S Sturmian functions we will use the quantum
are solved fol ;=\ /(p,®) and\ , =\ ,(p,®), respectively. numberd, m, andn=1+ «+ 1. Then the set oB-type Stur-

The Sturmian eigenvalugs,(w) are then calculated by soly- Mian functions is po, 3do, 3dw, 4fo, 4fm, 415, Sfo,

ing the equation 5go, 59, 599, EE _ _ _
The asymptotic Sturmian eigenvalues(w) for suffi-

ciently large positivaw are just those of uncoupled harmonic

Ne(p, @)=\, (p,w). (c35  oscillators oné and 7 coordinates, and faZ,=Z, have the
form
1/2
According to the general Sturm-Liouville theory, when (@)=— w n 1 ﬂ)
<0, the Sturmian eigenvalues and eigenfunctions are real, Pv 2(2,+2y) Z,+Z,\2

and the number of nodes of quasiradial wave functiong (

and quasiangular wave functions,) are conserved when ><[2n’,,+1+ixf2(2né+m+1)]+O(1),(C40)
the parametew varies. The Sturmian functions will be clas- 12
sified according to the united-atom spherical quantum num- A (w)=— @, 2) (2n)+1)+0(1),
bersv=(n,I,m). These numbers are relatedrtpandn,, by 2 12

n=ng+n,+m+1, I=n,+m, (C36  wheren;=0,1,... andn;=0,1,... are theguasiradial and

quasiangular quantum numbers of harmonic oscillators, re-
and are determined by,(w) and\ () in the limit w—0,  spectively, and related to, andn,, by

’r__ 1 1 r__
o) \Z/ f§n+0(w3’2), A (0)=1(1+1)+0(w). ng=ng+Intz (I-m-3)], n,=n,, (C4)
Lo (C37 where Infx] is the integer part ok.
When w—0 the functionCI(w) associated withT-type
There are two different types of Sturmian functions atSturmian functions converges 6, (w) associated with
>0, which we callT- and S-type Sturmian functions. To- united atom one-Coulomb-center Sturmian.
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For Stype Sturmian functions the normalization factors At large positivew the normalization factor€,(w) asymp-

Cf(w) diverge asw—0, and have the form

io,(w)
Cf(w)=\/2'n' ex;{ o(w)—o,(w)n LA +0(w'?),
22w (Ca2)

p(w)(Z1+2))

o (w)=—Ii \/z

totically behave as

Cv(w)~w"§+(m+1)/2. (C43)

The coupling matrix elements between=(nIm) and
v'=(n+1Jm) have pole singularities ab=0. All other
coupling matrix elements are small.
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