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Molecular staggering in AgH and its description in terms of parity-split q rotators
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It is shown that theDJ54 bifurcation effect recently discovered in the superdeformed bands of heavy nuclei
also occurs in the rotational bands of diatomic molecules in the form of aDJ52 staggering. A possible
explanation for this phenomenon assumes a perturbation between rotational levels that can be described in
terms of parity-splitq-deformed rotators interacting through aq-deformed,J-dependent interaction. The phe-
nomenon is evidenced and the model is illustrated on the rotational bands of AgH.@S1050-2947~97!09810-7#

PACS number~s!: 31.10.1z, 33.15.2e
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I. INTRODUCTION

It is known that the rotational bands of diatomic mo
ecules@1–3# and those of atomic nuclei@4,5# have many
features in common, in spite of the great difference of
excitation energies involved. In the last decade much at
tion has been paid to the superdeformed nuclear bands@6#,
which have higher angular momenta and behave closer to
rigid rotator than normal deformed nuclear bands. Since
behavior of some molecular rotational bands is closer to
rigid rotator than that of standard nuclear rotational ban
and since in molecular bands one can discover states
very high values of angular momentum, one can expect
some effects typical of superdeformed nuclear bands can
be found in molecular bands.

A rather surprising feature has been discovered rece
@7,8# in superdeformed nuclear bands: sequences of s
differing by four units of angular momentum appear d
placed relative to each other, the relative shifts being of
order of 1024 the energies separating the band levels. T
effect has been called theDJ54 bifurcation because th
bands seem to split into two sequences with levels differ
by four units inJ. The quantitative description of this effec
is given in what follows.

In nuclear physics the experimentally observed quanti
are theg-ray transition energies between levels differing
two units of angular momentum (DJ52) @4#. For these
quantities the symbol

E2~J!5E~J12!2E~J! ~1!

is used, whereE(J) denotes the energy of the level wit
angular momentumJ. The deviation of these transition en
ergies from the rigid rotator behavior can be measured by
quantity @8#

DE2~J!5 1
16 @6E2~J!24E2~J22!24E2~J12!1E2~J24!

1E2~J14!#. ~2!

*Electronic address: raychev@bgcict.acad.bg
†Electronic address: maruani@moka.ccr.jussieu.fr
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Substituting the rigid rotator expressionE(J)5AJ(J11)
into Eq. ~1!, then Eq.~1! into Eq. ~2!, one can check that in
this caseDE2(J) vanishes: in this sense this quantity e
presses the deviation of nuclear spectra from the reg
J(J11) law.

In Fig. 1 there are shownDJ54 staggerings for the su
perdeformed nuclear bands of149Gd ~a! @7# and 194Hg ~b!
@8#. From the figure it appears thatDE2(J) takes alternating
positive and negative signs whenJ increases by four-unit
steps. The magnitude ofDE2(J) is of the order of 1024 that
of the g-ray transition energies. Regarding the physic
meaning of suchDJ54 staggerings some proposals ha
been made, which involve intricate crossing of nuclear lev
@9# or dynamical breaking of nuclear symmetries@10–14#, as
in quantum bifurcations at diabolic points for spherical-t
molecules@15,16#. However, it was recently reported@17#
that DJ54 bifurcations also occur in the rotational spec
of diatomic molecules such as CrH, CrD, or Cu2, as well as
DJ58 bifurcations in atomic nuclei and diatomic molecule

The observation ofDJ54 and 8 staggerings in both nu
clei and molecules suggests that some common and ra
general mechanism may exist, which would generate s
similar effects in different systems. Even though the exc
tion energies in nuclear and molecular rotational sp
troscopies are very different~about 105 eV in nuclei and
1022 eV in molecules!, the observed staggerings are of t
same order of magnitude ('1024). As the experimental
techniques involved are very specific, the occurrence of s
similar systematic errors is very unlikely.

The aim of this paper is to give evidence forDJ52 stag-
gering in the rotational bands of the AgH molecule@18,19#,
to make a systematic investigation of this effect in the d
ferent rotational bands, and to propose a qualitative desc
tion of the staggering phenomenon usingq-deformed alge-
bras, as we have done previously@20# for the backbending
phenomenon in the same molecule.

II. DERIVATION OF BACKBENDING AND STAGGERING
FROM THE TRANSITION ENERGIES

The deviations of rotational spectra from the rigid rota
model can best be demonstrated by investigating the de
dence of the effective ‘‘moment of inertia’’ upon the effe
tive ‘‘angular velocity,’’ which may then display ‘‘upbend
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FIG. 1. DJ54 staggerings, as defined in Eq.~2!, for the superdeformed bands of149Gd ~a! and 194Hg ~b! nuclei ~adapted from Refs.@7#
and @8#!.
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ing’’ and ‘‘backbending’’ phenomena. Here we shall briefl
recall some of our previous results@20#.

The classical expressions for the rotational energyE and
angular momentumL of a rotating body are

E5
1

2J L2, L5Jv. ~3!

In quantum mechanics the inertial momentumJ and angular
velocity v are not directly measurable quantities. Howev
they can be derived from the experimental data by using
relations

dE

dL
5

L

J5v,
dE

dL2 5
1

2J . ~4!

We can calculateJ andv by replacingdL anddE with the
experimentally measured finite differences and using
semiclassical expressionL5AJ(J11):

DE5E~J!2E~J21!,

DL5L~J!2L~J21!5AJ~J11!2A~J21!J, ~5!

this yielding

dE

dL
5v→vexpt5

DE

DL
,

dE

dL2 5
1

2J→Jexpt5
DL2

2DE
. ~6!

The final result is

Jexpt5k1

2~2J21!

E~J!2E~J21!
,

vexpt
2 5k2F E~J!2E~J21!

AJ~J21!2A~J21!J
G 2

, ~7!
,
e

e

wherek1 andk2 are factors depending upon the choice of t
units. Equations~7! are a parameteric representation ofJexpt

as a function ofvexpt
2 . Typical examples of this functiona

dependence are given in Fig. 2~right column!, where the
deviations of the levels from theJ(J11) law appear more
clearly than in the energy diagrams, shown in Fig. 2~left
column!. In lower regions the dependence ofJexpt uponvexpt

2

resembles the lower part of anS ~upbending!, whereas in
higher regions it resembles the higher part of theS ~back-
bending!. It has been shown@20# that upbending can be de
scribed by assuming the energy levels distort according
nonrigid molecule model, whereas backbending stems fr
independent rotational bands repelling each other due to t
interaction at crossing points. In that sense the appearanc
backbending is evidence of strongly interacting rotatio
bands.

While theJexpt(vexpt
2 ) representation of the transition en

ergy Et upon the quantum numberJ enhances the manifes
tation of the spectra irregularities over a large range of ro
tional states in the form of backbending, success
derivations ofEt with respect toJ will enhance its local
variations in the form of staggering. By analogy with nucle
staggering, molecular staggering can be defined in the
lowing way. Let us denote byE8(v,J) and E9(v,J) (J
50,1,2,...) the rotational levels belonging to rotational ban
built up on the vibrational levels with quantum numbersv,
with E8 and E9 referring to upper and lower electroni
states, respectively. By analogy with Eq.~1!, we form the
differences

Et~v,J!5E~v,J!2E~v,J21!, ~8!

which correspond to the transition energies within rotatio
bands@1# ~when the vibrational band will be clear from th
context the quantum numberv will be omitted!. Then, by
analogy with Eq.~2!, we define staggering in molecula
bands by the formula
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FIG. 2. Energy curves~left! and backbending curves~right! for some of the lower~bottom! and upper~top! rotational bands of the AgH
molecule. The level energies and backbending coordinates are derived from transition energies as explained in the text.
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DEt~J!5

1

h4 $Et~J12h!24Et~J1h!16Et~J!24Et~J2h!

1Et~J22h!%. ~9!

If h51,2,4,..., we speak ofDJ52,4,8,... staggering, respec
tively. Again it can be checked that for the rigid rotator—
E(J)5AJ(J11)—this expression annihilates for eve
value ofh. In this paper we shall be concerned mainly w
DJ52 staggering (h51).

It should be pointed out at this stage thatDEt(J) can be
considered formally as a fourth-order ‘‘discrete derivativ
of the discrete functionEt(J). More precisely, for every con
tinuous function,f (x), one has the Taylor expansions:

f ~x6h!5 f ~x!6 f I~x!h1 1
2 f II ~x!h26 1

6 f III ~x!h3

1 1
24 f IV~x!h41h5O~x!,

f ~x62h!5 f ~x!62 f I~x!h12 f II ~x!h26 4
3 f III ~x!h3

1 2
3 f IV~x!h41h5O~x!, ~10!

whereO(x) gathers the terms containing derivatives off (x)
of order higher than 5. Equations~10! yield a system of 4
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equations for the derivativesf (k)(x) (k51,2,3,4). It is easy
to see that forf IV(x) one obtains

f IV~x!5
1

h4 $ f ~x12h!24 f ~x1h!16 f ~x!24 f ~x2h!

1 f ~x22h!1h5O~x!%. ~11!

When h→0, Eq. ~11! reduces to Eq.~9!. In our caseh51
andDEt(J) differ from the fourth derivative ofEt(J) ~con-
sidered as a continuous function ofJ! by O(J). However,
expression~9! has the advantage that ifE(J) is given the
analytic form of a fourth-order Dunham expansion or of
q-rotator model~see Sec. III!, one obtainsDEt(J)[0. In this
sense, Eq.~9! ‘‘cleans out’’ that part of the energy spectru
which can be described by model formulas~including but not
only that for the rigid rotator! and stresses any deviation
from them.

In order to calculateDEt(J) from Eqs.~8! and ~9!, one
must know the level energiesE(J) of the rotational band
under consideration. Unfortunately, in many instances th
energies cannot be determined directly, but only in terms
the quantities

P~J!5E9~J21!2E8~J!,
~12!

R~J!5E9~J11!2E8~J!,

which are related to the transitions between the upper
lower electronic states according to

D2E8~J!5R~J21!2P~J11!5E8~J11!2E8~J21!,

~13!

D2E9~J![R~J!2P~J!5E9~J11!2E9~J21!.

The quantitiesD2E8(J) and D2E9(J) are those usually
given in experimental papers~e.g., Ref.@18#!, and we must
determineE(J), Et(J) andDEt(J) from them.

Using the generic formula

D2E~J!5E~J11!2E~J21!, ~14!

it can be shown that summing up the experimentally de
mined quantitiesD2E(J) with odd J, one obtains

(
J~odd!51

J0

D2E~J!5@E~2!2E~0!#1@E~4!2E~2!#1•••

1@E~J011!2E~J021!#

5E~J011!2E~0!5E~J011!

if one takesE(0)50 as the beginning of the energy sca
Obviously,J011 is even whenJ0 is odd. As shown in the
resulting formula,

E~J011!5 (
J~odd!51

J0

D2E~J! ~J051,3,5,...!, ~15!

the energy levels witheven J5J011 can be obtained by
simple summation ofD2E(J) with odd J values. Similarly,
the energiesE(J) with odd (J011) values can be obtaine
by means of the following formula:
se
f

d

r-

.

E~J011!5 (
J~even!52

J0

D2E~J!1E~1! ~J052,4,6...!.

~16!

As can be seen from Eqs.~15! and ~16!, the values of
E(J) for even Jcan be derived immediately from the expe
mental data, whereas those forodd J will depend upon the
choice ofE(1). In general, this energy cannot be obtain
directly from the experimental data, and we need a mode
derive its value.

For all energy levels we could use an analytic express
of the form

E~J!5E~J,a1 ,a2 ,...,an!, ~17!

where a1 ,a2 ,...,an are parameters which may be dete
mined by fitting on the states with odd and evenJ values.
After the fitting is achieved one can calculateE(1) using Eq.
~17!. This may introduce some errors in the values ofE(J)
with oddJ given by Eq.~16! and it is instructive to conside
how these errors would affect the values ofDEt(J) given by
Eq. ~9!.

Let us denote the exact values of the level energies of
energy differences~8! and of the energy staggerings Eq.~9!
by E0(J), Et

0(J), andDEt
0(J), respectively. If one denote

the error in the determination ofE0(1) by d,

E~1!5E0~1!1d,

all E(J) with odd J will be displaced by the same amoun
i.e.,

E~J!5 HE0~J!

E0~J!1d
for J even
for J odd . ~18!

Then, according to Eq.~8!, we have

Et~J!5H Et
0~J!2d

Et
0~J!1d

for J even
for J odd , ~19!

Substituting these values into Eq.~9!, we obtain

DEt~J!5H DEt
0~J!216d

DEt
0~J!116d

for J even
for J odd . ~20!

This means that calculation errors of'0.01 will produce
false oscillations of'60.16 over real staggering. The sam
holds, of course, for measurement errors. Fortunately,
observed oscillations ofDEt(J) are an order of magnitude
larger, meaning the observed staggering cannot be indu
solely by errors from the experimental or fitting procedur

III. EVIDENCE OF BACKBENDING AND DJ52
STAGGERING IN THE ROTATIONAL BANDS OF AgH

As a typical example of the irregularities in molecul
rotational bands, we shall consider the microwave spect
of the AgH molecule@1,18#. We shall show there is evidenc
not only of backbending, but also ofDJ52 staggering in
this molecular spectrum.

The rovibrational spectra of the AgH molecule have be
measured with accuracy up to rotational quantum numb
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56 2763MOLECULAR STAGGERING IN AgH AND ITS . . .
J'60 and vibrational quantum numbersv'10 @18#. Irregu-
larities in the rotational term series occur in transitio
within the systemA1S1-X1S1, where the lower state (X) is
the ground state, with electronic configuratio
KLMNspd(5ss)2, and the upper state (A) has the elec-
tronic configurationKLMNspd(5ss)(5ps) @1,19#.

From these spectra it appears that the behavior of
level series deviates from theJ(J11) law ~Fig. 2, left
column!. This is due to the interaction of the excite
electronic state labeledA1S1 with a higher electronic
state, B1S1, having the electronic configuratio
KLMNsp(ds)(dp)4(dd)4(5ss)2(5ps) @19#. It has also
been seen that these deviations are related to the inte
between several rotational terms belonging to different vib
tional levels and crossing over one another alternatively.

An interesting manifestation of the irregularities in th
molecular spectrum is the backbending effect, which w
investigated earlier@20#. This phenomenon clearly demon
strates the deviation of the rotational levels from t
J(J11) law ~Fig. 2, right column!. However, backbending
is a ‘‘gross’’ manifestation of the irregularities, i.e., it can b
observed whenJ changes over a large range of values. Co
versely, staggering has a ‘‘fine’’ structure, i.e., it can be o
served in regions whereJ changes by a few units, as can b
seen from the wiggles modulating the backbending cur
~Fig. 2, right column!. This phenomenon was overlooked
the previous investigation@20# where the fits were made o
the even states.

It was shown in Sec. III that, in order to determine m
lecular staggering in a rotational band, it is necessary to
rive the energy levels of the band from the experimen
data. The crucial point there is to find the value ofE(1)
occurring in the expression for the odd states, which can
be derived directly from the transition energies but only
fitting the data with an appropriate model for the rotation
energy.

In order to achieve this goal we have used two indep
dent models: a ‘‘standard model’’~hereafter referred to a
SM!, based on a limited Dunham expansion~see Sec. V A!,
and a ‘‘quantum model’’~hereafter referred to as QM!, based
on a quantum, algebraic description of the rotational mot
~see Sec. V B!. These models have been applied to the m
crowave spectrum of the AgH molecule. We investigated
detail the four rotational bands build on the lower vibration
levelsv950,1,2,3, and the four rotational bands build on t
upper vibrational levelsv850,1,2,3. For each of these eig
bands we applied both the SM and QM and, in order
determine the parameters of the model, fitted independe
the differencesD2E(J) with even and oddJ values. Then we
calculatedE(1) using both the SM and QM with the two se
of parameters obtained from fitting the even and o
D2E(J). For each of the bands the values ofE(1) obtained
in these different ways differed by no more than 0.01 cm21,
which is comparable to the reported accuracy of the exp
mental data. Finally, we used formulas~15! and ~16! to cal-
culate the energies of the levels, and Eq.~9! to calculate the
energy staggering.

The results are shown on Fig. 3 for the investigated f
upper bands and on Fig. 4 for the investigated four low
bands, Figure 5 showing some additional lower bands
comparison. It can be noticed that, contrary to backbend
e
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~Fig. 2, right column!, which is observed for values ofJ
starting from'30, staggering is observed for values ofJ as
low as'5. In spite of their great variety, the patterns show
are clear evidence ofDJ52 staggering in all the considere
rotational bands of the AgH molecule.

All the staggering patterns display an alternation of lo
and high staggering amplitudes. The large peaks perturb
the right-hand side (J.40) of thev850 andv851 patterns
~Fig. 3! correspond to the rise of backbending~Fig. 2, upper
right diagram!; the range of other patterns has been redu
in order to avoid these misscaling peaks. For the upper ba
~Fig. 3! the envelopes of the staggering patterns have m
or less sinusoidal shapes, with maxima occurring atJ
'9 – 13 andJ'33– 37 ~period DJ'24! for v850,1,2 and
maxima dephased to lower values ofJ with a periodDJ
'20 for v853. For the lower bands~Figs. 4 and 5! the
envelopes of the staggering patterns appear more cha
with waves clearly defined in some patterns (v951,2,4,6)
and poorly spaced in other blocks (v950,3,5,7). Forv9
50,2,4,6 there appear regions of lower staggering am
tudes atJ'20– 24 andJ'30– 34, whereas forv951,3,5,7
less pronounced such regions appear atJ'14– 18, 24–30,
and 36–40, revealing an overall period about twice sma
than that for the upper bands.

These regularities are a further argument for the reality
staggering in this molecule: they would be very unlikely
the observed oscillations were due solely to the accumula
of ~measurement and calculation! errors~see the end of Sec
III !. Some other regularities will be revealed by the Four
analysis of the oscillating patterns~see the end of Sec. VI!.

IV. DESCRIPTION OF ROTATIONAL BANDS IN TERMS
OF q-INTERACTING, q-DEFORMED ROTATORS

A. Standard model „SM… for the description of rotational bands

As we recalled above, in order to determine the ene
E(1) which enters expression~16! of E(J) for odd J, then
that @Eq. ~9!# of the ~experimental! staggering, we need a
~theoretical! model for calculating the levels. In an ideal ro
tational spectrum, these levels would be described by
formula

E~J!5
1

2J J~J11!, ~21!

where J is the moment of inertia of the molecule~or
nucleus!, assumed to be a constant. However, this form
fails to describe the levels with higher values ofJ, because
the centrifugal force then causes the molecule~or nucleus! to
distort, and its moment of inertia to increase. Thestandard
model for the description of rotational spectra is an exp
sion of the form@1,2#

Ev~J!5BvJ~J11!1Dv@J~J11!#21Hv@J~J11!#3

1Jv@J~J11#41••• , ~22!

where v and J are the vibrational and rotational quantu
numbers, respectively. It is known empirically that the co
ficients Bv ,Dv ,Hv ,... have alternating signs, starting wit
Bv positive @1#. In addition, Dv is roughly 3–4 orders of
magnitude smaller thanBv , and Hv is also 3–4 orders of
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FIG. 3. StaggeringDEt(J), as defined in Eq.~9!, for the upper rotational bandsn850,1,2,3 of the AgH molecule~in cm21!.
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magnitude smaller thanDv . More generally, rovibrationa
spectra of molecules~and nuclei! can be described by a lim
ited Dunham expansion@21#

E~v,J!5(
i

(
k

Yik~v11/2! i@J~J11!#k, ~23!

where theYik’s are numerical coefficients. For molecul
systems, the first few terms of this expansion can be obta
by solving the Schro¨dinger equation for the nuclear motio
with some potential such as that proposed by Morse@22#.
Even though the Dunham expansion is usually related to
adiabatic approximation, it has been shown@23# to have a
more general interpretation in terms of the genera
coordinate method. The connection between the coeffici
Bv ,Dv ,Hv ,... of Eq. ~17! and thoseYik of Eq. ~18! is
straightforward.
ed

e

r-
ts

Both expressions~22! and~23! give a very good descrip
tion of rotational spectra involving pure anharmonicit
when there is no mutual perturbation of the levels. They c
therefore be used for describing known rotational levels a
after fitting the coefficientsBv ,Dv ,... ~or Yik!, for calculat-
ing E(1), asexplained in Sec. III.

B. Quantum model „QM … for the description
of rotational bands

1. Standard and quantum algebrassu„2… and suq„2…

Along with the standard model~e.g., the Dunham expan
sion!, there is an alternative approach to the description
the vibrational and rotational~molecular and nuclear! spectra
involving anharmonicity of the interaction potential, bas
on what is known as quantum groups~i.e., Hopf algebras!.
Quantum groups are a powerful branch of modern ma
ematics which, in the last decade, have found a wide var
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FIG. 4. StaggeringDEt(J), as defined in Eq.~9!, for the lower rotational bandsn950,1,2,3 of the AgH molecule~in cm21!.
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of applications in the phenomenological description of phy
cal problems, including nuclear and molecular~rotational
and vibrational! motions@24–26#. The presentation of quan
tum groups goes beyond the goal of this paper, and here
shall give only a brief sketch of the physical background a
of some elementary techniques which have been used in
description of rotational spectra.

Let us first recall some elementary formulae from t
standard theory of angular momentum. The opera
L1 ,L0 ,L2 of angular momentum in quantum mechanics s
isfy the commutation relations

@L0 ,L6#56L6 , @L1 ,L2#52L0 ~24!

and the usual unitary conditions. OperatorsLm(m51,0,2)
satisfying the above relations are called generators of the
algebra of the su~2! group. From these operators one c
build the quadratic linear combination
i-

e
d
he

rs
t-

ie

L25 1
2 ~L1L21L2L1!1L0

25L2L11L0~L011!,
~25!

which describes the square of the angular momentum len
This operatorL2 commutes with all operatorsLm :

@L2,Lm#50. ~26!

In the mathematical literature the bilinear combinationL2 is
called the Casimir operatorC2 of the su~2! algebra. We shall
also recall thatL2 andL0 have a common set of eigenvecto
uLM &, where the quantum numberL gives the length of the
angular momentum andM gives its projection on thez axis.
The operatorsL1 andL2 act on the statesuLM & by raising
or lowering the values of the quantum numberM . The vec-
tors uLM & are the basis vectors of the irreducible unita
representations~IUR’s! DJ of the group su~2!.

In Sec. IV A we saw that the levels of a rigid rotator ca
be described by Eq.~21!, while for a real rotator a series o
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FIG. 5. StaggeringDEt(J), as defined in Eq.~9!, for the lower rotational bandsn954,5,6,7 of the AgH molecule~in cm21!.
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powers ofL(L11) is required, with coefficients dependin
on the vibrational quantum numberv. It should be noted,
however, that such expansions are based on empirical ra
than theoretical grounds. It will be shown below that assu
ing the moment of inertia depends onL will give results
equivalent to those from the Dunham expansion. One
also try to relate the deviations of the real level energies fr
Eq. ~21! to a deeper mathematical formalism, by introduci
specific changes in the algebra defined by Eqs.~24!, which is
the basis of angular momentum theory.

The so-calledquantum~or q-deformed! algebra suq(2),
which has been recently used with success to describe
backbending phenomenon in the AgH molecule@20#, was
introduced some time ago when trying to find exact solutio
to some problems in statistical mechanics@27#. This ‘‘quan-
tum’’ algebra is obtained by ‘‘deforming’’ su~2!, introducing
new angular momentum operatorsJ1 , J0 , andJ2 with gen-
eralizedcommutation relations
er
-

n

he

s

@J0 ,J6#5h6~J1 ,J0 ,J2!, @J1 ,J2#5k~J1 ,J0 ,J2!,
~27!

whereh6 and k are arbitrary functions. The uncertainty o
these functions is raised by assuming the preservation of
similarity with the standard angular momentum theory. F
instance, ifJ0 is to describe the projection of the new angu
momentum on thez axis, andJ1 andJ2 are to play the role
of raising and lowering operators for this momentum, o
should accept thath6(J1 ,J0 ,J2) coincides withJ6 , mean-
ing that the first of Eqs.~24! and ~27! coincide. Analogous
considerations lead to the conclusion thatk must be a func-
tion of J0 only, saykq(J0), assuming this function depend
on some parameterq in such a way thatkq(J0)→J0 when
q→1. This last requirement means that in the limit ofq→1
the second of Eqs.~27! reduces to the second of Eqs.~24!,
ensuring the continuity of the new angular momentum w
the old one. Here we should remember that corresponde
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principles play a strategic heuristic role when investigat
new theories: for instance, relativistic mechanics goes
classical mechanics when the velocity of lightc goes to in-
finity, and quantum mechanics goes into classical mecha
when the quantum of actionh goes to zero. Similarly, a
quantum algebra, supposedly appropriate for describing
formable systems, goes into the standard one, fit for desc
ing rigid systems, whenq goes to 1.

The functionkq(J0) can be further specified by imposin
that the ‘‘sum rule’’ for the new angular momenta coincid
with that for the old ones. This means that when adding t
angular momenta given with quantum numbersJ1 and J2
their sum should be given with a quantum numberJ satisfy-
ing the conditionuJ12J2u<J<uJ11J2u. This requirement
can be fulfilled by choosing forkq(J0) a weighted difference
of exponentials of 2J0 with q as the basis,q being necessar
ily a real number or a pure phase:q5ek with k real or
imaginary. The resulting suq(2) algebra, which can be con
sidered as aq-deformation of the su~2! algebra for angular
momentum operators, therefore involves three new gen
tors, J1 , J0 , J2 , satisfying the generalized commutatio
relations@27#

@J0 ,J6#56J6 , @J1 ,J2#5
e2kJ02e22kJ0

ek2e2k . ~28!

When the parameterk is small, the second equation reduc
to

@J1 ,J2#52J014kJ0
21O~k2!, ~29!

which is quadratic inJ0 and yields the second of the linea
equations~24! whenk→0. The quantum algebra suq(2) can
then be used for describing such deviations as inhomog
ities, anisotropies, and deformabilities of quantum syste
from the standard symmetries described by the su~2! algebra.

If one introduces theq notation

@A#q[
qA2q2A

q2q21 ~q[ek!, ~30!

whereA may be an operator as well as a number, the ab
commutation relations can be written in the form

@J0 ,J6#56J6 , @J1 ,J2#5@2J0#q , ~31!

which is formally analogous to Eq.~24!. Because the argu
ment k of q in Eq. ~30! may be either purely real~t! or
imaginary (i t), the q numbers~or operators! in these two
cases take the respective forms

@A#q5H sinh~tA!

sinh~t!
if q5et ~a!

sin~tA!

sin~t!
if q5ei t ~b! .

~32!

In the limit q→1 ~that is,t→0! one obtains

lim
q→1

@A#q5A, ~33!
g
to
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e-
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this entailing Eq.~31! to reduce to Eq.~24!, and yielding, for
the q generators (m51,0,2),

lim
q→1

Jm5Lm . ~34!

While the square of the length of the angular moment
L2, i.e., the Casimir operatorC2 of the standard algebra
su~2!, is given by ~25!, the Casimir operatorC2

q@suq(2)#,
which is defined similarly by the condition that all generato
Jm should commute with it, has the form

C2
q5J2J11@J0#q@J011#q , ~35!

which can also be interpreted as the square of the lengtJ2

of a new,q-deformed, angular momentum operatorJ.
The similarity of the standard and quantum algebras

tails a similarity in their representation theories. Jimbo@28#
has shown that the IUR’sDq

J of suq(2) are determined, by
analogy with thoseDJ of su~2!, by numbersJ50, 1

2 , 1, 3
2 ,...

and M52J,2J11,...,J. These IUR’s are derived from
their highest-weight vectoruJJ&q , which satisfies equation
similar to the corresponding ones in su~2!. The basis vectors
of the representation space are obtained by successive a
cations of the lowering operatorJ2 on uJJ&q . Using the
resulting normalization factor, one obtains

J0uJM&q5M uJM&q ,

J6uJM&q5A@J7M #q@J6M11#quJ,M61&q . ~36!

These expressions can be used to derive the eigenvalu
the q-deformed Casimir operator in terms ofq numbers,

^C2
q&5@J#q@J11#q . ~37!

As one can see, the properties ofq-deformed states can b
expressed in a way completely analogous to that for the s
dard states, the only difference being that the standard n
bers occurring in the latter are replaced byq numbers in the
former. However, one should be cautious in the applicati
because relations holding for ordinary numbers will not
ways hold forq numbers~e.g., 4

2 52 but@4#e /@2#e57.52...!.

2. Quantum description of rotational bands

Let us now consider how suq(2) can be applied to a de
scription of molecular rotational spectra. For a rigid symm
ric top the Hamiltonian can be written in the form

H5
1

2Jxy
L21S 1

2Jzz
2

1

2Jxy
DLz

2, ~38!

whereL25Lx
21Ly

21Lz
2 is the Casimir operatorC2 of su~2!

and Jzz and Jxy are the axial and equatorial moments
inertia. The second term does not affect the arrangemen
the levels within a band and can therefore be neglec
yielding the rigid top levels~21!. Now it has been shown
@29# that deformed nuclear rotational bands can be fitted v
accurately using a Hamiltonian proportional to the Casim
operatorC2

q , which is derived from Eq.~38! by replacing the
generatorsLm by theq-deformed generatorsJm , i.e.,
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Hq5AC2
q , ~39!

whereA is a ‘‘lightness’’ constant related to a moment
inertia.

The eigenstates of theq-deformed rotator described b
the Hamiltonian~39! are the above-defineduJM&q , and its
energy levels are given by

Eq~J!5A@J#q@J11#q

5H A
sinh~tJ!sinh@t~J11!#

sinh2~t!
if q5et ~40a!

A
sin~tJ!sin@t~J11!#

sin2~t!
if q5ei t. ~40b!

These formulas differ from the standard formula~21! in the
way that they describe the intervals between the states.utu
is not very large, the first formula gives an ‘‘extended’’ spe
trum in which the level spacings become larger than in
standard bands, whereas the second formula give
‘‘squeezed’’ spectrum whose levels become closer. With
creasingJ the moment of inertiaJ of the ~stretched! mol-
ecule~or nucleus! actually increases and the interval betwe
the states becomes shorter, justifying the use of the sec
formula.

It is useful to make Taylor expansions of Eqs.~40! and
sum up the coefficients of the terms containing the sa
powers ofJ(J11) ~all other terms canceling out!. For the
second of these equations the final result is

Eq~J!5
1

2J H J~J11!2
t2

3
[J~J11!] 21

2t4

45
@J~J11!#3

2
t6

315
@J~J11!#41•••J , ~41!

where 1/2J5(At2/sin2t)(12t2/3!1...)→A when t→0.
This relation is of the form~22! used for fitting experimenta
spectra, except that now we have only two parameters,A and
t, instead of an unlimited number of expansion coefficien
Each term differs from the preceding one by a factor invo
ing 2t2. Fort2 to be of the observed order, 1023, utu should
be around 0.03. It should be noted that, in order to guara
thatEq(J) be an increasing function ofJ, one must have, in
Eq. ~40b!:

TABLE I. Nonsplit doubleq-rotator best-fit parameters for th
lower rotational bands of the lower electronic state of AgH.

n950 n951 n952 n953

A 6.3458 6.1463 5.9469 5.7476
ta 0.012 657 0.012 827 0.013 026 0.013 277
B 6.2654 6.1144 5.9438 5.7729
tb 0.012 106 0.012 680 0.013 052 0.013 540
C 1.2264 0.410 11 0.393 43 0.466 33
tc 1.3713 1.0369 0.642 51 0.597 10
E0 51.413 28.136 6.8840 2.0193
-
e
a

-

nd

e

.
-

ee

utu~J11!<
p

2
. ~42!

With utu50.0174 as in HF, one findsJ<89 and with utu
50.0113 as in HBr, one findsJ<138 @24#. These limiting
values are higher than the highestJ values reported for di-
atomic molecules.

3. Physical interpretation of the deformation parameter

The ‘‘variable moment of inertia’’~VMI ! model, which is
widely used in nuclear spectroscopy~Ref. @30# and refer-
ences therein! and is also relevant to molecular spectrosco
stems from the idea that the distances between particles
many-particle system~and the resulting moment of inertia!
increase with the value of the rotational quantum numb
this generating an additional potential energy. The level
ergies in a rotational band are then given by

E~J!5
J~J11!

2J~J!
1 1

2 C„J~J!2J0…

2, ~43!

with J(J) being the moment of inertia for angular mome
tum J, whereasC andJ0 are potential-energy parameters
be fitted to the data:J0 is the ground-state moment of inertia
and it is meaningful to writeC as a function of the ‘‘soft-
ness’’ parameters of the nucleus~or molecule!:

C5
1

2sJ 0
3 . ~44!

The moment of inertia at givenJ is determined through
the variational condition

]E~J!

]J~J!
U

J fixed

50,

which is equivalent to the cubic equation

J~J!32J~J!2J02
J~J11!

2C
50. ~45!

This equation has only one real root:

J~J!5
J0

3
1A3 P1Q1R1A3 P1Q2R,

TABLE II. Split single q-rotator best-fit parameters for th
lower rotational bands of the lower electronic state of AgH.

n950 n951 n952 n953

Aeven 6.3461 6.1468 5.9487 5.7530
teven 0.012 662 0.012 837 0.013 059 0.013 366
Aodd 6.3454 6.1466 5.9481 5.7530
todd 0.012 655 0.012 834 0.013 053 0.013 366
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FIG. 6. Superposition of experimental~expt.! and theoretical~theor.! staggerings obtained using two regular,q-interacting,q rotators for
the lower rotational bandsn950,12,3 of the AgH molecule.
s

e

P5
J~J11!

4C
, Q5

J 0
3

27
,

R5S @J~J11!#2

16C2 1
J 0

3J~J11!

54C D 1/2

.

Expanding the roots in the above expression, one obtain

J~J!5J0$11sJ~J11!22s2@J~J11!#217s3@J~J11!#3

230s4@J~J11!#41•••%. ~46!

Substituting Eq.~46! into Eq. ~43! and expanding yields
E~J!5
1

2J0
$J~J11!2 1

2 s@J~J11!#21s2@J~J11!#3

23s3@J~J11!#41•••%. ~47!

Comparing Eqs.~47! and ~41! shows that theground-state
moment of inertiaJ0 of the VMI model is related to the
inverse of thelightness parameter Aof the quantum-group
model, i.e.,J0'(12t2/3!1•••)/2A, and that thesoftness
parameters of the VMI model corresponds roughly to th
square of thedeformation parameters of the quantum-group
model, i.e.,t2'3 f (n)s @where f (n) is an increasing func-
tion of the rankn of the expansion#. Physically, this means
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FIG. 7. Superposition of experimental~expt.! and theoretical~theor.! staggerings obtained using a single parity-splitq rotator for the
lower rotational bandsn950,1,2,3 of the AgH molecule.
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that quadrupling, for instance, the softness parameters in
Eq. ~47! has about the same effect as doubling the defor
tion parametert in Eq. ~41!. At this level, the quantum-group
model can thus be viewed as an alternative formulation
the VMI model, the continuity introduced in the~otherwise
discrete! commutation relations~28! expressing the progres
sivity of the variation of the moment of inertia with the ro
tational quantum number. Both models involve two para
eters only but, contrary to the phenomenological VM
model, the quantum-group model has a deep mathema
structure, since it involves a natural~though untrivial! gen-
eralization of the group algebra used in angular momen
theory.
a-

f

-
I
al

m

C. Backbending and staggering in terms
of two interacting rotators

We have already stated that Eq.~40! with q5ei t for the
quantum rotator gives a very good description of rotatio
spectra of diatomic molecules. In particular, this formula~re-
placing A by 1/J! describes fairly well the ‘‘upbending’’
phenomenon@20#. However, it cannot explain ‘‘backbend
ing,’’ for which the interaction between two rotational ban
must be considered@20#.

It can be checked easily that Eq.~40b! cannot explain
staggering either. If one inserts Eq.~40b! into the staggering
formula~9!, one obtains the expression of a smooth curve~of
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sine type!, which does not change its sign over the variati
interval of the angular momentum and whose amplitude
2–3 orders of magnitude smaller than that of the obser
staggering. Writing

Ẽ~J!5Ē~J!1dE~J!, ~48!

whereẼ(J) is the observed value of the energy level,Ē(J)
the smooth variation given by Eq.~40b!, anddE(J) the os-
cillating deviation from Eq.~40b!, then, inserting Eq.~48!
into Eq.~9!, one finds the contribution ofĒ(J) to staggering
vanishes, meaning that staggering can only originate fr
dE(J). In order to describe staggering, one must then
able to calculate the deviations of energy levels from th
predicted with the formula for the singleq-deformed rotator.
We shall investigate how far this can be done using mod
involving two interacting rotators.

According to the single-rotator model recalled in Se
IV B 2, in each of its vibronic states the molecule can
considered as a rotator with a variable moment of iner
i.e., a quantum~q-deformed! rotator with moment of inertia
Ja and deformation parameterta . The transitions between
the levels within these different quantum rotators yield
observed rovibronic spectrum. The occurrence of ‘‘ba
bending’’ and the deviationsdE(J) in Eq. ~50! both show
that this model is not sufficient. We have already seen@20#
that in order to explain ‘‘backbending’’ each of th
q-deformed rotators~each rotational band! can be assumed
to ‘‘interact’’ with another rotator with higher energy, whic
can be seen as a resultant of residual rotational motions.
higher-energy rotator is not directly observable~via transi-
tions in the rovibronic spectrum!, and in this sense plays a
auxiliary role in the explanation of the rotational bands.
can also be characterized by a moment of inertiaJb and
deformation parametertb .

In the ‘‘standard’’ ~non q-deformed! quantum mechanics
this double-rotator model can be described in the follow
way. Let us denote byJa andJb the moments of inertia and
by La andLb the angular momenta of the two rotators. Th
Hamiltonians take the forms

Ĥa5
1

2Ja
La

2, Ĥb5
1

2Jb
Lb

21E0 , ~49!

where the constantE0 defines the zero energy for the seco
rotator. The energies of the two rotators, when their inter
tion is neglected, are given by

Ea~J!5
1

2Ja
J~J11!, Eb~J!5

1

2Jb
J~J11!1E0 .

~50!

If the interactionĤab is now taken into account, the leve
Ea andEb yield two new split levels:

E6~J!5
Ea1Eb

2
6F S Ea2Eb

2 D 2

1u ^Ĥab&u 2G1/2

. ~51!

Here the minus sign corresponds to the resulting lower
ergy: as the observable transitions take place between
lower levels of the rotators, it is important to know only ho
is
d
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these levels change under the interaction; only the mi
sign, which defines the so-called yrast line, will thus be co
sidered hereafter.

An explicit form of ^Ĥab& could be obtained from micro
scopic calculations. However, in this phenomenologi
model of two interacting rotators, a simple form of^Ĥab&
can be derived from symmetry considerations. The inter
tion term ~as the system Hamiltonian as a whole! must be
invariant under all space rotations. Now we have at our d
posal only two vector operatorsL̂a and L̂b with which to
build the interaction operatorĤab . The only scalar expres
sion which can be built from these vectors is their sca
product

Ĥab52kL̂a•L̂b5k~ L̂22L̂a
22L̂b

2!, ~52!

whereL̂5L̂a1L̂b , andk is a constant which can be calcu
lated or measured. If we take into account the fact that
two involved rotators have the same angular quantum n
ber, Ja5Jb , and that they are coupled to give an angu
quantum numberJ5Ja5Jb for which the energy of the sys
tem is minimal, we obtain

^Ĥab&52kJ~J11!, ~53!

which is in agreement with an assumption previously ma
to describe backbending in nuclei@30# and molecules@20#.

Similar considerations can be held for two ‘‘quantum
~q-deformed! rotators. The energies of the two rotators a
now given by

Eqa
~J!5A@J#qa

@J11#qa
, @x#qa

5
sintax

sinta
, ~54!

Eqb
~J!5B@J#qb

@J11#qb
1E0 , @x#qb

5
sintbx

sintb
. ~55!

Here also a phenomenological form for the~q-deformed!
interaction operatorĤab

q can be derived from the symmetr
condition that it should be rotational invariant and must
built from the~q-deformed! angular momentum operatorsLa

q

and Lb
q . Due to the specific rules for the addition o

q-deformed angular momenta~see, e.g., Ref.@26#!, the only
scalar operator that can be used for buildingĤab

q is the Ca-
simir operatorC2

q@suq(2)#, formed from the sum of the an
gular momenta of the two quantum rotators. Taking into
count the fact that in this case one also hasJ5J15J2 , one
obtains

^Hab
qc&5C@J#qc

@J11#qc
, @x#qc

5
sintcx

sintc
, ~56!

wheretc is a ~q-deformed! interaction parameter~different
from ta andtb!. The values of bothC andtc can be deter-
mined by fitting experimental data.

V. SIMULATIONS AND RESULTS

We have seen in Sec. IV C that, unlike ‘‘upbending
staggering as defined in Eq.~9! cannot be described using th
single q-rotator levels given in Eq.~40b!, which yield only
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FIG. 8. Superposition of experimental~expt.! and theoretical~theor.! staggerings obtained using two parity-split,q-interacting,q rotators
for the upper rotational bandsn850,1,2,3 of the AgH molecule.
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smooth periodic variations ofDEt(J)—rather similar to the
wide envelopes noted in Figs. 3–5. We now show throu
computer simulations that, unlike ‘‘backbending,’’ stagge
ing cannot either be properly described using the stand
doubleq-rotator model. We have used the energy levels
the yrast lineE2(J) from Eq. ~51! with Ea , Eb , and^Ĥab&
replaced byEqa

, Eqb
, and ^Ĥab

qc& from Eqs.~54!, ~55!, and
~56!, respectively. We have performed fittings of the i
volved energy levels of the lower rotational bands of t
lower electronic state in order to find to which extent t
secondq rotator could be effective in explaining staggerin
which occurs even before ‘‘upbending’’ takes place.
h
-
rd
f

,

The best-fit values of the seven parameters involved
this model forn950, 1, 2, 3 are given in Table I, and th
staggering curves calculated from them are compared
those derived from the measured transitions in Fig. 6. T
parameters of the two rotors are closer, and those of
interaction smaller, than in the case of the upper levels@20#,
where strong perturbations are present. The theoretical s
gering amplitudes appear much smaller than the experim
tal ones, especially for the low values ofJ, and are alterna-
tively in phase and out of phase with them, chang
occurring around the nodes of the staggering envelopes
cussed in Sec. III. Thus it appears that neither molecular~or
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TABLE III. Split double q-rotator best-fit parameters for the lower rotational bands of the upper e
tronic state of AgH.

n850 n851 n852 n853

Aeven 6.1177 5.7616 5.3408 4.8443
ta

even 0.014 604 0.015 135 0.016 881 0.015 804
Beven 2.9498 39.480 21.917 17.457
tb

even 0.012 946 0.075 232 0.090 785 0.094 590
Ceven 2.2494 0.920 61 0.910 82 2.5383
tc

even 6.1727 0.027 419 0.026 278 0.029 186
E0

even 5141.3 10 048.0 8028.5 14814.0

Aodd 6.1189 5.7720 5.3435 4.8371
ta

odd 0.0146 32 0.014 740 0.016 983 0.021 023
Bodd 2.9191 43.793 22.121 8.5960
tb

odd 0.0127 81 0.073 918 0.090 717 0.097 498
Codd 2.2206 1.4679 0.897 50 3.4321
tc

odd 6.1736 0.036 761 0.0261 35 0.025 216
E0

odd 5186.0 10 025. 8026.2 14 869.0
-
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nuclear! nonrigidity, nor level noncrossing—very well ac
counted for with the single and doubleq-rotator models, re-
spectively@20#—are sufficient to explain the systematic pa
ity splitting revealed by the staggering effect.

Therefore we have allowed for parity splitting in our fo
malism, i.e., we have fitted the energies independently
the odd and even states~for the lower and upper bands a
well! and obtained parity-split values for the parametersA
andt. With this extension it is expected that some stagger
can be obtained even within the standard model, but
quantum model remains in order to reproduce the ‘‘upbe
ing’’ and ‘‘backbending’’ curves~Fig. 2, right column!. As a
singleq rotator proved sufficient for the lower levels, whic
display only ‘‘upbending’’@20#, we have used only one spl
~odd-even! q rotator for n950, 1, 2, 3~involving four pa-
rameters!, while, as a doubleq rotator was necessary for th
upper levels, which display also ‘‘backbending’’@20#, we
used a pair of splitq rotators forn850, 1, 2, 3~14 param-
eters!.

For the lower bands we first fitted the even state ener
(J52,4,6,...), obtained as explained in Sec. II, by Eq.~40b!,
then used theA andt parameters thus obtained to derive
estimate ofE(1):

Eqev~1!5Aev
sin2tev

sintev 52Aevcostev, ~57!

then used this value ofE(1) to derive, from the experimenta
transition energies, the odd level energies (J53,5,...). These
latter were subsequently fitted to Eq.~40b!, yielding the odd
A andt parameter values. The differences between the e
and oddA andt values, displayed in Table II, are less th
1023 and 1025, respectively. The staggering curves calc
lated from the energies of the even and odd states thus fi
independently are compared to those derived from the m
sured transition energies in Fig. 7. The theoretical stagge
amplitudes appear much closer to and more in phase with
experimental ones than in the previous model, but the p
odic patterns of the envelopes noted in Sec. III are not v
satisfactory.
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For the upper bands we applied the same procedur
above, fitting first the even-and then the odd-state energ
but using now twoq-interactingq rotators. As in the nonsplit
model first used for the lower bands, we used the ene
levels of the yrast lineE2(J) from Eq.~51! with Ea , Eb and
^Ĥab& replaced byEqa

, Eqb
and ^Ĥab

qc& from Eqs.~54!, ~55!

and ~56!, respectively. The formula used to deriveE(1) is
then

E2
ev~1!5~Aevcosta

ev1Bevcostb
ev!2@~Aevcosta

ev

2Bevcostb
ev!21~Cevcostc

ev!2#1/2. ~58!

The differences between the even and oddA, B, C, andE0
andta , tb , andtc values, displayed in Table III, are muc
larger than for the lower bands~about 0.02% to 100% for the
A’s and about 0.2% to 30% for thet’s!. The average even
odd values from this table are close to but more accurate
the nonsplit values given in Table 2 of our previous wo
@20#, because here we use a ‘‘quantum’’ interaction inste
of the ‘‘standard’’ interaction used the previous work. Th
staggering curves calculated from the even- and odd-s
energies thus fitted independently are compared to those
rived from the measured transition energies in Fig. 8. In sp
of some remaining differences in the amplitudes and pha
especially in the vibrationally odd bands (n851,3), the
‘‘theoretical’’ staggering curves seem quite similar to t
‘‘experimental’’ ones, now including the periodic patterns
the envelopes.

The fact that involving a second,q-interacting,q rotator
improves considerably, though not decisively, the fits of
upper bands, compared to those of the lower bands, m
mean the second rotator, even though not significant in
scribing a ‘‘gross’’ phenomenon like ‘‘upbending’’ for the
lower bands, might play a critical role in describing th
‘‘fine’’ structure of staggering. But it should also be remem
bered that any reasonable function involving 14 parame
will give better fits of a set of experimental data than a sim
lar function with only four parameters. In addition, the r
maining discrepancies, particularly for odd values ofn, hint
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FIG. 9. Superposition of the Fourier transforms of experimental~expt.! and theoretical~theor.! staggerings from the single parity-splitq
rotator for the bandsn950,1,2,3 of the AgH molecule~K is the dimensionless conjugate ofJ!.
a

ri-
s.
a
th
th

rr
on
s

es,
side

wn
red
in

ro-
it might be necessary to improve the model by involvingq
rovibrators@31# or evenqp rovibrators@32#, but such exten-
sions would increase further the number of parameters,
accordingly reduce the significance of the fits.

A Fourier analysis was performed on both the ‘‘expe
mental’’ and ‘‘theoretical’’ staggering curves shown in Fig
7 and 8. The corresponding Fourier transform curves
displayed in Figs. 9 and 10, respectively. Remembering
sine andd functions are Fourier transforms of each other,
main peaks~usually one or two! in the Fourier transform
curves can be related to the main harmonics in the co
sponding staggering curves, and the side wiggles to sec
ary harmonics. Even for the lower bands our model seem
nd

re
at
e

e-
d-
to

reproduce fairly well the envelopes of the Fourier curv
and for the upper bands it also reproduces some of the
wiggles. The best results are obtained forn850, 2 andn9
50, 3, and the worse forn853 andn951, this reinforcing
the idea that a model involvingq rovibrators might allow
better fittings.

VI. DISCUSSION AND CONCLUSION

In this paper we have shown that not only the long-kno
backbending phenomenon, but also the recently discove
staggering effect can, similarly as in nuclei, be observed
molecules.DJ52 staggering has been shown for several
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FIG. 10. Superposition of the Fourier transforms of experimental~expt.! and theoretical~theor.! staggerings from the two parity-split
q-interacting,q rotators for the bandsn850,1,2,3 of the AgH molecule~K is the dimensionless conjugate ofJ!.
a
re
s
ig

fo
nt
d

ry
n
e

nd-

-
ing

ef-
e

ant
rtia
s-

lar
olic
tational bands of the AgH molecule, where it already appe
at quite low values ofJ and shows a rather complex structu
involving amplitude modulation through various harmonic
The fitting of the experimental data reveals a small but s
nificant parity dependence of the parametersA andt, which
define theq rotators used to describe the rotational levels,
both the lower and upper electronic states. From our te
tive simulations usingq-deformed rotators, which prove
less efficient than for describing backbending@20#, it ap-
peared that~i! it is necessary to allow for parity splitting in
the formalism to obtain any significant staggering;~ii ! at
least twoq-interacting,q-deformed rotators are necessa
not only for the upper levels, where strong perturbatio
show up in the form of backbending, but also for the low
rs

.
-

r
a-

,
s
r

levels, where perturbations are too weak to yield backbe
ing but may be critical in describing staggering; and~iii ! the
involvement ofq vibrations coupled withq rotations, possi-
bly in the form of qp rovibrators, might show more effi
ciency in yielding a satisfactory description of the stagger
phenomenon.

There remains to find a physical explanation for this
fect, particularly for the parity splitting which appears to b
its main source. It would be surprising that this latter me
that a molecule may have an effective moment of ine
varying uponJ in a parity-dependent manner. Intricate cros
ing of molecular levels or dynamical breaking of molecu
symmetries, as in those quantum bifurcations at diab
points investigated for spherical-top molecules@15,16#,
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could be considered for a microscopic explanation of t
effect. However, the detailed investigation of such possib
ties requires more complete and more accurate experime
data. Now, while numerous papers provide thorough de
minations of rotational constants~e.g., Ref.@33#!, good raw
experimental data are scarcer~e.g. Ref.@34#!.

Other, preliminary results have been obtained rece
@35# from an analysis of limited sets of spectroscopic data
a sample of diatomic molecules. The fact that staggering
evidenced in such diatomics as CoH or YD~but not CS!
@35~a!# as well as inI 2 @35~b!#—irrespective of open-shel
structure or top asymmetry—points to a rather gene
mechanism. From the magnitude of the deviations from p
rotational levels and the irregularity of the deviation amp
tudes as a function ofJ in both CoH and YD, where the
data—as in AgH—come from transitions involving ele
tronic excitations, and from the absence of a signific
effect—larger than experimental errors—in CS, where
data involve no electronic excitations, it has been sugge
@35~a!# that staggering may have its source in interactio
with nearby bands and/or crossings between interac
bands. If this is true, staggering simply reveals—in a sp
tacular way indeed—interband interactions and/or ba
crossings rather than some new symmetry breaking, as it
ic
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,

ett
s
-
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l
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t
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suggested for nuclei@10–14#. However, the present pape
has shown that the model of twoq-interacting,q rotators,
which accounts very well for both upbending and backbe
ing, is not sufficient to reproduce the observed stagger
which shows up even at low values ofJ. It remains to be
proven that multipleq-interactingq rotators may yield simi-
lar results as the parity-split, doubleq-rotator model.

Our next steps will be to lead a thorough investigation
the properties of staggering in the standard rotational ba
of I 2 and Te2 @34#, to check if an improvedqp rovibrator
@32# could prove more efficient in the description of th
effect, and to attempt a semiquantitative explanation of
observed results through models involving both multip
level crossing and symmetry breaking.
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@2# I. Kovàcs, Rotational Structure in the Spectra of Diatom
Molecules~Hilger, London, 1969!.

@3# H. Lefebvre-Brion and R. W. Field,Perturbations in the Spec
tra of Diatomic Molecules~Academic, Orlando, FL, 1986!.

@4# A. Bohr and B. R. Mottelson,Nuclear Structure~Benjamin,
Reading, MA, 1975!, Vol. 2.

@5# P. Ring and P. Schuck,The Nuclear Many-Body Problem
~Springer, Berlin, 1980!, Vol. 1.

@6# P. J. Twin, B. M. Nyako`, A. H. Nelsonet al., Phys. Rev. Lett.
57, 811 ~1986!; P. J. Nolan and P. J. Twin, Annu. Rev. Nuc
Part. Sci.38, 533 ~1988!; R. V. F. Janssens and T. L. Khoo
ibid. Annu. Rev. Nucl. Part. Sci.41, 5186 ~1991!; 211, 5186
~1991!; M. Meyer and J. P. Vivien, Ann. Phys.~N.Y.! 17, 11
~1992!.

@7# S. Flibotte, H. R. Andrews, G. C. Ballet al., Phys. Rev. Lett.
71, 4299~1993!; S. Flibotte, G. Hackman, I. Ragnarssonet al.,
Nucl. Phys. A584, 373 ~1995!.

@8# B. Cederwall, R. V. F. Janssens, M. J. Brinkmanet al., Phys.
Rev. Lett.72, 3150~1994!.

@9# Yang Sun, Jingye Zhang, and Mike Guidry, Phys. Rev. L
75, 3398~1995!.

@10# I. Hamamoto and B. Mottelson, Phys. Lett. B333, 294~1994!.
@11# A. O. Macchiavelli, B. Cederwall, R. M. Clarket al., Phys.

Rev. C51, R1 ~1995!.
@12# I. M. Pavlichenkov and S. Flibotte, Phys. Rev. C51, R640

~1995!.
@13# I. N. Mikhailov and P. Quentin, Phys. Rev. Lett.74, 3336

~1995!.
@14# F. Donau, S. Frauendorf, and J. Meng, Phys. Lett. B387, 667

~1996!.
.

@15# W. G. Harter, C. W. Patterson, and J. J. da Paixao, Rev. M
Phys. 50, 37 ~1978!; W. G. Harter and C. W. Patterson,
Chem. Phys.80, 4241 ~1984!; W. G. Harter, Comput. Phys
Rep.8, 321 ~1988!.

@16# I. M. Pavlichenkov and B. I. Zhilinskii, Chem. Phys.100, 339
~1985!; Ann. Phys. ~N.Y.! 184, 1 ~1988!; V. B. Pavlov-
Verevkin, D. A. Sadovskii, and B. I. Zhilinskii, Europhys
Lett. 6, 573~1988!; D. A. Sadovskii, and B. I. Zhilinskii, Mol.
Phys.65, 109 ~1988!; G. Pierre, D. A. Sadovskii, and B. I
Zhilinskii, Europhys. Lett.10, 409 ~1989!.

@17# D. Bonatsos, C. Daskaloyannis, S. B. Drenska, G. A. Lalaz
sis, N. Minkov, P. P. Raychev, and R. P. Roussev, Phys. R
A 54, R2533~1996!.
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@19# U. Ringström and N. Ȧslund, Ark. Fys.32, 19 ~1965!.
@20# L. P. Marinova, P. P. Raychev, and J. Maruani, Mol. Phys.82,

1115 ~1994!.
@21# L. J. Dunham, Phys. Rev.41, 721 ~1932!.
@22# P. M. Morse, Phys. Rev.34, 57 ~1929!.
@23# L. Lathouvers and P. van Leuven, Chem. Phys. Lett.70, 410

~1980!.
@24# D. Bonatsos, P. P. Raychev, R. P. Roussev, and Yu.

Smirnov, Chem. Phys. Lett.175, 300 ~1990!.
@25# M. Kibler and T. Negadi~unpublished!.
@26# P. Raychev, Adv. Quantum Chem.26, 239 ~1995!.
@27# P. P. Kulish and N. Reshetikhin, J. Sov Mat. Dokl.23, 2435

~1983!.
@28# M. Jimbo, Lett. Math. Phys.11, 247 ~1986!.
@29# P. P. Raychev, R. P. Roussev, and Yu. F. Smirnov, J. Phy

16, L137 ~1990!.
@30# D. Bonatsos, Phys. Rev. C31, 2256~1985!.
@31# D. Bonatsos, E. N. Argyres, and P. P. Raychev, J. Phys. A24,



n-

.

e

ani,

56 2777MOLECULAR STAGGERING IN AgH AND ITS . . .
L403 ~1991!; Z. Chang and H. Yan, Phys. Lett. A158, 242
~1991!.

@32# M. R. Kibler, in Symmetry and Structural Properties of Co
densed Matter, edited by W. Florck~World Scientific, Sin-
gapore, 1993!; R. Barbier and M. Kibler, inModern Group
Theoretical Methods in Physics, edited by J. Bertrand~Kluwer,
Dordrecht, 1995!.

@33# M. M. Hessel and C. R. Vidal, J. Chem. Phys.70, 4439
~1979!; R. A. Bernheim, L. P. Gold, C. A. Tomczyk, and C. R
Vidal, ibid. 87, 861 ~1987!.
@34# S. Gerstenkorn and P. Luc,Atlas du Spectre d’Absorption d
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