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Molecular staggering in AgH and its description in terms of parity-split q rotators

Peter RaycheV, Jean Maruarf,' and Svetla Drenska
Ynstitute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784, Bulgaria
2Laboratoire de Chimie Physique, CNRS and UPMC, 11 rue Pierre et Marie Curie, 75005 Paris, France
(Received 12 February 1997

Itis shown that the\ J=4 bifurcation effect recently discovered in the superdeformed bands of heavy nuclei
also occurs in the rotational bands of diatomic molecules in the form afla2 staggering. A possible
explanation for this phenomenon assumes a perturbation between rotational levels that can be described in
terms of parity-splitg-deformed rotators interacting throughyadeformed,J-dependent interaction. The phe-
nomenon is evidenced and the model is illustrated on the rotational bands of 8§660-294{@7)09810-1

PACS numbegps): 31.10+2z, 33.15-€

[. INTRODUCTION Substituting the rigid rotator expresside(J)=AJ(J+1)
into Eq. (1), then Eq.(1) into Eq.(2), one can check that in
It is known that the rotational bands of diatomic mol- this caseAE,(J) vanishes: in this sense this quantity ex-
ecules[1-3] and those of atomic nucld#4,5] have many presses the deviation of nuclear spectra from the regular
features in common, in spite of the great difference of theJ(J+1) law.
excitation energies involved. In the last decade much atten- In Fig. 1 there are showAJ=4 staggerings for the su-
tion has been paid to the superdeformed nuclear bfsils perdeformed nuclear bands &°Gd (a) [7] and ***Hg (b)
which have higher angular momenta and behave closer to tH8]. From the figure it appears thAtE,(J) takes alternating
rigid rotator than normal deformed nuclear bands. Since th@ositive and negative signs whehincreases by four-unit
behavior of some molecular rotational bands is closer to theteps. The magnitude &fE,(J) is of the order of 10* that
rigid rotator than that of standard nuclear rotational bandsof the j-ray transition energies. Regarding the physical
and since in molecular bands one can discover states witiheaning of suchAJ=4 staggerings some proposals have
very high values of angular momentum, one can expect thaeen made, which involve intricate crossing of nuclear levels
some effects typical of superdeformed nuclear bands can al§@] or dynamical breaking of nuclear symmetrjé®—14, as
be found in molecular bands. in quantum bifurcations at diabolic points for spherical-top
A rather surprising feature has been discovered recentlyholecules[15,16. However, it was recently reportgd7]
[7,8] in superdeformed nuclear bands: sequences of statésat AJ=4 bifurcations also occur in the rotational spectra
differing by four units of angular momentum appear dis-of diatomic molecules such as CrH, CrD, or£as well as
placed relative to each other, the relative shifts being of the\ J=8 bifurcations in atomic nuclei and diatomic molecules.
order of 10 * the energies separating the band levels. This The observation oAJ=4 and 8 staggerings in both nu-
effect has been called th&J=4 bifurcation because the clei and molecules suggests that some common and rather
bands seem to split into two sequences with levels differingyeneral mechanism may exist, which would generate such
by four units inJ. The quantitative description of this effect similar effects in different systems. Even though the excita-
is given in what follows. tion energies in nuclear and molecular rotational spec-
In nuclear physics the experimentally observed quantitiesroscopies are very differerabout 18 eV in nuclei and
are they-ray transition energies between levels differing by10~2 eV in moleculey the observed staggerings are of the
two units of angular momentumA{J=2) [4]. For these same order of magnitude~(10 *). As the experimental

quantities the symbol techniques involved are very specific, the occurrence of such
similar systematic errors is very unlikely.
E,(J)=E(J+2)—E(J) (1) The aim of this paper is to give evidence td=2 stag-

gering in the rotational bands of the AgH molec{il3,19,
_ ~ to make a systematic investigation of this effect in the dif-
is used, where£(J) denotes the energy of the level with ferent rotational bands, and to propose a qualitative descrip-
angular momenturd. The deviation of these transition en- tjon of the staggering phenomenon usiggleformed alge-
ergies from the rigid rotator behavior can be measured by thgras, as we have done previou§B0] for the backbending

quantity[8] phenomenon in the same molecule.
AE»(J)= 15[ 6E5(J) —4Ex(J—2) —4Ex(J+2) +Ex(J—4) Il. DERIVATION OF BACKBENDING AND STAGGERING
LE, (44, @ FROM THE TRANSITION ENERGIES

The deviations of rotational spectra from the rigid rotator
model can best be demonstrated by investigating the depen-
*Electronic address: raychev@bgcict.acad.bg dence of the effective “moment of inertia” upon the effec-
"Electronic address: maruani@moka.ccr.jussieu.fr tive “angular velocity,” which may then display “upbend-
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FIG. 1. AJ=4 staggerings, as defined in ), for the superdeformed bands 8fGd (a) and **Hg (b) nuclei (adapted from Refg7]
and[8]).

ing” and “backbending” phenomena. Here we shall briefly wherek; andk, are factors depending upon the choice of the

recall some of our previous resu(tg0]. units. Equationsg7) are a parameteric representation®fy
The classical expressions for the rotational endfggnd  as a function ofngpr Typical examples of this functional
angular momenturh of a rotating body are dependence are given in Fig. (Bght column, where the
deviations of the levels from th&J+1) law appear more

E_ i L2 =70 3) clearly than in the energy diagrams, shown in Fig(left

27 7 ' column. In lower regions the dependencejz’)g‘xptuponwﬁXpt

resembles the lower part of & (upbending, whereas in
In quantum mechanics the inertial momentyhand angular  higher regions it resembles the higher part of héback-
velocity w are not directly measurable quantities. However,bending. It has been show[20] that upbending can be de-
they can be derived from the experimental data by using thecribed by assuming the energy levels distort according to a

relations nonrigid molecule model, whereas backbending stems from
independent rotational bands repelling each other due to their
dE L dE 1 interaction at crossing points. In that sense the appearance of
dL- 7 @ di2” 27 (4) backbending is evidence of strongly interacting rotational
bands.
We can calculate/ and w by replacingdL anddE with the While the jexpt(ngpp representation of the transition en-
experimentally measured finite differences and using thergy E; upon the quantum numbdrenhances the manifes-
semiclassical expressidn=+J(J+1): tation of the spectra irregularities over a large range of rota-
tional states in the form of backbending, successive
AE=EQJ)—E(J-1), derivations ofE; with respect toJ will enhance its local

variations in the form of staggering. By analogy with nuclear
AL=L()-LE-1)=W(I+1)-V(I-1)J, (5 staggering, molecular staggering can be defined in the fol-
L lowing way. Let us denote b¥'(v,J) and E"(v,J) (J
this yielding =0,1,2,...) the rotational levels belonging to rotational bands
2 built up on the vibrational levels with qguantum numbers
d_E:w_w, t:A_E, d_EZ 1 _ t:A_L_ (6) with E’ and E” referring to upper and lower electronic
dL FPEALT dLe 27 YO 2AE states, respectively. By analogy with Ed), we form the
differences

The final result is

Ei(v,J)=E(v,J)—E(v,J—-1), €))
2(2J-1)
Texp=Ki E(J)-E(J—-1)" which correspond to the transition energies within rotational
bands[1] (when the vibrational band will be clear from the
EWJ)-EQJ-1) |2 context the quantum number will be omitted. Then, by

2 _ 7 analogy with Eq.(2), we define staggering in molecular
Wexpt™ K2 ’ ( )
VIA-1)—J(3-1)J bands by the formula
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FIG. 2. Energy curvefleft) and backbending curvésght) for some of the lowetbottom and uppeitop) rotational bands of the AgH
molecule. The level energies and backbending coordinates are derived from transition energies as explained in the text.

1 of the discrete functioix;(J). More precisely, for every con-
AE(J) =17 1E((J+2h) —4E(J+h) +6E(J)—4E(J—h)  tinuous functionf(x), one has the Taylor expansions:

+E(J—2h)}. (9) f(xxh)=f(x)=f'(x)h+1f"(x)h2= 1§11 (x)h3

+ ZfV(x)h*+h5%0(x),

If h=1,2,4,..., we speak ctJ=2,4,8,... staggering, respec-
tively. Again it can be checked that for the rigid rotator—  f(x+2h)=f(x)=2 f'(x)h+2 f' (x)h?= 2!l (x)h3
E(J)=AJ(J+1)—this expression annihilates for every
value ofh. In this paper we shall be concerned mainly with +5fV(x)h*+h%0(x), (10
AJ=2 staggeringli=1).

It should be pointed out at this stage theE;(J) can be  whereO(x) gathers the terms containing derivativesf ()
considered formally as a fourth-order “discrete derivative” of order higher than 5. Equatior{40) yield a system of 4
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equations for the derivativei¥(x) (k=1,2,3,4). It is easy Jo
to see that forf'V(x) one obtains E(Jo+1)= > D,E(J)+E(1) (Jy=2,4,6.).
J(even=2

(16)

1
fV(x)= — {f(x+2h)—4f(x+h)+6f(x)—4f(x—h)
h As can be seen from Eq$l5) and (16), the values of

_ 5 E(J) for even Jcan be derived immediately from the experi-
+H(x=2h)+h*0(x)}. (11 mental data, whereas those faild J will depend upon the
Whenh—0, Eq.(11) reduces to Eq(9). In our caseh=1  choice of E(1). In general, this energy cannot be obtained
and AE,(J) differ from the fourth derivative of,(J) (con-  directly from the experimental data, and we need a model to
sidered as a continuous function &f by O(J). However, derive its value. , _
expression(9) has the advantage that E(J) is given the For all energy levels we could use an analytic expression
analytic form of a fourth-order Dunham expansion or of a°f the form
g-rotator modelsee Sec. I), one obtainA E;(J)=0. In this _
sense, Eq(9) “cleans out” that part of the energy spectrum E()=E(a1,az,...n), (17)
which can be desc_rlk_)ed by model formula@scluding but_ not  \yhere ay,a,...,a, are parameters which may be deter-
only that for the rigid rotatgrand stresses any deviations rined by fitting on the states with odd and ewgwalues.

from them. After the fitting is achieved one can calcul&él) using Eq.
In order to calculateAE(J) from Egs.(8) and (9), one  (17) This may introduce some errors in the valuesE¢s)
must know the level energieB(J) of the rotational band \\ith odd J given by Eq.(16) and it is instructive to consider

under consideration. Unfortunately, in many instances thesgg,, these errors would affect the valuesAdE (J) given by
energies cannot be determined directly, but only in terms Oqu. 9). !

the quantities Let us denote the exact values of the level energies of the

P(J)=E"(J-1)—E'(J) energy difference$d) and of the energy staggerings K@)
’ (120 by E°(J), EY(J), andAEY(J), respectively. If one denotes
R(J)=E"(J+1)—E’(J), the error in the determination &°(1) by 4,
which are related to the transitions between the upper and E(1)=E%1)+5,

lower electronic states according to . . .
¢ all E(J) with odd J will be displaced by the same amount,

D,E'(J)=R(J-1)-P(J+1)=E'(J+1)—E'(J-1), i.e.,
(13 E%(J) for J even
” — . =/ ” E(‘J): EO ) fi dd (18)
D,E"(J)=R(J)—-P(J)=E"(J+1)—-E"(J-1). (I)+ or J odd.
The quantitiesD,E’(J) and D,E”(J) are those usually Then, according to E¢8), we have
given in experimental papefg.g., Ref[18]), and we must 0
determineE(J), E,(J) andAE,(J) from them. E(J)= E{(J)—¢& for J even (19
Using the generic formula T EYNJ)+6 for J odd,
D,E(J)=E(J+1)-E(J-1), (14 Substituting these values into E@), we obtain
it can be shqun that sum.ming up the exper.imentally deter- - AEtO(J)— 165 for J even
mined quantitied ,E(J) with odd J, one obtains AE(J)= AE?(J)+165 for J odd. (20
Jo
> D,LE(J)=[E(2)—E(0)]+[E(4)—E(2)]+"-- This means that calculation errors 6f0.01 will produce
J(odd=1 false oscillations of= +0.16 over real staggering. The same
+[E(Jo+1)—E(Jo—1)] holds, of course, for measurement errors. Fortunat_ely, the
observed oscillations oAE;(J) are an order of magnitude
=E(Jo+1)—E(0)=E(Jp+1) larger, meaning the observed staggering cannot be induced

solely by errors from the experimental or fitting procedures.
if one takesE(0)=0 as the beginning of the energy scale.

Obviously,Jg+ 1 is even whenl, is odd. As shown in the

. I1l. EVIDENCE OF BACKBENDING AND AJ=2
resulting formula,

STAGGERING IN THE ROTATIONAL BANDS OF AgH

2 As a typical example of the irregularities in molecular
E(JO+1):J(od2d)=1 D2E(J)  (J=135,.), (19 rotational bands, we shall consider the microwave spectrum

of the AgH moleculd1,18]. We shall show there is evidence
the energy levels witteven J=Jy+1 can be obtained by not only of backbending, but also dfJ=2 staggering in
simple summation oD,E(J) with odd Jvalues. Similarly, this molecular spectrum.
the energie€(J) with odd (Jo+ 1) values can be obtained The rovibrational spectra of the AgH molecule have been
by means of the following formula: measured with accuracy up to rotational quantum numbers
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J~60 and vibrational quantum numbers-10[18]. Irregu-  (Fig. 2, right colum#, which is observed for values of
larities in the rotational term series occur in transitionsstarting from~ 30, staggering is observed for valuesJoés
within the systemA®S *-X13 | where the lower stateX) is  low as~5. In spite of their great variety, the patterns shown
the ground state, with electronic configuration are clear evidence afJ=2 staggering in all the considered
KLMNspd5sc)?, and the upper stateA] has the elec- rotational bands of the AgH molecule.
tronic configuratiorKLMNspd5sa)(5po) [1,19]. All the staggering patterns display an alternation of low
From these spectra it appears that the behavior of thand high staggering amplitudes. The large peaks perturbing
level series deviates from th&(J+1) law (Fig. 2, left the right-hand sideJ>40) of thev’=0 andv’=1 patterns
column. This is due to the interaction of the excited (Fig. 3) correspond to the rise of backbenditig. 2, upper
electronic state labeledA'S ™ with a higher electronic right diagram; the range of other patterns has been reduced
state, BIS*, having the electronic configuration in order to avoid these misscaling peaks. For the upper bands
KLMNsp(do)(d7)*(d8)*(5s0)2(5pa) [19]. It has also (Fig. 3 the envelopes of the staggering patterns have more
been seen that these deviations are related to the interpl&j less sinusoidal shapes, with maxima occurringJat
between several rotational terms belonging to different vibraz=~9—13 andJ~33-37 (period AJ~24) for v'=0,1,2 and
tional levels and crossing over one another alternatively. Mmaxima dephased to lower values dfwith a periodAJ
An interesting manifestation of the irregularities in this ~20 for v’ =3. For the lower bandsFigs. 4 and » the
molecular spectrum is the backbending effect, which wagnvelopes of the staggering patterns appear more chaotic,
investigated earlief20]. This phenomenon clearly demon- with waves clearly defined in some patterns’'€1,2,4,6)
strates the deviation of the rotational levels from theand poorly spaced in other blocks"(=0,3,5,7). Forv”
J(J+1) law (Fig. 2, right column. However, backbending =0,2,4,6 there appear regions of lower staggering ampli-
is a “gross” manifestation of the irregularities, i.e., it can be tudes atJ~20-24 and)~30-34, whereas foy"=1,3,5,7
observed whed changes over a large range of values. ConJess pronounced such regions appeadatl4—-18, 24-30,
versely, staggering has a “fine” structure, i.e., it can be ob-and 36—40, revealing an overall period about twice smaller
served in regions wher& changes by a few units, as can be than that for the upper bands.
seen from the wiggles modulating the backbending curves These regularities are a further argument for the reality of
(Fig. 2, right column. This phenomenon was overlooked in staggering in this molecule: they would be very unlikely if
the previous investigatiof20] where the fits were made on the observed oscillations were due solely to the accumulation
the even states. of (measurement and calculatjoerrors(see the end of Sec.
It was shown in Sec. Ill that, in order to determine mo- Ill). Some other regularities will be revealed by the Fourier
lecular staggering in a rotational band, it is necessary to deanalysis of the oscillating patterrisee the end of Sec. VI
rive the energy levels of the band from the experimental
data. The crucial point there is to find the value Eff1) IV. DESCRIPTION OF ROTATIONAL BANDS IN TERMS
occurring in the expression for the odd states, which cannot  OF g-INTERACTING, g-DEFORMED ROTATORS
be derived directly from the transition energies but only by
fitting the data with an appropriate model for the rotational
energy. As we recalled above, in order to determine the energy
In order to achieve this goal we have used two indepenE(1) which enters expressidi6) of E(J) for odd J, then
dent models: a “standard modelhereafter referred to as that[Eq. (9)] of the (experimental staggering, we need a
SM), based on a limited Dunham expansi@ee Sec. V A (theoretical model for calculating the levels. In an ideal ro-
and a “quantum model'(hereafter referred to as Qlvbased tational spectrum, these levels would be described by the
on a quantum, algebraic description of the rotational motiorformula
(see Sec. VB These models have been applied to the mi-
crowave spectrum of the AgH molecule. We investigated in E(J)= i JI+1) 21)
detail the four rotational bands build on the lower vibrational 27 '
levelsv”=0,1,2,3, and the four rotational bands build on the ) o
upper vibrational levels ' =0,1,2,3. For each of these eight Where J is the moment of inertia of the moleculeor
bands we applied both the SM and QM and, in order tonqcleus), assgmed to be a cpnstgnt. However, this formula
determine the parameters of the model, fitted independentlfils to describe the levels with higher valuesJfbecause
the difference®,E(J) with even and odd values. Then we the centrifugal force then causes the molecolenucleus to
calculatecE(1) using both the SM and QM with the two sets distort, and its mom_en_t of |nert|a_t0 increase. T_shandard
of parameters obtained from fitting the even and 0domodel for the description of rotational spectra is an expan-
D,E(J). For each of the bands the valuesE(fl) obtained Sion of the form(1,2]

A. Standard model (SM) for the description of rotational bands

in these different ways differed by no more than 0.0I¢m _ 2 3

which is comparable to the reported accuracy of the experi- E,(D)=B I+ +D,[JI+ D +H,[JI+1)]

mental data. Finally, we used formulékb) and(16) to cal- +J,[IA+ 1]+, (22)
culate the energies of the levels, and E%).to calculate the

energy staggering. wherev and J are the vibrational and rotational quantum

The results are shown on Fig. 3 for the investigated founumbers, respectively. It is known empirically that the coef-
upper bands and on Fig. 4 for the investigated four loweficientsB,,D,,H,,... have alternating signs, starting with
bands, Figure 5 showing some additional lower bands foB, positive [1]. In addition, D, is roughly 3—4 orders of
comparison. It can be noticed that, contrary to backbendingnagnitude smaller thaB,, andH, is also 3—4 orders of
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FIG. 3. Staggering\E,(J), as defined in Eq(9), for the upper rotational bands =0,1,2,3 of the AgH moleculén cm™?).

magnitude smaller tha®,. More generally, rovibrational Both expression§22) and(23) give a very good descrip-

spectra of molecule&@nd nucleji can be described by a lim- tion of rotational spectra involving pure anharmonicity,
ited Dunham expansiof21] when there is no mutual perturbation of the levels. They can
therefore be used for describing known rotational levels and,

after fitting the coefficient8,,D,, ,... (or Y;y), for calculat-
E(v,)=2, > Yi(v+1/2)[II+1)]% (23)  ing E(1), asexplained in Sec. Ill.
T X

B. Quantum model (QM) for the description
where theY; s are numerical coefficients. For molecular of rotational bands
systems, the first few terms of this expansion can be obtained
by solving the Schidinger equation for the nuclear motion 1. Standard and quantum algebrasu(2) and st;(2)
with some potential such as that proposed by Md3. Along with the standard modéé.g., the Dunham expan-
Even though the Dunham expansion is usually related to theion), there is an alternative approach to the description of
adiabatic approximation, it has been shof@3] to have a the vibrational and rotationdéinolecular and nucleaspectra
more general interpretation in terms of the generatorinvolving anharmonicity of the interaction potential, based
coordinate method. The connection between the coefficientsn what is known as quantum groufi®., Hopf algebras
B,.D,,H,,... of Eq.(17) and thoseY;, of Eq. (18) is  Quantum groups are a powerful branch of modern math-
straightforward. ematics which, in the last decade, have found a wide variety
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of applications in the phenomenological description of physi- L2=3(L,L_+L_L)+L3=L_L,+Lg(Lo+1),
cal problems, including nuclear and molecula@otational (25)
and vibrational motions[24—-26. The presentation of quan-

tum groups goes beyond the goal of this paper, and here wehich describes the square of the angular momentum length.
shall give only a brief sketch of the physical background andThis operato.? commutes with all operatois,, :
of some elementary techniques which have been used in the

description of rotational spectra. [L%Lm]=0.

Let us first recall some elementary formulae from the

standard theory of angular momentum. The operatord the mathematical literature the bilinear combinatichis
isfy the commutation relations also recall that 2 andL, have a common set of eigenvectors

|[LM), where the quantum numbergives the length of the
angular momentum aniel gives its projection on the axis.

[LoLe]==Ls, [Ls,L-]=2Lo (24) The operatord ., andL _ act on the stated M) by raising

or lowering the values of the quantum numbér The vec-

and the usual unitary conditions. Operatbfgm= +,0,—) tors |[LM) are the basis vectors of the irreducible unitary
satisfying the above relations are called generators of the LigepresentationdUR’s) D’ of the group s(2).
algebra of the ) group. From these operators one can In Sec. IV A we saw that the levels of a rigid rotator can
build the quadratic linear combination be described by Ed21), while for a real rotator a series of

(26)
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FIG. 5. Staggering\E,(J), as defined in Eq(9), for the lower rotational bands’=4,5,6,7 of the AgH moleculén cm™?).

powers ofL(L+1) is required, with coefficients depending  [J,,J.]=h.(J; ,Jp,d-), [J.,I_]1=k(I; ,Jp,d_),

on the vibrational quantum number. It should be noted, (27)
however, that such expansions are based on empirical rather

than theoretical grounds. It will be shown below that assumyhereh. andk are arbitrary functions. The uncertainty of
ing the moment of inertia depends anwill give results  these functions is raised by assuming the preservation of the
equivalent to those from the Dunham expansion. One casimilarity with the standard angular momentum theory. For
also try to relate the deviations of the real level energies froninstance, ifl, is to describe the projection of the new angular
Eq. (21) to a deeper mathematical formalism, by introducingmomentum on the axis, andJ, andJ_ are to play the role
specific changes in the algebra defined by E24), whichis  of raising and lowering operators for this momentum, one
the basis of angular momentum theory. should accept thdt.. (J, ,Jg,J_) coincides with].., mean-

The so-calledquantum(or g-deformed algebra sy(2), ing that the first of Eqs(24) and (27) coincide. Analogous
which has been recently used with success to describe the@nsiderations lead to the conclusion tkanust be a func-
backbending phenomenon in the AgH molec{@®], was tion of J, only, sayk,(Jo), assuming this function depends
introduced some time ago when trying to find exact solution®n some parametey in such a way thak,(Jo)—Jo when
to some problems in statistical mechani2g]. This “quan- g—1. This last requirement means that in the limitogpf 1
tum” algebra is obtained by “deforming” @), introducing the second of Eq927) reduces to the second of Eq24),
new angular momentum operatdrs, J,, andJ_ with gen-  ensuring the continuity of the new angular momentum with
eralizedcommutation relations the old one. Here we should remember that correspondence
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principles play a strategic heuristic role when investigatingthis entailing Eq(31) to reduce to Eq(24), and yielding, for
new theories: for instance, relativistic mechanics goes int¢he g generators = +,0,—),
classical mechanics when the velocity of lighgoes to in-
finity, and quantum mechanics goes into classical mechanics limJp=Lp. (34
when the quantum of actioh goes to zero. Similarly, a g-1
guantum algebra, supposedly appropriate for describing de- .
formable systems, goes into the standard one, fit for descriq_—zw.hIIe the square of the length of the angular momentum
ing rigid systems, whenq goes to 1. , e, the Casimir operato@z_ o_f the standc?rd algebra
The functionky(Jo) can be further specified by imposing su?), is given by (25), the Casimir operatoC;[su,(2)],
that the “sum rule” for the new angular momenta coincidesWh'Ch is defined S|m|Ia_rIy py the condition that all generators
with that for the old ones. This means that when adding two’m Should commute with it, has the form
angular momenta given with quantum numbégsand J,
their sum should be given with a quantum numbesatisfy- C2=3-3: +[JolglJo+ Llq. (39
ing the condition|J;—J,|<J<|J;+J,|. This requirement
can be fulfilled by choosing fdt,(Jo) a weighted difference
of exponentials of 2, with q as the basigy being necessar-
ily a real number or a pure phasg=e"“ with « real or
imaginary. The resulting g(2) algebra, which can be con-
sidered as a-deformation of the 92) algebra for angular
momentum operators, therefore involves three new gener
tors, J,, Jg, J_, satisfying the generalized commutation
relations[27]

which can also be interpreted as the square of the ledfgth
of a new,g-deformed, angular momentum operafor
The similarity of the standard and quantum algebras en-

tails a similarity in their representation theories. JinjB8]

has shown that the IUR'®; of su,(2) are determined, by

analogy with thos®’ of su2), by numbers)=0, 3, 1, 2,...

and M=-J,—-J+1,...). These IUR’s are derived from

their highest-weight vectodJ),, which satisfies equations

similar to the corresponding ones in(8u The basis vectors
e2kdo_ g 2KJg of the representation space are obtained by successive appli-

[Jpd«]=*d., [ ]=—=—. (28 cations of the lowering operatal_ on |JJ>q. Using the

e-e resulting normalization factor, one obtains

When the parametet is small, the second equation reduces Jo|JM>q= M|J M)q
to

[, .3 ]= 230+ 4x2+ O(x2), 29 I [IMY=V[IFM][IEM+1] I M=1),. (36)

o o . ) These expressions can be used to derive the eigenvalues of
which is quadratic inJy and yields the second of the linear the g-deformed Casimir operator in terms gfnumbers,
equationg24) whenx—0. The quantum algebra g2) can

then be used for describing such deviations as inhomogene- (CH=[I][I+1]4. (37)
ities, anisotropies, and deformabilities of quantum systems
from the standard symmetries described by th@)salgebra.  As one can see, the properties gpfleformed states can be

If one introduces the notation expressed in a way completely analogous to that for the stan-
dard states, the only difference being that the standard num-
bers occurring in the latter are replaceddyumbers in the
former. However, one should be cautious in the applications
because relations holding for ordinary numbers will not al-
whereA may be an operator as well as a number, the abovivays hold forg numberse.g.,5=2 but[4]./[2]¢=7.52..).
commutation relations can be written in the form

A_ A
[Al=g—gT (a=e"), (30

2. Quantum description of rotational bands

[Jod=1=%J., [J:+,d-1=[2Jolq, 3D Let us now consider how g(2) can be applied to a de-

scription of molecular rotational spectra. For a rigid symmet-

which is formally analogous to Eq24). Because the argu- . top the Hamiltonian can be written in the form

ment « of g in Eqg. (30) may be either purely realr) or

imaginary {7), the g numbers(or operatorsin these two 1, 1 1 )
cases take the respective forms H 27, L +( 27 27, y) Lz, (38
Sinf( TA) 2,2 2 2 . .
—— if q=e” (@ whereL“=L;+LJ+L; is the Casimir operato€, of su2)
[Al— sinh(7) (32 andJ; and J, are the axial and equatorial moments of
q sin(7A) . - inertia. The second term does not affect the arrangement of
Sin(7) if q=e"" (b) . the levels within a band and can therefore be neglected,
yielding the rigid top levelg21). Now it has been shown
In the limit g—1 (that is, 7— 0) one obtains [29] that deformed nuclear rotational bands can be fitted very
accurately using a Hamiltonian proportional to the Casimir
lim[A],=A, (33) operatorC$, which is derived from Eq(38) by replacing the

q—1 generatord ., by the g-deformed generator,,, i.e.,
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TABLE I. Nonsplit doubleg-rotator best-fit parameters for the TABLE Il. Split single g-rotator best-fit parameters for the

lower rotational bands of the lower electronic state of AgH. lower rotational bands of the lower electronic state of AgH.
V”:O VH=1 V"=2 VH=3 V!IZO V"=l V”=2 V"=3
A 6.3458 6.1463 5.9469 5.7476 Asven 6.3461 6.1468 5.9487 5.7530
Ta 0.012 657 0.012 827 0.013 026 0.013 277 7&ven 0.012 662 0.012 837 0.013 059 0.013 366
B 6.2654 6.1144 5.9438 5.7729 Aodd 6.3454 6.1466 5.9481 5.7530
T 0.012 106 0.012 680 0.013 052 0.013540 7o 0.012 655 0.012 834 0.013 053 0.013 366
C 1.2264 0.41011 0.39343 0.466 33
Te 1.3713 1.0369 0.642 51 0.597 10
Eo 51.413 28.136 6.8840 2.0193 w
HI=ACY, (39

With |7/=0.0174 as in HF, one find3<89 and with|7|
o ) =0.0113 as in HBr, one find3<138[24]. These limiting
whereA is a “lightness” constant related to a moment of yalyes are higher than the highesvalues reported for di-

inertia. _ atomic molecules.
The eigenstates of thg-deformed rotator described by

the Hamiltonian(39) are the above-defineld M)q. and its

) 3. Physical interpretation of the deformation parameter
energy levels are given by

The “variable moment of inertia’(VMI ) model, which is

_ widely used in nuclear spectroscopiRef. [30] and refer-
Eq()=ALIe[I+ 1lq ences therejnand is also relevant to molecular spectroscopy,
sinh(7J)sin 7(J+1)] . stems from the idea that the distances between particles in a
Snte(7) if g=e” (409 many-particle systentand the resulting moment of inertia

= ) . increase with the value of the rotational quantum number,
sin(7J)sin 7(J+1)] it q=ei”. (40b) this generating an additional potential energy. The level en-

Sirf(7) ergies in a rotational band are then given by
These formulas differ from the standard formu#d) in the JIJ+1) )
way that they describe the intervals between the statés. If EQ)= 2703 T 2C(JJ)~ Jo), (43)

is not very large, the first formula gives an “extended” spec-
trum in which the level spacings become larger than in the .
standard bands, whereas the second formula gives Vé{
“squeezed” spectrum whose levels become closer. With in!
creasingJ the moment of inertia7 of the (stretched mol-
ecule(or nucleu$ actually increases and the interval between
the states becomes shorter, justifying the use of the secorftf

ith 7(J) being the moment of inertia for angular momen-
umJ, whereasC and 7, are potential-energy parameters to
be fitted to the datay, is the ground-state moment of inertia,
and |t is meaningful to writeC as a function of the “soft-
ss” parameteo of the nucleugor molecule:

formula.
It is useful to make Taylor expansions of Eq40) and 1
sum up the coefficients of the terms containing the same C= Zojg' (44)

powers ofJ(J+1) (all other terms canceling outFor the

second of these equations the final result is . . . . .
d The moment of inertia at gived is determined through
the variational condition
2 4

Eq(d)= J(J+1)—— [J(J+ 1)]2+ 2T [J(J+ 173

JE(J)
7_6 9J(J)
315[J(J+1)]4 (41

j— 0'
J fixed

which is equivalent to the cubic equation

where 1/27=(A7?/sirf?)(1-23!+...)=A when 7—0.
This relation is of the forni22) used for fitting experimental T3P— 32T JO+D
spectra, except that now we have only two parameteesd 0 2C

7, instead of an unlimited number of expansion coefficients.

Each term differs from the preceding one by a factor involv-
ing — 72. For 72 to be of the observed order, 18 |4 should

be around 0.03. It should be noted that, in order to guarantee
thatE(J) be an increasing function df, one must have, in
Eq. (40b):

(49

This equation has only one real root:

JI=73 Jo +3P+Q+R+3P+Q-R,
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FIG. 6. Superposition of experimeniaxpt) and theoreticaltheor) staggerings obtained using two regulgyinteracting,q rotators for
the lower rotational bands”=0,12,3 of the AgH molecule.

Expanding the roots in the above expression, one obtains

J(J+1)
4C

T4
l Q_fl

e [J(J+1)]2+J8J(J+1) 1/2.

16C?

54C

T =Tl1+I(I+1)—26[II+1)*+70°[II+ D)3
=300 J(I+1)]4+---1.

Substituting Eq(46) into Eq. (43) and expanding yields

(46)

1 1
EW)= 27 {J3+1)—30[II+1) 12+ 0?[II+ D)

=30 I+ )]+ ). (47)

Comparing Eqs(47) and (41) shows that theground-state
moment of inertia7, of the VMI model is related to the
inverse of thelightness parameter Af the quantum-group
model, i.e.,Jo~(1—72/3!+---)/2A, and that thesoftness
parametero of the VMI model corresponds roughly to the
square of theleformation parameteas of the quantum-group
model, i.e.,7?~3f(n)o [wheref(n) is an increasing func-
tion of the rankn of the expansioh Physically, this means
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FIG. 7. Superposition of experiment@xpt) and theoreticaltheor) staggerings obtained using a single parity-sglitotator for the
lower rotational bands”=0,1,2,3 of the AgH molecule.

that quadrupling, for instance, the softness parameter C. Backbending and staggering in terms

Eq. (47) has about the same effect as doubling the deforma- of two interacting rotators

tion parameterin Eq. (41). At this level, the quantum-group . s

model can thus be viewed as an alternative formulation of V€ have alread_y stated that H¢0) W|th_q_—e for th‘?
the VMI model, the continuity introduced in thetherwise ~duantum rotator gives a very good description of rotational
discret¢ commutation relation§28) expressing the progres- SPectra of diatomic mole_cules. I_n particular, tins form(qla”
sivity of the variation of the moment of inertia with the ro- Placing A by 14) describes fairly well the “upbending
tational quantum number. Both models involve two param+henomenorf20]. However, it cannot explain “backbend-
eters only but, contrary to the phenomenological VMIing,” for which the interaction between two rotational bands

model, the quantum-group model has a deep mathematicaiust be consideref®0].
structure, since it involves a naturd@hough untrivial gen- It can be checked easily that EIOb) cannot explain

eralization of the group algebra used in angular momenturstaggering either. If one inserts E40b) into the staggering
theory. formula(9), one obtains the expression of a smooth cupfe
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sine type, which does not change its sign over the variationthese levels change under the interaction; only the minus
interval of the angular momentum and whose amplitude isign, which defines the so-called yrast line, will thus be con-
2-3 orders of magnitude smaller than that of the observedidered hereafter. A

staggering. Writing An explicit form of (H,,,) could be obtained from micro-
scopic calculations. However, in this phenomenological
model of two interacting rotators, a simple form @ )

can be derived from symmetry considerations. The interac-
tion term (as the system Hamiltonian as a wholaust be
invariant under all space rotations. Now we have at our dis-
posal only two vector operatofs, and L, with which to
build the interaction operatdidl,,,. The only scalar expres-

SE(J). In order to describe staggering, one must then bngmn which can be built from these vectors is their scalar

E(J)=E(J)+ 6E(J), (48)

whereE(J) is the observed value of the energy levE(J)
the smooth variation given by E¢40b), and SE(J) the os-
cillating deviation from Eq.(40b), then, inserting Eq(48)
into Eq.(9), one finds the contribution d&(J) to staggering
vanishes, meaning that staggering can only originate fro

able to calculate the deviations of energy levels from thos roduct

predicted with the formula for the singtedeformed rotator. A b= KL .. [b: k(I:2— [2_ |:2) (52)
We shall investigate how far this can be done using models é 2 a ~bm

involving two interacting rotators. whereL=L,+L,, andk is a constant which can be calcu-

According to the single-rotator model recalled in Sec.|ated or measured. If we take into account the fact that the
IVB 2, in each of its vibronic states the molecule can beyyg jnvolved rotators have the same angular quantum num-
_conS|dered as a rotator with a van:_;lble moment qf inertiaper 3.—J,, and that they are coupled to give an angular
ie., a quantun(q-_deformed rotator with momgnt of inertia quantum numbed=J,=J, for which the energy of the sys-
Ja and deformation parametet,. The transitions between o is minimal, we obtain
the levels within these different quantum rotators yield the
observed rovibronic spectrum. The occurrence of “back- <|:|ab>:_k‘](‘]+1)l (53
bending” and the deviationsE(J) in Eq. (50) both show
that this model is not sufficient. We have already sgj which is in agreement with an assumption previously made
that in order to explain “backbending” each of the to describe backbending in nuclg0] and molecule$20].
g-deformed rotatorgeach rotational bandcan be assumed Similar considerations can be held for two “quantum”
to “interact” with another rotator with higher energy, which (g-deformed rotators. The energies of the two rotators are
can be seen as a resultant of residual rotational motions. Thi@ow given by
higher-energy rotator is not directly observalfléa transi- .
tions in the rovibronic spectrq}nand in this sense plays an Eq (D=ALg[I+1]y, [X]q— S'hTaX, (54)
auxiliary role in the explanation of the rotational bands. It a a a a  sinrg
can also be characterized by a moment of inerfiaand _
deformation parameter, . _ _ SInTpX

In the “standard” (non g-deformed quantum mechanics Eqb(‘])_ B[‘J]qb[‘H 1]qur Eo. [X]qb_ sinr, (59
this double-rotator model can be described in the following
way. Let us denote by, and.7, the moments of inertia and Here also a phenomenological form for tkg-deformed
by L, andL, the angular momenta of the two rotators. Theirinteraction operatoH{, can be derived from the symmetry

Hamiltonians take the forms condition that it should be rotational invariant and must be
L L built from the(g-deformed angular momentum operatadr§
" " d. Due to the specific rules for the addition of
Aa=s— L2, Hp=s— L2+E, ag andLs P
& 27, 0 727, O “9) g-deformed angular momentaee, e.g., Ref26]), the only

scalar operator that can be used for buildig), is the Ca-
simir operatorcg[suq(Z)], formed from the sum of the an-
gular momenta of the two quantum rotators. Taking into ac-
count the fact that in this case one also dasl;=J,, one
obtains

where the constarit, defines the zero energy for the second
rotator. The energies of the two rotators, when their interac
tion is neglected, are given by

1 1
Ea(J):ﬁJ(J-Fl), Eb(J)ZZ—%J(J-Fl)-FEO.

NTX

(50 (HE=CLI D+ U, (= (56)

Ea andE, yield two new split levels: from 7, and r,,). The values of botlC and 7, can be deter-
12 mined by fitting experimental data.
( E.—Ep 2}

2

EatEp | 2

E-())=—"5—=

(51)

+|<ﬁa9

V. SIMULATIONS AND RESULTS

Here the minus sign corresponds to the resulting lower en- We have seen in Sec. IV C that, unlike “upbending,”
ergy: as the observable transitions take place between tretaggering as defined in E(@) cannot be described using the
lower levels of the rotators, it is important to know only how single g-rotator levels given in Eg40b), which yield only
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FIG. 8. Superposition of experimeni@xpt) and theoreticaltheor) staggerings obtained using two parity-sgijtinteracting,q rotators
for the upper rotational bands =0,1,2,3 of the AgH molecule.

smooth periodic variations af E;(J)—rather similar to the The best-fit values of the seven parameters involved in
wide envelopes noted in Figs. 3—5. We now show througtthis model forv”=0, 1, 2, 3 are given in Table |, and the
computer simulations that, unlike “backbending,” stagger-staggering curves calculated from them are compared to
ing cannot either be properly described using the standarghose derived from the measured transitions in Fig. 6. The
doubleg-rotator model. We have used the energy levels ofparameters of the two rotors are closer, and those of the
the yrast lineE_(J) from Eq.(51) with E,, E,, and(H,,) interaction smaller, than in the case of the upper lel208,
replaced byEqa, Eq,: and(HZg) from Egs.(54), (55), and  where strong perturbations are present. The theoretical stag-
(56), respectively. We have performed fittings of the in- gering amplitudes appear much smaller than the experimen-
volved energy levels of the lower rotational bands of thetal ones, especially for the low values &f and are alterna-
lower electronic state in order to find to which extent thetively in phase and out of phase with them, changes
secondq rotator could be effective in explaining staggering, occurring around the nodes of the staggering envelopes dis-
which occurs even before “upbending” takes place. cussed in Sec. lll. Thus it appears that neither moledalar
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TABLE IIl. Split double g-rotator best-fit parameters for the lower rotational bands of the upper elec-
tronic state of AgH.

v'=0 v'=1 v'=2 v'=3
Aeven 6.1177 5.7616 5.3408 4.8443
Feven 0.014 604 0.015 135 0.016 881 0.015 804
Beven 2.9498 39.480 21.917 17.457
TEven 0.012 946 0.075 232 0.090 785 0.094 590
ceven 2.2494 0.920 61 0.910 82 2.5383
Feven 6.1727 0.027 419 0.026 278 0.029 186
ESven 5141.3 10 048.0 8028.5 14814.0
Acdd 6.1189 5.7720 5.3435 4.8371
79U 0.0146 32 0.014 740 0.016 983 0.021 023
godd 2.9191 43.793 22.121 8.5960
70 0.0127 81 0.073 918 0.090 717 0.097 498
codd 2.2206 1.4679 0.897 50 3.4321
720 6.1736 0.036 761 0.0261 35 0.025 216
ESd 5186.0 10 025. 8026.2 14 869.0

nucleaj nonrigidity, nor level noncrossing—very well ac-

counted for with the single and doubderotator models, re-

For the upper bands we applied the same procedure as
above, fitting first the even-and then the odd-state energies,

spectively[20]—are sufficient to explain the systematic par- but using now twaj-interactingq rotators. As in the nonsplit
model first used for the lower bands, we used the energy
Therefore we have allowed for parity splitting in our for- levels of the yrast liné& _(J) from Eq.(51) with E,, E; and

malism, i.e., we have fitted the energies independently forHi,,) replaced byEq,, Eq, and(H2) from Egs.(54), (55)

ity splitting revealed by the staggering effect.

the odd and even statéfor the lower and upper bands as
well) and obtained parity-split values for the parametérs

and~. With this extension it is expected that some staggering
can be obtained even within the standard model, but the
guantum model remains in order to reproduce the “upbend-
ing” and “backbending” curvegFig. 2, right column. As a
singleq rotator proved sufficient for the lower levels, which
display only “upbending’[20], we have used only one split The differences between the even and éda, C, andE,

(odd-even q rotator for »"=0, 1, 2, 3(involving four pa-

and (56), respectively. The formula used to derii&1) is
then

E®(1) = (A%cosre'+ B®'cosrp") — [ (A®'cosry”

—B®cosr")?+ (C®'cosre") 22, (59

andr,, 7,, and 7. values, displayed in Table Ill, are much

rametery while, as a double rotator was necessary for the larger than for the lower bandabout 0.02% to 100% for the

upper levels, which display also “backbending20], we
used a pair of splif rotators forv’' =0, 1, 2, 3(14 param-

eters.

(J=2,4,6,...), obtained as explained in Sec. Il, by Efb),

A’s and about 0.2% to 30% for thés). The average even-
odd values from this table are close to but more accurate than

the nonsplit values given in Table 2 of our previous work
For the lower bands we first fitted the even state energiek?0], because here we use a “quantum” interaction instead

of the “standard” interaction used the previous work. The

then used thé\ and r parameters thus obtained to derive anstaggering curves calculated from the even- and odd-state
energies thus fitted independently are compared to those de-

rived from the measured transition energies in Fig. 8. In spite

estimate ofE(1):

ev

of some remaining differences in the amplitudes and phases,

sin2r
Singev — 2ATcosr, (57 especially in the vibrationally odd bands’1,3), the

“theoretical” staggering curves seem quite similar to the
then used this value &(1) to derive, from the experimental “experimental” ones, now including the periodic patterns of
transition energies, the odd level energids-3,5,...). These the envelopes.
latter were subsequently fitted to E40b), yielding the odd The fact that involving a secondyinteracting,q rotator
A and 7 parameter values. The differences between the eveimproves considerably, though not decisively, the fits of the
and oddA and 7 values, displayed in Table II, are less than upper bands, compared to those of the lower bands, might
102 and 10°°, respectively. The staggering curves calcu-mean the second rotator, even though not significant in de-
lated from the energies of the even and odd states thus fittestribing a “gross” phenomenon like “upbending” for the
independently are compared to those derived from the medewer bands, might play a critical role in describing the
sured transition energies in Fig. 7. The theoretical staggerintfine” structure of staggering. But it should also be remem-
amplitudes appear much closer to and more in phase with theered that any reasonable function involving 14 parameters
experimental ones than in the previous model, but the periwill give better fits of a set of experimental data than a simi-
odic patterns of the envelopes noted in Sec. Il are not veryar function with only four parameters. In addition, the re-
satisfactory. maining discrepancies, particularly for odd valuesvphint

Eqe( 1) =A%
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FIG. 9. Superposition of the Fourier transforms of experimef@gbt) and theoreticaltheor) staggerings from the single parity-spijt
rotator for the band$”=0,1,2,3 of the AgH moleculéK is the dimensionless conjugate Hf

it might be necessary to improve the model by involvipg reproduce fairly well the envelopes of the Fourier curves,
rovibrators[31] or evenqp rovibrators[32], but such exten- and for the upper bands it also reproduces some of the side
sions would increase further the number of parameters, andiggles. The best results are obtained =0, 2 andv”
accordingly reduce the significance of the fits. =0, 3, and the worse for' =3 andv”=1, this reinforcing

A Fourier analysis was performed on both the “experi-the idea that a model involving rovibrators might allow
mental” and “theoretical” staggering curves shown in Figs. better fittings.
7 and 8. The corresponding Fourier transform curves are

displayed in Figs. 9 and 10, respectively. Remembering that V1. DISCUSSION AND CONCLUSION
sine ands functions are Fourier transforms of each other, the '
main peaks(usually one or twp in the Fourier transform In this paper we have shown that not only the long-known

curves can be related to the main harmonics in the correbackbending phenomenon, but also the recently discovered
sponding staggering curves, and the side wiggles to secondtaggering effect can, similarly as in nuclei, be observed in
ary harmonics. Even for the lower bands our model seems tmoleculesAJ=2 staggering has been shown for several ro-
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g-interacting,q rotators for the bands’=0,1,2,3 of the AgH moleculé is the dimensionless conjugate bf

tational bands of the AgH molecule, where it already appeartevels, where perturbations are too weak to yield backbend-
at quite low values of and shows a rather complex structure ing but may be critical in describing staggering; giid the
involving amplitude modulation through various harmonics.involvement ofq vibrations coupled witlg rotations, possi-
The fitting of the experimental data reveals a small but sigbly in the form of gp rovibrators, might show more effi-
nificant parity dependence of the parametkrand -, which  ciency in yielding a satisfactory description of the staggering
define theg rotators used to describe the rotational levels, fopphenomenon.

both the lower and upper electronic states. From our tenta- There remains to find a physical explanation for this ef-
tive simulations usingg-deformed rotators, which proved fect, particularly for the parity splitting which appears to be
less efficient than for describing backbendif2f], it ap-  its main source. It would be surprising that this latter meant
peared thati) it is necessary to allow for parity splitting in that a molecule may have an effective moment of inertia
the formalism to obtain any significant staggerin@) at  varying uponJ in a parity-dependent manner. Intricate cross-
least twog-interacting,q-deformed rotators are necessary,ing of molecular levels or dynamical breaking of molecular
not only for the upper levels, where strong perturbationssymmetries, as in those quantum bifurcations at diabolic
show up in the form of backbending, but also for the lowerpoints investigated for spherical-top moleculg$5,16],
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could be considered for a microscopic explanation of thissuggested for nucldil0—14. However, the present paper
effect. However, the detailed investigation of such possibili-has shown that the model of twg-interacting,q rotators,
ties requires more complete and more accurate experimentahich accounts very well for both upbending and backbend-
data. Now, while numerous papers provide thorough detering, is not sufficient to reproduce the observed staggering,
minations of rotational constants.g., Ref[33]), good raw  \which shows up even at low values af It remains to be
experimental data are scarderg. Ref.[34]). proven that multipley-interactingq rotators may yield simi-
Other, preliminary results have been obtained recentlyyr results as the parity-split, doubderotator model.
[35] from an analysis of limited sets of spectroscopic data on - Qur next steps will be to lead a thorough investigation of
a sample of diatomic molecules. The fact that staggering waghe properties of staggering in the standard rotational bands
evidenced in such diatomics as CoH or YBut not C§  qf I, and Te [34], to check if an improvedyp rovibrator
[35(a)] as well as inl, [35(b)}—irrespective of open-shell [32] could prove more efficient in the description of this
structure or top asymmetry—points to a rather generagffect, and to attempt a semiquantitative explanation of the

mechanism. From the magnitude of the deviations from pur@pserved results through models involving both multiple-

tudes as a function od in both CoH and YD, where the
data—as in AgH—come from transitions involving elec-
tronic excitations, and from the absence of a significant
effect—larger than experimental errors—in CS, where the
data involve no electronic excitations, it has been suggested Peter Raychev was supported by the Bulgarian Ministry
[35(a)] that staggering may have its source in interactionsf Science and Education under contrabtd17 and®d-547,
with nearby bands and/or crossings between interactingnd by the French Ministry of Science and Technology
bands. If this is true, staggering simply reveals—in a specthrough a senior-scientist fellowship. Jean Maruani was sup-
tacular way indeed—interband interactions and/or bangorted by the CNRS-BAS and UPMC-SKOU franco-
crossings rather than some new symmetry breaking, as it wdsilgarian exchange conventions.
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