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Effects of the finite size of the ion„ddµ…

1 on the energy levels of the molecules„ddµ…e and
„ddµ…dee
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The energy shift due to the finite size of the pseudonucleus (ddm)11
1 in the molecules (ddm)11e and

(ddm)11dee, the subscripts indicating the first excited state with total angular momentum of one unit, is of
importance in the theoretical estimation of the rate ofd-d fusion catalyzed by negative muons. The energy shift
in the molecule (ddm)11e is calculated using perturbation theory up to second order. The finite-size shift is
found to be 1.46 meV. This is significantly larger than the value of 0.7 meV for this energy shift calculated by
Bakalov @Muon Catalyzed Fusion3, 321 ~1988!# by a method similar to the present method; recently found
excellent agreement of theory with experimental results for the formation rate of the molecule (ddm)11deewas
based on Bakalov’s value with some modifications. The results of a direct calculation of the finite-size energy
shifts in (ddm)11deeusing first-order perturbation theory are presented. The contribution from the quadrupole
component of the (ddm)11 charge distribution, which is not taken into account in the conventional scaling
procedure based on the finite-size energy shifts of (ddm)11e, is found to be of the order of 1 meV and to
depend on the angular-momentum states of (ddm)11dee. Sources of uncertainty in the current theoretical
estimates are also discussed.@S1050-2947~97!01210-9#

PACS number~s!: 36.10.Dr, 31.25.2v
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I. INTRODUCTION

The molecule (ddm)11deeplays a key role in the proces
of muon-catalyzed fusion in D2 ~see@1–3# for recent genera
reviews!. This molecule may be produced by collision of
D 2 molecule with a muonic deuterium atom (dm)1s , in
which the muon is in the 1s orbital,

~dm!1s1@D2#n i Ji
→@~ddm!11dee#n f Jf

, ~1!

where the labelsn i ,Ji specify the initial vibrational and ro
tational quantum numbers of the D2 molecule andn f ,Jf
specify the vibrational and rotational quantum numbers
the molecule in which the small three-body (ddm)11 system
plays the role of a pseudonucleus. The 11 subscript on
three-body system indicates that it is in the first excited s
(v51! with total angular momentumJ of one unit. The
ground electronic state of the D2 molecule is almost un-
changed in reaction~1!.

Since reaction~1! is a resonance process~in which the
right-hand side is a resonance state!, the rate for molecular
formation by this mechanism is sensitive to the precise
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ergy levels of the molecules involved. For energy match
of the initial and final states, the following condition must b
satisfied to within an accuracy of the order of the width
the resonance:

E~dm!1s
1E[D2] n i Ji

1EKE5E[ ~ddm!11dee] n f Jf
, ~2!

whereEx is the energy of the appropriate systemx andEKE

is the kinetic energy of the relative motion of the muon
atom and the D2 molecule before collision. The width of th
resonance state is broadened due to several effects@4–6#
including back decay into the initial channel, nuclear fusi
in ddm, Auger decay of the complex@(ddm)11dee#n f Jf

, and
collisional processes. Calculations of molecular format
rates indicate that all energies in Eq.~2! should be defined to
better than about 1 meV in order make contact with exp
ment @7#.

The (ddm)11 system is small compared to the dimensio
of the whole (ddm)11dee molecule @8# and it is therefore
convenient to break down the energyE[(ddm)11dee] n f Jf

into a

contributionE11
ddm from the isolated (ddm)11 system and a

contributionEn f Jf

Ndee from the hydrogenlike moleculeNdeein

which the fictitious nucleusN has a mass equal to the com
bined mass of a deuteron, triton, and muon:

E[ ~ddm!11dee] n f Jf
5E11

ddm1En f Jf

Ndee1EFS. ~3!

The quantityEFS, referred to here as the finite-size ener
shift, represents the energy arising from the interaction of
extended (ddm)11 charge distribution with the extra deutero
and two electrons in (ddm)11dee. The binding energy of
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2686 56M. R. HARSTONet al.
(ddm)11, E(dm)1s
2 E11

ddm , has been calculated to b
1966.4 meV in the lowest hyperfine level@9–11#. The ener-
gies En f Jf

Ndee have also been calculated accurately for vario

states (n f , Jf) of interest @12#. However, the energyEFS

remains to be accurately determined.
In a recent, detailed comparison of experiment and the

for (ddm)11dee @7#, a theoretical formula for the molecula
formation rate was fitted to the experimentally determin
formation rate with the energye11 5 E11

ddm 1 EFS 2 E(dm)1s

as a fitted parameter. This yieldede11 5 21966.160.2
meV. This was compared with a theoretical value
21966.2 meV calculated assuming a valueEFS 5 0.24
meV. This remarkable agreement between experiment
theory needs to be carefully examined since the theore
value of EFS used in this comparison was based on an
proximate scaling procedure applied to a directly calcula
literature value@13#. The aim of this paper is therefore t
address the question of the finite-size shift in this system

A proper treatment of the energy levels of th
(ddm)11deemolecule would involve solving the wave equ
tion for a six-body system with particles in three differe
mass ranges. At the present moment such a calculation
pears not to be tractable. A possible approach to calcu
finite-size shifts is to employ perturbation theory with t
sum of the HamiltoniansHddm for ddm andHNdee for Ndee
as the unperturbed Hamiltonian and with the first two ter
on the right-hand side of Eq.~3! as the unperturbed energ
However, a direct application of perturbation theory
(ddm)11dee is extremely difficult beyond a first-order trea
ment because of the requirement to perform a summa
over excited molecular states, including states that lie in
continuum. Thus the approach that has been adopted to
tain energy shifts used in fits of experimental formation ra
is to consider first a simpler system (ddm)11e in which the
finite-size effect can be treated more easily and more a
rately. The electron in this system is assumed to be in
ground state in the zeroth-order approximation so that
perturbation energies may be related to those
(ddm)11dee; see the discussion in Sec. IV A.

In Sec. II the finite-size energy shift in (ddm)11e is cal-
culated using perturbation theory up to second order.
Sec. III first-order perturbation theory is applied to the s
body system (ddm)11dee in order to study the effect o
terms in the perturbation interaction that are qualitativ
different from those that appear in the case of the (ddm)11e
system and that therefore have not been considered in
conventional scaling procedure. Section IV is devoted t
discussion of the validity of various theoretical assumptio
made in the present work and in the literature.

II. THE MOLECULE „ddµ…11e

The method used here to calculate the finite-size ene
shift EFS in (ddm)11e is the same as that used in a previo
calculation ofEFS in (dtm)11e and has been described
detail in Ref.@14#. Only a brief summary will be presente
here.

The zeroth-order wave functions are products of the w
functionsFJvM

ddm for the isolated three-bodyddm system and
the wave functionscnlm

e for the two-body atomic system
s
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consisting of an electron and a nucleusN, whose Hamil-
tonian isHNe with eigenvaluesEnl

Ne . Heren, l , andm are the
principal, azimuthal, and magnetic quantum numbers for
two-body system, whileM is the z component of the tota
angular momentum in the three-bodyddm system. The
eigenfunctionsFJvM

ddm andcnlm
e satisfy equations

HddmFJvM
ddm 5EJv

ddmFJvM
ddm ~4!

and

HNecnlm
e 5Enl

Necnlm
e . ~5!

The perturbation interaction is

V52
1

urd1
2r u

2
1

urd2
2r u

1
1

urm2r u
1

1

r
, ~6!

where rd1
, rd2

, rm , and r are the coordinates of the tw
deuterons, the muon, and the electron, respectively. The
ordinate origin is chosen to be the center of mass of theddm
system. Up to second order,EFS may be written as

EFS.DE~1!1DE~2!, ~7!

with the first-order energy given by

DE~1!5^c1s
e F110

ddmuVuF110
ddmc1s

e & ~8!

and the real part of the second-order energy by

DE~2!5(
J,l

P(
v,n

E (
M ,m

8
z^cnlm

e FJvM
ddm uVuF110

ddmc1s
e & z2

E11
ddm1E1s

Ne2EJv
ddm2Enl

Ne
, ~9!

where the summation-integration is over the bound and c
tinuum electronic andddm states and P stands for the pri
cipal value of the integral over the electron energy. T
primes on the summations indicate that the combination
theddm state withJ51 andv51 and the 1s electronic state
is to be excluded from the summation. In Eqs.~8! and ~9! a
representative value of zero has been chosen forM for the
state (J,v)5(1,1) since the results are independent ofM .

Theddm wave functions are written in terms of three se
of Jacobi coordinates$r c ,Rc%c (c51, 2, 3! that describe the
positions of the three particles. These wave functions
expressed as sums of products of radial functio
wJvlL(r c ,Rc) and angular functions in these coordinat
@15#:

FJvM
ddm 5(

c
(
l,L

wJvl,L~r c ,Rc!@Yl~ r̂ c!3YL~R̂c!#JM ,

~10!

where the quantity in square brackets is the tensor produc
two spherical harmonics.

It is convenient to expand the operatorV in a multipole
expansion and to perform the integrations over the coo
nates of the deuteron, triton, and muon first, before perfo
ing the integration over the electron coordinate. The prod
of two ddm wave functions and the interaction potential i
tegrated over theddm coordinates, involved in Eq.~9!, can
then be written as
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56 2687EFFECTS OF THE FINITE SIZE OF THE ION . . .
^FJvM
ddm uVuF110

ddm&5A4p(
a

UJv
~a!~r !

3 (
b52a

a

^10abuJM&Yab* ~ r̂ !

1dJ1dv1dM0r 21, ~11!

where ^10abuJM& is a Clebsch-Gordan coefficient an
UJv

(a)(r ), theath multipole potential, is given by

UJv
~a!~r !5(

p
qp (

l,Ll8,L8
A4p

~2L11! J̃ L̃ l̃

~2a11!L̃ 8l̃ 8
~21!L1l

3^a0L0uL80&W~JL1l8;la!

3(
c,c8

E wJvlL~r c ,Rc!r ,
a r .

2~a11!w11l8L8

3~r c8 ,Rc8!r c
2drcRc

2dRc . ~12!

Here the subscriptp denotes a particle that is one of the tw
deuterons or the muon inddm. This particle has a chargeqp

and is located at a positionsp . The symbolỹ stands for the
quantityy(y11) andW(JL1l8;la) is a Racah coefficient
The quantitiesr , and r . are the smaller or greater of th
two radial coordinatessp and r . The summation is to be
taken over the three particlesp in the ddm system. In terms
of the potentialsUJv

(a)(r ) defined in this way, the first-orde
perturbation energy can then be written as

DE~1!5E f1s
2 @U11

~0!~r !1r 21#r 2dr, ~13!

where fnl is the radial component of the electronic wa
function cnlm

e . The second-order energy is

DE~2!5
1

3(J,l
~2J11!P

3(
v,n

E E fnl@UJv
~ l !~r !1dJ1dv1d l0r 21#f1sr

2dr

E11
ddm1E1s

Ne2EJv
ddm2Enl

Ne
.

~14!

The ddm wave functions were calculated using a var
tional method@15# with 1789 basis functions giving a bind
ing energyE(dm)1s

2 E11
ddm of 1974.8 meV. The contribu

tions to the second-order energy from different states (J,v),
after summation over all electronic states with a givenl
value, are shown in Table I. The results for the first- a
second-order perturbation energies and their sum are sum
rized in Table II and compared with the corresponding
sults reported in Ref.@14# for the analogous (dtm)11e sys-
tem.

A previous calculation ofEFS yielded a value of 1.060.3
meV for (ddm)11dee after scaling the result for (ddm)11e
by a factor of 1.45@13#. This factor is the ratio of the elec
tron density at the nucleusN in the atomNe and in the
moleculeNdee. Thus the value ofEFS for (ddm)11e implied
-

d
a-

-

by this result is 0.760.2 meV as compared to the prese
result of 1.46 meV. Since only brief details of these calcu
tions are given in Ref.@13#, it is difficult to ascertain the
source of the difference between the present calculations
those of Ref.@13#. The scaling procedure is discussed
more detail in Sec. IV A below.

III. THE MOLECULE „ddµ…11dee

We now consider the case of a molecule (ddm)11dee. We
note that one needs to use an eigenfunction of the squa
the total angular momentum and itsz component~with the
corresponding quantum numbers denoted byJt and Mt),
rather than just the product of addm wave function and a
wave function ofNdee. Up to first order, the total energy o
this state may be written in the form of Eq.~3! with the
finite-size energyEFS given as

EFS.DEe,M
~1! 1DEe,Q

~1! 1DEd,M
~1! 1DEd,Q

~1! ~15!

up to the quadrupole terms in the interaction poten
@16,17#. HereDEe,M

(1) andDEe,Q
(1) are the contributions to the

first-order energy arising from the interaction of the electr
distribution with the (ddm)11 system and the subscriptsM

TABLE I. Contributions to the second-order perturbation ener
DE(2)(J,v,l ) for (ddm)11e from different intermediate (ddm)Jv
states for a given electron angular momentuml , after summation
over all bound and continuum electronic states for this value ol .

J v l DE(2)(J,v,l ) ~meV!

0 0 1 0.000
0 1 1 0.000
0 v>2 1 23.361
1 0 0 0.000
1 1 0 20.154
1 v>2 0 20.252
1 0 2 0.000
1 v>1 2 20.064
2 0 1 0.000
2 v>1 1 26.177
2 0 3 0.000
2 v>1 3 20.008
3 v> 0 2 20.097
4 v> 0 3 0.000
5 v> 0 4 0.000

Total DE(2) 210.113

TABLE II. Contributions to the finite-size energy shift in
(ddm)11e and (dtm)11e. DE(1) andDE(2) are the first- and second
order energies, whileEFS is the total finite-size energy shift up t
second order. All energies are in meV.

Energy (ddm)11e (dtm)11e

DE(1) 11.577 18.253
DE(2) 210.113 217.752
EFS 1.46 0.50
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2688 56M. R. HARSTONet al.
andQ denote the contributions from the monopole and qu
rupole terms in the multipole expansion of the interact
operator. Similarly,DEd,M

(1) andDEd,Q
(1) are the contributions

to the first-order energy arising from the interaction of t
third deuteron with the (ddm)11 system.

The electron monopole contributionDEe,M
(1) is given by

DEe,M
~1! 5(

i 51

2

^cvib
n ~R!ce~r1 ,r2 ;R!u@U11

~0!~r i !1r i
21#

3uce~r1 ,r2 ;R!cvib
n ~R!&, ~16!

wherece(r1 ,r2 ;R) is the electronic wave function for th
ground state of the moleculeNdee~which is the same as th
ground-state wave function of the hydrogen molecule H2 in
the Born-Oppenheimer approximation! at internuclear sepa
rationR andcvib

n (R) is the vibrational wave function for this
compound molecule. The electronic quadrupole contribut
DEe,Q

(1) is given by

DEe,Q
~1! 5A4p (

i 51

2

(
M ,Mr

(
M8,Mr8

(
b

^JMJrMr uJtMt&

3^JM8JrMr8uJtMt&^JM82buJM&

3^c rot
Jr Mr~R̂!cvib

n ~R!ce~r1 ,r2 ;R!u U11
~2!

3~r i !Y2b* ~ r̂ i !uce~r1 ,r2 ;R!cvib
n ~R!c rot

Jr Mr8~R̂!&,

~17!

where c rot
Jr Mr is the wave function for a rotational sta

(Jr ,Mr) of the moleculeNdee. After performing the inte-
gration overR̂ and carrying out the summations over ma
netic quantum numbers, this reduces to

DEe,Q
~1! 5~4p!3/2A~Jt ,Jr ,J!

3(
i 51

2 E @cvib
n ~R!#2@ce~r1 ,r2 ;R!#2U11

~2!

3~r i !Y2b* ~ r̂ i !dr1dr2R2dR, ~18!

with the factorA(Jt ,Jr ,J) given by

A~Jt ,Jr ,J!5~21!J1Jr2Jt@5~2J11!~2Jr11!#1/2~4p!21/2

3^J020uJr0&W~JJJrJr ;2Jt!. ~19!

The monopole and quadrupole contributions arising from
presence of the third deuteron are given by the expressi

DEd,M
~1! 52E @cvib

n ~R!#2@U11
~0!~R!1R21#R2dR ~20!

and

DEd,Q
~1! 52~4p!1/2A~Jt ,Jr ,J!E @cvib

n ~R!#2U11
~2!~R!R2dR.

~21!
-

n

-

e
s

In Ref. @16# we derived expressions for the electronic co
tributionsDEe,M andDEe,Q for the special case of a Hartree
Fock-type electronic wave function at the equilibrium inte
nuclear separationRe expanded in a basis set of Gaussi
functions centered on the two nuclei. The deuteron contri
tions DEd,M and DEd,Q were evaluated using both thed
function and accurate vibrational wave functions. In Tab
III we show, in the column headed I, the results of a calc
lation for (ddm)11dee using the fixed-nuclei Hartree-Foc
approximation. In order to check the validity of this approx
mation ~henceforth referred to as approximation I! we have
also performed calculations using Eq.~18! with an
R-dependent electronic wave function of the hydrogen m
ecule obtained by Kolos and Wolniewicz with 54-ter
James-Coolidge-type basis functions@18,19# that has almost
converged. The results of this calculation~referred to as ap-
proximation II! are also shown in Table III in the colum
labeled II. For comparison we also give the results of sim
calculations for (dtm)11dee.

Table IV shows values of the coefficientA(Jt ,Jr ,J) for
different molecular states of interest together with the to
contributions to the first-order perturbation energy from t
quadrupole terms in the perturbation operator calculated
ing approximation II. The deuteron monopole contributio

TABLE III. Contributions to the finite-size energy shift in th
molecules (ddm)11deeand (dtm)11dee. Columns headed I refer to
calculations using a fixed-nuclei Hartree-Fock approximation
the electronic wave function. Columns headed II refer to calcu
tions using an accurate 54-term James-Coolidge wave function
accurate vibrational wave functions. The factorA5A(Jt ,Jr ,J) is
defined in the text and numerical values are given in Table IV.
energies are in meV.

Energy (ddm)11dee (dtm)11dee
shift I II I II

DEe,M
(1) 16.41 14.46 25.79 25.22

DEe,Q
(1) 3.47A 3.09A 5.47A 5.59A

DEd,Q
(1) 27.24A 25.97A 211.35A 210.77A

TABLE IV. Values of the factorA(Jt ,Jr ,J) for different mo-
lecular states of (ddm)11dee and (dtm)11dee with total angular
momentumJt and rotational angular momentumJr . The value ofJ,
the total angular momentum of the three-bodyddm or dtm sub-
system, is unity in all cases. Also tabulated is the sum of the c
tributions to the first-order perturbation energy~in meV! from the
quadrupole interactions calculated in approximation II, which
discussed in the text.

DEe,Q
(1) 1DEd,Q

(1)

Jt Jr A(Jt ,Jr ,J) (ddm)11dee (dtm)11dee

0 1 20.3989 11.24 12.00
1 0 0.0000 0.00 0.00
1 1 0.1995 20.62 21.00
1 2 20.1995 10.62 11.00
2 1 20.0399 10.12 10.20
2 2 0.1995 20.62 21.00
2 3 20.1596 10.50 10.80
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DEd,M
(1) are negligible at the level of 0.1 meV and the ele

tronic monopole term clearly gives the dominant contrib
tions to the perturbation energy for both (ddm)11dee and
(dtm)11dee. However, the quadrupole contributions are ge
erally of the order of meV and moreover they depe
strongly on the particular molecular state. These conclus
are the same in both approximations I and II, though
simpler approximation I gives results differing roughly at t
10–20 % level from the more accurate results of approxim
tion II. Furthermore, the results for (ddm)11deeare seen to
be between 50% and 70% of those for (dtm)11dee.

Quadrupole energy shifts of the order of meV have a
been reported by Bakalov and Melezhik@17#. They used a
simple, one-parameter product-type electronic wave func
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and no vibrational or rotational wave function for theNdee
molecule and therefore the dependence ofEFS on Jr andJt
was not discussed. Theirddm anddtm wave functions con-
sisted of two terms. They also estimated energy-level sp
tings of the order of meV due to the interaction between
particle spins and the quadrupole electric field, which is
considered in the present work.

IV. DISCUSSION

A. Scaling according to the electron-density ratio

The calculations of the finite-size shiftEFS in the mol-
ecule (dtm)11dee, reported in Ref.@20#, involve a scaling of
the calculated energy shifts in (dtm)11e by a factor of
g5
@electron density at a proton in the H2 molecule#

@electron density at the proton in the H atom#
. ~22!
nt

on
en

to

in
e
a-
e
rt-

that
nic
o-

ole

r-

III

cu-
for

m of
ns

of
ons
Later calculations on (dtm)11dee and (ddm)11dee in Refs.
@13# and @21# also involve the same scaling procedure.
value of 1.45 was assigned to this ratio on the basis that
given approximately by the ratio of the photoionization cro
sections of the H2 molecule and the H atom calculated
Ref. @22#. In fact, since this ratio depends upon the intern
clear distance, it seems more appropriate to use ag value
that is averaged over the vibrational state of the molec
according to

ḡ 5E g@cvib
n ~R!#2R2dR. ~23!

Calculating the average in this way using the accurate Jam
Coolidge H2 wave function described in Sec. III yields th
results shown in the third column of Table V. We have a
evaluated electron densities with ad wave function expanded
in Guassians that reproduces 91% of the correlation en
as described in Ref.@23#. This yields the values shown in th
fourth column of Table V. The results are given for then57
vibrational state of (ddm)11dee and then52 vibrational

TABLE V. Table of ḡ values for the molecules H2,
(ddm)11dee, and (dtm)11dee in a vibrational staten. Results in
column 3 were calculated with an accurate 54-term Jam
Coolidge-type~JC! wave function @18,19#. Results in column 4
were calculated with a wave function expanded in Gaussians
reproduces 91% of the correlation energy@23#.

ḡ

Molecule n JC Gaussian basis

H2 0 1.422 1.280
(ddm)11dee 7 1.264 1.179
(dtm)11dee 2 1.380 1.241
is
s

-

le

s-

o

gy

state of (dtm)11dee since these correspond to the domina
resonances forddm and dtm formation, respectively. It

should be noted that theḡ value for H2 differs from that
implied by the electron density reported in Table IV of@24#,

for which ḡ 51.299. The latter value refers to an electr
density at a distance of 0.7 a.u. from the midpoint betwe

the nuclei. Takingḡ 51.45, as in previous work, appears
overestimate the density by 5% for (dtm)dee and 15% for
(ddm)dee.

As shown in Sec. III, the first-order perturbation energy
(ddm)11dee is dominated by the contribution from th
monopole term in the multipole expansion of the perturb
tion energy. This contribution involves an integral of th
square of the electronic wave function multiplied by a sho
range potential that effectively vanishes forr . 0.1 a.u. The
short-range behavior of this potential has a consequence
the monopole contribution is only sensitive to the electro
wave function for small radial distances from the pseud
nucleusN. This leads to the expectation that the monop
contribution DEe,M

(1) in (ddm)11dee should be close to the
value obtained by multiplying the first-order finite-size co
rection DE(1) in (ddm)11e by the factor ḡ . Indeed, the
monopole contribution is 14.46 meV according to Table
and ḡDE(1) 5 1.264311.58 meV514.63 meV according to
Tables II and V, and these two values agree within an ac
racy of 0.2 meV. Similarly good agreement is found also
(dtm)11dee: DEe,M

(1) 5 25.22 meV and ḡDE(1) 5 1.380
318.25 meV5 25.18 meV.

The second-order energy, however, depends on a su
integrals containing products of electronic wave functio
for the ground and excited states of H2. There is no reason
why such integrals should scale by the factorḡ from
(ddm)11e to (ddm)11dee since the factorḡ involves only
the ground-state electronic wave function. The method
scaling the sum of the first- and second-order contributi
that has been used previously@13,20,21# is thus unjustified.
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B. Scaling according to the results on„dtµ…e

Recently a detailed fit of the experimental values for
effective rate of formation of (ddm)11dee, lF(T), was re-
ported@7# using the expression

lF~T!5l11l2

3

2
kT1 (

Ji ,S,Jf

alFJi ,SJf
~T;e11!

3vS
fus~Jf ;a,l fus!. ~24!

Here T is the temperature,k is the Boltzmann constant,l1
andl2 are constants that determine the rate of nonreso
molecular formation in an approximation linear inT, and
lFJi ,SJf

(T;e11) is the rate of resonant molecular formatio

from adm atom in a hyperfine stateF and a D2 molecule in
a rotational stateJi yielding a molecule (ddm)11dee in a
rotational stateJf and with the subsystem (ddm)11 having
spinS. The ratelFJi ,SJf

is proportional to the transition ma

trix element squareduVi f u2 and to the Maxwell distribution
of the relative kinetic energyEKE betweendm and D2 on the
assumption of negligible resonance widths,EKE being re-
lated toe11 through Eqs.~2! and ~3!. Thus the ratelFJi ,SJf

depends one11. The parametera has been introduced t
scaleuVi f u2 in order to allow for errors inuVi f u2. The quantity
vS

fus(Jf ;a,l fus) is the fusion fraction or the fraction of mol
ecules (ddm)11dee that lead tod-d fusion. It depends no
only on Jf but also on the effective fusion ratel fus from the
state (J,v)5(1,1) and on the parametera.

The fitting was carried out using five adjustable para
etersl1, l2, e11, l fus, anda. The best fit to the data yielde
e11 5 21966.160.2 meV, which seems to be in good agre
ment with a theoretical resulte11 5 21966.2 meV. How-
ever, this excellent agreement should be taken with rese
tion since, for one thing, this theoretical result involves
uncertainty of about 0.5 meV stemming from the uncertai
in the deuteron polarizability@7,10#. Another source of un-
certainty in the theoretical result is the inclusion of an e
mated valueEddmdee

FS (E) of the finite-size shift, which was
taken to be 0.24 meV from Table X of Ref.@3#. This result
was estimated@25# in the following way from the value of
Eddmdee

FS (B) 5 1.0 meV due to Bakalov@13#:

Eddmdee
FS ~E!5Eddmdee

FS ~B!
Edtmdee

FS ~S!

Edtmdee
FS ~B!

. ~25!
pli

u

n

e

nt

-

-

a-

y

-

Here Edtmdee
FS (S) is the value~0.29 meV! of the finite-size

shift in (dtm)11deecalculated by Scrinzi and Szalewicz@21#
and Edtmdee

FS (B) is the value~1.2 meV! of the same shift
calculated by Bakalov@13#. This kind of scaling procedure
seems to have little justification since it involves the scal
of a theoretical result for one physical quantityEddmdee

FS by a
large factor~approximately a factor of 4, which demonstrat
a large discrepancy between theories! according to a result
for a different physical quantityEdtmdee

FS ; we note especially
that ~i! the value ofEdtmdee

FS (S) was obtained by scaling from
Edtme

FS in Ref. @21# by the use of the procedure discussed a
questioned in Sec. IV A, and, furthermore,~ii ! the method of
Ref. @21# for calculating Edtme

FS is inapplicable to homo-
nuclear diatomic molecular ions such as (ddm)11e since the
method takes advantage of thet-m distance that is shorte
than thed-m distance.

C. Possibility of cancellation between perturbation energies

The contributions toEFS in (ddm)11dee from the quad-
rupole terms to first order in the perturbation potential ha
been found to be of order 1 meV. Moreover, this quadrup
contribution, which is absent in the molecule (ddm)11e, has
been found to depend on both the total angular momentum
(ddm)11dee and the angular momentum of the molecu
Ndee. It should be noted that contributions to the first-ord
perturbation energy from higher multipole terms may p
tially cancel these quadrupole contributions. However,
degree of such cancellation, which may be state depen
because of the different angular-momentum dependenc
the perturbation energies in different orders, remains to
demonstrated in the molecular system (ddm)11dee. The pos-
sibility of incomplete cancellation of the quadrupole term
thus represents an additional limit on the accuracy of
finite-size energy shift in this system.
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