PHYSICAL REVIEW A VOLUME 56, NUMBER 4 OCTOBER 1997

Effects of the finite size of the ion(ddp)* on the energy levels of the moleculeéddp)e and
(ddu)dee

M. R. Harston, S. Hara' Y. Kino,* I. Shimamura, and H. Sato
The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan

M. Kamimura
Department of Physics, Kyushu University, Fukuoka 812, Japan
(Received 26 September 1996

The energy shift due to the finite size of the pseudonucleldu];; in the molecules ddu),.e and
(ddu)q,dee the subscripts indicating the first excited state with total angular momentum of one unit, is of
importance in the theoretical estimation of the ratd-af fusion catalyzed by negative muons. The energy shift
in the molecule ddu) ;€ is calculated using perturbation theory up to second order. The finite-size shift is
found to be 1.46 meV. This is significantly larger than the value of 0.7 meV for this energy shift calculated by
Bakalov[Muon Catalyzed FusioB, 321(1988] by a method similar to the present method; recently found
excellent agreement of theory with experimental results for the formation rate of the molédulg, (deewas
based on Bakalov's value with some modifications. The results of a direct calculation of the finite-size energy
shifts in (ddu),;,deeusing first-order perturbation theory are presented. The contribution from the quadrupole
component of theddu); charge distribution, which is not taken into account in the conventional scaling
procedure based on the finite-size energy shiftsdafi() ,,€, is found to be of the order of 1 meV and to
depend on the angular-momentum states ady(),,dee Sources of uncertainty in the current theoretical
estimates are also discussg81050-294@7)01210-9

PACS numbd(s): 36.10.Dr, 31.25-v

[. INTRODUCTION ergy levels of the molecules involved. For energy matching
of the initial and final states, the following condition must be
The molecule ddu),,deeplays a key role in the process satisfied to within an accuracy of the order of the width of
of muon-catalyzed fusion in P(see[1-3] for recent general the resonance:
reviews. This molecule may be produced by collision of a
D, molecule with a muonic deuterium atonug),s, in Etdw, . TEip,,, + EKE:E[(ddM)lldedequ 2
which the muon is in the 4 orbital, -

hereE, is the energy of the appropriate syst&rand EXE
(dw)1s+[D2l, 5 —[(ddu)ded, 5, (1 P & ppropria‘e sy

is the kinetic energy of the relative motion of the muonic
atom and the B molecule before collision. The width of the

where the labels;; ,J; specify the initial vibrational and ro- resonance state is broadened due to several effdei§]

tational quantum numbers of the,Dmolecule andv;,J; . . : P .
specify the vibrational and rotational quantum numbers 0fncludmg back decay into the initial channel, nuclear fusion
the molecule in which the small three-bodydu); system n d_d_'“’ Auger decay of the comple@(dd,u)lldee]yfjf, and _

plays the role of a pseudonucleus. The 11 subscript on thigollisional processes. Calculations of molecular formation
three-body system indicates that it is in the first excited statéates indicate that all energies in Eg) should be defined to
(v=1) with total angular momentund of one unit. The better than about 1 meV in order make contact with experi-

ground electronic state of the .Dmolecule is almost un- Ment7]. _ _ _

changed in reactiofd). The (ddw)4; system is small compared to the dimensions
Since reaction(1) is a resonance procegm which the ~©f the whole @du);;,dee molecule[8] and it is therefore

right-hand side is a resonance sjatée rate for molecular Convenient to break down the e”erﬁi/(ddu)udedVfJf Into a

formation by this mechanism is sensitive to the precise engontribution Eflifﬂ from the isolated gdu),; system and a

contributionEZ‘f‘ﬂ‘fefrom the hydrogenlike moleculddeein

which the fictitious nucleudl has a mass equal to the com-
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(ddu)1s, Eapy,, — Eff*, has been calculated to be consisting of an electron and a nucleNs whose Hamil-

1966.4 meV in the lowest hyperfine le@-11. The ener-  tonian isHN® with eigenvalue&?. Heren, |, andm are the
gies E)/9° have also been calculated accurately for varioug?rincipal, azimuthal, and magnetic quantum numbers for the
states ¢, J;) of interest[12]. However, the energFS two-body system, Wh!|6M is the z component of the total
remains to be accurately determined. angular momentum in the three-bodidu system. The

] _ _ - o ddu e - -
In a recent, detailed comparison of experiment and theori9enfunctionsby, iy andy,, satisfy equations

for (ddu)q,dee[7], a theoretical formula for the molecular Hddkqpddu — pddugyddu @)

formation rate was fitted to the experimentally determined oM M

formation rate with the energy,; = ES% + EFS — Ew,, and

as a fitted parameter. This yieldeg,; = —1966.1+0.2 Ne. e Ne e
meV. This was compared with a theoretical value of H ™ nim=Eni ¥nim - )
—1966.2 meV calculated assuming a val&S = 0.24
meV. This remarkable agreement between experiment a
theory needs to be carefully examined since the theoretical 1 1 1 1
value of EFS used in this comparison was based on an ap- V=
proximate scaling procedure applied to a directly calculated
literature value[13]. The aim of this paper is therefore to :
address the question of the finite-size shift in this system. "N€r€Ta;» fa, f,, andr are the coordinates of the two

A proper treatment of the energy levels of the deu_terons,_the muon, and the electron, respectively. The co-
(ddu),,deemolecule would involve solving the wave equa- Ordinate origin is chosen to be the center of mass otiite
tion for a six-body system with particles in three different System. Up to second orde > may be written as
mass ranges. At the present moment such a calculation ap- EFS_AED 4 AE® )
pears not to be tractable. A possible approach to calculate '
finite-size shifts is to employ perturbation theory with the
sum of the Hamiltoniansi 9% for ddu andHNY¢¢for Ndee
as the unperturbed Hamiltonian and with the first two terms AED = (2 DI V| DIy ) (8)
on the right-hand side of Eq3) as the unperturbed energy.
However, a direct application of perturbation theory toand the real part of the second-order energy by
(ddw),deeis extremely difficult beyond a first-order treat-
ment because of the requirement to perform a summation , K8 m®@ % V| DA S 2
over excited molecular states, including states that lie in the AE(ZEZ PiM Eddu, ENe_ pddu_ £Ne
continuum. Thus the approach that has been adopted to ob- i TEis By En)

tain energy shifts used in fits of experimental formation rates . S
: : . . X . where the summation-integration is over the bound and con-
is to consider first a simpler systerddu) ;€ in which the

finite-size effect can be treated more easily and more aCCl}i-nuum electronic andidu states and P stands for the prin-
. . ) y — - cipal value of the integral over the electron energy. The
rately. The electron in this system is assumed to be in its

; . . primes on the summations indicate that the combination of
ground state in the zeroth-order approximation so that 't{hedd state withJ=1 ando =1 and the % electronic state
perturbation energies may be related to those o K v

(ddu),dee see the discussion in Sec. IV A. Is to be equuded from the summation. In E@.and (9) a
R o : representative value of zero has been choserMfdor the
In Sec. Il the finite-size energy shift ird@w) e is cal- — . .
: . state 0,v)=(1,1) since the results are independentvof
culated using perturbation theory up to second order. In . ; .
Theddu wave functions are written in terms of three sets

Sec. lll first-order perturbation theory is applied to the six- X : )
. of Jacobi coordinate§ . ,R.}. (c=1, 2, 3 that describe the
body system ddy.);,dee in order to study the effect of positions of the three particles. These wave functions are

terms in the perturbation interaction that are qualitatively . .
i : expressed as sums of products of radial functions

different from those that appear in the case of td_d,L()lle_ (r..R,) and angular functions in these coordinates

system and that therefore have not been considered in tffg]ﬂ e

conventional scaling procedure. Section 1V is devoted to '

discussion of the validity of various theoretical assumptions . )

made in the present work and in the literature. @3;‘&:; @3 L (T, RLYA(T) X YL(R) 13m»

AL
(10

n‘&he perturbation interaction is

(6)

- - + +=,
g, =rl Ira,=rl[ru—rf r

with the first-order energy given by

)

J.l

Il. THE MOLECULE (ddp).e o _
where the quantity in square brackets is the tensor product of

The method used here to calculate the finite-size energyvo spherical harmonics.
shift EFS in (ddu) e is the same as that used in a previous |t is convenient to expand the operatdrin a multipole
calculation ofEFS in (dtu),;e and has been described in expansion and to perform the integrations over the coordi-
detail in Ref.[14]. Only a brief summary will be presented nates of the deuteron, triton, and muon first, before perform-
here. ing the integration over the electron coordinate. The product
The zeroth-order wave functions are products of the wavef two ddu wave functions and the interaction potential in-
functions®%: for the isolated three-bodgdyu system and  tegrated over theldu coordinates, involved in Eq9), can
the wave functionsy;,,, for the two-body atomic system then be written as
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TABLE I. Contributions to the second-order perturbation energy
(@9 V| DIy = 4z > Ul (r) AE®(J,0,1) for (ddu)yse from different intermediate ddu),,
« states for a given electron angular momentunafter summation
over all bound and continuum electronic states for this value of

X 2 (10aBlIM)Y(T)
B=—«a

J v I AE@(J,0,1) (meV)
+8318,10m0r 1 (11
. o 0 0 1 0.000
where (10aB|IM) is a Clebsch-Gordan coefficient and 1 1 0.000
U{®(r), the ath multipole potential, is given by 0 p=2 1 _ 3361
(2L l)ijw 1 0 0 0.000
+ A 1 1 0 ~0.154
U= 4d, > Vanm ~= (-1 '
J N (2a+1)L '\’ 1 v=2 0 -0.252
) . 1 0 2 0.000
X(aOLO[L"0)W(JLIN" ;N a) 1 v=1 2 ~0.064
2 0 1 0.000
x> f @il (TeRITErZ Vo 2 v=1 1 ~6.177
c.c’ 2 0 3 0.000
X(ry,ROradreR2dR, . (12 2 v=1 3 —0.008
3 v=0 2 —0.097
Here the subscrigd denotes a particle that is one of the two 4 v=0 3 0.000
deuterons or the muon idu. This particle has a chargg, 5 v= 0 4 0.000

and is located at a positicgy. The symboly stands for the Total AE® ~10.113
quantityy(y+1) andW(JL1IN";A @) is a Racah coefficient.

The quantities - andr. are the smaller or greater of the
two radial coordinates, andr. The summation is to be by this result is 0.70.2 meV as compared to the present
taken over the three particlgsin theddu system. In terms  result of 1.46 meV. Since only brief details of these calcula-
of the potentialsU{®)(r) defined in this way, the first-order tions are given in Ref[13], it is difficult to ascertain the

perturbation energy can then be written as source of the difference between the present calculations and
those of Ref.[13]. The scaling procedure is discussed in
AE“EJ ¢fS[U<1‘i)(r)+r‘1]r2dr, 13) more detail in Sec. IV A below.

. . . . THE MOLECULE (dd dee
where ¢, is the radial component of the electronic wave (ddu)s

function ¢¢,,,. The second-order energy is We now consider the case of a molecutilft),,dee We

note that one needs to use an eigenfunction of the square of
the total angular momentum and iscomponentwith the
corresponding quantum numbers denoted Jpyand M,),
rather than just the product of ddu wave function and a

1
AE(2)=§; (23+1)P

o 1 2 wave function ofNdee Up to first order, the total energy of
J bl Uy (1) + 0318518107 "] ¢basr"dr this state may be written in the form of E(8) with the
X 9% 4 ENe— Edd— ENe : finite-size energye™ given as
v,n v
(14) EFS=AEG) +AEGQ+AEG, +AEG, (19

The ddu wave functions were calculated using a varia-up to the quadrupole terms in the interaction potential
tional method 15] with 1789 basis functions giving a bind- [16,17). HereAEY, and AE{!), are the contributions to the
ing energyEq,, — Ef{* of 1974.8 meV. The contribu- first-order energy arising from the interaction of the electron
tions to the second-order energy from different states),  distribution with the fidw),; system and the subscripks
after summation over all electronic states with a given
value, are shown in Table I. The results for the first- and TABLE 1l. Contributions to the finite-size energy shift in
second-order perturbation energies and their sum are summildx).€ and (dt“),lle-FSA,E(l) andAE® are the first- and second-
rized in Table Il and compared with the corresponding re-order energies, whil& is the t_otal finite-size energy shift up to
sults reported in Ref{14] for the analogousdtu),,e sys- Second order. All energies are in meV.

tem.

A previous calculation oE™S yielded a value of 1.80.3 Energy ddu)se (dtu).e
meV for (ddw),dee after scaling the result forddu).€  AE®W 11.577 18.253
by a factor of 1.4913]. This factor is the ratio of the elec- Ag® -10.113 —17.752
tron density at the nucleull in the atomNe and in the EgFs 1.46 0.50

moleculeNdee Thus the value oE"S for (ddu) ;e implied
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andQ denote the contributions from the monopole and quad- TABLE lil. Contributions to the finite-size energy shift in the
rupole terms in the multipole expansion of the interactionmolecules @du),;deeand [dtu);,dee Columns headed | refer to
operator. Similarly,AEE,l,{,l andAEE,% are the contributions Ccalculations using a fixed-nuclei Hartree-Fock approximation for

to the first-order energy arising from the interaction of thethe electronic wave function. Columns headed Il refer to calcula-
third deuteron with theddg),; system tions using an accurate 54-term James-Coolidge wave function and

The electron mononole contributiakE®). is given b accurate vibrational wave functions. The factor A(J,,J,,J) is
P e 1S y defined in the text and numerical values are given in Table IV. All

energies are in meV.

2
1 _ v . Oy p-1
AEE),M |:21 <¢V|b(R)¢e(rlvr2-R)|[U11(r|)+r| ] Energy @d,u)lldee (dt,u)lldee
shift | I [ I
X r{,r>;R) ¢/ (R)), (16)
V(2.2 R R)) AER, 16.41 14.46 25.79 25.22
where (r1,r»;R) is the electronic wave function for the AES) 3.47A 3.09A S.ATA 5.5
ground state of the moleculdee(which is the same as the AE{ —7.24A —5.97A —11.3A —10.7A

ground-state wave function of the hydrogen moleculgii
the Born-Oppenheimer approximatjoat internuclear sepa- _ ) )
ration R and i%,(R) is the vibrational wave function for this I Ref.[16] we derived expressions for the electronic con-

compound molecule. The electronic quadrupole contributiodIPUiONSAE. y andAE, g for the special case of a Hartree-
AE(% is given by Fock-type electronic wave function at the equilibrium inter-
€,

nuclear separatiolR, expanded in a basis set of Gaussian

2 functions centered on the two nuclei. The deuteron contribu-
AE;DQ: \/EE > > D> (IMIM,|IM,) tions AEqy and AEq o were evaluated using both the
I=1MM: vy B function and accurate vibrational wave functions. In Table
Il we show, in the column headed I, the results of a calcu-
X(IM'IM{|IMH{(IM"2B[IM) lation for (ddu);,dee using the fixed-nuclei Hartree-Fock
IM A ‘ @ approximation. In order to check the validity of this approxi-
X{(Pig (R in(R) Pe(ra,r2;R)| Uy mation (henceforth referred to as approximatiorwe have
R M also performed calculations using Ed18) with an
X Yaa(r)[de(r1, 12 R (R 5 (R)), R-dependent electronic wave function of the hydrogen mol-

ecule obtained by Kolos and Wolniewicz with 54-term
17 James-Coolidge-type basis functidds,19 that has almost
IM, . . converged. The results of this calculatipeferred to as ap-
where y;;"" is the wave function for a rotational staté hoyimation 1) are also shown in Table Ill in the column
(Jr,M,) of the moleculeNdee After performing the inte-  |apeled II. For comparison we also give the results of similar
gration overR and carrying out the summations over mag-calculations for (tu),;,dee

netic quantum numbers, this reduces to Table IV shows values of the coefficieA(J;,J, ,J) for
different molecular states of interest together with the total
AEL=(4m)*A(3;,3, ) contributions to the first-order perturbation energy from the

quadrupole terms in the perturbation operator calculated us-
ing approximation Il. The deuteron monopole contributions

2
x5, [ il Rt RPUE
TABLE IV. Values of the factorA(J;,J, ,J) for different mo-

x(ri)Ygﬁ(Fi)drldrszd R, (18 lecular states ofddu),,dee and dtu),;dee with total angular
momentumJ, and rotational angular momentuip. The value of],
with the factorA(J,,J, ,J) given by the total angular momentum of the three-badig. or dtu sub-

system, is unity in all cases. Also tabulated is the sum of the con-
A(3;,d,,9)=(—1)" I I[5(23+1)(23,+ 1)1V 4m) "2 tributions to _the firsF-order perturbati_on ener@y me_\/) from the '
quadrupole interactions calculated in approximation II, which is

%x(J020J,0)W(JJ3JJ;;2J,). (19 discussed in the text.
The monopole and quadrupole contributions arising from the AE(+AEL),
resence of the third deuteron are given by the expressions
P e ced guen by Me &Pressiony 5, A9 @dwudee  (diw)ydee
@ _ v 12O 12 0 1 ~0.3989 +1.24 +2.00
AER = | W RIAVQR+R YRR @0 ) 1 00 2 o
1 1 0.1995 —0.62 —1.00
and 1 2 —0.1995 +0.62 +1.00
2 1 —0.0399 +0.12 +0.20
AED - — (471020 j v RIPUZ(RIRZAR. 2 2 0.1995 ~0.62 ~1.00
d.o= —(4m) A3, ,d) | [Win(R]UT(RR 5 3 —0.1596 +0.50 +0.80

(21)
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AE&%,ZA are negligible at the level of 0.1 meV and the elec-and no vibrational or rotational wave function for tNelee
tronic monopole term clearly gives the dominant contribu-molecule and therefore the dependencé&®? on J, andJ,
tions to the perturbation energy for botddu);;dee and  was not discussed. Theidy anddtu wave functions con-
(dtu),,dee However, the quadrupole contributions are gen-sisted of two terms. They also estimated energy-level split-
erally of the order of meV and moreover they dependtings of the order of meV due to the interaction between the
strongly on the particular molecular state. These conclusiongarticle spins and the quadrupole electric field, which is not
are the same in both approximations | and I, though theconsidered in the present work.
simpler approximation | gives results differing roughly at the
10-20 % level from the more accurate results of approxima- IV. DISCUSSION
tion Il. Furthermore, the results fod¢lu),;deeare seen to
be between 50% and 70% of those falt4),dee
Quadrupole energy shifts of the order of meV have also The calculations of the finite-size shi&™ in the mol-
been reported by Bakalov and Melezhik7]. They used a ecule dtu)q;,dee reported in Ref[20], involve a scaling of
simple, one-parameter product-type electronic wave functiothe calculated energy shifts im{w)4,€ by a factor of

A. Scaling according to the electron-density ratio

[electron density at a proton in the,Hmoleculd
~ [electron density at the proton in the H atpm

0 (22

Later calculations ondtu);deeand ddw),,deein Refs.  state of @tu),,deesince these correspond to the dominant
[13] and [21] also invplve the same _scaling procedure. _A_resonances foddu and dtu formation, respectively. It
value of 1.45 was assigned to this ratio on the basis that it iShou1d be noted that the value for H, differs from that

given approximately by the ratio of the photoionization Crossimplied by the electron density reported in Table IV[a#],
sections of the H molecule and the H atom calculated in L —
for which y=1.299. The latter value refers to an electron

Ref.[22]. In fact, since this ratio depends upon the internu-d : di £07 f h idboint b
clear distance, it seems more appropriate to usevalue ~ Jensity at a distance of 0.7 a.u. from the midpoint between

that is averaged over the vibrational state of the moleculéhe nuclei. Takingy=1.45, as in previous work, appears to
according to overestimate the density by 5% fodtu)dee and 15% for
(ddu)dee

As shown in Sec. lll, the first-order perturbation energy in
(ddu),,dee is dominated by the contribution from the
monopole term in the multipole expansion of the perturba-
tion energy. This contribution involves an integral of the
square of the electronic wave function multiplied by a short-

Calculating the average in this way using the accurate Jame&ange potential that effectively vanishes for- 0.1 a.u. The
Coolidge H, wave function described in Sec. Ill yields the short-range behavior of this potential has a consequence that
results shown in the third column of Table V. We have alsothe monopole contribution is only sensitive to the electronic
evaluated electron densities withsavave function expanded wave function for small radial distances from the pseudo-
in Guassians that reproduces 91% of the correlation energyucleusN. This leads to the expectation that the monopole
as described in Ref23]. This yields the values shown in the contributionAES,{,, in (ddu),;dee should be close to the
fourth column of Table V. The results are given for e 7 value obtained by multiplying the first-order finite-size cor-

vibrational state of ¢du);,dee and thev=2 vibrational  rection AE(™ in (ddu)ye by the factor y. Indeed, the
monopole contribution is 14.46 meV according to Table IlI

TABLE V. Table of y values for the molecules 5 angyAE() = 1.264<11.58 me\=14.63 meV according to

(ddu)s,dee and @tu)ydeein a vibrational stater. Results in - T4p1e5 || and V, and these two values agree within an accu-

column 3 were calculated with an accurate 54-term James: P ;
; X _ facy of 0.2 meV. Similarly good agreement is found also for

Coolidge-type(JC) wave function[18,19. Results in column 4 y O _ Y9 9 — ) _

were calculated with a wave function expanded in Gaussians thddt/)idee AEgy = 25.22 meV and yAE'™ = 1.380

reproduces 91% of the correlation enefgy). x18.25 meV= 25.18 meV.
The second-order energy, however, depends on a sum of

> integrals containing products of electronic wave functions

= [ AviRPROR 23

l for the ground and excited states of,HThere is no reason
Molecule v Jc Gaussian basis  \ypy such integrals should scale by the factgr from
H, 0 1.422 1.280 (ddu)qse to (ddu) ,dee since the factory involves only
(ddu)dee 7 1.264 1.179 the ground-state electronic wave function. The method of
(dtw),,dee 2 1.380 1.241 scaling the sum of the first- and second-order contributions

that has been used previou$ly3,20,2] is thus unjustified.
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B. Scaling according to the results or(dtp)e Here Edmdee(S) is the value(0.29 meV\j of the finite-size
Recently a detailed fit of the experimental values for theSMift in (dtu),deecalculated by Scrinzi and Szalewif21]

effective rate of formation ofddu),,dee N\g(T), was re- and Eftuaed B) is the value(1.2 meV) of the same shift
ported[7] using the expression calculated by Bakaloy13]. This kind of scaling procedure

seems to have little justification since it involves the scaling
of a theoretical result for one physical quanlﬂggj’ﬂdee by a
large factorn(approximately a factor of 4, which demonstrates
a large discrepancy between theo}iascording to a result
for a different phyS|caI quanntiﬁdwdee, we note especially
that(l) the value oﬁEdt ded S) was obtained by scaling from
HereT is the temperaturek is the Boltzmann constank,; Edme in Ref.[21] by the use of the procedure discussed and
and A, are constants that determine the rate of nonresonamjuestioned in Sec. IV A, and furthermof@) the method of
molecular formation in an approximation linear i and  Ref. [21] for calculating Edwe is inapplicable to homo-
Ngy, SJf(T €17 is the rate of resonant molecular formation nuclear diatomic molecular ions such aldg)4.€ since the
from adu atom in a hyperfine state and a D, molecule in ~ Method takes advantage of the. distance that is shorter

a rotational stateJ; yielding a molecule ¢du),,deein a  than thed-u distance.

rotational stateJ; and with the subsystend@u),; having
spinS. The rateNr; sy is proportional to the transition ma-

trix element squaredV;|2 and to the Maxwell distribution
of the relative kinetic energl“F betweerdy and D, on the
assumption of negligible resonance widtfEE being re-
lated toey; through Egs(2) and (3). Thus the ratevg;, sy
depends ore;;. The parameter has been introduced to
scale|Vi¢|? in order to allow for errors iV;¢|2. The quantity
wfs‘;‘s(\]f ;a,\gyg) IS the fusion fraction or the fraction of mol-
ecules (ldu),,dee that lead tod-d fusion. It depends not

3
AT =Nt hogkT 3 ke, sy(Tiew)

X 08It ;Ao (24)

C. Possibility of cancellation between perturbation energies

The contributions tE"S in (ddu),,dee from the quad-
rupole terms to first order in the perturbation potential have
been found to be of order 1 meV. Moreover, this quadrupole
contribution, which is absent in the moleculédw) e, has
been found to depend on both the total angular momentum of
(ddu),,dee and the angular momentum of the molecule
Ndee It should be noted that contributions to the first-order
perturbation energy from higher multipole terms may par-
tially cancel these quadrupole contributions. However, the
only onJ; but also on the effective fusion rakg,s from the  degree of such cancellation, which may be state dependent
state §,v)=(1,1) and on the parameter. because of the different angular-momentum dependence of

The fitting was carried out using five adjustable param-the perturbation energies in different orders, remains to be
etersky, o, €11, Aiys, anda. The best fit to the data yielded demonstrated in the molecular systeduf.),,dee The pos-
€11 = —1966.1£ 0.2 meV, which seems to be in good agree-sibility of incomplete cancellation of the quadrupole terms
ment with a theoretical resukt;; = —1966.2 meV. How-  thus represents an additional limit on the accuracy of the
ever, this excellent agreement should be taken with reservdinite-size energy shift in this system.
tion since, for one thing, this theoretical result involves an
uncertainty of about 0.5 meV stemming from the uncertainty
in the deuteron polarizability7,10]. Another source of un-
certainty in the theoretical result is the inclusion of an esti- We would like to express our gratitude to Dr. D. Bakalov
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