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Quantum-mechanical calculation of the photodetachment of H2 in electric and magnetic fields
with arbitrary orientation

Z. Y. Liu and D. H. Wang
Department of Physics, Shandong Normal University, Jinan 250014, China

~Received 4 February 1997!

We derive general quantum-mechanical formulas for the photodetachment cross section of H2 in electric
and magnetic fields with arbitrary orientation. The formulas are valid for any linear polarization and for any
orientation. We have evaluated the cross-section spectra for different orientations of the electric and magnetic
fields and displayed the effects of the orientations upon the oscillatory structures of the cross sections.
@S1050-2947~97!11109-X#

PACS number~s!: 32.60.1i, 32.80.Fb, 03.65.Sq
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I. INTRODUCTION

The photodetachment of H2 in the presence of electri
and magnetic fields has been studied previously both qu
tum mechanically and closed-orbit theory. Du@1# performed
the quantum-mechanical analysis in parallel electric a
magnetic fields; Peters, Jaffe, and Delos@2# did the same
using closed-orbit theory. Peters and Delos@3# also evaluated
the cross section of H2 in perpendicular electric and mag
netic fields using both the quantum-mechnical method
closed-orbit theory. For H2 in electric and magnetic field
with any orientation@4#, we calculated the cross section b
using closed-orbit theory.

In this paper we present a general quantum-mechan
formula for the photodetachment cross section of H2 in
electric and magnetic fields with arbitrary orientation. As
earlier treatments@1–3#, we assume that the effects of th
external fields are so small in the region close to the ato
core that the fields can be neglected, and the binding po
tial dominates. After the active electron absorbs a photon
is detached and travels quickly away from the region near
core, entering the region in which the Coulomb interact
with the nucleus can be neglected and the electric and m
netic fields cannot. In the asymptotic region, the Schro¨dinger
equation is separable in Cartesian coordinates. In Sec. II
present the derivation of the analytic formulas for the pho
detachment cross section in electric and magnetic fields
any orientation; in Sec. III, we evaluate and display t
cross-section spectra for different orientations of the elec
and magnetic fields. Atomic units are used throughout
paper.

II. DERIVATION

A. Initial state

In the region close to the atomic core, we neglect
small effects of the electic and magnetic fields on the ac
electron of H2. The initial-state wave function of the activ
electron is taken as@1–3#

c i~r !5B0

e2 ikbr

r
, ~1!

where kb is related to the binding energy of the valen
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electron byEb5kb
2/2, andB0 is a ‘‘scale factor’’ with the

value being 0.315 52. The momentum representation of
initial wave function is

c i~p!5
A2/pB0

~kb
21k2!

. ~2!

B. Final states

After being detached by the photon, the active elect
propagates quickly away from the region close to the ato
core. Thus, in the final state, we neglect the effects of
short-range binding potential compared to the external fie
The final wave function can be taken to be the wave funct
of an electron in electric and magnetic fields.

We take the magnetic fieldH0 along the positivez axis
and take the electric fieldF in the x-z plane. The angle
between the electric and magnetic fields is denoted bya. It is
convenient to separate the electric fieldF into two compo-
nents: one isF1 (F15Fsina) in the positivex direction, and
the other isF2 (F25Fcosa) in the positivez direction. The
Hamiltonian is then given by

H5
1

2Fp2
A

c G2

1F1x1F2z, ~3!

where2F1x2F2z is the scalar potential of the electric field
andA is the vector potential of the magnetic field, which
defined by

A5H0xĵ , ~4!

where ĵ is a unit vector directed along the positivey axis.
Defining the quantities@3#

«5
1

2
px

21
1

2
vc

2Fx1
1

vc
S py1

F1

vc
D G2

~5!

and

Hz5
1

2
pz

21F2z. ~6!

The Hamiltonian can be reexpressed by
2670 © 1997 The American Physical Society
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H5«2
F1

vc
py2

1

2S F1

vc
D 2

1Hz , ~7!

where the cyclotron frequencyvc is equal toH0 /c. It is easy
to prove that«, py , and Hz are independently conserve
With the eigenvalues of«, py , andHz denoted by«n , py0

,

andEz0
, and with the wave functions of«, py , andHz de-

noted bycn(x), cy(y), andcz(z), we obtain

«cn~x!5«ncn~x!, ~8!

pycy~y!5py0
cy~y!, ~9!

Hzcz~z!5Ez0
cz~z!. ~10!

Equation~8! is the equation for a harmonic oscillator ce
tered at

xc~py0
!52

1

vc
Fpy0

1
F1

vc
G . ~11!

FIG. 1. Photodetachment cross sections of H2 in perpendicular
electric and magnetic fields. They are evaluated from the quan
mechanical formula, Eq.~37!, in Ref. @3#.
The center of the harmonic oscillator depends upon the
tial y componentpy0

of momentum. If we define the dimen
sionless quantity

X~x,py0
!5Avc@x2xc#, ~12!

the solution of Eq.~8! is the Hermite function

cn~x!5Un„X~x,py0
!…, ~13!

where the Hermite function is

Un~X!5F S vc

p D 1/2 1

2nn!
G 1/2

exp~2X2/2!Hn~X!, ~14!

with Hn(X) being the Hermite polynomial. The eigenvalu
of Eq. ~8! are

«n5~n11/2!vc ~n50,1,2, . . . !. ~15!

The solution of Eq.~9! is

-
FIG. 2. Photodetachment cross sections of H2 in electric and

magnetic fields with the angle of fields being 85°.
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cy~y!5
1

A2p
eipy0

y. ~16!

Defining the dimensionless quantity

j5~2F2!1/3S Ez0

F2
2zD , ~17!

we can write the solution of Eq.~10! as

cz~z!5F 4

F2
G1/6

AiF ~2F2!1/3S z2
Ez0

F2
D G , ~18!

where Ai is the standard Airy function@7# and (4/F2)1/6 is
the ‘‘energy normalized’’ constant. With the help of Eq
~13!, ~16!, and~18!, we achieve the final-state wave functio
and the total energy of the final state

c f~r !5cn~x!cy~y!cz~z!

5Un~X!
1

A2p
eipy0

yF 4

F2
G1/6

AiF ~2F2!1/3S z2
Ez0

F2
D G
~19!

and

Ef5«n2
F1

vc
py0

2
1

2S F1

vc
D 2

1Ez0
. ~20!

C. An approximation for the final state

In the region close to the atomic core, the small effects
the external fields can be neglected, and then the final s
can be taken to be a free state with suitably chosen am
tudes. Therefore, in this regioncn(x) can be approximately
written as@3#

cn~x!'Fn~x!5Ancos~px0
x!1Bnsin~px0

x!, ~21!

wherepx0
is thex component of momentum atx50. An and

Bn can be determined by the conditions that the approxim
wave function, Eq.~21!, and its derivative match the exa
wave function, Eq.~13!, and its derivative at the origin

An5Un~Xc!,

Bn5
Avc

px0

Un8~Xc!. ~22!

The prime in Eq.~22! refers to the differentiation of the
Hermite function with respect toXc , andXc is

Xc52Avcxc . ~23!

The approximate final wave function is then given by
f
te
li-

te

c f~r !>Fn~x!
1

A2p
eipy0

yF 4

F2
G1/6

AiF ~2F2!1/3S z2
Ez0

F2
D G .

~24!

D. Transformation to the momentum representation

In momentum space, Eq.~10! becomes

Fpz
2

2
1 iF 2

]

]pz
G c̃z~pz!5Ez0

c̃z~pz!. ~25!

The solution of Eq.~25!, i.e., the momentum representatio
of Eq. ~18! can be given by

c̃z~pz!5
1

A2pF2

expF i

F2
S pz

3

6
2Ez0

pzD G . ~26!

Finally, transforming to the momentum representation,
obtain the momentum representation of the final-state w
function

c̃ f~p!>
1

2AF2

@~An2 iBn!d~px2px0
!1~An1 iBn!

3d~px1px0
!#d~py2py0

!expF i

F2
S pz

3

6
2Ez0

pzD G .
~27!

E. Dipole matrix elements

The dipole matrix element for an arbitrary linear polariz
tion is given by

^c f ur uc i&5^c̃ f u i ,puc̃ i&. ~28!

Substituting Eqs.~2! and ~27! into Eq. ~28! and integrating
Eq. ~28!, we obtain the dipole matrix element for the line
polarization along thex axis,

K c̃ fU i d

dpx
Uc̃ i L

522A 2

pF2
B0BnE

2`

1` px0

~kb
21px0

2 1py0

2 1pz
2!2

3expF i

F2
S pz

3

6
2Ez0

pzD Gdpz . ~29!

The major contributions to the above integral come from
stationary phase pointspz satisfying

pz
2

2
2Ez0

50. ~30!
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Because the initial wave functionc̃ i(p) is slowly varying
around the stationary phase points, we calculate the inte
at the stationary phase points and take it outside the integ
Thus, we obtain

K c̃ fU i d

dpx
Uc̃ i L 522A 2

pF2
B0Bn

px0

~kb
21p2!2

3E
2`

1`

expF i

F2
S pz

3

6
2Ez0

pzD Gdpz

52
217/6p1/2

F2
1/6

B0Bn

px0

~kb
21p2!2

Ai

3F2
2Ez0

~2F2!2/3G . ~31!

Following a similar process, we obtain the dipole matrix e
ements for the other linear polarizations along they and z
axis, respectively,

FIG. 3. Photodetachment cross sections of H2 in electric and
magnetic fields with the angle of fields being 45°.
ral
al.

-

K c̃ fU i d

dpy
Uc̃ i L 52 i

217/6p1/2

F2
1/6

B0An

py0

~kb
21p2!2

Ai

3F2
2Ez0

~2F2!2/3G ~32!

and

K c̃ fU i d

dpz
Uc̃ i L 5219/6p1/2F2

1/6B0An

1

~kb
21p2!2

Ai 8

3F2
2Ez0

~2F2!2/3G . ~33!

F. Photodetachment cross section

The cross sectionsq for any linear polarization is related
to the dipole matrix element by

FIG. 4. Photodetachment cross sections of H2 in electric and
magnetic fields with the angle of fields being 5°.
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2p2

c (
n50

1` E
2`

1`

dpy0

3E
0

1`

dEz0
2Epz^c̃ f u i ,puc̃ i&z2d~Ef2E!, ~34!

whereq represents eitherx, y, or z. Ep is the energy of the
photon, which is equal to the sum of the binding energyEb
and the final energyE of the electron

Ep5Eb1E5~kb
21k0

2!/2. ~35!

Substituting the dipole matrix elements into Eq.~34!, we
obtain

sx5s0

3pvc

k0
3 S 4

F2
D 1/3

(
n50

1` E
2`

1`

dpy0
E

0

1`

dEz0
Ai2

3F2
2Ez0

~2F2!2/3GUn8
2~Xc!d~Ef2E!, ~36!

wheres0 is the cross section in the absence of the fields

s05
64p2B0

2

3c

k0
3

~kb
21k0

2!3
. ~37!

The two other cross sections fory andz linear polarizations
can be obtained in a similar manner,

sx5s0

3p

k0
3 S 4

F2
D 1/3

(
n50

1` E
2`

1`

dpy0
E

0

1`

dEz0
py0

2 Ai2

3F2
2Ez0

~2F2!2/3GUn
2~Xc!d~Ef2E! ~38!

and

sx5s0

3p

k0
3 ~16F2!1/3(

n50

1` E
2`

1`

dpy0
E

0

1`

dEz0
Ai2

3F2
2Ez0

~2F2!2/3GUn
2~Xc!d~Ef2E!. ~39!

Now let us reduce the cross-section formulas into comp
tional forms. According to the energy conservation, we ha

E5Ef5«n2
F1

vc
py0

2
1

2S F1

vc
D 2

1Ez0
, ~40!

whereEz0
is equal topz0

/2, with pz0
being thez component

of momentum at the origin. SinceEz0
is greater than or equa

to zero, the energy conservation equation~40! forces a lower
limit on the value ofpy0
a-
e

py0
>py0

min[
vc

F1
F«n2E2

1

2S F1

vc
D 2G . ~41!

Thus, the integral*2`
1`dpy0

becomes*p
y0

min
1`

dpy0
. Considering

the d function and integrating first overEz0
, we obtain

sx5s0

3pvc

k0
3 S 4

F2
D 1/3

(
n50

1` E
py0

min

1`

dpy0
Ai2

3F2
2Ez0

~2F2!2/3GUn8
2~Xc!, ~42!

sy5s0

3p

k0
3 S 4

F2
D 1/3

(
n50

1` E
py0

min

1`

dpy0
py0

2Ai2

3F2
2Ez0

~2F2!2/3GUn
2~Xc!, ~43!

and

sz5s0

3p

k0
3 ~16F2!1/3(

n50

1` E
py0

min

1`

dpy0
Ai 82

3F2
2Ez0

~2F2!2/3GUn
2~Xc!, ~44!

whereEz0
is determined by the energy conservation

Ez0
5E1

F1

vc
py0

1
1

2S F1

vc
D 2

2«n . ~45!

According to Eqs.~11! and ~23!, py0
is related toXc by the

relationshipXc5@py0
1F1 /vc#/Avc, so there is also a mini-

mum value ofXc ,

Xc>Xc
min[

Avc

F1
F«n2E1

1

2S F1

vc
D 2G . ~46!

Making a change of variable frompy0
to Xc , the integral

*p
y0

min
1`

dpy0
can be changed into*X

c
min

1` AvcdXc , andEz0
can be

reexpressed in the following way:

Ez0
5

F1

Avc

@Xc2Xc
min#. ~47!

Finally, we obtain the computational forms of the cross s
tions
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sx5s0

3pvc
3/2

k0
3 S 4

F2
D 1/3

(
n50

1` E
Xc

min

1`

dXcAi2

3F2
2F1 /Avc

~2F2!2/3
~Xc2Xc

min!GUn8
2~Xc!, ~48!

sy5s0

3pvc
3/2

k0
3 S 4

F2
D 1/3

(
n50

1` E
Xc

min

1`

dXcFXc2
F1

vc
3/2G 2

Ai2

3F2
2F1 /Avc

~2F2!2/3
~Xc2Xc

min!GUn
2~Xc!, ~49!

and

sz5s0

3pvc
1/2

k0
3 ~16F2!1/3(

n50

1` E
Xc

min

1`

dXcAi 82

3F2
2F1 /Avc

~2F2!2/3
~Xc2Xc

min!GUn
2~Xc!. ~50!

III. RESULTS AND DISCUSSION

The range of the energyE is taken to be from 0 to 8.0
31025 a.u. The electric and magnetic fields are chosen to
18 V/cm and 3/5 T, respectively. Assuming that the light
linearly polarized and using the reduced computatio
forms, we have evaluated the cross sections for differ
angles between the fields. Figures 1–5 display the cr
section spectra. We see that the spectra are smooth, r
functions~cross sections0 in the absence of fields!, super-
posed upon which are oscillations. There are no divergen
on the curves.

As the anglea is close top/2, for example, ata585°
~Fig. 1!, the amplitudes of the oscillations on the cross s
tion sz ~Fig. 2! are so small that they are almost invisibl
However, the amplitudes of the oscillatory structures up
the cross-section spectrasx and sy are large. Comparing
Fig. 1 to Fig. 2, we can see that cross sectionssx and sy
A

e

l
nt
s-
ing

es

-

n

have the same oscillatory structures as the ones ata5p/2.
As the value of the anglea decreases fromp/2, the os-

cillatory amplitudes ofsz increase quickly. For example, a
a545°, the oscillatory amplitudes ofsz are large and then
can be identified clearly. We can see that at this angle,sx

and sz almost have the same oscillatory structures, and
oscillatory structures ofsx andsy are still similar to the ones
at a5p/2. These results are consistent with the predictio
of the closed-orbit theory@4#.

As the value of the anglea continues to decrease, th
oscillatory amplitudes ofsz continue to increase, and th
oscillatory structures ofsx , sy , and sz deviate from the
ones ofa5p/2. For example, ata55°, we can see this
clearly from Fig. 4. Comparing Fig. 4 to Fig. 5, we can s
that when the value ofa is close to zero, the oscillating
structures of cross-section spectra will be tending toward
ones ata50.
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