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Quantum-mechanical calculation of the photodetachment of H in electric and magnetic fields
with arbitrary orientation

Z. Y. Liu and D. H. Wang
Department of Physics, Shandong Normal University, Jinan 250014, China
(Received 4 February 1997

We derive general quantum-mechanical formulas for the photodetachment cross sectionoeldctric
and magnetic fields with arbitrary orientation. The formulas are valid for any linear polarization and for any
orientation. We have evaluated the cross-section spectra for different orientations of the electric and magnetic
fields and displayed the effects of the orientations upon the oscillatory structures of the cross sections.
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PACS numbgs): 32.60:+i, 32.80.Fb, 03.65.Sq

I. INTRODUCTION electron byE,=k2/2, andB, is a “scale factor” with the
value being 0.315 52. The momentum representation of the
The photodetachment of Hin the presence of electric initial wave function is
and magnetic fields has been studied previously both quan-

tum mechanically and closed-orbit theory. bl performed V2/7By
the quantum-mechanical analysis in parallel electric and ¢i(p)=‘(kz+kz)' 2
b

magnetic fields; Peters, Jaffe, and De[@$ did the same
using closed-orbit theory. Peters and Ddl®kalso evaluated _
the cross section of H in perpendicular electric and mag- B. Final states

netic fields using both the quantum-mechnical method and After being detached by the photon, the active electron
closed-orbit theory. For H in electric and magnetic fields propagates quickly away from the region close to the atomic
with any orientation/4], we calculated the cross section by core. Thus, in the final state, we neglect the effects of the
using closed-orbit theory. short-range binding potential compared to the external fields.

In this paper we present a general quantum-mechanicgthe final wave function can be taken to be the wave function
formula for the photodetachment cross section of lh of an electron in electric and magnetic fields.

electric and magnetic fields with arbitrary orientation. As in We take the magnetic f|e|[3||0 a|0ng the positi\/g axis
earlier treatment$1-3], we assume that the effects of the and take the electric fiel&F in the x-z plane. The angle
external fields are so small in the region close to the atomigetween the electric and magnetic fields is denoted Hyis
core that the fields can be neglected, and the binding poteRpnvenient to separate the electric figldnto two compo-
tial dominates. After the active electron absorbs a photon, ihents: one i§, (F,=Fsine) in the positivex direction, and
is detached and travels quickly away from the region near thehe other isF, (F,=Fcos) in the positivez direction. The
core, entering the region in which the Coulomb interactionyamiitonian is then given by

with the nucleus can be neglected and the electric and mag-

netic fields cannot. In the asymptotic region, the Sdhrger 1[ Al?
p —

equation is separable in Cartesian coordinates. In Sec. I, we H=3 +Fix+Fsz, (©)

present the derivation of the analytic formulas for the photo-

detachment cross section in electric and magnetic fields witlvhere— F,x— F,z is the scalar potential of the electric field,
any orientation; in Sec. Ill, we evaluate and display theandA is the vector potential of the magnetic field, which is
cross-section spectra for different orientations of the electriglefined by

and magnetic fields. Atomic units are used throughout this

paper. A=HX], (4)

Il. DERIVATION wherej is a unit vector directed along the positiyeaxis.

A Initial state Defining the quantitie$3]

In the region close to the atomic core, we neglect the 1 2+} ) +i +E 2 5
small effects of the electic and magnetic fields on the active B P @ XTI Py
electron of H. The initial-state wave function of the active
electron is taken agl—3] and
e*ikbr 1 5
$i(r)=Bg T (2) H=5pz+Faz. (6)

where k;, is related to the binding energy of the valence The Hamiltonian can be reexpressed by
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FIG. 1. Photodetachment cross sections of i perpendicular FIG. 2. Photodetachment cross sections of H electric and

electric and magnetic fields. They are evaluated from the quantumyagnetic fields with the angle of fields being 85°.
mechanical formula, Eq37), in Ref.[3].

The center of the harmonic oscillator depends upon the ini-

F 1/F;\2 i i imen-
Hep 1 - _(_1 +H,, 7) tl'a| y compone'npyO of momentum. If we define the dimen
W 2\ o sionless quantity
where the cyclotron frequeney, is equal toHy/c. It is easy X(X,Py,)= Jodx—x, (12)

to prove thate, p,, andH, are independently conserved.
With the eigenvalues of, p,, andH, denoted bye,,, Py,

) i the solution of Eq(8) is the Hermite function
and Ez, and with the wave functions aof, p,, andH, de-

noted byyn(x), #y(y), andi,(z), we obtain Pn(X) = Un(X(X,py,)), (13
en(X) = enihn(X), ®  where the Hermite function is
py¢y(y):py0¢y(y)’ ) w\12 1 12
Un(X)= (f) pe exp(— X2 2)H(X), (14)
n!

H i, (2)= Ezolr/fz(z)- (10

) i . . ) with H,(X) being the Hermite polynomial. The eigenvalues
Equation(8) is the equation for a harmonic oscillator cen- of gq. (8) are
tered at

. en=(N+12w, (N=0,1,2...). (15)

We

Fi
Py, + —} (11

We

Xc( pyo) =

The solution of Eq(9) is
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1/6

1 1 Ez0
Py(y)= \/?e'pyoy- (16) he(r)=Pn(x) EG'DVOV[F—J Ai{(ZFz)llg( z— F_) }

T 2
(24)
Defining the dimensionless quantity

D. Transformation to the momentum representation

E
§=(2F2)1’3(j—z>, (17) In momentum space, E@10) becomes
P 9
we can write the solution of Eq10) as 22 +|F2& }l/lz(pz) E, 4,(p,). (25
0
4]ve E, The solution of E i i
|2 : e q(25), i.e., the momentum representation
V2= | g } A'[(ZF ) (Z E L (18 of Eq. (18) can be given by

where Ai is the standard Airy functiof7] and (4F,) is L _ p3
“ ] . - i
the “energy normalized” constant. With the help of Egs. (D)= EX;{FZ( z ZopZ” 26)

(13), (16), and(18), we achieve the final-state wave function J2mF, 6
and the total energy of the final state
Finally, transforming to the momentum representation, we
Pr(1) = () Py (Y) ¥ 2) obtain the momentum representation of the final-state wave

function

1 ) 4 1/6 EZO
zudxy——éwy—ﬁ Ai| (2F )Y z— —
F2 F2

N - 1 , .
(19) '/ff(p)=TF—Z[(An_an)5(px_pxo)+(An+|Bn)
and i (P
_ e , X 5( Px+ pxo)] 5( py_ pyo)exf{F_z( g - Ezopz) } .
1 1
Ei=e,— w—cpyo— z(w—c + EZO' (20 (27)

E. Dipole matrix elements

C. An approximation for the final state
The dipole matrix element for an arbitrary linear polariza-

In the region close to the atomic core, the small effects otjon is given by
the external fields can be neglected, and then the final state
can be taken to be a free state with suitably chosen ampli- _~ i~
tudes. Therefore, in this regiof,(x) can be approximately (elrl )y =iV ol ). (28)

written as[3
(3] Substituting Egs(2) and (27) into Eq. (28) and integrating

. Eq. (28), we obtain the dipole matrix element for the linear
In()~D(X) = Ayco8 Py X) + Bysin(p ), (21) %12 P
wherepXO is thex component of momentum &t&=0. A,, and

polarization along the axis,
B, can be determined by the conditions that the approximat Tl

wave function, Eq(21), and its derivative match the exact

wave function, Eq(13), and its derivative at the origin

An=Ur(Xo), ENET TN
- (kb+px

Voo -3
B,= X 22 I[Pz
=g Un(Xo). (22 XeXF{FZ(6 EZOpZ)

dm

+p%+p9

dp,. (29)

The prime in Eq.(22) refers to the differentiation of the
Hermite function with respect t¥., andX; is
P2

Xe= —JoXe. (23
- E =0. (30

The approximate final wave function is then given by 2

The major contributions to the above integral come from the
stationary phase poin{s, satisfying
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FIG. 3. Photodetachment cross sections of k electric and FIG. 4. Photodetachment cross sections of h electric and
magnetic fields with the angle of fields being 45°. magnetic fields with the angle of fields being 5°.
Because the in_itial wave functi_oﬁi(p) is slowly varyi_ng d 21706172 by
around the stationary phase points, we calculate the integral i — T ) =—i B.A O A

. . . . . wf Id l// | 1/6 0™n" o 2.2 I
at the stationary phase points and take it outside the integral. Py F> (kg+p9)
Thus, we obtain
2E,,
X _—(ZF 25 (32
<Z_dzz> NI 2
dp,| " mFy 7" (K24 p?)2
and
+oo i p3
X F2 6 ZOpZ de
1716, 172 Uili —| ¢ ) = 21907 12F Leg A ;Ai’
2 Px, . Il dp,| ™ 2 207N 2y 12y2
=~ e BoBa 5 ——SAl ’ (ko +p7)
F3 (kp+p?)
2EZO
2EZO X (ZF )2/3 (33)
- x| (3D
(2F»)

Following a similar process, we obtain the dipole matrix el- F. Photodetachment cross section

ements for the other linear polarizations along thand z The cross sectionrg, for any linear polarization is related
axis, respectively, to the dipole matrix element by
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. 1/F;\?
En— _Ea)_c

o ~ ~ - ) + oo . .
X fo dEZOZEpIWfIinIt//i>|26(Ef—E), (34)  Thus, the integral ' Zd Py, becomesfpgqomd Py, Considering

the & function and integrating first ovef, , we obtain

(41

2m tee min_ %c
Uq:TnEO f_w dpyo pyOZ pyo _F_l

whereq represents eithex, y, or z. E, is the energy of the
photon, which is equal to the sum of the binding enefgy

and the final energ§ of the electron 37w 4 1/3§ b, A2
0x= 0o K3 F_2 =0 m|n
0
Ep=Ep+E=(ki+k})/2. (35 -
z, ,
Substituting the dipole matrix elements into H&4), we X[_ (2F )7 Un2(Xe), (42
obtain 2
B 377(1)C 1/3+0° B 37 4 1/3§ too 2
0x= 00 kg F2 f deof dE AI Oy=0073 k3 E. m|n pyopyo
2E,, 26, | |
X )O(Es—E), (36 X| — ——=|Ui(X,), 43
(2F )2/3 ( c ( f (2F2)2/3 n( C) ( )
where oy, is the cross section in the absence of the fields g
647°B3 k3 -
G ) =0 3165 3, y Lt
The two other cross sections fgrandz linear polarizations
can be obtained in a similar manner, UZ(X,), (44)
(ZF )2/3 nisre
1/3+°o
oy=0 k3 (F_) f dpy, f dE, py Ai? whereE, is determined by the energy conservation
2
2E, 2
0 2 Fl 1 Fl
X| = Ur(X.)o(Es—E 38 = = 2 —
|: (2F2)2/3 n( C) ( f ) ( ) EZO E+ Q)pr0+2 wc) Sn. (45)
and According to Eqs(11) and(23), p, is related toX. by the
relationshipX.=[py,+ F1/wc]/ o, so there is also a mini-
+ + oo
o —0'0 a T (167, )1’32 f dpyof dE, AI® mum value ofXc,
—® 0
2
ZEZ min_ \/w—c _ E( E)
— )02/3 U2(X,) 5(E,— E). 39 e i Pl (46)

Now let us reduce the cross-section formulas into computa- Making a change of variable fromy, to X, the integral

tional forms. According to the energy conservation, we have +m.nd py, can be changed |ntf)5<m.n\/_d X., andE, can be

reexpressed in the following way:

Fi 1/F,\?
E=Ef=8n—w—cpy0—§ w—c +EZO' (40) .
_ 1 __ymin
whereE, is equal top, /2, with p, being thez component Bz \/w—c[XC Xl @7

of momentum at the origin. Sindg, is greater than or equal

to zero, the energy conservation equatié@) forces a lower Finally, we obtain the computational forms of the cross sec-
limit on the value ofpyo tions
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dXAi?

+ oo
377(0(3:/2 4\13 +o0
Ox=09g

Kk R,
_ 2Ry /e
(2F,)%°

— min
n=0 XC

(Xe=XPM [UJA(X), (49

2

F
L aj2

312
w Cc

dX | X.—

+
377'003/2 ANB T [+
oy=09

kg F_Z n=0

2F 1 o,

(2R

min
XC

(X=X [UZ(X,), (49)

and

ol o
- (16F2)1/32f dXAi'2
k3 =0 Jxmin

2F 3 o
>< R ——

(2F2)2l3

0,=0g

(Xe—=XPM [UZ(X).  (50)

Ill. RESULTS AND DISCUSSION
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FIG. 5. Photodetachment cross sections of i electric and
magnetic fields. The cross section in parallel electric and magnetic
fields (@=0) is calculated from the quantum-mechanical formula,
Eq. (12b), in Ref.[1].

have the same oscillatory structures as the ones=atr/2.

As the value of the angle decreases fromr/2, the os-
cillatory amplitudes ofo, increase quickly. For example, at
a=45°, the oscillatory amplitudes af, are large and then
can be identified clearly. We can see that at this angle,
and o, almost have the same oscillatory structures, and the
oscillatory structures af, ando are still similar to the ones
at o= 7/2. These results are consistent with the predictions

The range of the energl is taken to be from O to 8.0 of the closed-orbit theorj4].
% 10~° a.u. The electric and magnetic fields are chosen to be As the value of the angler continues to decrease, the
18 V/em and 3/5 T, respectively. Assuming that the light ispscillatory amplitudes ofr, continue to increase, and the
linearly polarized and using the reduced computationabscillatory structures ofr,, oy, and o, deviate from the
forms, we have evaluated the cross sections for differengnes of o= #/2. For example, aw=>5°, we can see this
angles between the fields. Figures 1-5 display the Crosgsiearly from Fig. 4. Comparing Fig. 4 to Fig. 5, we can see
section spectra. We see that the spectra are smooth, risifigat when the value ofr is close to zero, the oscillating

functions(cross sectiorrg in the absence of fielflssuper-

structures of cross-section spectra will be tending toward the

posed upon which are oscillations. There are no divergencgsnes atw=0.

on the curves.
As the anglea is close tow/2, for example, aix=85°

(Fig. 1), the amplitudes of the oscillations on the cross sec-
tion o, (Fig. 2) are so small that they are almost invisible.
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