
PHYSICAL REVIEW A OCTOBER 1997VOLUME 56, NUMBER 4
Fractional occupation numbers in density-functional theory

R. K. Nesbet
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099

~Received 15 May 1997!

Density-functional theory for ensembles defined by fixed weights and fractional occupation numbers is
derived using a Lagrange-multiplier version of the constrained-search procedure. This is related to an adiabatic
connection between a generalized Kohn-Sham ensemble for noninteracting electrons and a minimum-energy
ensemble including the electronic Coulomb interaction. Using this formalism, it is shown that discontinuous
changes of the chemical potential of a finite electronic system result from constraints on density variations
imposed by Fermi statistics. Such discontinuities do not exclude the possibility of defining an exchange-
correlation energy functional that is free of derivative discontinuities for unconstrained density variations.
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PACS number~s!: 31.10.1z, 71.10.2w
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I. INTRODUCTION

Perdewet al. @1# showed some time ago that the chemic
potential of any isolated open system with a discrete ene
gap, in particular of any atom, is described by a step func
that has a finite step for each integral number of electro
This was attributed to derivative discontinuities in t
exchange-correlation density functional evaluated for va
ing numbers of electrons@2#. Although a formula for the
derivative discontinuity derived by Sham and Schlu¨ter @3#
was later shown to vanish@4#, Gunnarsson and Scho¨nham-
mer @5,4# derived such a discontinuity from an exactly sol
able model of a finite linear chain of atoms with two nond
generate energy levels.

In apparent contrast to these developments in dens
functional theory, the Fermi-liquid theory of Landau@6,7#
postulates an energy functional for interacting electrons
is a smooth function of occupation numbers for Ferm
quasiparticles@8#. Slater and Wood@9# showed that one-
electron energies computed as eigenvalues of an effec
one-electron Hamiltonian in a statistical theory of interact
electrons are partial derivatives of the total energy with
spect to variations of fractional occupation numbers, as
Landau theory. Slater@10,11# pointed out that Fermi statis
tics, appropriate to Landau quasiparticles, is a consequ
of a statistical theory of weakly interacting identical atom
forming a superlattice or equivalent crystal, and also that
derivative formula for one-electron energies is valid for a
statistical density theory. This was confirmed by Janak@12#
for density-functional theory.

The present paper is concerned with reconciling these
different approaches to the statistical theory of interact
electrons. The goal is to justify the use of Landau theo
using fractional occupation numbers, for finite or localiz
electronic systems. An important distinction made here
that discontinuities in the chemical potential appropriate
such systems may arise either from explicit derivative d
continuities in the appropriate energy functionals of elect
density or from constraints due to the Fermi statistics of
relevant electron quasiparticles. It will be shown that t
step-function character of the chemical potential for ato
considered by Perdewet al. @1# is a direct consequence o
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Fermi statistics and does not in itself imply derivative d
continuities in the energy functionals for unconstrain
variations of the electron density.

In order to discuss these issues, a derivation of statist
density-functional theory is given here, in Sec. II, in whic
the effective external potential appears explicitly as
Lagrange-multiplier field in a constrained-search formali
@13#. This approach builds in a mutually determining reci
rocal relationship between the statistical electron density
the external potential, both taken here to be spin-inde
scalar fields defined inR3. When the electronic Coulomb
interaction is scaled by a coupling constantl, this formalism
provides a generalized adiabatic connection for intermed
values 0<l<1 @14,15#. The result is to unify the adiabatic
connection formalism with the use of fractional occupati
numbers.

Section III defines the chemical potential and one-elect
energies in terms of the ensemble theory. In Sec. IV t
theory is applied to consider the charge state of an atom
statistical equilibrium with a reservoir of electrons at chem
cal potentialm. It is shown that the chemical potential of th
atom is indeed described by a step function, in agreem
with Perdewet al. @1#, as a result of constraints on occup
tion numbers due to Fermi statistics. But the present der
tion makes it clear that this result is consistent with an in
pendent postulate of smooth variation of the dens
functional with respect to unconstrained variations of t
electron density. Conclusions are summarized in Sec. V.

II. CONSTRAINED SEARCH USING LAGRANGE
MULTIPLIERS

The derivation presented here is intended to genera
and encompass earlier derivations of density-functio
theory for statistical ensembles. The theory of Hohenb
and Kohn~HK!, for N-electron ground states@16#, was ex-
tended to the grand canonical ensemble at nonzero temp
tures by Mermin@17#. A statistical postulate was introduce
by Janak@12# in order to define continuous variations o
occupation numbers in an extended Kohn-Sham@18# theory.
Using the constrained search logic of Levy@13#, Perdew
et al. @1# considered statistical ensembles of states with
2665 © 1997 The American Physical Society
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2666 56R. K. NESBET
ferent electron numbersN. Gross, Oliveira, and Kohn@19#
considered ensembles of fractionally occupied states with
same number of electrons, thus generalizing the theor
excitation energies.

To establish a suitable notation, an ensemble of w
functions$Cg% defines the statistical mean value^X& of any
observableX as the sum(gwg^X&g with fixed weight coef-
ficientswg>0 that sum to unity. Each correlated wave fun
tion Cg is defined for an integral number of electronsNg and
determines an electronic density functionrg , such that the
statistical ensemble density function isr5^r&5(gwgrg .
Following the ansatz of Kohn and Sham~KS! @18#, a refer-
ence stateFg that is a wave function for noninteracting ele
trons is defined for each wave functionCg such that the
density functionrg is the same for both states. An alternati
ansatz, requiringF to have maximum projection onC for
each indexg, used in the recently developed reference-st
density-functional theory~RDFT! @20#, will be considered in
a separate publication.

An ensemble of variational trial functions is denoted he
by $C% t , where each trial functionCgt satisfies a defining
condition that characterizes the indexg, for example, the
value ofNg or the integral occupation numbers that char
terize the reference statesFgt . A functional of r~r ! is de-
fined by

Fv@r#5min
$C%t

S ^~CuT1UuC!/~CuC!& t1E v~r t2r!d3r D
5E@v#2E vrd3r . ~1!

The external potential functionv(r ), common to all mem-
bers of the ensemble, acts as a Lagrange-multiplier fi
E@v# here is the minimum ensemble energy consistent w
the defining constraints that characterize indexg. The mini-
mizing ensemble determines electron densityrv . General-
ized Hohenberg-Kohn theorems follow immediately fro
this definition. If v5vr , such thatrv5r, the minimizing
ensemble$C%r defines a universal functional such that

F@r#5^~CuT1UuC!/~CuC!&r

5Fv@rv#5E@v#2E vrvd3r , ~2!

the appropriate generalization of the second HK theor
Suppose thatF@r# is determined by an ensemble$C%r for
which vrÞv. Then

Ev@r#5F@r#1E vrd3r5^~CuT1V1UuC!/~C/C!&r

>E@v#, ~3!

which generalizes the first HK theorem.
In analogy to Kohn-Sham theory, an ensemble of ref

ence states$F% is defined by applying Eq.~1! to the kinetic
energy operator only. The Lagrange-multiplier field in th
case isvKS. Because all trial ensemble density functionsr t
integrate to the same constant total number of electr
^N&, the integral ofr t2r must vanish, andvKS is deter-
e
to
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mined only up to an additive constant potential. It will b
assumed here that this constant is chosen so thatvKS van-
ishes for an electron far outside the charge distribution. T
universal functional for this reference-state ensemble defi
the kinetic energy functionalT@r#. An ensemble exchange
correlation functional is defined by subtraction,

Exc@r#5F@r#2T@r#2U@r#, ~4!

whereU@r# is the classical Coulomb energy.
The subsequent derivation of one-electron equations

lows as in KS theory. Expressed in terms ofExc , the effec-
tive Hamiltonian takes the form

H5HHartree1vxc , ~5!

wherevxc5(d/dr)Exc@r#. This derivation implies that the
Lagrange-multiplier fieldvKS in the noninteracting case mus
be identical to the KS potential function except for a possi
additive constant. To show this in detail, the absolute m
mum property of Eqs.~2! and ~3! implies that the ensemble
energy functionalEv@r# is stationary for variations ofr
aboutrv that conservêN&. This is consistent with

E d3r S d

dr
F@r#1v~r !2m D dr~r !50, ~6!

for unconstrained variations, where the chemical potentiam
is determined by fixing a specific value of^N&. Similarly, for
the ensemble describing noninteracting electrons,

E d3r S d

dr
T@r#1vKS~r !2m D dr~r !50. ~7!

These two equations determine the same densityr if the two
chemical potentials are equal and ifvKS5v1vcl1vxc ,
where

vcl5
dU@r#

dr
, vxc5

dExc@r#

dr
. ~8!

Since the fieldvKS is the same for all states in the en
semble, a single orthonormal set of noninteracting o
electron eigenfunctions suffices to construct all of the r
evant reference states. This fact justifies, in retrospect,
definition of states in the ensemble by different values
index g according to occupation numbers for these orb
functions. Different KS orbital functions are occupied
each restricted set of trial reference functionsFgt . Each trial
densityrgt must be compatible with this occupation patter

An adiabatic connection@14,15# can be established b
defining an intermediate Hamiltonian, for each integral nu
ber of electrons in the ensemble,

Hl5T1Vl1lU. ~9!

With r fixed, the potentialvl(r ) is determined for all values
of l by the constrained-search procedure. This ensures
v15v if $C% is the minimizing ensemble forl51 and that
v05vKS if $F% is the minimizing ensemble for noninterac
ing electrons. It can be shown@21# that the Hellmann-
Feynman theorem is valid for ensembles as defined h
Then for eachl
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]

]l
El5 K U1

]

]l
VlL

l

, ~10!

whereEl is the minimal mean energy of the ensemble.
integrating overl this gives

E15E01E
0

1

dl K U1
]

]l
VlL

l

5^H1&5E@v#. ~11!

This determines the exchange-correlation energy functio
for the defined ensemble,

Exc@r#5E
0

1

dl~^U&l2U@r#!, ~12!

whereU@r# is the classical Coulomb energy.

III. FERMI STATISTICS AND THE CHEMICAL
POTENTIAL

Defining E@r#5F@r#1*vrd3r for fixed v, Eq. ~6! im-
plies for variations of the electron densityr

E d3r S d

dr
E@r#2m D dr~r !50, ~13!

or dE2mdN50. Hence m5]E/]N @22#. If the density
function can be varied freely at each point inR3, for fixed
v, this equation also implies

dF

dr
1v~r !5m, ~14!

a classical equation to be solved forr. When the kinetic
energy functional is simplified and the exchange-correlat
functional omitted this becomes the basic equation of
Thomas-Fermi method@23#. For variations that conserv
N, dr integrates to zero, and the term inm drops out of Eq.
~13!. This implies thatm can only be determined by varia
tions that do not conserveN @22#. The status of Eq.~14! in an
ensemble theory, in which all information comes from wa
functions defined only for integral values ofN, is unclear.

The derivation of Janak’s theorem@12#

e i5
]E@r#

]ni
~15!

also assumes that the energy functional can be varied fr
without conservingN. In the context of Kohn-Sham theory
an implicit assumption is made that the rules of Fermi sta
tics apply to occupation numbers associated with the
orbital eigenfunctions. At zero temperature,

ni51, e i,m, 0<ni<1, e i5m, ni50, e i.m.
~16!

In a theory based onN-electron wave functions, variations o
r must be consistent with these limits on the range of oc
pation numbers. It will be argued below that this is a genu
constraint, implying that the Thomas-Fermi equation is
strictly valid in quantum theory, even if augmented by
n
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exchange-correlation functional and modified to incorpor
the kinetic energy functional of Kohn and Sham.

IV. CONSTRAINT ON VARIATIONS
DUE TO FERMI STATISTICS

Consider an atom in equilibrium with a reservoir of ele
trons. The chemical potential of the reservoir is fixed.
thermochemical equilibrium, the chemical potential of t
atom must adjust to equal the reservoir value, thus determ
ing the charge state of the atom. Perdewet al. @1# consider an
ensemble of charge states withN5Z21, N5Z, andN5Z
11. Postulating that the energy of the ensemble is m
mized and thatE(N) is defined for integralN but interpo-
lated by a function that is concave upwards, the assump
of nonnegative weights confines nonzero weights to the
adjacent integral values ofN that enclose a given nonintegra
mean value. This implies that the mean energy must v
linearly between each two successive states of integraN.
The derivative functionm5]E/]N is a step function@1#

m52I , Z21,N,Z, m52A, Z,N,Z11,
~17!

where I is the ionization potential andA is the electron af-
finity. This is discontinuous for the neutral atom,N5Z. The
average of the two limiting values atN5Z is 2 1

2 (I 1A), or
minus the Mulliken electronegativity. Comparing Kohn
Sham theory, this discontinuous behavior may arise from
discontinuity in the functional derivativedExc /dr, or be ex-
plicitly due to a discontinuous change of the undetermin
constant in the potential fieldvKS @2#.

The weight coefficients for three adjacent charge sta
can be expressed in terms of occupation numbersnI , for the
highest occupied level of the stateN5Z, and nA , for the
highest occupied level of the stateN5Z11. In the rangeZ
21<N<Z11, these occupation numbers are related to
weight functions by

nI5wZ1wZ11 , nA5wZ11 , ~18!

such thatnI1nA5N2Z11. Equivalently, the weight func-
tions are given by

wZ21512nI , wZ5nI2nA , wZ115nA , ~19!

such thatwZ211wZ1wZ1151. Fermi statistics requires 0
<nA , and forcesnA50 in the rangeZ21<N<Z, so that
nI1nA5N2Z11 implies nI5N2Z11 in this range.
Fermi statistics requiresnI<1 and forcesnI51 for Z<N
<Z11, so thatnI1nA5N2Z11 impliesnA5N2Z in this
range. The derivativesdn/dN anddw/dN are discontinuous
at N5Z because of these restrictions on the occupation n
bers. These constraints are equivalent to the condition
the weight coefficients should be positive, and the impl
weight constants agree with those deduced by Perdewet al.
@1#, giving the same step function form(N). However, the
present argument shows that this discontinuity is a dir
consequence of Fermi statistics, and gives no informa
about a possible derivative discontinuity of the energy fu
tional if defined for all possible density functionsr.
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2668 56R. K. NESBET
The derivation given here, which covers the charge-s
ensemble as a particular case, makes it very difficult to
where a derivative discontinuity might arise in the function
Exc@r# if r is allowed to vary freely. This functional is uni
versal for all external potentials and selects an appropr
potential as a Lagrange multiplier field. The arbitrary co
stant in the external potential function is determined by
perimental conditions, and is ordinarily fixed in theoretic
calculations by the condition that the potential should van
in the limit of large separation of one electron from
N-electron system.

In order to separate the question of smooth variation
the universal functionalExc@r# for free variations ofr from
constraints due to Fermi statistics, consider ground state
ues ofE(N) for an atom in three successive charge sta
such that E(Z21)5E(Z)11 and E(Z11)5E(Z)2A.
This is interpolated smoothly by a quadratic function

E~N!5E~Z!2 1
2 ~ I 1A!~N2Z!1 1

2 ~ I 2A!~N2Z!2.
~20!

This formula gives the correct center2 1
2 (I 1A) and width

I 2A of a band gap@24# for solids as well as for atoms o
molecules. The implied chemical potential is a continuo
linear function

m52 1
2 ~ I 1A!1~ I 2A!~N2Z!. ~21!

If one adopts the point of view of Landau@6,7# and of
Slater@10,11#, the energy functional of a system of electro
should be considered to vary smoothly as a function of d
sity or of unconstrained occupation numbers. The ac
physical state of the system, however, is determined
Fermi-Dirac statistics through a distribution function that d
pends on one-electron energies, defined as partial deriva
with respect to freely variable occupation numbers. Valu
of the occupation numbers are determined that are subje
the restriction 0<ni<1. Physically realizable variations o
the electron density are constrained by this restriction, so
the full variability of the postulated energy functional cann
be explored. It is relevant to remark that in practical app
cations of DFT, exchange-correlation functionals are or
narily used that necessarily have continuous derivatives,
e
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cause they are derived from the local density or local den
gradient, with no consideration of the total electron numb
@25,26#.

V. CONCLUSIONS

The ensemble theory leads to a very strong constrain
variations of electron densityr for nonintegralN. Mean val-
ues of all observables are determined by interpolation
tween their values for the two integral-N ground states tha
bound each interval of nonintegralN. Since only the two end
values are specified and the weight coefficients are linea
N, r and all observables are interpolated as linear functi
of N. At this point, the ensemble theory appears to be
contradiction with approximations to the kinetic energ
Coulomb, and exchange density functionals that indicate
these are nonlinear functions of density@25#. If r varies lin-
early with nonintegralN, this cannot also be true for th
various components of the energy functional other th
V@r#.

For any system with an energy gap, the ensemble the
implies a derivative discontinuity in the mean value of a
observable at the integral value of electron numberN just
below the gap. The resulting chemical potential for any at
or molecule is a step function with a finite increment at ea
integral value ofN. This discontinuity is inherent in Ferm
statistics for electrons or electron quasiparticles. If
smoothly varying energy functional exists that gives corr
values for integralN, this theory cannot exploit it.

Following the logical principle of Occam’s razor, it migh
be more practical to interpolate this functional smoothly b
tween values defined for integral numbers of electrons t
to build derivative discontinuities into it. Such an interpol
tion is achieved with the superlattice model@10,20#, in which
fractional occupation numbers arise as in energy-band the
as the probability of locating an electron in a Bloch wave
a particular atomic site. The interaction energy terms
inherently nonlinear in electron number, and energy diff
ences must be obtained by integrating over continuou
varying occupation numbers@9#. The practical problem with
this approach is that accurate solution of the interacti
electron problem is required on an extended space lattic
order to define numerical values of the implied univer
functional.
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