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Fractional occupation numbers in density-functional theory

R. K. Nesbet
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
(Received 15 May 1997

Density-functional theory for ensembles defined by fixed weights and fractional occupation numbers is
derived using a Lagrange-multiplier version of the constrained-search procedure. This is related to an adiabatic
connection between a generalized Kohn-Sham ensemble for noninteracting electrons and a minimum-energy
ensemble including the electronic Coulomb interaction. Using this formalism, it is shown that discontinuous
changes of the chemical potential of a finite electronic system result from constraints on density variations
imposed by Fermi statistics. Such discontinuities do not exclude the possibility of defining an exchange-
correlation energy functional that is free of derivative discontinuities for unconstrained density variations.
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[. INTRODUCTION Fermi statistics and does not in itself imply derivative dis-
continuities in the energy functionals for unconstrained
Perdewet al.[1] showed some time ago that the chemicalvariations of the electron density.
potential of any isolated open system with a discrete energy In order to discuss these issues, a derivation of statistical
gap, in particular of any atom, is described by a step functiorflensity-functional theory is given here, in Sec. Il, in which
that has a finite step for each integral number of electronghe effective external potential appears explicitly as a
This was attributed to derivative discontinuities in the Lagrange-multiplier field in a constrained-search formalism
exchange-correlation density functional evaluated for varyt13]. This approach builds in a mutually determining recip-
ing numbers of electronf2]. Although a formula for the rocal relationship between the statistical electron density and
derivative discontinuity derived by Sham and Stait3] the external potential, both taken here to be spin-indexed
was later shown to Vanis[ﬂ], Gunnarsson and Schioam- scalar fields defined |Ifﬁ3 When the electronic Coulomb
mer[5,4] derived such a discontinuity from an exactly solv- interaction is scaled by a coupling constanthis formalism
able model of a finite linear chain of atoms with two nonde-pProvides a generalized adiabatic connection for intermediate
generate energy levels. values GsA =<1 [14,15. The result is to unify the adiabatic-
In apparent contrast to these developments in densityconnection formalism with the use of fractional occupation
functional theory, the Fermi-liquid theory of Land#6,7]  humbers.
postulates an energy functional for interacting electrons that Section Il defines the chemical potential and one-electron
is a smooth function of occupation numbers for Fermionenergies in terms of the ensemble theory. In Sec. IV this
quasiparticleg8]. Slater and Wood9] showed that one- theory is applied to consider the charge state of an atom in
electron energies computed as eigenvalues of an eﬁecti\[@aﬁsticaj equilibrium with a reservoir of electrons at chemi-
one-electron Hamiltonian in a statistical theory of interactingcal potentialu. It is shown that the chemical potential of the
electrons are partial derivatives of the total energy with re-2tom is indeed described by a step function, in agreement
spect to variations of fractional occupation numbers, as ifvith Perdewet al. [1], as a result of constraints on occupa-
Landau theory. Slater10,11] pointed out that Fermi statis- tion numbers due to Fermi statistics. But the present deriva-
tics, appropriate to Landau quasiparticles, is a Consequené@n makes it clear that this result is consistent with an inde-
of a statistical theory of weakly interacting identical atomsPendent postulate of smooth variation of the density
forming a superlattice or equivalent crystal, and also that théunctional with respect to unconstrained variations of the
derivative formula for one-electron energies is valid for anyelectron density. Conclusions are summarized in Sec. V.
statistical density theory. This was confirmed by JaftE¥
for density-functional theory. . . Il. CONSTRAINED SEARCH USING LAGRANGE
The present paper is concerned with reconciling these two MULTIPLIERS
different approaches to the statistical theory of interacting
electrons. The goal is to justify the use of Landau theory, The derivation presented here is intended to generalize
using fractional occupation numbers, for finite or localizedand encompass earlier derivations of density-functional
electronic systems. An important distinction made here igheory for statistical ensembles. The theory of Hohenberg
that discontinuities in the chemical potential appropriate tcand Kohn(HK), for N-electron ground statd46]|, was ex-
such systems may arise either from explicit derivative distended to the grand canonical ensemble at nonzero tempera-
continuities in the appropriate energy functionals of electrortures by Mermin/17]. A statistical postulate was introduced
density or from constraints due to the Fermi statistics of theby Janak[12] in order to define continuous variations of
relevant electron guasiparticles. It will be shown that theoccupation numbers in an extended Kohn-Sha8j theory.
step-function character of the chemical potential for atomdJsing the constrained search logic of Le{43], Perdew
considered by Perdewt al. [1] is a direct consequence of et al.[1] considered statistical ensembles of states with dif-
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ferent electron numberd. Gross, Oliveira, and Kohfil9] mined only up to an additive constant potential. It will be

considered ensembles of fractionally occupied states with thassumed here that this constant is chosen southatvan-

same number of electrons, thus generalizing the theory tshes for an electron far outside the charge distribution. The

excitation energies. universal functional for this reference-state ensemble defines
To establish a suitable notation, an ensemble of wavéhe kinetic energy functional[ p]. An ensemble exchange-

functions{¥ ,} defines the statistical mean val()) of any  correlation functional is defined by subtraction,

observableX as the sun ,w,(X), with fixed weight coef- 3

ficientsw, =0 that sum to unity. Each correlated wave func- Exdp]=Flp]=Tlp]-Ulp], 4

tion ¥, is defined for an integral number of electrdws and

determines an electronic density functipp, such that the The subsequent derivation of one-electron equations fol-

statistical ensemble density function gs=(p)=>.,w,p,. ) X X
Following the ansatz of Kohn and ShaikS) [18], a refer- Rﬁ%?;ﬂéj;:?;&éE;](grfeosrsn‘?d in termstgg, the effec

ence stat&b , that is a wave function for noninteracting elec-

trons is defined for each wave functioh, such that the H=Hparrec™ Uxc» (5)

density functiorp,, is the same for both states. An alternative

ansatz, requiringb to have maximum projection oW for  wherev,.=(6/6p)E,J p]. This derivation implies that the

each indexy, used in the recently developed reference-staté agrange-multiplier field s in the noninteracting case must

density-functional theoryRDFT) [20], will be considered in  be identical to the KS potential function except for a possible

a separate publication. additive constant. To show this in detail, the absolute mini-
An ensemble of variational trial functions is denoted heremum property of Eqs(2) and(3) implies that the ensemble

by {¥}, where each trial function' ,; satisfies a defining energy functionalE,[p] is stationary for variations op

condition that characterizes the index for example, the aboutp, that conservé€N). This is consistent with

value ofN,, or the integral occupation numbers that charac-

whereU[ p] is the classical Coulomb energy.

terize the reference statds,,. A functional of p(r) is de- j 3 i _ _
fined by ’ dr| 5, Flpl+o(=p|dp(n=0, (8
) 3 for unconstrained variations, where the chemical poteptial
F.Lp]=min| ((W[T+U[W)/(|¥))+ | v(p—p)dr is determined by fixing a specific value @¥). Similarly, for
e the ensemble describing noninteracting electrons,
=E[v —f vpd°r. (1 6
ol=J e | &l 5 T vestn-sfapn=0. @

The external potential function(r), common to all mem- ) ) )
bers of the ensemble, acts as a Lagrange-multiplier field N€S€ two equations determine the same dempsiityhe two

E[v] here is the minimum ensemble energy consistent wittfhemical potentials are equal and idfs=v +ve+ vy,
the defining constraints that characterize ingehe mini-  Where

mizing ensemble determines electron dengity General- SU[p] SEJp]
ized Hohenberg-Kohn theorems follow immediately from Vo= P L Uyem—e Pl (8)
this definition. Ifv=v,,, such thatp,=p, the minimizing 5p 5p

ensemblg ¥}, defines a universal functional such that Since the fieldy s is the same for all states in the en-

Flpl=((¥|T+U|¥)/(P|¥)), semble, a single orthonormal set of noninteracting one-
electron eigenfunctions suffices to construct all of the rel-
_ B 3 evant reference states. This fact justifies, in retrospect, the
_Fv[pv]_E[U]_f vp,dr, (@ definition of states in the ensemble by different values of
index y according to occupation numbers for these orbital
the appropriate generalization of the second HK theoremfunctions. Different KS orbital functions are occupied in
Suppose thaF[p] is determined by an ensembl#’}, for  each restricted set of trial reference functidns . Each trial

whichv,#v. Then densityp,, must be compatible with this occupation pattern.
An_ adiab_atic connectimﬁlé},lﬂ_can be esta_lblished by
EU[P]IF[P]+J wpdr = ([T V+UNICEIE)), e o e ramp " cach integral num-
=E[v], (3 H,=T+V,+\U. 9
which generalizes the first HK theorem. With p fixed, the potential, (r) is determined for all values

In analogy to Kohn-Sham theory, an ensemble of referof A by the constrained-search procedure. This ensures that
ence stategd} is defined by applying Eql) to the kinetic  v,=v if {¥} is the minimizing ensemble for=1 and that
energy operator only. The Lagrange-multiplier field in thisvy=vkg if {®} is the minimizing ensemble for noninteract-
case isuks. Because all trial ensemble density functigns ing electrons. It can be showf21] that the Hellmann-
integrate to the same constant total number of electronseynman theorem is valid for ensembles as defined here.
(N), the integral ofp,—p must vanish, and g is deter- Then for each\
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9 9 exchange-correlation functional and modified to incorporate
N EE U+ Vi) (100 the kinetic energy functional of Kohn and Sham.
A
whereE, is the minimal mean energy of the ensemble. On IV. CONSTRAINT ON VARIATIONS
integrating oven this gives DUE TO FERMI STATISTICS

1 9 Consider an atom in equilibrium with a reservoir of elec-
EleoJff d)\<u+—vh> =(H,;)=E[v]. (11) trons. The chemical potential of the reservoir is fixed. In
0 IN A thermochemical equilibrium, the chemical potential of the

. . . . atom must adjust to equal the reservoir value, thus determin-
This determines the exchange-correlation energy functlonqhg the charge state of the atom. Perdsval.[1] consider an

for the defined ensemble, ensemble of charge states with=Z—1, N=Z, andN=2Z
1 +1. Postulating that the energy of the ensemble is mini-
Exc[P]:f d\((U),—U[p)), (120  mized and thaE_(N) is Qefined for integraN but interpo- .
0 lated by a function that is concave upwards, the assumption
_ ) of nonnegative weights confines nonzero weights to the two
whereU[p] is the classical Coulomb energy. adjacent integral values of that enclose a given nonintegral
mean value. This implies that the mean energy must vary
lll. FERMI STATISTICS AND THE CHEMICAL linearly between each two successive states of integral
POTENTIAL The derivative functionu=dJE/JN is a step functiori1]
. . _ 3 . . _
'Defmmg E[P]—F[p]+fvpd r for f|x¢d v, Eq. (6) im p=—1, Z-1<N<Z, u=-A, Z<N<Z+1,
plies for variations of the electron densjty 17)
é . S . .
J' d3r(— E[p]—,u) Sp(r)=0, (13)  wherel is the ionization potential and is the electron af-
p finity. This is discontinuous for the neutral atod=Z. The

average of the two limiting values &t=Z is — (1 +A), or

minus the Mulliken electronegativity. Comparing Kohn-

Sham theory, this discontinuous behavior may arise from a

discontinuity in the functional derivativéE,./dp, or be ex-

SE plicitly due to a discontinuous change of the undetermined

—+u(r)=pu, (14) constant in the potential fieldys [2].

p The weight coefficients for three adjacent charge states

. . ... can be expressed in terms of occupation numherdor the

a classical equation to be solved fpr When the kinetic highest occupied level of the stal=Z, andn,, for the

energy functional is simplified and the exchange-correlatioq1iglhest occupied level of the stama=z+,1 In tr/:é range

functional omitted this becomes the basic equation of the—lstZJrl these occupation numberé are related to the

Thomas-Fermi method23]. For variations that conserve weight functio’ns by

N, &p integrates to zero, and the term indrops out of Eq.

(13). This implies thatu can only be determined by varia-

tions that do not consenié [22]. The status of Eq14) in an

ensemble theory, in which all information comes from wave

functions defined only for integral values Nf, is unclear.
The derivation of Janak’s theoref2]

or SE—uéN=0. Hence u=0E/JN [22]. If the density
function can be varied freely at each point%i¥, for fixed
v, this equation also implies

N=Wz+tWgzy1, NaA=Wgziq, (18

such thatn,+n,=N—Z+1. Equivalently, the weight func-
tions are given by

IE[p] Wz1=1-=n;, Wz=nm—na, Wz;1=Nns, (19
a (15
an;

€=
such thatw, ;+w,+w;,,;=1. Fermi statistics requires 0

also assumes that the energy functional can be varied freely "A” and forces,=0 in the rangeZ — 1<N<Z, so that

without conservingN. In the context of Kohn-Sham theory, Fl +n'A:tNt'_tZ+1 |m_pl|es<r1| - Nd—fZ+1 m_lth]is rzag?\le.
an implicit assumption is made that the rules of Fermi statis- ermi stalistics requires, < 1 and forcesn, = 1 for 2=

tics apply to occupation numbers associated with the Ks=<t1 so tha'r."+.nA: N=Z+1 impliesnA=|\_|—Z ".] this
orbital eigenfunctions. At zero temperature, range. The derivativedn/dN anddw/dN are discontinuous

atN=Z because of these restrictions on the occupation num-
n=1, e<p, O0<n<1, =u, n=0, &>pu. bers. These constraints are equivalent to the condition that
(16)  the weight coefficients should be positive, and the implied
weight constants agree with those deduced by Peeteal.
In a theory based oN-electron wave functions, variations of [1], giving the same step function far(N). However, the
p must be consistent with these limits on the range of occupresent argument shows that this discontinuity is a direct
pation numbers. It will be argued below that this is a genuineconsequence of Fermi statistics, and gives no information
constraint, implying that the Thomas-Fermi equation is no@about a possible derivative discontinuity of the energy func-
strictly valid in quantum theory, even if augmented by antional if defined for all possible density functiops
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The derivation given here, which covers the charge-stateause they are derived from the local density or local density
ensemble as a particular case, makes it very difficult to segradient, with no consideration of the total electron number
where a derivative discontinuity might arise in the functional[25,26].

E,lp] if p is allowed to vary freely. This functional is uni-
versal for all external potentials and selects an appropriate V. CONCLUSIONS

potential as a Lagrange multiplier field. The arbitrary con- The ensemble theory leads to a very strong constraint on
stant in the external pOtential funCtion iS determined by eX'Variations of electron densiwfor nonintegra'N_ Mean val-
perimental conditions, and is ordinarily fixed in theoretical yes of all observables are determined by interpolation be-
calculations by the condition that the potential should vanishween their values for the two integrhll-ground states that
in the limit of large separation of one electron from anpound each interval of nonintegdl Since only the two end
N-electron system. values are specified and the weight coefficients are linear in
In order to separate the question of smooth variation oN, p and all observables are interpolated as linear functions
the universal functiondk,J p] for free variations ofp from  of N. At this point, the ensemble theory appears to be in
constraints due to Fermi statistics, consider ground state vatontradiction with approximations to the kinetic energy,
ues of E(N) for an atom in three successive charge state§€oulomb, and exchange density functionals that indicate that
such that E(Z—1)=E(Z)+1 and E(Z+1)=E(Z)—A. these are nonlinear functions of dendifp]. If p varies lin-

This is interpolated smoothly by a quadratic function early with nonintegralN, this cannot also be true for the
various components of the energy functional other than
E(N)=E(2)—3(1+A)(N=2Z)+3(I-A)(N-2)2. V[p].
(20 For any system with an energy gap, the ensemble theory

_ . . implies a derivative discontinuity in the mean value of any
This formula gives the correct centerz(1+A) and width  gpservable at the integral value of electron numiejust
| —A of a band gad24] for solids as well as for atoms or below the gap. The resulting chemical potential for any atom
molecules. The implied chemical potential is a continuousor molecule is a step function with a finite increment at each
linear function integral value ofN. This discontinuity is inherent in Fermi

. statistics for electrons or electron quasiparticles. If a
=—3(I+A)+(1=A)(N=2). (21)  smoothly varying energy functional exists that gives correct
. . values for integraN, this theory cannot exploit it.

If one adopts the point of view of Landd@,7] and of Following the logical principle of Occam’s razor, it might
Slater[10,11, the energy functional of a system of electronse more practical to interpolate this functional smoothly be-
should be considered to vary smoothly as a function of denyyeen values defined for integral numbers of electrons than
sity or of unconstrained occupation numbers. The actualp puild derivative discontinuities into it. Such an interpola-
physical state of the system, however, is determined byion is achieved with the superlattice modi&0,20, in which
Fermi-Dirac statistics through a distribution function that de-fractional occupation numbers arise as in energy-band theory
pends on one-electron energies, defined as partial derivatives the probability of locating an electron in a Bloch wave at
with respect to freely variable occupation numbers. Values particular atomic site. The interaction energy terms are
of the occupation numbers are determined that are subject tnherently nonlinear in electron number, and energy differ-
the restriction B=n;=<1. Physically realizable variations of ences must be obtained by integrating over continuously
the electron density are constrained by this restriction, so thatarying occupation numbef8]. The practical problem with
the full variability of the postulated energy functional cannotthis approach is that accurate solution of the interacting-
be explored. It is relevant to remark that in practical appli-electron problem is required on an extended space lattice in
cations of DFT, exchange-correlation functionals are ordi-order to define numerical values of the implied universal
narily used that necessarily have continuous derivatives, bdunctional.
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