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Direct determination of the quantum-mechanical density matrix using the density equation. II.
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With the use of the density equatipBhys. Rev. Al4, 41 (1976], second-order density matrices of atoms
and molecules are calculated directly without any use of the wave function. The decoupling of the third- and
fourth-order density matrices is done using the diagrammatic procedure of the Green’s-function method,
including terms up to second order in electron correlation. In addition to the results given in a previous
communication[Phys. Rev. Lett.76, 1039 (1996], we give more detailed formulations, discussions, and
additional results for bD, NH;, CH,, HF, N,, CO, and acetylene using douhjéxasis sets, and for GOH,
CH3NH,, and GHg (staggered and eclipsedsing minimal basis sets. The present density-equation method
gave energies as accurate as, and reduced density m&Rio&s) more accurate than the single and double
excitation configuration interaction method. The present method seems to give better quality results as the
system becomes large. The convergence was fairly good and the calculated second-order RDM’s almost
satisfied some necessary conditions of kheepresentability, the so-calld®, Q, andG conditions, while the
first-order RDM’s were exactliN representable. The variety of the molecules calculated and the quality of the
calculated results show that the density-equation method can be a promising alternative to the wave-function
approach in quantum mechani¢$1050-294®7)06409-3

PACS numbdps): 31.10+2z, 02.70.Rw, 03.65.Ge

[. INTRODUCTION “wave mechanics without wave.” Since the 2-DM deter-
mines the energy, we may apply the variational principle in a
Since all the operators we shall concern ourselves with ifuitable domain of the density matricgs|. However, it is
quantum mechanics are one- and two-body ones, all the eflil! _ml)t comfpletely knowrlh Whaé CQ?dItIOﬂSt _theiﬂl]?aull
emental physical quantities can be calculated from thd 'c/P'€ enforces on the ~densily matricesine
) i -representability conditior] 2]. Moreover, since these con-
second-order density matri¢2-DM). Many-electron wave

) . A . tions may be very complicated, it would be impractical to
functions involve more information than we need to know.Carry out such variational calculations.

Thus a determination of the density or density matrices with- One of the authors proposed a nonvariational approach for

out using the wave function could be a convenient alternativey direct determination of the density matf]. He showed
to the wave mechanics, and this approach is often callethat the equation

n

EF“”z[Z v(i)+ X w(i,j)
i i>]

n
F(“>+(n+1)J’ [u(n+1)+2 w(i,n+1) T Ydx, .,
1

+3(n+ 1)(n+2)f w(n+1n+2)T"2dx. ., 1dX,. 2, (1.2

which is called the density equation, éguivalentto the  function to satisfy the Schdinger equation. The necessity
Schralinger equation in the domain of-representable alone was shown by Cho and by Cohen and Frishbélg
DM’s for each n with ’=2. That is, this equation in the Unfortunately, since thath-order density equation contains
domain of theN-representable space isvacessary and suf- nth, (n+1)th, and 6+ 2)th order DM’s, that is, the number
ficient condition for the corresponding antisymmetric wave of the unknowns exceeds the number of the conditions as far
as theN representability condition is not completely known,
the solution of the density equation itself is not unidbé
*Present address; Graduate School of Human Informaticdiowever, the solution within thé-representable space is
Nagoya University, Chikusa-ku, Nagoya 464-01, Japan. guaranteed to be exact, and we use the subsidiary
TCorresponding author. Also affiliated with the Department of Ap- N-representability conditions to eliminate unphysical solu-
plied Chemistry, Graduate School of Engineering, The Universitytions.
of Tokyo, Hongo, Tokyo 113, Japan, and the Institute for Funda- On the other hand, if we can approximateH1)th- and
mental Chemistry, 34-4, Takano-Nishihikari-cho, Sakyo-ku, Kyoto(n+ 2)th-order DM’s using thenth- and lower-order ones,
606, Japan. we can directly determine the density matrix from the den-
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sity equation without using the wave function. Actually, the TM(X) -+ X)X+ Xp)
equivalence of the Schdinger equation plus Pauli principle 1
with the density equation plull representability condition _ Try N, ot N et
[3] implies that theN representability condition has a power B HW (x1) == @1 0) ¢(Xq) -~ $(X))
of expressing’"*2) andT'("*V) in terms of ', Thus, the 2.1
above approximation also works as thkerepresentability '
condition. In principle, the ground-stateh-order DM deter-
mines the DM’s of all orders including the wave function, where x; denotes space-spin coordinate ieth electron,
since it determines the electron density and hence the wawghile ¢ and ¢ denote creation and annihilation field opera-
function (Hohenberg-Kohn theoreif]). tors, respectively. Tha-RDM'’s are defined as
Recently, Valdemoro and co-worke[%,8] reported an
interesting approach for solving the density equation. They | ,
suggested a decoupling approximation of higher-order re-P(r1 serplry )
duced density matricel RDM’s) in terms of the lower-order
ones based essentially on the fermion’s anticommutation re-
lations. They derived the identity containing theRDM and -3
n-hole RDM (HRDM) on the left-hand sid¢LHS), and the o
lower-order RDM’'s and HRDM's on the right-hand side
(RHS), and then assumed that theRDM (n-HRDM) on the
Ihs is equal to the sum of the products of the lower-ordewherer; and o; denote space and spin coordinates, respec-
RDM’s (HRDM’s) on the rhs. We call this approximation tively. The n-particle many-body GF's are defined [ds]
the IPH approximation(the approximation identifying the
particle and hole parts separatelyith this approximation,
Colmenero and Valdemoro solved the density equaiin G ™(xt; - X\t [Xats - Xatp)
for some four- and six-electron systems, and calculated their
density matrices directlyl0]. However, their results seem to
have been limited to small systems, and the appliqability. 10 =(—i)T[AX}t)) - d(XtH) T (Xntn) - dT(X1t1)])
general many-electron systems is an open question. Since 2.3
their decoupling approximation is accurate for a Be atom
(four-electron systeprbut less accurate for 4@ (ten-electron
system [8], we have to look for a more accurate approxima-whereT denotes the time ordering operator. The DM’s are
tion which is suitable for studying more complex atoms andrelated to the GF's as
molecules.
In a previous papefll], we proposed a different ap-
proach for solving the density equation: we presented thé "™ (X1 Xp|X1**Xn)
decoupling approximation based on the Green’s-function (—i)n
technique, and applied it using the second-order density
equation[Eq. (1.1) with n=2] to directly determine the
2-RDM'’s of several atoms and molecules. We found that our
method is very promising, giving as accurate energies as, and
more accurate density matrices than, those of the variationdfhere 0° and 0" denote positive and negative infinitesi-
SDCI (single and double excitation configuration interaction mals, respectively. They determine the time ordering of the
one. We checked somN-representability conditions, and operators in Eq(2.3) so as to match the definition of the
found that the resultant 2-RDM’s almost satisfied these conDM’s given by Eq.(2.1).
ditions, while the 1-RDM’s were exactljl representable. Later we use matrix notations of these quantities, where
This success opened a possibility of an entirely new methothe subscripfy and the superscrip are associated with the
in quantum mechanics, and gave us some insight into thannihilation and creation operators, respectively, and the
N-representability conditions. one-particle basis function is a spin-orbital for the DM and a
In this paper we give more detailed explanations of theSpatial orbital for the RDM. _
approximations for expressing the 3- and 4-RDM'’s in terms In order to obtain the relations among the GF's, we first
of the 1- and 2-RDM’s, which were discussed briefly in theconsider the lower-order perturbation series, and then in-

previous papef11], show some new results, and discuss theclude some higher-order effects. We use Feynman’s proce-
convergence properties of our method. dure, which represents the GF as a sum of the topologically

different diagramg13]. After taking the limit of time vari-
ables to get the relations among the DM’s, we rewrite them
into the relations among the RDM'’s by summing up the spin
variables. We use the Hartree-Fo@dF) GF's as unper-

We use the Green's-functiofGF) method to derive ap- turbed zeroth-order GF’s, and the electron correlation is
proximate relations of the higher-order DM’s with the lower- treated as a perturbation. Hence our approximation works
order ones. The IPH approximation is derived as a specidbest for closed-shell atoms and molecules, dealing mainly
case. The DM'’s are defined &52] with the dynamic correlations.

LX) XX e Xp) (2.2

g1 ...0np

G007 X070 x0T, (2.4

II. APPROXIMATIONS OF 3- AND 4-RDM’'S
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A. Approximation of the 4-RDM becomes a unit operatd’. in a spin space. The spin sum
There are four kinds of diagrams for the four-particle GFyields a factor of 27 P for each permuted diagram of

up to the second order in the perturbation. In a standard-RDM, wherep is a parity of the permutational group. For
diagrammatic notation, they are represented symbolically asxample, the spin sum &f}7;3U;3}3 vields a factor of 2.
@) In the present approximation, the 4-RDM includes all four
G kinds of diagrams in Eg(2.5 and some higher-order terms,
becausdJ is calculated from the 2-DM itself. In the direct
=' I ‘ + H \ + m + H H determination of the 2-RDM described in Sec. lll, this ap-
proximate 4-RDM is used to calculate the rhs of the density
(2.5  equation(1.1), then this equation is used to calculate a new
2-RDM. Through this self-consistency process, the 2-RDM,
in which the coefficient for théth-order perturbation dia- U, and the approximate 4-RDM come to include some
gram of G( is +i™ "1 wherem is the number of the HF higher-order terms.
GF’s in the diagram, and the relative sign ensures the per- The lowest-order missing terms in the present approxima-
mutational antisymmetry13]. With the use of the lower- tion of the 4-RDM are represented symbolically as
order relations which conneG® with G andG, and
G® with G, it is easy to show that the sum of the first,
second, and third terms of E(.5) reproduces the IPH ap-
proximation for the 4-RDM8]: the last term missing in the
IPH approximation represents the simultaneous collisions of ’ ’ (2.9
two electron pairs, so that we call it two-p&&P) term. It is
a central term in the independent pair model which is a good
approximation for describing the dynamic correlations in at-
oms and moleculekl4]. The third term in Eq(2.5) will be
considered in the approximation of the 3-RDM. which are third-order and are not represented by the simple
The 2P term is calculated as follows: for a given 2-DM, products of the lower-order RDM's.
the collision termU is defined as

U (X1X5]X1X2) — U (X1X5|XoX1) B. Approximation for the 3-RDM
TO(x)|xy) TO(x]|x2) There are three kinds of diagrams of the three-particle GF

up to second order in the perturbation, and they are repre-

=2T P (x!x}|X1X2) —
Dalaxe sented symbolically as

I‘(l)(xé|x1) F(l)(xé|x2)
(2.6

Except for a coefficient, it is represented as G® = ’ \ ' + H l 4 m (2.10
U (X1 X5] X1 Xp) = >::< (2.7)

in which the bold line is the exact one-particle GF, while the
rectangle is the exact vertex 6(%) [13]. In the above figure

we replaced the time variables in the external lines with posi
tive and negative infinitesimals. The terth represents the

sum of the collisions of two electrons which cannot be writ-
ten by simple products of the 1-DM’s. Similarly, the 2P term
represents independent collisions of two electron pairs, an
is written as the sum of the permuted, antisymmetrized prod-

With the use of the lower-order relations, we can show that
the sum of the first and second terms of E2.10 repro-
duces the IPH approximation for the 3-RDM. The last term
of Eq. (2.10 is second order in the perturbation of the elec-
tron correlation, and may not be negligible. To approximate
it, including not only the lowest-order term but also some
higher-order terms, we use Dyson’s equation and the prop-
arty of the unperturbed GF'’s.

An exact one-particle GF satisfies the Dyson’s integral

ucts ofU: equation
— 2.1)
1 I = ‘ + # (
1i2yi3i4
ZPF<4>:Eu;L‘jZU}334+--- : (2.8
To generate all the terms in E¢2.8), we substitute four
indices (i;, i,, i3, andi,) of three termsU3'3Ui3}%,  where an open circle means the irreducible self-energy which

UjTj3U;50%, andU;Tj3U;5% in all possible wayg4!). Then is an energy-dependent effective one-body potential due to
we obtain the topologically different diagrams for the 2Pthe electron interactiofl3]. The second term then represents
term whose total number is 72. the multiple scattering by the self-energy.

Since our Hamiltonian is spin independent, and since our The HF GF which we use as the zeroth order unperturbed

present subjects are closed-shell atoms and moledBlés, one is written ag13]
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GH(x't’ xt) With the use of Dyson'’s equatid.11) and the HF GF's
property(2.16), the last term of Eq(2.10 is transformed as

occupied

=+ g of (M er(xexd —ig(t' —t)];  t'<t
+
unoccupied

—i D ef (e exd —ie(t’' —1)]; t'=t,

k
2.1
where ¢ and ¢, are the HF orbital and orbital energy, re-

spectively. Since this unperturbed GF describes the probabi, (2.17

ity amplitude of each independent electr@mle) from xt to h h imati that it i id onlv wh
x't’ (and vice versp it satisfies the rule of the probability WNe€re the approximation means that it 1S valid only when

amplitude on the subsequent events in the path-integrdf <0- The casdt’>0 V.Vi" be considered later. The term
thegry[15]. Hence it has tﬂe property P g expressed by Eq(2.17) is called theUV term. The only
unknown in the above figure which we call theterm is

similarly approximated as

(+1)GP(zt' xt); t'<0<t, j t j f

(2.13
in which we integrate all the intermediate statg®, The -
space integration of the two GF’s gives one GF in these time

orderings. From the definition of the HF GF, E8.12, only

the occupiedunoccupiedl orbitals contribute taG{" when (218
t’<t (t'>t). Since these two kinds of orbitals are orthonor- After manipulating some numerical coefficients, thg/
mal to each other, the relative sign in E®.13 can be term given by diagram(2.17) is written into an ordinary
treated with the use of the projector, formula as

f dyGH(zt',y0)GS (yoxt)

=(—)G{(zt' xt); t'=0=>t

U

unoccupied  occupied

P<y>=i( 2 -2

Then Eq.(2.13 becomes

UV (3)iLi2i3_ 1 (\/ili2pl2) k2i3, .
15255 = 5 (Vj12PieUgis+ )

lok(Y)){ek(Y)]. (2.19
= L(VPU+--). (2.19

From diagram(2.18), theV term is written as

dy GJV(zt',y0)P(y) G (y0xt 1102 _1iLi2 4 \jili

f y Gy (zt',y0)P(y)Gy ' (yOxt) VIHZ_ iLi2 4 yitizpl2 (pke_pke
=G{P(zt' xt);  tt'<0, (2.19 =U+VPy. (2.20

which we represent in a diagrammatic form as which is used to calculate tH8V term in Eq.(2.19. Other

terms denoteds. .. in Eq.(2.19 are generated by substi-
tuting the indices 1, 2, and 3 in all possible ways, and then
# — ' . tt'<0 (2.16 by substituting three indice§,, i,, andis) in all possible
' ' ways. The projectoP and the correction to the 1-DM is
written with the unperturbed first-order density matﬂfgl)

as

where the triangle means the projeckr We note that Egs.

; on. ; Pl.=2I"Y},— 8 (2.29
(2.19 and (2.16 are valid only whentt’ <0: the Ihs’s of k 0k ; :
Egs.(2.195 and(2.16 vanish identically whent’ >0, while Wi (b
their rhs’s do not. Note that only space integration yois Y= =, (2.22
necessary, in contrast to the ordinary space-time integration |
in the GF theory. where §, is Kronecker’s delta.

It is well known that the exact GF has an expression simi- By substituting Eq.(2.20 into Eq. (2.19, the UV term
lar to Eq.(2.12) (the Lehmann representatiprone-particle  UVI'® can be written in an infinite sum as
functions which contribute t&*) whent’ >t (t'<t) corre- L
spond to the quasiparticle wave functions of animmized UVR3) &
states. However, since these functions are not orthonormal, r G(UPU+UP7PU+ UPyPyPU+:-)
the exactG") does not have an expression like E2.15. (2.23
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Since Eqgs(2.19-(2.22 do not contain orbital energies, [14], the three-body cluster effect is relatively small in atoms
we can use any idempotent first-order density matriceand molecules, and is neglected in the present approxima-
whoseN eigenvalues are equal to 1, and the rest are equal thon.

0 as unperturbed on€Bbl is the number of electronsin the To test the accuracy of the approximations for the 4- and
calculations below, the HF density matrix is used as an un3-RDM'’s given in this section, we calculated the 4-RDM
perturbed one. Once we get the/ term of the 3-DM, the from the exact 1-, 2-, and 3-RDM'’s, and the 3-RDM from
spin-sum yields the 3-RDM in the same way as the 4-RDMthe exact 1- and 2-RDM'’s for the singlet ground state of Be,

The lowest-order missing term in the prese approxi-  and the results were presented in Réfl]. Our approxima-
mation is the second-order one, which is attributed to thdions were very accurate, and reduced the errors of the IPH
approximation used in Eq2.17): in the last term of Eq. approximations by about two orders of magnitude for both 3-
(2.10, we omitted the term with two internal timésandt’ and 4-RDM'’s.
being the same sigit’ >0, because Eq$2.15 and(2.16

do not hold in this case. This missing term contributes to the IIl. DIRECT DETERMINATION
elementsl“(s)'llj'zzj'g with j;_5 are occupied and, _; are un- OF THE DENSITY MATRIX

occupied(or |, _3 are unoccupied anid _3 are occupiefd By
applying standard diagrammatic techniques and integrating
the time variables, the missing term is written in an explicit

In Sec. Il, we derived a decoupling approximation for the
- and 4-RDM’s whose accuracy is up to about second order
of the perturbation. In contrast to the approximation adopted

form as AT
by Valdemoro and co-workers, our approximation involves
unoccupied (KiylVal] ) almost all the second-order perturbation terms, except for the
Kio|Volj1i2 term given by Eq(2.24). This is necessary for a quantitative
AFEE)JIZI;%IS__ E < 1l 3|VO|kJ3> J v y a

description of the electronic structure of atoms and mol-
_ ecules. Although our approximation based on the Green’s-
1 ocued 1i3|Vo|kj3> function technique is conceptually simple and systematically
improvable, the validity of the approximation itself must be
checked through numerical calculations. In a previous paper
X (Kiy|Volj1j2), (2.24  [11] we solved the second-order density equation iteratively
using the decoupling approximation of the 3- and 4-RDM'’s
described above.

In this section, we first summarize our calculational
method and then give the calculated results. We used the
whereV is the perturbation operator, the difference betweersecond-order density equatipig. (1.1) with n=2] in ma-
the total Hamiltonian and the Fock operator. We did nottrix form, which can be represented as
include this term in the present calculation, because our aim o o
here is to express the 3-RDM in terms of the 1- and Ri15=ED{1'3, (3.
2-RDM's alone, but this term additionally includes the or-
bital energies and the perturbation operator. We expect thavhere the density matrix and the energy density matrix are
this term is small because it is proportional to the three-bodgiven by
cluster amplitude in the lowest second order. In addition to

6Ae X €t €~ €1~

6Ae X €1+ €3~ € €3

Ae=¢€j1t+ €2t €3~ €1 €2 €3,

the lowest second-order term given by Eg.24), we can Di1j5=3(Ejt}3), 3.2
include some higher-order terms if we substitute
*(Kia|Volj1i2)/ (et €i2— €1~ €j2) In EQ. (2.24 with U. RiTj5=3 (HE[T3), 3.3
In Sec. Il we will show the contribution of this term in
actual calculations of atoms and molecules. ivi2 vt
In the present formulation, we also neglect the third- and Ej1j2= 202 8i1518i2028j2028151 (3.4
higher-order terms which cannot be broken into two parts by '
cutting an electron propagator, as expressed by The original integrodifferential equation was replaced by the

matrix equation including the partial trace. The density ma-
trices and the Hamiltonian were represented in matrices
whose one-electron base are the HF orbitals. The generalized
two-electron integrals were used for simplicity.

’ ’ (2.25 Equation(3.1) is equivalent to the two conditions
The physical meaning of the present approximation of the (Rﬁ'ﬁz 3%322) EDﬁljzz 0, (3.5

3-RDM may be explained as follows. The three-particle col-
lision term in the last term of Eq2.10 is considered to o

include two distinct effects: three particles interact at the RiTj2—RIijZ=0 (3.6)
same time(three-body cluster effegtor particle (hole) 2

interacts with particle 1, moves some distance, then interacfgecause of the Hermiticity of the 2-RDM,

with particle 3. TheUV term represents the latter process. 102 _ ~j1j2

Because of the short-range nature of the electron correlations Dj1j2=Diij2 - (3.7
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In the present calculation, we used the Hermite part of thesets, and fourth-order Mler-Plesset perturbation method
density equation, Eq(3.5), imposing the Hermiticity, Eq. (MP4, for larger casesExperimental molecular geometries
(3.7, and did not use the two-particle Brillouin condition [18] were used and somesXore orbitals of C, N, O, and F
[Eq. (3.9)]. were frozen.

We approximate the 3-RDM from 1- and 2-RDM's, and  Tables | and Il show the summary of the present results.
then 4-RDM from 1-, 2-, and 3-RDM'’s, using the decoupling In Table | we compare the energies and the properties calcu-
approximations given in Sec. Il. We then put these 3- andated by the present DE2 method with those of the wave-
4-RDM’s to Egq. (3.5, and solve it iteratively. Since the function approaches. The results for the doubleasis[19]
present decoupling approximations of the 3- and 4-RDM’sand the minimal Slater-type-orbital STO-6G bg<16] were
are correct essentially up to the second order in the pertugrouped separately. The DE2 method includes Whe and
bation of the electron correlation, we refer to the presenpp terms in the 3- and 4-RDM’s, respectively, but does not
method as DEPT2(density equation with the 3- and include the term given by Eq2.24).
4-RDM's correct to second-order in correlation perturba- |t js known that the Hartree-Fock theory can be formu-
tion), or simply DEZ2. In this notation, the solution based on|ateq as an equation for the first-order density matrix, and the
the IPH approximation(original Valdemoro's approxima- ncorrelated Hartree-Fock density matrix can be calculated
tion) may b_e referred to as DEPT1 (?r DE1, since the IP ithout using the wave functiofB,4,12,21. However, few
approximation of the 3- and 4-RDM's corresponds to theattempts have been successful for a direct determination of

first-order approximation. . ; e o
Since the 1-RDM was represented by the 2-RDM, and thetzhe correlateddensity matrices. The variational method im

3- and 4-RDM's by the sums of the products of the 1- andposing approximateN-representability conditions on the

2-RDM's in the present approximation, the density equationsecond-order density matrix does not work well, except for

in matrix form becomes a multidimensional nonlinear equaSCMe special systems with a very small number of electrons

tion. This equation was solved by Newton's method, whichl1:22 With the use of the nonvariational density-equation
is often used for this kind of problem. The iterative proce-Method and accurate decoupling approximations, we have
dure is as follows. We use the HF 2-RDM as an initial guessP€en able to determine tioerrelated energyand thecorre-
normalize the trial 2-RDM, then calculate the energy and thdated density matricesf general atoms and molecules quan-
3- and 4-RDM'’s from the 1- and 2-RDM'’s, and substitute titatively without any use of the wave functionhe use of
them into Eq.(3.5. Then we calculate a correction of the the density equation and the density matrix instead of the the
2-RDM (and hence a new 2-RDMby Newton’s method. Schralinger equation and the wave function is the central
This procedure is repeated until the convergence is obtainedlea in the present density-equation approach.
In some cases, interpolation techniques are useful for an ef- As seen in Table |, the energies of the DE2 method are as
ficient convergence: the previous and present 2-RDM’s areccurate as and even more accurate than the SDCI results.
averaged with a given weight. We used the symmetry propThis is true even for acetylene with douljdsasis distribut-
erty (Dj7}3=Dj3}1) of the 2-RDM in addition to the Hermi- ing ten electrons within 20 molecular orbitals in the active
ticity to reduce the number of the variables. space. This is the largest calculation ever made using the
We calculate the coefficient matrix of the linear equationdensity equation. The full-Cl calculations were difficult for
in the Newton procedure as follows. From its definition thisthis class of systems, so that the comparison was made with
coefficient matrix is determined Using the linearlized densitythe MP4 resu'ts_ Because Of the ||m|tat|0n Of our current
equation. The density equation with the decoupling approxiprogram, we did not apply this method to larger molecules

mations of the 3- and 4-RDM's contains linear and higher-anq to Jarger active spaces, but this limitation should be
order terms of the 2-RDM. The coefficient matrix elementsovercome. The calculated dipole moment of the CO mol-

derived from the linear term are calculated in every iteration :
. <% ecule by the DE2 method was 0.0344 a.u., which agrees well
The rest are calculated using the HF RDM’s at the first it- y 9

. oo ith the SDTQ (single, double, triple, and quadrupi€l
eration. For a difficult convergence case, they are caIcuIategalue 0.0445 a.u., and the experiment, 0.044 [£8]. The
at each iteration using the IPH approximations for both 3- L o b . '

and 4-RDM's calculated rotational barrier of ethane was 3.31 kcal/mol,
In the prev.ious communicatidii1] we have applied the which also ag'rees well with the MP4 value, 3.34 kcal/mol,
DE2 method to several atoms and singly bonded molecule@d the experiment, 2.9 kcal/mi@4]. _
Be, Ne, HO, NH,, H:O", CH,, BH,~, NH,", and CHF, _ Even though the energy errors shown in Table | are some-
and found that our method shows a good convergence, gifimes larger than those of the SDCI method, the dipole or
ing energies as accurate as and density matrices more accHadrupole moments calculated from the present density ma-
rate than the SDCI one. In this paper we apply the DEJArices, are more accurate than those of the SDCI method.
method to more complex systertiztter basis sets and larger This result is understood from the facts that the density-
molecule. New molecules include singly bonded oneseéquation method is a nonvariational method while the SDCI
(CH;OH,CH;NH,,C,Hg), and multiply bonded ones method is a variational one, and that the density-equation
(N,,CO,GH,). Next we give a comparison of the accuraciesmethod is a method directly solving the densities themselves.
of the various decoupling approximations from DE1 to DE2: In Table Il we compare the calculated energies and den-
the results of the density-equation method are compared witbity matrices obtained by the various decoupling approxima-
the full-Cl results. tions of the 3- and 4-RDM'’s from the DE1 to the DE2 level.
Comparative wave-function calculations were done at thd he effects of the term given by E.24) are further inves-
HF, SDCI[16], full-CI [17] (in case of relatively small basis tigated. It gives more detailed information than that given in
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TABLE |. Energies and properties calculated by the density-equation method and the wave-function method.
Density equation Wave function
Molecule DEZ? Hartree-Fock SDCI Full-¢l

Active Number of
space, electrofis

Energy in a.ucorrelation energy error in percentage

dipole or quadrupole moment in &u.

Double< basis(Ref.[19])

H,O —76.148 27(6.48) —76.009 84(100) —76.150 01(5.30) —76.157 87(0)
5x9, 10 0.9801 1.0142 0.9826 0.9762

NH, —56.298 88(4.24) —56.175 99(100) —56.297 17(5.58) —56.304 33(0)
4x10, 8 0.9098 0.9226 0.9133 0.9081

CH, —40.295 82(3.73) —40.185 46(100) —40.294 05(5.27) —40.300 09(0)
4x12, 8 0 0 0 0

HF —100.218 76(2.85) —100.021 79(100) —100.216 22(4.10) —100.224 53(0)
4x12, 8 0.7920 0.8215 0.7931 0.7919

N, —109.079 09(12.27) —108.878 26(100) —109.082 19(10.92) —109.107 180)
5x11, 10 2.046 1.808 1.993 2.054

co —112.872 93(12.99) —112.685 05(100) —112.873 82(12.58) —112.900 980)
5x11, 10 0.0344 ~0.1652 0.0586 0.0445

C,H, —76.980 06(6.37 —76.799 07(100) —76.975 59(8.65) —76.992 36(0)
5% 15, 10 4.642 5.315 4.817 4.7%62

STO-6G basigRef. [20])

CH,OH —114.711 44(5.24) —114.589 82(100) ~114.710 82(5.72) —114.718 16(0)
7x5, 14 0.6024 0.6548 0.6058 0.5991

CH,NH, —95.067 81(3.76) —94.938 49(100) —95.065 05(5.81) —95.072 86(0)
7x6, 14 0.5634 0.5754 0.5633 0.5619

C,Hs (staggerey —79.209 24(0.24) —79.062 33(100) —79.204 48(3.47 —79.209 58(0)
7X7, 14 0.4279 0.4589 0.4307 0.4384

C,Hs (eclipsed —79.204 05(0.20) —79.056 86(100) —79.199 25(3.46) —79.204 35(0)
7X7, 14 0.4843 0.5159 0.4876 0.4851

&The UV and 2P terms in the 3- and 4-RDM'’s, respectively, are included.
BFull-Cl only for small active space calculations.
°Number of electrons in the active space.

dQuadrupole moment is given in case of zero dipole moment.
®Fourth-order Mdler-Plesset values.

fSDTQ-CI values.
9SDT-CI value.

Ref.[11]. We used the doubléSTO basig25] expanded by gives the best energies among the density-equation method
six Gaussian-type orbitals for Be, and the minimal STO-6Gfor NH,™ and CO, but it does not give the best densities: the
basis[20] for molecules. density errors in thé+ UV, +2P): DE2 approximation are
We see that unless both of tHéV and 2P terms are smallest in both density-equation and wave-function meth-
included in the 3- and 4-RDM'$DE?2), the results are not ods.
satisfactory. When both terms are included, the convergence Strictly speaking, the DE2 method must be called, say,
of the iterative calculation is remarkably improved, giving DE1.9, because it does not include all the second-order
satisfactory results for both energy and density matrices itterms, and the term given by E(®.24) is missing. We then
comparison with the full-Cl results. Original Valdemoro’s consider the effect of this term. When this term is further
approximation (IPH, IPH): DE1 and other combinations included, and hence the method is strictly DE2, the energy
(+UV, IPH) and(IPH, +2P) did not give good results, and becomes slightly better than that of the DE1.9 method
did not even converge in some cases. The combinationgvhich is written in Table Il as DER For the CO molecule
of (IPH, IPH) and (IPH, +2P) give only small fractions of the missing term improves the energy considerably, and re-
the correlation energies for molecules, as well as too large duces the correlation energy error up to half of that of DE1.9.
correlation energy, twice as large as the exact value for Be;lowever this may be a special case because the effect of the
and the density errors are as large as those of the Hartreeame term is small for the triply bonded molecules d@wd
Fock method. The combinatidgs- UV, IPH), which contains C,H,. In all cases, the density matrices calculated by includ-
the first, second, and the third terms of Eg.5 for the ing the missing term are similar or a bit worse than those
4-RDM, gives better results than the above ones. It actuallgalculated by the DE1.9 method.
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TABLE II. Comparison of the density-equation method using the various decoupling approximations and the wave-function method.

Numbers in square brackets indicate powers of 10.

Density-equation method

Wave function method

DE1 DE2 Hartree-Fock SDCI Full-Cl
3D IPH +UV IPH +UV +UV+Eq. (2.24)
‘D IPH IPH +2P +2P +2P
System Energy
Active space Correlation energy error in percentage
electrond 2D errof
Be —14.59775 —14.58185 —14.59850 —14.582 69 —14.582 69 —14.56853 —14.58269 -—14.58269
2X2 —106.4 5.93 —-111.6 0.014 —4.60 — 3] 100 0.028 0
4 1.16%5-2] 8.76§—4] 1.199-2] 4.823-5] 4.784 - 5] 4631-2] 1.141-4] 0
H,O not conv. —75.72269 notconv. —75.72751 —75.727 70 —75.67884 —75.72829 —75.72902
5x2 12.6 3.00 2.63 100 1.44 0
10 9.132-2] 7.127-3] 1.254 -2] 3.154-1] 1.03Q-2] 0
CH, —40.124 26 —40.18537 —40.11136 —40.187 26 —40.187 53 —40.11015 -—40.18772 —40.190 49
4X4 82.4 6.38 98.5 4.02 3.68 100 3.45 0
8 2.948—-1] 3.81§-2] 3.713-1] 9.757-3] 1.007—2] 3.702-1] 2.819-—-2] 0
NH,* —56.42354 —56.48593 —56.404 41 —56.479 90 —56.480 46 —56.40047 —56.48087 —56.48347
4X 4 72.2 —2.96 95.3 4.31 3.63 100 3.14 0
8 2912-1] 4.956-2] 3.394-1] 1.164-2] 1.33§ - 2] 3.671—-1] 2.757-2] 0
N, not conv. not conv. not conv. —108.67319 —108.67616 —108.54177 —108.687 46 —108.700 11
5X3 17.00 15.13 100 7.99 0
10 7.601-2] 7.106 —2] 7.159-1] 1.287-1] 0
CO not conv. —112.44529 notconv. —112.41926 —112.43125 —112.30332 —112.43000 —112.442 61
5X3 1.93 16.77 8.15 100 9.05 0
10 3.959-1] 1.202 -1] 3.398 —1] 7.454—-1] 1.61§—-1] 0
C,H, not conv. —76.75213 notconv. —76.757 17 —76.758 28 —76.60302 —76.76057 —76.776 19
5X5 14.307 10.98 10.34 100 9.02 0
10 1.852-1] 6.493 - 2] 6.353 — 2] 8.864—-1] 1.711-1] 0

8Number of electrons in the active space.
bSquare norm of the difference between the calculated 2-RDM and the full-Cl one.

It is remarkable that the correlation energy errors of theRDM corresponds to the permutational antisymmetry of the
present density-equation method are improved as the systeexplicit (unintegrateg variables of the DM. Our correction
becomes largefin size and in basis 9etThis is seen by used here is similar to the one used by Valdemoro and co-
comparing the results given in Table | with those of Table Il,workers[8]: if a negative diagonal element appeared in the
the former being for larger systems. Though the energy er3-RDM, it was corrected to be zero, and some nondiagonal
rors of the density-equation method given in Table Il areelements were modified to keep the spin symmetry. Similar
almost always worse than those of the SDCI method, thoseorrections were applied to the 3-HRDM because the
in Table | are opposite except for,8, N,, and CO. Thisis 3-RDM and the 3-HRDM must satisfy an exact relat[@h
certainly an encouraging result for the density-equatiorHowever, these corrections either had no effect or resulted in
method. a divergence at least from our simple convergence technique.

Recently, Colmenero and Valdemoro applied the densitfHence we did not use them in the calculations given in
equation, using their approximations for 3- and 4-RDM's, toTables | and Il. Although these corrections keep the spin
four-electron systems like Be, B etc. and a six-electron symmetry of the 3-RDM and hence the antisymmetry of the
system Bett@10]. They further used corrections adopting the explicit variables of the 3-DM, it may not ensure the anti-
3-RDM spin-symmetry, and keeping some diagonal elementsymmetry of thentegratedvariables of the 3-DM.
of the 3-RDM non-negative. The error in the correlation en- We next show the convergence property of our method.
ergy for Be was 0.27%, which is comparable to our presenFEigure 1 shows the energy, the errors in the density equation,
result, showing that their additional corrections worked well.and the 2-RDM for each iteration of the calculation of

In our calculations, some diagonal elements of the apCHsF. The error in the density equation means the square
proximate 3-RDM were slightly negative, though they mustnorm of the difference between the rhs and lhs of the density
be non-negative for thdl-representable one. Hence we fur- equation, and the error in the 2-RDM means the square norm
ther tried to keep all the diagonal elements of the 3-RDMof the difference between the calculated 2-RDM and the ex-
and 3-HRDM non-negative, and at the same time to keect one. We see that our iterative method gave a nice con-
them spin symmetry adapted. The spin symmetry of thevergence which requires about ten iterations, in contrast to
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FIG. 1. Energy and errors of the density equation and 2-RDM

Iteration number

for each iteration of the calculation of GH

the previous on¢10] which required longer iterations.
We examine theN representability of the calculated cesP, Q, andg for several molecules. Though they must be
2-RDM. We calculated some necessary requirements?the non-negative for theN-representable 2-RDM'’s, the lowest

Q, andG conditions[1,2], which are the non-negativities of values are slightly negative but the absolute values are small.
the RDM, HRDM, and they matrix defined as

The G condition is equivalent to the non-negativity of the

norm,

in which x;; are arbitrary scalars anl is the operator de-

fined as

gij i =2% D]+ & 'D|-'D] 'D".

<BTB>:X7} Xk19ij k=0,

B:E Xij(aitraj(,—lD}).

ij,o

(3.9

(3.9

(3.10
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FIG. 2. Minimum eigenvalues of the 2-RDM and 2-HRDM, and
g matrix and trace errors of the RDM'’s for each iteration of the
calculation of CHF.

Note that the sums of the eigenvalues of (handQ matri-

ces are quite large, which aggC, and y,C,, respectively,
whereN being the number of the electrons akMdthe num-

ber of the holes. Note also that the sum of the eigenvalues of
the g matrix in the Hartree-Fock approximation is
N(N+2M)/2, which is also quite large. Figure 2 shows
these lowest eigenvalues for each iteration of the calculation
of CH;F. The deviations from zero are large in the first few
iterations, but become very small after convergence, that is,
the calculated 2-RDM’salmost satisfy these three condi-
tions. A small deviation from the exabt representability is
due to an inaccuracy of our decoupling approximation of the
RDM'’s. As the approximation becomes more accurate, the
calculated 2-RDM'’s should satisfy thBl-representability

Table 11l shows the lowest eigenvalues of the three matricondition more precisely. Figure 2 also shows the trace er-

TABLE Ill. Minimum eigenvalues of the 2-RDM, 2-HRDM, argimatrix, and the range of the eigenvalues of 1-RDM calculated by the

DE2 method. Numbers or square brackets indicate powers of 10.

Molecule Active Number of 2-RDM 2-HRDM g matrix 1-RDM
space electrods

H,O 5x9 10 ~3.34 4] —1.89—4] ~3.2§ 4] 1.94 —4]~1.9998
NH, 4x10 8 —4.59 - 4] —1.46 - 4] —2.70-4] 3.00 —4]~1.9838
CH, 4x12 8 —5.71—4] —1.59—4] —3.27-4] 2.39 —4]~1.9815
CH,OH 75 14 —5.39—4] —4.39—4] —5.39—4] 1.7§ —2]~1.9974
N, 5x11 10 —-1.07-3] —-5.31—4] —-3.70 - 3] 4.30 —4]~1.9866
CO 5x11 10 -7.83-4] —3.31-4] —6.40 - 3] 5.5 —4]~1.9884
C,H, 5x15 10 -1.57-3] —5.94-4] -3.10-3] 3.40-5]~1.9796

8Number of electrons in the active space.
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rors of then-RDM from the exact traceC,,, which also some higher-order perturbation terms in electron correla-
became very small after the convergence. tions, and is more accurate than the previous pné,

We finally check theN representability of the 1-RDM’s. which neglects some important second-order terms. The cal-
The necessary and sufficieNtrepresentability condition for culated 2-RDM’s were more accurate than the SDCI results,
the 1-RDM is that all the eigenvalues are in the range of zerand the calculated energies were comparable with or better
to two [2]. Table Il shows the range of the eigenvalues ofthan the SDCI ones: the SDCI method is a variational
the 1-RDM'’s for several molecules. All the eigenvalues ofmethod which minimize the energy, while the density-
the calculated 1-RDM'’s are in the range of zero to two,equation method is a nonvariational method directly deter-
showing that the calculated 1-RDM's are exadiyrepre- mining the 2-RDM. The density-equation method is found to
sentable. This was true for all atoms and molecules calcugive better quality results as the system becomes larger. The

lated by the present DE2 method. convergence was fairly good and the calculated 2-RDM'’s
almost satisfied some necessary conditions of the
IV. CONCLUSION N-representability, P, Q, and G conditions, while the

1-RDM’s were exactlyN representable. These results show

The second-order density matrices of some atoms anghat the density-equation method is very promising.
molecules were directly calculated without any use of the

wave function. We solved the density equation using the
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