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Direct determination of the quantum-mechanical density matrix using the density equation. II.

Koji Yasuda* and Hiroshi Nakatsuji†

Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan
~Received 7 October 1996!

With the use of the density equation@Phys. Rev. A14, 41 ~1976!#, second-order density matrices of atoms
and molecules are calculated directly without any use of the wave function. The decoupling of the third- and
fourth-order density matrices is done using the diagrammatic procedure of the Green’s-function method,
including terms up to second order in electron correlation. In addition to the results given in a previous
communication@Phys. Rev. Lett.76, 1039 ~1996!#, we give more detailed formulations, discussions, and
additional results for H2O, NH3, CH4, HF, N2, CO, and acetylene using double-z basis sets, and for CH3OH,
CH3NH2, and C2H6 ~staggered and eclipsed! using minimal basis sets. The present density-equation method
gave energies as accurate as, and reduced density matrices~RDM’s! more accurate than the single and double
excitation configuration interaction method. The present method seems to give better quality results as the
system becomes large. The convergence was fairly good and the calculated second-order RDM’s almost
satisfied some necessary conditions of theN representability, the so-calledP, Q, andG conditions, while the
first-order RDM’s were exactlyN representable. The variety of the molecules calculated and the quality of the
calculated results show that the density-equation method can be a promising alternative to the wave-function
approach in quantum mechanics.@S1050-2947~97!06409-3#

PACS number~s!: 31.10.1z, 02.70.Rw, 03.65.Ge
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I. INTRODUCTION

Since all the operators we shall concern ourselves with
quantum mechanics are one- and two-body ones, all the
emental physical quantities can be calculated from
second-order density matrix~2-DM!. Many-electron wave
functions involve more information than we need to kno
Thus a determination of the density or density matrices w
out using the wave function could be a convenient alterna
to the wave mechanics, and this approach is often ca
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‘‘wave mechanics without wave.’’ Since the 2-DM dete
mines the energy, we may apply the variational principle i
suitable domain of the density matrices@1#. However, it is
still not completely known what conditions the Pau
principle enforces on the density matrices~the
N-representability condition! @2#. Moreover, since these con
ditions may be very complicated, it would be impractical
carry out such variational calculations.

One of the authors proposed a nonvariational approach
a direct determination of the density matrix@3#. He showed
that the equation
EG~n!5H(
i

n

v~ i !1(
i . j

n

w~ i , j !J G~n!1~n11!E H v~n11!1(
i

n

w~ i ,n11!J G~n11!dxn11

1 1
2 ~n11!~n12!E w~n11,n12!G~n12!dxn11dxn12 , ~1.1!
y
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n,
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,
n-
which is called the density equation, isequivalent to the
Schrödinger equation in the domain ofN-representable
DM’s for each n with n>2. That is, this equation in the
domain of theN-representable space is anecessary and suf
ficient condition for the corresponding antisymmetric wa
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function to satisfy the Schro¨dinger equation. The necessit
alone was shown by Cho and by Cohen and Frishberg@4#.
Unfortunately, since thenth-order density equation contain
nth, (n11)th, and (n12)th order DM’s, that is, the numbe
of the unknowns exceeds the number of the conditions as
as theN representability condition is not completely know
the solution of the density equation itself is not unique@5#.
However, the solution within theN-representable space
guaranteed to be exact, and we use the subsid
N-representability conditions to eliminate unphysical so
tions.

On the other hand, if we can approximate (n11)th- and
(n12)th-order DM’s using thenth- and lower-order ones
we can directly determine the density matrix from the de
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56 2649DIRECT DETERMINATION OF THE QUANTUM- . . .
sity equation without using the wave function. Actually, t
equivalence of the Schro¨dinger equation plus Pauli principl
with the density equation plusN representability condition
@3# implies that theN representability condition has a pow
of expressingG (n12) andG (n11) in terms ofG (n). Thus, the
above approximation also works as theN-representability
condition. In principle, the ground-statenth-order DM deter-
mines the DM’s of all orders including the wave functio
since it determines the electron density and hence the w
function ~Hohenberg-Kohn theorem@6#!.

Recently, Valdemoro and co-workers@7,8# reported an
interesting approach for solving the density equation. Th
suggested a decoupling approximation of higher-order
duced density matrices~RDM’s! in terms of the lower-order
ones based essentially on the fermion’s anticommutation
lations. They derived the identity containing then-RDM and
n-hole RDM ~HRDM! on the left-hand side~LHS!, and the
lower-order RDM’s and HRDM’s on the right-hand sid
~RHS!, and then assumed that then-RDM ~n-HRDM! on the
lhs is equal to the sum of the products of the lower-or
RDM’s ~HRDM’s! on the rhs. We call this approximatio
the IPH approximation~the approximation identifying the
particle and hole parts separately!. With this approximation,
Colmenero and Valdemoro solved the density equation@9#
for some four- and six-electron systems, and calculated t
density matrices directly@10#. However, their results seem t
have been limited to small systems, and the applicability
general many-electron systems is an open question. S
their decoupling approximation is accurate for a Be at
~four-electron system! but less accurate for H2O ~ten-electron
system! @8#, we have to look for a more accurate approxim
tion which is suitable for studying more complex atoms a
molecules.

In a previous paper@11#, we proposed a different ap
proach for solving the density equation: we presented
decoupling approximation based on the Green’s-funct
technique, and applied it using the second-order den
equation @Eq. ~1.1! with n52# to directly determine the
2-RDM’s of several atoms and molecules. We found that
method is very promising, giving as accurate energies as,
more accurate density matrices than, those of the variati
SDCI ~single and double excitation configuration interactio!
one. We checked someN-representability conditions, an
found that the resultant 2-RDM’s almost satisfied these c
ditions, while the 1-RDM’s were exactlyN representable
This success opened a possibility of an entirely new met
in quantum mechanics, and gave us some insight into
N-representability conditions.

In this paper we give more detailed explanations of
approximations for expressing the 3- and 4-RDM’s in ter
of the 1- and 2-RDM’s, which were discussed briefly in t
previous paper@11#, show some new results, and discuss
convergence properties of our method.

II. APPROXIMATIONS OF 3- AND 4-RDM’S

We use the Green’s-function~GF! method to derive ap-
proximate relations of the higher-order DM’s with the lowe
order ones. The IPH approximation is derived as a spe
case. The DM’s are defined as@12#
ve
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G~n!~x18•••xn8ux1 •••xn!

5
1

n!
^f†~x1! •••f†~xn!f~xn8!•••f~x18!&.

~2.1!

where xi denotes space-spin coordinate ofi -th electron,
while f† andf denote creation and annihilation field oper
tors, respectively. Then-RDM’s are defined as

nD~r 18 •••r n8ur 1 •••r n!

5 (
s1 . . . sn

G~n!~x18 . . . xn8ux1 . . . xn! ~2.2!

wherer i and s i denote space and spin coordinates, resp
tively. Then-particle many-body GF’s are defined as@13#

G~n!~x18t18 •••xn8tn8ux1t1•••xntn!

5~2 i !n^T@f~x18t18!•••f~xn8tn8!f†~xntn! •••f†~x1t1!#&
~2.3!

whereT denotes the time ordering operator. The DM’s a
related to the GF’s as

G~n!~x18 •••xn8ux1 •••xn!

5
~2 i !n

n!
G~n!~x180

2•••xn80
2ux101•••xn01!, ~2.4!

where 01 and 02 denote positive and negative infinites
mals, respectively. They determine the time ordering of
operators in Eq.~2.3! so as to match the definition of th
DM’s given by Eq.~2.1!.

Later we use matrix notations of these quantities, wh
the subscriptj k and the superscripti k are associated with the
annihilation and creation operators, respectively, and
one-particle basis function is a spin-orbital for the DM and
spatial orbital for the RDM.

In order to obtain the relations among the GF’s, we fi
consider the lower-order perturbation series, and then
clude some higher-order effects. We use Feynman’s pro
dure, which represents the GF as a sum of the topologic
different diagrams@13#. After taking the limit of time vari-
ables to get the relations among the DM’s, we rewrite th
into the relations among the RDM’s by summing up the s
variables. We use the Hartree-Fock~HF! GF’s as unper-
turbed zeroth-order GF’s, and the electron correlation
treated as a perturbation. Hence our approximation wo
best for closed-shell atoms and molecules, dealing ma
with the dynamic correlations.



F
a
a

-

pe

t,
-

s

oo
at

he

s

rit
m
an
o

P

ou

f
r

ur
,
t
p-
ity

ew
M,
e

a-

ple

GF
pre-

hat

rm
c-

ate
e

op-

ral

ich
e to
ts

bed
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A. Approximation of the 4-RDM

There are four kinds of diagrams for the four-particle G
up to the second order in the perturbation. In a stand
diagrammatic notation, they are represented symbolically

G~4!

5

~2.5!

in which the coefficient for thekth-order perturbation dia
gram ofG(n) is 6 i m2k2n, wherem is the number of the HF
GF’s in the diagram, and the relative sign ensures the
mutational antisymmetry@13#. With the use of the lower-
order relations which connectG(3) with G(2) andG(1), and
G(2) with G(1), it is easy to show that the sum of the firs
second, and third terms of Eq.~2.5! reproduces the IPH ap
proximation for the 4-RDM@8#: the last term missing in the
IPH approximation represents the simultaneous collision
two electron pairs, so that we call it two-pair~2P! term. It is
a central term in the independent pair model which is a g
approximation for describing the dynamic correlations in
oms and molecules@14#. The third term in Eq.~2.5! will be
considered in the approximation of the 3-RDM.

The 2P term is calculated as follows: for a given 2-DM
the collision termU is defined as

U~x18x28ux1x2!2U~x18x28ux2x1!

52G~2!~x18x28ux1x2!2UG~1!~x18ux1! G~1!~x18ux2!

G~1!~x28ux1! G~1!~x28ux2!
U.

~2.6!

Except for a coefficient, it is represented as

U~x18x28ux1x2!5 ~2.7!

in which the bold line is the exact one-particle GF, while t
rectangle is the exact vertex ofG(2) @13#. In the above figure
we replaced the time variables in the external lines with po
tive and negative infinitesimals. The termU represents the
sum of the collisions of two electrons which cannot be w
ten by simple products of the 1-DM’s. Similarly, the 2P ter
represents independent collisions of two electron pairs,
is written as the sum of the permuted, antisymmetrized pr
ucts ofU:

2PG~4!5
1

4!
U j 1,j 2

i1,i2U j 3,j 4
i3,i4 1••• . ~2.8!

To generate all the terms in Eq.~2.8!, we substitute four
indices ~i 1 , i 2 , i 3 , and i 4! of three termsU j 1,j 2

i1,i2U j 3,j 4
i3,i4 ,

U j 1,j 3
i1,i3U j 2,j 4

i2,i4 , andU j 1,j 4
i1,i4U j 2,j 3

i2,i3 in all possible ways~4!!. Then
we obtain the topologically different diagrams for the 2
term whose total number is 72.

Since our Hamiltonian is spin independent, and since
present subjects are closed-shell atoms and molecules,G(1)
rd
s

r-

of

d
-

,

i-

-

d
d-

r

becomes a unit operatords
s8 in a spin space. The spin sum

yields a factor of 242p for each permuted diagram o
4-RDM, wherep is a parity of the permutational group. Fo
example, the spin sum ofU j 1,j 3

i1,i4U j 2,j 4
i3,i2 yields a factor of 22.

In the present approximation, the 4-RDM includes all fo
kinds of diagrams in Eq.~2.5! and some higher-order terms
becauseU is calculated from the 2-DM itself. In the direc
determination of the 2-RDM described in Sec. III, this a
proximate 4-RDM is used to calculate the rhs of the dens
equation~1.1!, then this equation is used to calculate a n
2-RDM. Through this self-consistency process, the 2-RD
U, and the approximate 4-RDM come to include som
higher-order terms.

The lowest-order missing terms in the present approxim
tion of the 4-RDM are represented symbolically as

~2.9!

which are third-order and are not represented by the sim
products of the lower-order RDM’s.

B. Approximation for the 3-RDM

There are three kinds of diagrams of the three-particle
up to second order in the perturbation, and they are re
sented symbolically as

G~3!5 ~2.10!

With the use of the lower-order relations, we can show t
the sum of the first and second terms of Eq.~2.10! repro-
duces the IPH approximation for the 3-RDM. The last te
of Eq. ~2.10! is second order in the perturbation of the ele
tron correlation, and may not be negligible. To approxim
it, including not only the lowest-order term but also som
higher-order terms, we use Dyson’s equation and the pr
erty of the unperturbed GF’s.

An exact one-particle GF satisfies the Dyson’s integ
equation

~2.11!

where an open circle means the irreducible self-energy wh
is an energy-dependent effective one-body potential du
the electron interaction@13#. The second term then represen
the multiple scattering by the self-energy.

The HF GF which we use as the zeroth order unpertur
one is written as@13#
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G0
~1!~x8t8,xt!

51 i (
k

occupied

wk* ~x!wk~x8!exp@2 i ek~ t82t !#; t8<t

2 i (
k

unoccupied

wk* ~x!wk~x8!exp@2 i ek~ t82t !#; t8>t,

~2.12!

wherewk and ek are the HF orbital and orbital energy, re
spectively. Since this unperturbed GF describes the proba
ity amplitude of each independent electron~hole! from xt to
x8t8 ~and vice versa!, it satisfies the rule of the probabilit
amplitude on the subsequent events in the path-inte
theory @15#. Hence it has the property

E dyG0
~1!~zt8,y0!G0

~1!~y0,xt!

5~2 i !G0
~1!~zt8,xt!; t8>0>t

~1 i !G0
~1!~zt8,xt!; t8<0<t,

~2.13!

in which we integrate all the intermediate states,y0. The
space integration of the two GF’s gives one GF in these t
orderings. From the definition of the HF GF, Eq.~2.12!, only
the occupied~unoccupied! orbitals contribute toG0

(1) when
t8,t (t8.t). Since these two kinds of orbitals are orthono
mal to each other, the relative sign in Eq.~2.13! can be
treated with the use of the projector,

P~y!5 i S (
k

unoccupied

2 (
k

occupiedD uwk~y!&^wk~y!u. ~2.14!

Then Eq.~2.13! becomes

E dy G0
~1!~zt8,y0!P~y!G0

~1!~y0,xt!

5G0
~1!~zt8,xt!; tt8,0, ~2.15!

which we represent in a diagrammatic form as

; tt8,0, ~2.16!

where the triangle means the projectorP. We note that Eqs
~2.15! and ~2.16! are valid only whentt8,0: the lhs’s of
Eqs.~2.15! and~2.16! vanish identically whentt8.0, while
their rhs’s do not. Note that only space integration fory is
necessary, in contrast to the ordinary space-time integra
in the GF theory.

It is well known that the exact GF has an expression si
lar to Eq.~2.12! ~the Lehmann representation!. One-particle
functions which contribute toG(1) whent8.t (t8,t) corre-
spond to the quasiparticle wave functions of anion~ionized!
states. However, since these functions are not orthonor
the exactG(1) does not have an expression like Eq.~2.15!.
il-
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With the use of Dyson’s equation~2.11! and the HF GF’s
property~2.16!, the last term of Eq.~2.10! is transformed as

~2.17!

where the approximation means that it is valid only wh
tt8,0. The casett8.0 will be considered later. The term
expressed by Eq.~2.17! is called theUV term. The only
unknown in the above figure which we call theV term is
similarly approximated as

~2.18!

After manipulating some numerical coefficients, theUV
term given by diagram~2.17! is written into an ordinary
formula as

UVG j 1,j 2,j 3
~3!i1,i2,i35 1

6 ~Vj 1,l2
i1,i2Pk2

l2 U j 2,j 3
k2,i31••• !

5 1
6 ~VPU1••• !. ~2.19!

From diagram~2.18!, theV term is written as

Vj 1,j 2
i1,i2 5U j 1,j 2

i1,i2 1Vj 1,l2
i1,i2Pk2

l2 ~G j 2
~1!k22G0 j 2

~1!k2!

5U1VPg. ~2.20!

which is used to calculate theUV term in Eq.~2.19!. Other
terms denoted as . . . in Eq.~2.19! are generated by subst
tuting the indices 1, 2, and 3 in all possible ways, and th
by substituting three indices~i 1 , i 2 , and i 3! in all possible
ways. The projectorP and the correction to the 1-DMg is
written with the unperturbed first-order density matrixG0

(1)

as

Pk
l 52G 0k

~1!l 2dk
l , ~2.21!

g j
i 5G j

~1!i2G 0j
~1!i , ~2.22!

wheredk
l is Kronecker’s delta.

By substituting Eq.~2.20! into Eq. ~2.19!, the UV term
UVG (3) can be written in an infinite sum as

UVG~3!5
1

6
~UPU1UPgPU1UPgPgPU1••• !

~2.23!
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Since Eqs.~2.19!–~2.22! do not contain orbital energies
we can use any idempotent first-order density matri
whoseN eigenvalues are equal to 1, and the rest are equ
0 as unperturbed ones~N is the number of electrons!. In the
calculations below, the HF density matrix is used as an
perturbed one. Once we get theUV term of the 3-DM, the
spin-sum yields the 3-RDM in the same way as the 4-RD

The lowest-order missing term in the presentUV approxi-
mation is the second-order one, which is attributed to
approximation used in Eq.~2.17!: in the last term of Eq.
~2.10!, we omitted the term with two internal timest and t8
being the same sign,tt8.0, because Eqs.~2.15! and ~2.16!
do not hold in this case. This missing term contributes to
elementsG j 1,j 2,j 3

(3)i1,i2,i3 with j 1 – 3 are occupied andi 1 – 3 are un-
occupied~or j 1 – 3 are unoccupied andi 1 – 3 are occupied!. By
applying standard diagrammatic techniques and integra
the time variables, the missing term is written in an expli
form as

DG j 1,j 2,j 3
~3!i1,i2,i35

1

6De (
k

unoccupied
^ki2uV0u j 1 j 2&

ek1e i22e j 12e j 2
^ i 1i 3uV0uk j3&

2
1

6De (
k

occupied
^ i 1i 3uV0uk j3&

e i11e i32ek2e j 3

3^ki2uV0u j 1 j 2&, ~2.24!

De5e i11e i21e i32e j 12e j 22e j 3,

whereV0 is the perturbation operator, the difference betwe
the total Hamiltonian and the Fock operator. We did n
include this term in the present calculation, because our
here is to express the 3-RDM in terms of the 1- a
2-RDM’s alone, but this term additionally includes the o
bital energies and the perturbation operator. We expect
this term is small because it is proportional to the three-b
cluster amplitude in the lowest second order. In addition
the lowest second-order term given by Eq.~2.24!, we can
include some higher-order terms if we substitu
6^ki2uV0u j 1 j 2&/(ek1e i22e j 12e j 2) in Eq. ~2.24! with U.
In Sec. III we will show the contribution of this term in
actual calculations of atoms and molecules.

In the present formulation, we also neglect the third- a
higher-order terms which cannot be broken into two parts
cutting an electron propagator, as expressed by

~2.25!

The physical meaning of the present approximation of
3-RDM may be explained as follows. The three-particle c
lision term in the last term of Eq.~2.10! is considered to
include two distinct effects: three particles interact at
same time~three-body cluster effect!, or particle ~hole! 2
interacts with particle 1, moves some distance, then inter
with particle 3. TheUV term represents the latter proces
Because of the short-range nature of the electron correlat
s
to
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@14#, the three-body cluster effect is relatively small in atom
and molecules, and is neglected in the present approxi
tion.

To test the accuracy of the approximations for the 4- a
3-RDM’s given in this section, we calculated the 4-RD
from the exact 1-, 2-, and 3-RDM’s, and the 3-RDM fro
the exact 1- and 2-RDM’s for the singlet ground state of B
and the results were presented in Ref.@11#. Our approxima-
tions were very accurate, and reduced the errors of the
approximations by about two orders of magnitude for both
and 4-RDM’s.

III. DIRECT DETERMINATION
OF THE DENSITY MATRIX

In Sec. II, we derived a decoupling approximation for t
3- and 4-RDM’s whose accuracy is up to about second or
of the perturbation. In contrast to the approximation adop
by Valdemoro and co-workers, our approximation involv
almost all the second-order perturbation terms, except for
term given by Eq.~2.24!. This is necessary for a quantitativ
description of the electronic structure of atoms and m
ecules. Although our approximation based on the Gree
function technique is conceptually simple and systematic
improvable, the validity of the approximation itself must b
checked through numerical calculations. In a previous pa
@11# we solved the second-order density equation iterativ
using the decoupling approximation of the 3- and 4-RDM
described above.

In this section, we first summarize our calculation
method and then give the calculated results. We used
second-order density equation@Eq. ~1.1! with n52# in ma-
trix form, which can be represented as

Rj 1,j 2
i1,i2 5EDj 1,j 2

i1,i2 , ~3.1!

where the density matrix and the energy density matrix
given by

D j 1,j 2
i1,i2 5 1

2 ^Ej 1,j 2
i1,i2 &, ~3.2!

Rj 1,j 2
i1,i2 5 1

2 ^HEj 1,j 2
i1,i2 &, ~3.3!

Ej 1,j 2
i1,i2 5 (

s1,s2
ai1s1

† ai2s2
† aj 2s2aj 1s1 . ~3.4!

The original integrodifferential equation was replaced by
matrix equation including the partial trace. The density m
trices and the Hamiltonian were represented in matri
whose one-electron base are the HF orbitals. The genera
two-electron integrals were used for simplicity.

Equation~3.1! is equivalent to the two conditions

1

2
~Rj 1,j 2

i1,i2 1Ri1,i2
j 1,j 2!2EDj 1,j 2

i1,i2 50, ~3.5!

Rj 1,j 2
i1,i2 2Ri1,i2

j 1,j 250 ~3.6!

because of the Hermiticity of the 2-RDM,

D j 1,j 2
i1,i2 5Di1,i2

j 1,j 2 . ~3.7!
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In the present calculation, we used the Hermite part of
density equation, Eq.~3.5!, imposing the Hermiticity, Eq.
~3.7!, and did not use the two-particle Brillouin conditio
@Eq. ~3.6!#.

We approximate the 3-RDM from 1- and 2-RDM’s, an
then 4-RDM from 1-, 2-, and 3-RDM’s, using the decouplin
approximations given in Sec. II. We then put these 3- a
4-RDM’s to Eq. ~3.5!, and solve it iteratively. Since th
present decoupling approximations of the 3- and 4-RDM
are correct essentially up to the second order in the pe
bation of the electron correlation, we refer to the pres
method as DEPT2~density equation with the 3- an
4-RDM’s correct to second-order in correlation perturb
tion!, or simply DE2. In this notation, the solution based
the IPH approximation~original Valdemoro’s approxima
tion! may be referred to as DEPT1 or DE1, since the IP
approximation of the 3- and 4-RDM’s corresponds to t
first-order approximation.

Since the 1-RDM was represented by the 2-RDM, and
3- and 4-RDM’s by the sums of the products of the 1- a
2-RDM’s in the present approximation, the density equat
in matrix form becomes a multidimensional nonlinear eq
tion. This equation was solved by Newton’s method, wh
is often used for this kind of problem. The iterative proc
dure is as follows. We use the HF 2-RDM as an initial gue
normalize the trial 2-RDM, then calculate the energy and
3- and 4-RDM’s from the 1- and 2-RDM’s, and substitu
them into Eq.~3.5!. Then we calculate a correction of th
2-RDM ~and hence a new 2-RDM! by Newton’s method.
This procedure is repeated until the convergence is obtai
In some cases, interpolation techniques are useful for an
ficient convergence: the previous and present 2-RDM’s
averaged with a given weight. We used the symmetry pr
erty (D j 1,j 2

i1,i2 5D j 2,j 1
i2,i1 ) of the 2-RDM in addition to the Hermi-

ticity to reduce the number of the variables.
We calculate the coefficient matrix of the linear equati

in the Newton procedure as follows. From its definition th
coefficient matrix is determined using the linearlized dens
equation. The density equation with the decoupling appro
mations of the 3- and 4-RDM’s contains linear and high
order terms of the 2-RDM. The coefficient matrix elemen
derived from the linear term are calculated in every iterati
The rest are calculated using the HF RDM’s at the first
eration. For a difficult convergence case, they are calcula
at each iteration using the IPH approximations for both
and 4-RDM’s.

In the previous communication@11# we have applied the
DE2 method to several atoms and singly bonded molecu
Be, Ne, H2O, NH3, H3O

1, CH4, BH4
2 , NH4

1 , and CH3F,
and found that our method shows a good convergence,
ing energies as accurate as and density matrices more a
rate than the SDCI one. In this paper we apply the D
method to more complex systems~better basis sets and larg
molecules!. New molecules include singly bonded on
~CH3OH,CH3NH2,C2H6!, and multiply bonded ones
~N2,CO,C2H2!. Next we give a comparison of the accuraci
of the various decoupling approximations from DE1 to DE
the results of the density-equation method are compared
the full-CI results.

Comparative wave-function calculations were done at
HF, SDCI@16#, full-CI @17# ~in case of relatively small basi
e
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sets!, and fourth-order Mo” ller-Plesset perturbation metho
~MP4, for larger cases!. Experimental molecular geometrie
@18# were used and some 1s core orbitals of C, N, O, and F
were frozen.

Tables I and II show the summary of the present resu
In Table I we compare the energies and the properties ca
lated by the present DE2 method with those of the wa
function approaches. The results for the double-z basis@19#
and the minimal Slater-type-orbital STO-6G basis@20# were
grouped separately. The DE2 method includes theUV and
2P terms in the 3- and 4-RDM’s, respectively, but does
include the term given by Eq.~2.24!.

It is known that the Hartree-Fock theory can be form
lated as an equation for the first-order density matrix, and
uncorrelated, Hartree-Fock density matrix can be calculat
without using the wave function@3,4,12,21#. However, few
attempts have been successful for a direct determinatio
the correlateddensity matrices. The variational method im
posing approximateN-representability conditions on th
second-order density matrix does not work well, except
some special systems with a very small number of electr
@1,22#. With the use of the nonvariational density-equati
method and accurate decoupling approximations, we h
been able to determine thecorrelated energyand thecorre-
lated density matricesof general atoms and molecules qua
titatively without any use of the wave function. The use of
the density equation and the density matrix instead of the
Schrödinger equation and the wave function is the cent
idea in the present density-equation approach.

As seen in Table I, the energies of the DE2 method are
accurate as and even more accurate than the SDCI res
This is true even for acetylene with double-z basis distribut-
ing ten electrons within 20 molecular orbitals in the acti
space. This is the largest calculation ever made using
density equation. The full-CI calculations were difficult fo
this class of systems, so that the comparison was made
the MP4 results. Because of the limitation of our curre
program, we did not apply this method to larger molecu
and to larger active spaces, but this limitation should
overcome. The calculated dipole moment of the CO m
ecule by the DE2 method was 0.0344 a.u., which agrees
with the SDTQ ~single, double, triple, and quadruple!-CI
value, 0.0445 a.u., and the experiment, 0.044 a.u.@23#. The
calculated rotational barrier of ethane was 3.31 kcal/m
which also agrees well with the MP4 value, 3.34 kcal/m
and the experiment, 2.9 kcal/mol@24#.

Even though the energy errors shown in Table I are so
times larger than those of the SDCI method, the dipole
quadrupole moments calculated from the present density
trices, are more accurate than those of the SDCI meth
This result is understood from the facts that the dens
equation method is a nonvariational method while the SD
method is a variational one, and that the density-equa
method is a method directly solving the densities themselv

In Table II we compare the calculated energies and d
sity matrices obtained by the various decoupling approxim
tions of the 3- and 4-RDM’s from the DE1 to the DE2 leve
The effects of the term given by Eq.~2.24! are further inves-
tigated. It gives more detailed information than that given
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TABLE I. Energies and properties calculated by the density-equation method and the wave-function method.

Density equation Wave function

Molecule DE2a Hartree-Fock SDCI Full-CIb

Active Number of Energy in a.u.~correlation energy error in percentage!

space, electronsc dipole or quadrupole moment in a.u.d

Double-z basis~Ref. @19#!

H2O 276.148 27(6.48) 276.009 84(100) 276.150 01(5.30) 276.157 87(0)
539, 10 0.9801 1.0142 0.9826 0.9762

NH3 256.298 88(4.24) 256.175 99(100) 256.297 17(5.58) 256.304 33(0)
4310, 8 0.9098 0.9226 0.9133 0.9081

CH4 240.295 82(3.73) 240.185 46(100) 240.294 05(5.27) 240.300 09(0)
4312, 8 0 0 0 0

HF 2100.218 76(2.85) 2100.021 79(100) 2100.216 22(4.10) 2100.224 53(0)
4312, 8 0.7920 0.8215 0.7931 0.7919

N2 2109.079 09(12.27)e 2108.878 26(100) 2109.082 19(10.92)e 2109.107 19e~0!

5311, 10 2.046 1.808 1.993 2.054f

CO 2112.872 93(12.99)e 2112.685 05(100) 2112.873 82(12.58)e 2112.900 98e~0!

5311, 10 0.0344 20.1652 0.0586 0.0445f

C2H2 276.980 06(6.37)e 276.799 07(100) 276.975 59(8.65)e 276.992 30e~0!

5315, 10 4.642 5.315 4.817 4.762g

STO-6G basis~Ref. @20#!

CH3OH 2114.711 44(5.24) 2114.589 82(100) 2114.710 82(5.72) 2114.718 16(0)
735, 14 0.6024 0.6548 0.6058 0.5991

CH3NH2 295.067 81(3.76) 294.938 49(100) 295.065 05(5.81) 295.072 86(0)
736, 14 0.5634 0.5754 0.5633 0.5619

C2H6 ~staggered! 279.209 24(0.24)e 279.062 33(100) 279.204 48(3.47)e 279.209 59e~0!

737, 14 0.4279 0.4589 0.4307 0.4284f

C2H6 ~eclipsed! 279.204 05(0.20)e 279.056 86(100) 279.199 25(3.46)e 279.204 35e~0!

737, 14 0.4843 0.5159 0.4876 0.4851f

aThe UV and 2P terms in the 3- and 4-RDM’s, respectively, are included.
bFull-CI only for small active space calculations.
cNumber of electrons in the active space.
dQuadrupole moment is given in case of zero dipole moment.
eFourth-order Mo” ller-Plesset values.
fSDTQ-CI values.
gSDT-CI value.
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Ref. @11#. We used the double-z STO basis@25# expanded by
six Gaussian-type orbitals for Be, and the minimal STO-
basis@20# for molecules.

We see that unless both of theUV and 2P terms are
included in the 3- and 4-RDM’s~DE2!, the results are no
satisfactory. When both terms are included, the converge
of the iterative calculation is remarkably improved, givin
satisfactory results for both energy and density matrice
comparison with the full-CI results. Original Valdemoro
approximation ~IPH, IPH!: DE1 and other combination
~1UV, IPH! and~IPH, 12P! did not give good results, an
did not even converge in some cases. The combinat
of ~IPH, IPH! and ~IPH, 12P! give only small fractions of
the correlation energies for molecules, as well as too larg
correlation energy, twice as large as the exact value for
and the density errors are as large as those of the Har
Fock method. The combination~1UV, IPH!, which contains
the first, second, and the third terms of Eq.~2.5! for the
4-RDM, gives better results than the above ones. It actu
ce

in

ns

a
e,
e-

ly

gives the best energies among the density-equation me
for NH4

1 and CO, but it does not give the best densities:
density errors in the~1UV, 12P!: DE2 approximation are
smallest in both density-equation and wave-function me
ods.

Strictly speaking, the DE2 method must be called, s
DE1.9, because it does not include all the second-or
terms, and the term given by Eq.~2.24! is missing. We then
consider the effect of this term. When this term is furth
included, and hence the method is strictly DE2, the ene
becomes slightly better than that of the DE1.9 meth
~which is written in Table II as DE2!. For the CO molecule
the missing term improves the energy considerably, and
duces the correlation energy error up to half of that of DE1
However this may be a special case because the effect o
same term is small for the triply bonded molecules N2 and
C2H2. In all cases, the density matrices calculated by incl
ing the missing term are similar or a bit worse than tho
calculated by the DE1.9 method.
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TABLE II. Comparison of the density-equation method using the various decoupling approximations and the wave-function
Numbers in square brackets indicate powers of 10.

Density-equation method Wave function method

DE1 DE2 Hartree-Fock SDCI Full-CI
3D IPH 1UV IPH 1UV 1UV1Eq. (2.24)
4D IPH IPH 12P 12P 12P

System Energy
Active space Correlation energy error in percentage
electronsa 2D errorb

Be 214.597 75 214.581 85 214.598 50 214.582 69 214.582 69 214.568 53 214.582 69 214.582 69
232 2106.4 5.93 2111.6 0.014 24.60@23# 100 0.028 0
4 1.165@22# 8.768@24# 1.195@22# 4.823@25# 4.784@25# 4.631@22# 1.141@24# 0

H2O not conv. 275.722 69 not conv. 275.727 51 275.727 70 275.678 84 275.728 29 275.729 02
532 12.6 3.00 2.63 100 1.44 0
10 9.132@22# 7.122@23# 1.254@22# 3.154@21# 1.030@22# 0

CH4 240.124 26 240.185 37 240.111 36 240.187 26 240.187 53 240.110 15 240.187 72 240.190 49
434 82.4 6.38 98.5 4.02 3.68 100 3.45 0
8 2.948@21# 3.818@22# 3.713@21# 9.757@23# 1.007@22# 3.702@21# 2.819@22# 0

NH4
1 256.423 54 256.485 93 256.404 41 256.479 90 256.480 46 256.400 47 256.480 87 256.483 47

434 72.2 22.96 95.3 4.31 3.63 100 3.14 0
8 2.912@21# 4.956@22# 3.394@21# 1.164@22# 1.338@22# 3.671@21# 2.757@22# 0

N2 not conv. not conv. not conv. 2108.673 19 2108.676 16 2108.541 77 2108.687 46 2108.700 11
533 17.00 15.13 100 7.99 0
10 7.601@22# 7.106@22# 7.159@21# 1.282@21# 0

CO not conv. 2112.445 29 not conv. 2112.419 26 2112.431 25 2112.303 32 2112.430 00 2112.442 61
533 1.93 16.77 8.15 100 9.05 0
10 3.959@21# 1.202@21# 3.398@21# 7.454@21# 1.618@21# 0

C2H2 not conv. 276.752 13 not conv. 276.757 17 276.758 28 276.603 02 276.760 57 276.776 19
535 14.307 10.98 10.34 100 9.02 0
10 1.852@21# 6.493@22# 6.353@22# 8.864@21# 1.711@21# 0

aNumber of electrons in the active space.
bSquare norm of the difference between the calculated 2-RDM and the full-CI one.
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It is remarkable that the correlation energy errors of
present density-equation method are improved as the sy
becomes larger~in size and in basis set!. This is seen by
comparing the results given in Table I with those of Table
the former being for larger systems. Though the energy
rors of the density-equation method given in Table II a
almost always worse than those of the SDCI method, th
in Table I are opposite except for H2O, N2, and CO. This is
certainly an encouraging result for the density-equat
method.

Recently, Colmenero and Valdemoro applied the den
equation, using their approximations for 3- and 4-RDM’s,
four-electron systems like Be, B1, etc. and a six-electron
system Betta@10#. They further used corrections adopting t
3-RDM spin-symmetry, and keeping some diagonal eleme
of the 3-RDM non-negative. The error in the correlation e
ergy for Be was 0.27%, which is comparable to our pres
result, showing that their additional corrections worked w

In our calculations, some diagonal elements of the
proximate 3-RDM were slightly negative, though they mu
be non-negative for theN-representable one. Hence we fu
ther tried to keep all the diagonal elements of the 3-RD
and 3-HRDM non-negative, and at the same time to k
them spin symmetry adapted. The spin symmetry of
e
em

,
r-

se

n

ty

ts
-
t

.
-

t

p
e

RDM corresponds to the permutational antisymmetry of
explicit ~unintegrated! variables of the DM. Our correction
used here is similar to the one used by Valdemoro and
workers@8#: if a negative diagonal element appeared in t
3-RDM, it was corrected to be zero, and some nondiago
elements were modified to keep the spin symmetry. Sim
corrections were applied to the 3-HRDM because
3-RDM and the 3-HRDM must satisfy an exact relation@8#.
However, these corrections either had no effect or resulte
a divergence at least from our simple convergence techni
Hence we did not use them in the calculations given
Tables I and II. Although these corrections keep the s
symmetry of the 3-RDM and hence the antisymmetry of
explicit variables of the 3-DM, it may not ensure the an
symmetry of theintegratedvariables of the 3-DM.

We next show the convergence property of our meth
Figure 1 shows the energy, the errors in the density equa
and the 2-RDM for each iteration of the calculation
CH3F. The error in the density equation means the squ
norm of the difference between the rhs and lhs of the den
equation, and the error in the 2-RDM means the square n
of the difference between the calculated 2-RDM and the
act one. We see that our iterative method gave a nice c
vergence which requires about ten iterations, in contras
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the previous one@10# which required longer iterations.
We examine theN representability of the calculate

2-RDM. We calculated some necessary requirements, thP,
Q, andG conditions@1,2#, which are the non-negativities o
the RDM, HRDM, and theg matrix defined as

gi j ,kl5232Dil
jk1d i

k 1Dl
j21Di

j 1Dl
k . ~3.8!

The G condition is equivalent to the non-negativity of th
norm,

^B†B&5xi j* xklgi j ,kl>0, ~3.9!

in which xi j are arbitrary scalars andB is the operator de-
fined as

B5(
i j ,s

xi j ~ais
† aj s21D j

i !. ~3.10!

Table III shows the lowest eigenvalues of the three ma

FIG. 1. Energy and errors of the density equation and 2-RD
for each iteration of the calculation of CH3F.
i-

cesP, Q, andg for several molecules. Though they must
non-negative for theN-representable 2-RDM’s, the lowes
values are slightly negative but the absolute values are sm
Note that the sums of the eigenvalues of theP andQ matri-
ces are quite large, which areNC2 and MC2 , respectively,
whereN being the number of the electrons andM the num-
ber of the holes. Note also that the sum of the eigenvalue
the g matrix in the Hartree-Fock approximation
N(N12M )/2, which is also quite large. Figure 2 show
these lowest eigenvalues for each iteration of the calcula
of CH3F. The deviations from zero are large in the first fe
iterations, but become very small after convergence, tha
the calculated 2-RDM’salmost satisfy these three condi
tions. A small deviation from the exactN representability is
due to an inaccuracy of our decoupling approximation of
RDM’s. As the approximation becomes more accurate,
calculated 2-RDM’s should satisfy theN-representability
condition more precisely. Figure 2 also shows the trace

FIG. 2. Minimum eigenvalues of the 2-RDM and 2-HRDM, an
g matrix and trace errors of then-RDM’s for each iteration of the
calculation of CH3F.
the
TABLE III. Minimum eigenvalues of the 2-RDM, 2-HRDM, andg matrix, and the range of the eigenvalues of 1-RDM calculated by
DE2 method. Numbers or square brackets indicate powers of 10.

Molecule Active Number of 2-RDM 2-HRDM g matrix 1-RDM
space electronsa

H2O 539 10 23.34@24# 21.85@24# 23.28@24# 1.94@24#;1.9998
NH3 4310 8 24.59@24# 21.46@24# 22.70@24# 3.00@24#;1.9838
CH4 4312 8 25.71@24# 21.59@24# 23.22@24# 2.35@24#;1.9815
CH3OH 735 14 25.39@24# 24.35@24# 25.39@24# 1.78@22#;1.9974
N2 5311 10 21.02@23# 25.31@24# 23.70@23# 4.30@24#;1.9866
CO 5311 10 27.83@24# 23.37@24# 26.40@23# 5.51@24#;1.9884
C2H2 5315 10 21.52@23# 25.94@24# 23.10@23# 3.40@25#;1.9796

aNumber of electrons in the active space.
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rors of then-RDM from the exact trace,NCn , which also
became very small after the convergence.

We finally check theN representability of the 1-RDM’s
The necessary and sufficientN-representability condition for
the 1-RDM is that all the eigenvalues are in the range of z
to two @2#. Table III shows the range of the eigenvalues
the 1-RDM’s for several molecules. All the eigenvalues
the calculated 1-RDM’s are in the range of zero to tw
showing that the calculated 1-RDM’s are exactlyN repre-
sentable. This was true for all atoms and molecules ca
lated by the present DE2 method.

IV. CONCLUSION

The second-order density matrices of some atoms
molecules were directly calculated without any use of
wave function. We solved the density equation using
decoupling approximations for the third- and fourth-ord
density matrices. The decoupling approximations were
rived based on the Green’s-function technique and using
Feynman diagram. Previous approximations by Valdem
and co-workers@7,8# were derived as a special case. T
present approximation involves up to the second-order
s.
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some higher-order perturbation terms in electron corre
tions, and is more accurate than the previous one@7,8#,
which neglects some important second-order terms. The
culated 2-RDM’s were more accurate than the SDCI resu
and the calculated energies were comparable with or be
than the SDCI ones: the SDCI method is a variatio
method which minimize the energy, while the densit
equation method is a nonvariational method directly de
mining the 2-RDM. The density-equation method is found
give better quality results as the system becomes larger.
convergence was fairly good and the calculated 2-RDM
almost satisfied some necessary conditions of
N-representability,P, Q, and G conditions, while the
1-RDM’s were exactlyN representable. These results sho
that the density-equation method is very promising.
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