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Atomic configuration interaction and studies of He, Li, Be, and Ne ground states

Oliverio Jitrik and Carlos F. Bunge
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, Me´xico 01000, Mexico
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The atomic configuration interaction~CI! is reconsidered. We compare the algebraic and geometric ap-
proaches to the construction of the CI matrix and point out advantages of the latter. One-electron basis sets of
quality comparable to numerical multiconfigurational Hartree-Fock are readily obtained. The generation of
large CI lists of symmetry eigenfunctions is monitored by a prescription establishing ana priori identification
of relevant contributions to the wave function. Systematic and well-defined truncations to multireference CI’s
are examined. A formula for energy contributions of six-excited unlinked clusters is derived and shown to give
reasonable estimates. Ensuing nonrelativistic CI calculations on He, Li, Be, and Ne ground states yield the
lowest upper bounds in the literature, capturing 99.978, 99.923, 99.919, and 99.59% of the accepted correlation
energies, respectively.@S1050-2947~97!04909-3#

PACS number~s!: 31.10.1z, 31.15.Ar, 31.15.Pf, 31.25.2v
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I. INTRODUCTION

The problem of calculating reliable estimates of atom
correlation energies still persists in spite of improvedab ini-
tio methods and computer technology, and constitutes a
jor barrier to theoretical predictions of spectroscopic ac
racy. This paper deals with the configuration-interaction~CI!
approach to compute the eigenvalues of the nonrelativ
Schrödinger equation. All findings in this paper are pertine
to relativistic CI calculations@1# as well.

Although CI has been known for many years@2#, a sub-
stantial development in computers, software, and comp
tional methods was necessary before atomic CI came of
@3#. The first mature CI calculations consisted of a thorou
study of first-row-atom ground states@4#, which essentially
remained the last word in CI prowess for almost 20 yea
Useful theoretical ideas which survived the test of time
clude the art of designing CI calculations which are balan
in the choice of approximations and basis sets@5#, the parti-
tion of degenerate spaces into a hierarchy of interac
spaces@6#, natural orbital transformations@7# to speed up the
convergence of triple- and higher-excited configuration
pansions@8#, various estimates of energy contributions@9#,
and the use of some sort of patterns of convergence@10# for
the radial and angular expansions@4,11,12#. Davidson’s
eigensolver@13#, which evolved from closely related prede
cessors@9#, was one of the essential tools that spurred
called large-scale atomic CI@14# in the present decade.

Meanwhile, the numerical multiconfigurational Hartre
Fock ~MCHF! method made its appearance@15# and quickly
became established as the method of choice for atomic s
tures@16#. The advantages of the numerical MCHF meth
over CI come from the transparency and accuracy w
which both occupied and correlation orbitals are obtained
solving MCHF equations when convergence problems do
occur. In CI, there also exists the problem of obtaining b
accurate occupied orbitals and a compact correlat
effective basis of virtual orbitals without recurring to maj
human intervention.

Recently, a new generation of both MCHF and CI acc
rate calculations has been born@14,17–20#. The purpose of
561050-2947/97/56~4!/2614~10!/$10.00
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this paper is to report on new CI techniques leading to c
siderably improved accuracy, exemplified by calculations
He, Li, Be, and Ne ground states.

Section II is concerned with the CI expansion and t
construction of the CI Hamiltonian matrix. In Sec. III, w
deal with construction of primitive basis sets of quality com
parable to numerical MCHF orbitals. In Sec. IV, we exami
multireference CI~MR-CI! and derive an estimate for th
energy contribution of six-excited unlinked clusters. Final
in Sec. V we summarize present achievements.

II. THEORY

There are basically two efficient approaches to the c
struction of theH matrix: the algebraic approach and th
geometrical one. In Racah algebra@21# one may deal with
fractional parentage coefficients and the algebraic manip
tion of tensor operators. Alternatively, one may bypass fr
tional parentage coefficients and work directly on operat
in the quantized space where all vectors satisfy the exclu
principle @22,23#. Most authors@23,24# use Racah algebra in
an essential way.

In contrast with Racah’s, the geometric approach, ba
on the use of projection operators@25#, does require the ex
plicit generation of symmetry eigenfunctions. Introduced
atomic physics calculations as early as 1931@26#, and further
developed by Lo¨wdin @27–29#, the geometric approach a
tracted attention after the discovery@6,30,31# of selection
rules that were not foreseen by the algebraic method. Th
selection rules allow a splitting of a symmetry-adapted H
bert space into a hierarchy of interacting subspaces, co
sponding to successive orders of perturbation theory@30#,
useful to systematize and simplify approximations to the f
CI.

The merits of the geometric approach, however, transc
hierarchies of interacting spaces, as we shall examine be
in connection with efficient wholesale evaluation of Ham
tonian matrix elements. A detailed theoretical treatment a
computational description of projection operators in atom
electronic structure calculations has been given@32#.

If $Dik ,i 51, . . . ,nk% is the set ofnk Slater determinants
2614 © 1997 The American Physical Society
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56 2615ATOMIC CONFIGURATION INTERACTION AND . . .
spanning configurationk, there will begk linearly indepen-
dent Schmidt-orthonormalized configuration-state functio
~CSF’s!, Fgk ,

Fgk5O~M2;K !(
i 51

g

Dikbi
g5(

i 51

nk

Dikci
g , g51, . . . ,gk ,

~1!

whereO(M2;K) is an idempotent, Hermitian, and symme
ric projection operator for angular momentum, andK(K11)
is the target eigenvalue of the angular momentum oper
M2 @29#. The atomic CI expansion is

C5 (
k51

kx

(
g51

gk

FgkCgk , ~2!

and its success relies on keeping the number of config
tionskx and the sizegk of each degenerate space as smal
possible for a given accuracy. The corresponding CI-ma
eigenvalue equation is

HC5EC, ~3!

and, in practice, the maximum allowed CI size is determin
indirectly by the maximum number of nonzeroH-matrix el-
ements that can be held in the auxiliary storage of the c
puter at hand.

The set of all configurations differing just in the labels
the virtual orbital radial functions is called a subclass@6#.
Obviously, thebi

g and ci
g coefficients are the same for di

ferent configurations within a given subclass. The basic co
putational block for the evaluation of theH-matrix focuses
on all nonzero matrix elements between two subclasses

A general Hamiltonian matrixHgk,hl is traditionally given
by

Hgk,hl5^FgkuHuFhl&5(
i 51

nk

(
j 51

nl

^DikuHuD jl &ci
gcj

h , ~4!

however, one can use the hermiticity and idempotency
O(M2;K) @28# to drastically reduce the ranges in the su
mations of Eq.~4!:

Hgk,hl5(
i 51

g

(
j 51

nl

^DikuHuD jl &bi
gcj

h

5(
i 51

nk

(
j 51

h

^DikuHuD jl &bi
gcj

h , ~5!

thus bringing enormous savings in computational time.
Equations~5! are just an intermediate step in the redu

tion of Hgk,hl to an efficient formula

Hgk,hl5(
s

ns

Qs~ac!Ss
gh1(

t

nt

Rt~ac/bd!Tt
gh , ~6!

where$Rt(ac/bd),t51,...,nt% is a list of radial two-electron
integrals involving four radial functionsacbd in a way de-
termined by subindex t, and $Tt

gh ,t51, . . . ,nt ;
g51, . . . ,gk ;h51, . . . ,hl% is the set of formula coefficient
for one of many possible formulas;Qs(ac) and Ss

gh are
analogous one-electron quantities. An equation similar to
s
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~6! has been discussed for molecular electronic structure
culations@33#. When use is made of Racah techniques, o
can also arrive to formulas identical with Eq.~6! @23,34,35#.
In either case, the expressions for the formula coefficient
Eq. ~6! must be derived symbolically by the computer pr
gram.

There are generally several formulas for each pair of s
classes, and each formula requires at leastgkglnt double pre-
cision words of program storage. When formulas are re
tively expensive to compute@34#, a ‘‘formula tape’’
containing all needed formulas is precomputed and held
auxiliary storage.

In the projection operator approach, once thebi
g ,ci

g , and
Dik quantities of Eq.~1! are obtainedand held in auxiliary
storage, the evaluation of the set of all formulas for a pair
subclasses takes only a fraction of the time needed to rep
actualRt andTt values in Eq.~6!, contrary to common per-
suasion. Also, we verified that by using Eq.~6!, instead of
Eqs. ~5!, savings by a factor 5–10 are usually attained
completeH-matrix calculations with fairly large basis set
In going from Eqs.~5! to ~4!, as in some codes still in use
the computational time of large-scale CI increases still
two additional orders of magnitude.

Summarizing, for large-scale atomic CI, the projectio
operator-driven algorithm is so fast that formulas need no
kept in auxiliary storage once all work on a given pair
subclasses is finished, thus quite increasing the CI sizes
can be handled relative to implementations where use
made of a stored formula tape.

III. PRIMITIVE ONE-ELECTRON BASES

Any serious effort to close the basis set gap between
and numerical MCHF methods will have to address the e
cient construction of large energy-optimized bases. In t
work we use Slater-type-orbital~STO! bases@36#. Of course,
these primitive and nonorthogonal bases are orthogonal
to obtain basis orbitals. This orthogonalization may take s
eral forms,viz., a natural orbital transformation, that may b
determinant for a satisfactory convergence towards the
CI.

Energy-optimized STO’s are obtained using subrout
autopt @37# by fitting to a parabola three energy points as
function of a given orbital exponent, increasing a step s
when energy lowerings are found, and vice versa after a lo
minimum is reached. An optimization attempt, for any s
quence of STO’s within a given irreducible representat
~irrep!, will be called an optimization cycle. The set of a
cycles~one for each irrep! is called a macrocycle, and mor
than one macrocycle may be needed to complete an opt
zation process. Typically, for large bases, only two or th
cycles are necessary to achieve energy optimization, c
trasting with previous experience with bases of intermed
size, where many dozens ofmacrocyclesmay be necessary
Since a single optimization attempt for each orbital-expon
may demand between three and 20 CI calculations, a c
plete optimization process requires between six and 60
runs per basis function.

For each harmonick, truncation errorsdek
SD can be evalu-

ated via
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2616 56OLIVERIO JITRIK AND CARLOS F. BUNGE
dek
SD5Eu~SD!~ improvedk!2Eu~SD!, ~7!

whereEu(SD)(improvedk) andEu(SD) refer to a singles and
doubles~SD! CI with a very large energy-optimized bas
and with the actual basis one is settling for, respectively.~A
SDCI is a CI including a single reference configuration a
all singly and doubly excited configurations therefrom.! The
SD qualification is to emphasize that there are non-neglig
STO truncation energy errors beyond the SDCI approxim
tion. The total STO truncation errordEl

SD up to harmonicl
will be the sum of all estimateddek

SD up to k5 l :

dEl
SD5 (

k50

l

dek
SD. ~8!

A SD angular energy limitEl
SD is calculated as the sum of a

upper boundEl
u(SD) and its correspondingdEl

SD:

El
SD5El

u~SD!1dEl
SD. ~9!

Naturally,dEl for full CI will always be larger thandEl
SD.

With higher and higher harmonics, CI calculations co
front diminishing returns. Extrapolation of angular ener
limits El

SD is a useful empirical procedure, first studied
Schwartz@10# and used successfully in the classic work
Sasaki and Yoshimine@4#. It was later refined for He@12#
and for Li @38#. Here we use the functional

El
SD2El 21

SD 5DEl
SD5a4~ l 11/2!241a5~ l 11/2!25

1a6~ l 11/2!26, ~10!

which was found to be satisfactory for He and Li@38#.
We developed for Be ground state a STO basis@36# hav-

ing, in the notation of Eq.~9!, E13
u(SD)5214.663 117 83 a.u.

dE`
SD5277(8) mhartree, andE`

SD5214.663 195(8) a.u.
~Be!. Making use of quadruple precision, the 8mhartree of
uncertainty could be further reduced by one order of mag
tude, at which stage other errors may come into play, suc
deviations from additivity in angular energy errors. Anal
gously, for Ne ground state we constructed a STO basis@36#
with E13

u(SD)52128.920 5079 a.u.,dE`
SD52622(28) mhar-

tree, andE`
SD52128.921 130(28) a.u.~Ne!. This dE`

SD turns
out to be five times smaller than the23435 mhartree that
may be inferred from the best previous SDCI calculat
@39#. In trying to reduce this STO truncation error any fu
ther, one faces diminishing returns.

For He and Li, numerical bases@38,40–42# are the most
accurate ones. It is thus of interest to examine analytic ba
for two- and three-electron systems in order to assess
extent of this higher accuracy of numerical bases, even if
more accurate calculations using interparticle coordinates
available@43,44#.

Angular energy limitsEl are well-defined quantities, how
ever, the number of radial functions needed to capture s
given fraction ofEl varies with the type of basis set. It i
well known that forsmall one-electron bases, accurate na
ral orbitals~NO’s! are superior to energy-optimized STO’
In fact, an old rationale@45# for using NO’s was precisely to
reduce basis size. We wish to investigate if there is a cer
basis size after which STO’s prevail over NO’s.
d

le
-

-

f

i-
as

es
he
r
re

e

-

in

In Table I we compare numerical MCHF@38,46,47#, natu-
ral orbital expansions@12#, and optimized STO results for H
ground state obtained with one-electron bases of vari
sizes. It is seen, as expected, that the numerical MC
method provides the fastest convergence. For small b
sizes, as ever taught, NO’s come next, and the optimi
STO’s lag behind. Starting with tens functions, however,
STO’s come unexpectedly ahead of accurate NO’s. T
energy-optimized STO sets of manageable size may com
favorably with the same number of accurate NO’s.

At present, the patterns of convergence followed by n
merical MCHF orbitals and by optimized STO’s are u
known, in contrast with the energy contributionsDEil of
radial NO’s which are known to behave lik
2Al( i 1 l 1h l)

26 @11,12#. Recent work considered pattern
of convergence for radial STO’s@48# and for numerical
MCHF orbitals@49# without much success.

In the last column of Table I, we show angular ener
limits El . For l 50 we report the recent accurate value
Goldman@50#. Continuing up tol<11 theEl ’s come from
accurate NO expansions@12#, while for l .11 they are ob-
tained by extrapolation from the previous ones, by use of
~10!. Beyondl 50, the MCHF, STO, and NO data represe
best efforts at a given time. Our STO results, obtained w
12 radial functions for each irrep~except for the last three o
them, where we used eleven, ten, and nine radial functio
respectively! also portray the farthest one can go with doub
precision arithmetic on workstations~16 figures!. After l 54
the present results are the lowest CI upper bounds in
literature. The STO truncation error up tol 515 is only
23.01 mhartree, and the total truncation error is29.23
mhartree, from which it may be concluded that it is not pra
tical to seek truncation errors less than210 mhartree for
highly correlated two-electron states.

Our Li calculations were essentially carried out at the f
CI level with orbitals up tol 513. In Table II we present
upper boundsEnr

u and estimatesEnr of nonrelativistic ener-
gies for the Li ground state obtained by different autho
Only now it has been possible to match the pioneer 60-te
Hylleraas-type expansion of Larsson@51# by means of a CI
calculation. The results of Tong, Jo¨nsson, and Fischer@52#
showed that, in order to obtain a good extrapolated energ
is more important to have accurate angular energy limits t
holding the best upper bound. Comparison with the Dra
Yan result@44#, obtained with a Hylleraas CI wave functio
and considered to be the converged result, shows that
STO truncation errordE` equals235 mhartree, a sensible
point to settle for. The angular energy limit forl 515 is 9
mhartree away fromEnr , and the best one can hope for in
full thrust calculation would be an error around26 mhartree
up to l 515, thus with the present programs and comput
one may diminish the truncation error from235 to 215
mhartree but no more.~Our 1991 result@48# is seen to fall
outside its stated margin of error; this can essentially be
tributed to a faulty assessment of radial patterns of conv
gence of intershell STO truncation energy errors.!

In Table III we compare our angular energy limits for L
ground state with recent MCHF calculations@52#. MCHF, as
expected, provides slightly more accurate orbitals for the fi
few angular energy limits. The improvement of numeric
MCHF over CI orbitals,22 mhartree, is about 5% of ou
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TABLE I. Comparison of MCHF, optimized STO’s, and accurate NO’s for the energy convergence
He ground state, and extrapolated angular energy limitsEl ; energies in a.u.~He!.

Basis Energy~MCHF)a Energy~STO’s!b Energy~NO’s! c El
c

1s 22.861 799 956d 22.847 656 250 22.861 531 102
2s 22.877 997e 22.876 887 488 22.877 925 513
3s 22.878 871e 22.878 660 614 22.878 844 046
4s 22.878 990e 22.878 942 134 22.878 980 274
5s 22.879 001 967 22.879 012 045
6s 22.879 020 057 22.879 021 844
7s 22.879 025 502
8s 22.879 027 070
9s 22.879 027 816
10s 22.879 028 205 22.879 028 201
11s 22.879 028 428 22.879 028 413
12s 22.879 028 617 22.879 028 556 22.879 028 537
13s 22.879 028 627 22.879 028 612
14s 22.879 028 659
15s 22.878 928 690
`s 22.879 028 732 22.879 028 767f

sp 22.900 515 903 22.900 515 774 22.900 516 199 22.900 516 220
spd 22.902 766 775 22.902 766 126 22.902 766 777 22.902 766 822
l<3 22.903 320 252 22.903 320 110 22.903 320 721 22.903 321 079
l<4 22.903 517 316 22.903 517 341 22.903 518 165 22.903 518 598
5 22.903 603 864 22.903 604 196 22.903 600 34 22.903 605 71
6 22.903 648 18 22.903 643 88 22.903 649 88
7 22.903 672 69 22.903 668 05 22.903 674 59
8 22.903 687 41 22.903 682 47 22.903 689 47
9 22.903 696 75 22.903 691 23 22.903 698 95
10 22.903 702 96 22.903 697 17 22.903 705 27
11 22.903 707 20 22.903 701 16 22.903 709 64
12 22.903 710 19 22.903 712 79g

13 22.903 712 37 22.903 715 10
14 22.903 713 96 22.903 716 83
15 22.903 715 15 22.903 718 16
20 22.903 721 62
100 22.903 724 33
200 22.903 724 35
` 22.903 724 35
Exacth 22.903 724 38

aReference@38#.
bThis work.
cReference@12#.
dReference@47#, E522.861 799 956 115. We getE522.861 799 956 0 for a relativistic Hartree-Foc
wave function with five 1s STO’s with orbital exponents 1.3834, 1.8113, 2.7368, 3.8252, and 7.4890.
eReference@46#.
fReference@50#.
gStarting with this entry, extrapolated values using the 12 entries above and Eq.~10! with a4

520.075 772,a5520.008 187, anda6520.061 239; this work.
hReference@43#.
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final dE` . For higher harmonics, CI faithfully continues t
deliver results without undue effort, while MCHF data a
not available. However, MCHF has also been used up
high-l values @49#. In conclusion, for the Li ground state
energy-optimized STO’s are virtually equivalent to nume
cal MCHF orbitals.

When we tried to reproduce extrapolated energies fr
the MCHF data of Ref.@52# we found a slight discrepancy
to

-

We carried out minimizations of pertinent functionals b
means of the simplex algorithm embodied in Chandler’s c
ebrated program@53#. Our recomputed angular energy limi
from the MCHF data are shown in the last column of Tab
III. We obtain an extrapolated energyE`527.478 060 43,
0.8 mhartree below the one reported in the original pap
@52#, and in good agreement with the ‘‘exact’’ result@44#.
The angular energy limits reveal the extent of monoto
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TABLE II. Upper boundsEnr
u and estimatesEnr of nonrelativistic energies for the Li ground state obtain

by different authors. The first four entries correspond to CI calculations; energies in a.u.~Li !.

Authors Year Enr
u Enr

Larssona 1969 27.478 025
Jitrik and Bungeb 1991 27.477 9066 27.478 062 4(7)
Chungc 1991 27.477 9251 27.478 059 7(9)
Tong, Jönsson, and Fischerd 1993 27.477 7741 27.478 059 6
Tong, Jönsson, and Fischere 1993 27.477 9686 27.478 060 9

1995 27.477 7741 27.478 060 4f

This workg 1995 27.4780254
Chakravortyet al.h 1993 27.478 06
Drake and Yani 1995 27.478060321 27.478 060 323 10(31)

aHylleraas-type expansion, Ref.@51#.
bReference@48#.
cReference@17#.
dReference@52#.
eReference@52# with a different extrapolation formula.
fRecomputedEnr , Table III.
gAn optimized 12s12p11d11f 10g9h8i7k6l5m4n3o2q1r STO basis was used.
hReference@62#.
iHylleraas-type expansion, Ref.@44#.
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degradation of our upper bound energies with higher h
monics.

IV. TOWARD FULL CI

Full CI for an N-electron system includes the referen
configuration, singly excited substitutions, doubly excit
ones, and all the way up toN-excited substitutions. Fo
N52 full CI is trivial, and for N53 it is well within the
reach of current CI technology. ForN>4, the factorial scal-
ing properties of full CI with basis size@9# make it unman-
ageable for large atomic bases, prompting some sort of
lection process.

Our aim is to get as close as possible to the full CI ene
to within a computable and small margin of error. To th
end we resort to multireference singles and doubles CI~MR-
SDCI! @54,55#. A conventional MR-SDCI is built from a se
of Nref reference CSF’s and all singly and doubly-excit
configurationsrelative to this reference set. In principle, th
CSF’s of the reference set may contain excitations of
order.

The reference space for a MR-SDCI may be chosen fr
previous CI calculations truncated according to various
teria. We use an energy-contribution criterion@9#. Starting
with SDCI, we select all CSF’sFgk with energy contribu-
tions Degk satisfying uDegku>De thr . A value of De thr be-
tween 1023 and 1024 is usually satisfactory. After carrying
out the first MR-SDCI, the reference space can be enlar
by letting in triply and quadruply excited CSF’s with energ
contributions aboveDe thr .

We will now introduce a selection technique that appe
to be new. It concerns the use of the properties ofaverage
natural orbitals@56#. We use NO’sx i not to reduce the basis
size ~as dictated by conventional wisdom!, but rather to
speed up the convergence of triply- and higher-excited c
figuration expansions@8#, and also to reduce the number
Davidson’s iterations in the eigensolver part@8#. Provided
r-

e-

y

y

m
i-

ed

s

n-

the NO bases derived from the energy-optimized STO ba
are not truncated, it is not very different to approximate t
full CI using these NO’s, or Brueckner orbitals@57# or even
numerical MCHF orbitals. Natural orbitals become distinc
convenient, however, when the one-electron basis is tr

TABLE III. Comparison of CI and MCHF upper boundsEl
u for

Li ground state. Extrapolated angular energy limitsEl from
MCHF data with parametersa4520.107 159,a5520.000 891,
and a6520.044244, in Eq. ~10!. An optimized
12s12p11d11f 10g9h8i7k6l5m4n3o2q1r STO basis was used
for the upper bounds in the first column; energies in a.u.~Li !.

l El
u~CI!a El

u~MCHF!b El
b

0 27.448 667 06 27.448 667 26
1 27.473 835 09 27.473 836 52 27.473 837 10
2 27.476 766 81 27.476 768 66 27.476 769 82
3 27.477 506 35 27.477 508 12 27.477 510 11
4 27.477 772 26 27.477 774 08 27.477 777 16
5 27.477 889 50 27.477 896 04c

6 27.477 948 48 27.477 956 74
7 27.477 980 83 27.477 990 89
8 27.477 999 70 27.478 011 55
9 27.478 011 13 27.478 024 78
10 27.478 018 09 27.478 033 64
11 27.478 022 22 27.478 039 79
12 27.478 024 46 27.478 044 19
13 27.478 025 39 27.478 047 43
15 27.478 051 72
100 27.478 060 40
` 27.478 060 43

aThis work.
bReference@52#.
cStarting with this entry, extrapolated values using the five ent
above; this work.
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56 2619ATOMIC CONFIGURATION INTERACTION AND . . .
cated in calculations beyond a SDCI.
Let g(1,18) be the average reduced first-order density m

trix with eigenvalues~occupation numbers! ni ,

g~1,18!5( nix i* ~1!x i~18!. ~11!

For eachq-excited configurationk we calculate the produc
P(q,k) of corresponding occupation numbers,

P~q,k!5)
i 51

q

nki
, ~12!

and proceed to delete the whole configuration~all corre-
sponding degenerate elements! if

P~q,k!<Pt~q,h!, ~13!

wherePt(q,h) is a threshold normally between 10210 and 0
depending also on indexh specifying the type of hole asso
ciated tok. We always usePt(1,h)5Pt(2,h)50. A selec-
tion process based on Eqs.~12!–~13! is used at two levels: in
the construction of the configuration list, where it avoids t
generation of computer-expensive subclasses, and in
choice of the CSF’s to be included in a CI expansion.
Table IV we present full CI angular energy limitsEl8 ,

El85El
u1dEl

SD, ~14!

for the Be ground state. We usedPt(3,h)5Pt(4,h)510224

for all holesh. Instead of setting up a MR-SDCI, we starte
from straight full CI truncated by Eqs.~12!–~13% since, in a
MR-SDCI, symmetry restrictions in 1s22s2 Be would pre-

TABLE IV. Angular energy limits El8 for Be ground
state using upper bounds El

u found with a
13s12p11d11f 10g9h8i7k6l5m5n4o3q2r basis and Eq.~14!. For
l .13, Eq.~10! is used with parameters optimized forl<13. Ener-
gies in a.u.~Be!. Energy contributions from triples and quadrupl
appear underETQ in mhartree.

l CI size El
u El8 2ETQ

2 365 46 214.665 551 48 214.665 5621 4076.4
3 789 82 214.666 580 66 214.666 5951 4129.9
4 122 816 214.666 945 28 214.666 9653 4145.4
5 158 144 214.667 103 42 214.667 1294 4151.6
6 182 413 214.667 180 90 214.667 2132 4154.6
7 196 446 214.667 222 21 214.667 2605 4156.3
8 204 430 214.667 245 27 214.667 2890 4157.1
9 208 690 214.667 258 26 214.667 3070 4157.6
10 211 057 214.667 266 47 214.667 3189 4157.7
11 212 240 214.667 271 02 214.667 3268 4157.7
12 212 649 214.667 273 80 214.667 3323 4157.7
13 212 710 214.667 275 57 214.667 3364 4157.8
15 214.667 3418
20 214.667 3478
50 214.667 3520
100 214.667 3523
` 214.667 352(8)
-

e
he

clude energy-significant configurations, likespd f, until
reaching a very large number of reference configurations

The extrapolated energies in the fourth column were
tained using Eq.~14! with dEl

SD taken from SDCI, thus they
are also upper bounds since thedEl ’s for the full CI are more
negative. The angular energy limitsE28 andE48 agree remark-
ably well with the only ones we could find in the literatu
@8#. The value ofE`

SD in Sec. III was obtained with referenc
Hartree-Fock orbitals. Using approximate NO’s we obta
E`

SD5214.663 244(8), in good agreement with the valu
reported in Table XII of Ref.@8#, E`

SD5214.663 241(20).
Thus there is a lowering of 49.0mhartree when going from
HF to NO’s in the calculation ofE`

SD.
The energy contributions of triple and quadruple exci

tions, given in the last column underETQ, appear to converge
to 24157.8mhartree, but they still need to be corrected
STO truncation energy errors. According to Ref.@8#, the
truncation errordETQ in the Be ground stateETQ may be
approximated byc1s22p2

2 dEK , wherec1s22p250.295 @58# is
the CI coefficient of the leading correction after the Hartre
Fock configuration, anddEK is the STO truncation error in
the K-shell correlation energy. AssumingdEK5E(Be21)ex
2E(Be21)STO, where the subindex ex means exact@43#,
and the subindex STO means calculated with present S
basis, we find dEK5257 mhartree, resulting indETQ

525.0 mhartree. The nonrelativistic energyEnr of the Be
ground state may then be written as

Enr5E8̀ 1dETQ5214.667 357~8! a.u.~Be!. ~15!

Alternatively, one may write

Enr5E`
SD1ETQ1dETQ, ~16!

where ETQ1dETQ524162.8 mhartree, andE`
SD may be

taken from Sec. III with 8mhartree of uncertainty, or from
future more accurate calculations. Actual angular energy l
its El , not reported here, should be slightly below theEl8
values.

In Table V we summarize our Be results and comp

TABLE V. Upper boundsEnr
u and estimatesEnr of nonrelativis-

tic energies for the Be ground state obtained by different auth
energies in a.u.~Be!.

Authors Year Enr
u Enr

Bungea 1976 214.666 902 214.667 328(25)
Olsen and Sundholmb 1989 214.667 370(30)
Lindroth et al.c 1992 214.667 353(2)
Chung, Zhu, and Wangd 1993 214.667 051 214.667 3492
Chakravortyet al.e 1993 214.666 999 214.666 36
Fischerf 1993 214.667 113 214.667 315
This work 1995 214.667 276 214.667 357(8)

aReference@8#.
bReference@59#.
cReference@60#.
dReference@19#.
eReference@62#.
fReference@49#.
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them with previous work. It is seen that the old 19
Enr5214.667 328(25) @8# agrees with the present on
Enr5214.667 357(8), towithin stated margins of error. Th
present result also agrees with the Olsen-Sundholm@59# re-
sult of Enr5214.667 37(3)@60#, but it does not support the
conclusion reached by Martensson-Pendrillet al. @61# that
our 1976 result was too high by 45mhartree. The downward
correction we obtain is 29~8! mhartree.

The extrapolated MCHF result of Fischer@49# is too high.
Possible reasons may be CI truncation errors, or the use o
unsatisfactory extrapolation formula. AnEnr more accurate
than that of Eq.~15! might be obtained through MCHF vi
Eq. ~16! and extrapolation, with Eq.~10!, of MCHF angular
limits El

SD. The agreement with Chung, Zhu, and Wang@19#
is remarkable in that these authors obtained the ioniza
potential of Be~and other Be-like systems! to within quoted
experimental errors. There is also good agreement with
Enr values of Lindrothet al. @60#, and of Chakravortyet al.
@62#.

For Ne, things become much more complicated. We
have to use a MR-SDCI limited to singles and doubles in
reference space thus arbitrarily eliminating quintuply a
higher-excited configurations, awaiting better methods
deal with very large CSF’s spaces. Hence we are settling
a singles, doubles, triples, and quadruples CI~SDTQCI! and
corresponding energiesESDTQ. In the largest MR-CI, the ref-
erence space consisted of 83 CSF’s, including the HF c
figuration and singles and doubles with energy contributi
greater than 500mhartree, in a space of 2703 determinan
yielding a 354 455-term CI and 33.8 million determinants

The energy effect of these higher-than-quadruple exc
tions was investigated by Bauschlicheret al. @63# by means
of full CI on the eight valence electrons and with small ba
sets not exceeding 5s3p2d or 6s4p1d. They found, for the
5-8 excited configurations, energy contributions arou
0.08% of the computed correlation energy with the sa
basis, and a smaller effect with increasing basis size. C
bining this result with a recent estimate of20.3905 a.u.@62#
for the correlation energy of Ne ground state, we obtai
value of E(528) of 2312 mhartree for energy contribution
beyond quadruple excitations. An alternative estimate
E(528) may be found by evaluating Davidson’s correcti
@64# for a MR-SDCI wave function@65#

E~528!'E~526!5ETQ~12CR
2 !/CR

2 ~17!

where~5-8! excitations are assumed to be well given by~5-6!
excitations;ETQ is given by

ETQ5ESDTQ2ESD, ~18!

and CR is the coefficient of the SDCI contribution to th
SDTQCI wave function. UsingETQ5216 000mhartree and
CR

250.9990, we obtaindE(526)5216 mhartree, 20 times
smaller than the value derived from full CI calculations@63#,
thus invalidating Eq.~17!.

Let us derive an alternative expression forE(528) follow-
ing Brown’s estimate@9,66# for the energy contribution
DEk of a configurationk:

DEk5Ck
2~E2Hkk!/~12Ck

2!, ~19!
an

n

e

o
e
d
o
or

n-
s
,

a-

s

d
e
-

a

f

whereE is the total variational energy,Ck is a CI coefficient
and Hkk is the corresponding diagonal Hamiltonian matr
element. Ifghi jkl refer to occupied orbitals andabcde f to
virtual orbitals, one may write the energy contribution of
six-excited determinantDghi jkl

abcde f as

DEghi jkl
abced f5~Cghi jkl

abcde f!2~E2Hghi jkl
abced f! ~20!

in an obvious notation. The diagonal matrix element will
approximated by

Hghi jkl
abcde f'D01Hgh

ab1Hi jkl
cde f ~21!

and

~Cghi jkl
abcde f!2'~Cgh

ab!2~Ci jkl
cde f!2, ~22!

from which Eq.~20! becomes

DEghi jkl
abced f5~Cgh

ab!2DEi jkl
cde f1~Ci jkl

cde f!2DEgh
ab , ~23!

similarly as in earlier work @8#. Adding over all sets
ghi jkl of sextuple-excitations and over all virtual orbital
we obtain

E~528!'E6' (
H2,H4

CH2
2 DEH41CH4

2 DEH2 , ~24!

where H2 is a two-electron hole (1s2,1s2s,1s2p,2s2,
2s2p or 2p2 for the Ne ground state!, and H4 is a four-
electron hole so that the product ofH2 and H4 gives an
allowed six-electron hole. Equation~24! should yield a rea-
sonable estimate ofE6.

Triply and quadruply excited configurations of first-ro
atoms may be denoted byKmL1

nL2
p , where indicesm, n, and

TABLE VI. Angular energy SDTQCI limitsEl
u(SDTQ)1Tl for

the Ne ground state using upper boundsEl
u found with a

12s12p11d10f 10g9h8i7k6l5m4n3o3q3r basis. Energies in
a.u.~Ne!. Energy contributions from triples and quadruples app
underETQ in mhartree.

l CI size El
u El

u1Tl 2ETQ

1 115 011 2128.741 534 2128.741 589 6759
2 177 926 2128.874 661 2128.874 745(5) 12 942
3 341 249 2128.913 519 2128.913 651(7) 14 890
4 319 191 2128.927 176 2128.927 344(9) 15 231
5 325 198 2128.931 664 2128.931 874(11) 15 260
6 331 905 2128.933 654 2128.933 909(13) 15 319
7 353 400 2128.934 604 2128.934 904(14) 15 315
8 353 757 2128.935 120 2128.935 457(15) 15 312
9 354 012 2128.935 413 2128.935 784(16) 15 309
10 354 182 2128.935 588 2128.935 987(17) 15 306
11 354 284 2128.935 690 2128.936 116(18) 15 302
12 354 371 2128.935 757 2128.936 201(19) 15 298
13 354 455 2128.935 802 2128.936 257(20) 15 294
14 2128.936 319
20 2128.936 414
40 2128.936 444
` 2128.936 445
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TABLE VII. Upper boundsEnr
u and estimatesEnr of nonrelativistic energies for the Ne ground sta

obtained by different authors; energies in a.u.~Ne!. Other important nonvariational results are added at
bottom.

Authors Year Enr
u Enr

Sasaki and Yoshiminea 1974 2128.9168 2128.9368
Rizzo, Clementi, and Sekiyab 1991 2128.9271
Chakravortyet al.c 1993 2128.9376
Noro, Ohtsuki, and Sasakid 1994 2128.9292 2128.9362
This work 1995 2128.9358 2128.9370e

Lee, Dutta and Dasf 1971 2128.9362
Jankowski, Rutkowska, and Rutkowskig 1982 2128.9306

aReference@4#.
bReference@39#.
cReference@62#.
dReference@20#.
eEquation~28!.
fMany-body perturbation theory results; Ref.@67#.
gRayleigh-Schro¨dinger third-order energy; Ref.@68#.
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p denote the occupation numbers of holes in theK, L1, and
L2 shells, respectively. We identify four categories of hol
(h1) all L-shell K0L1

nL2
p , n50,1, (h2) 2s2-like L-shell

holes K0L1
2L2

p , p51,2, (h3) KL-shell holes K2L1
mL2

p ,
m1p52, and (h4) the remainingK1L2, K1L3, and K2L1

holes.ETQ may be approximately expressed as

ETQ'E~h1!1E~h2!1E~h3!1E~h4!. ~25!

For Ne, it may be verified that

uE~h1!u.uE~h2!u.uE~h3!u.uE~h4!u, ~26!

suggesting the use of the following selection criterion
configurations:

Pt~q,h1!5a~q!Pt~q,h2!5b~q!Pt~q,h3!5c~q!Pt~q,h4!,
~27!

with a(q).b(q).c(q). We use b(q)5a(q)2, c(q)
5b(q)2 and a(q) is fixed to valuesa(3)50.178 and
a(4)50.1.

The evaluation of angular energy limits at the SDTQ
level is approximated in various ways. First, by adjusti
P(q,h) values. Second, we verified the validity of the wor
ing hypothesis of Sasaki and Yoshimine@4# connecting one-
electron basis errors in full SDCI and in full SDTQCI fo
l 51, and used it to obtain combined STO and CI truncat
energy errorsTl for l .0. Third, we considered the effect o
subclasses withnk in the range 5000–10 000 andgk in the
range 100–140 forl<3. In Table VI we present results fo
the Ne ground state. Configurations with products of natu
orbital occupation numbers less thanPt(3,h4)53310217 or
Pt(4,h4)53310220 are not included in the CI expansion
~these values are multiplied by 0.1 forl<3!; also, use is
made of Eq.~27!. In the third column we show variationa
SDTQCI upper boundsEl

u(SDTQ). Approximate angular en
ergy limits El8

SDTQ are given in the fourth column, obtaine
by addingTl to the third column results.

For l .13, angular energy limits are extrapolated as
fore. The last column contains triple and quadruple ene
:

r

I

n

al

-
y

contributionsETQ. E(528) up to l 52 can be taken as2312
mhartree, from the data of Bauschlicheret al. @63#. Alterna-
tively, using Eq.~24! and up tol 58 we obtain2410 mhar-
tree.Enr for the Ne ground state becomes

Enr5E`
u~SDTQ!1T`1E~528!, ~28!

which together with the data of Table VI yields2128.9370
a.u., in reasonable agreement with the estimate of Cha
vorty et al. @62#.

In Table VII we summarize our Ne results and compa
them with previous work. The classic work of Sasaki a
Yoshimine@4# used an 8s7p6d5 f 4g3h2i orbital basis and a
CI matrix of order 1068, and yielded an extrapolated ene
in good agreement with current estimates. For nearly t
decades it represented the best balanced compromise
tween one-electron basis size and the size of theN-electron
CI matrix. The improved results obtained in the last fe
years@20,39# reflect advances in computer power, better p
grams, and better one-electron bases. The first well-foun
ab initio estimate ofEnr for the Ne ground state was mad
long ago by many-body perturbation theory@67#. Another
remarkable old result was a Rayleigh-Schro¨dinger third-
order energy@68# which went a long way toward conver
gence in the radial expansions.

V. CONCLUSIONS

After many years of protracted dormancy, atomic CI b
came almost forgotten and remarkably misunderstood
Sec. II we suggest that the geometric approach provides
algorithms for evaluation ofH-matrix elements, as the der
vation of Eq.~6! takes a fraction of the time needed to ma
use of it, in frank challenge to the well-established Rac
techniques.

It is now possible, as shown in Sec. III, to construct co
pact STO basesequally good to numerical MCHF orbitals
even for high angular momenta. Thus, one may safely c
clude that the basis set bottleneck of atomic CI has b
overcome, and that atomic CI and numerical MCHF calc
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lations are now on an equal footing for simple systems w
well-differentiated electronic shells.

A notion widely diffused in scientific circles interested
computing vast amounts of atomic data holds that CI ma
use of fixed orbitals@69#, or of ‘‘mean-field’’ orbitals @70#,
neither of which are varied. This view may be traced back
a popular and highly useful CI code@71# that makes use o
such orbitals, nevertheless, adequate orbitals have been
in CI for a long time@5#. If one is interested in many calcu
lations, viz., for the elucidation or interpretation of a give
spectra, our results in Secs. II, III, and IV suggests that us
CI with energy-optimized bases should be comparable
cost and accuracy with the numerical MCHF method,
without the specter of convergence problems.

Over the years, analytic functions other than STO’s ha
been tested, some with substantial success@72#. Our He and
Li results prescribe requirements for superior analytic ba
~i! reducing the number of optimization steps, and~ii ! pro-
viding better approximations to MCHF results. In any ca
we are at the threshold of diminishing returns for ene
l-

m

h

s

o

sed

of
in
t

e

s:

,
y

convergence, at least for standard CI, thus the new ana
functions will also have to reflect some other advantag
such as fulfilling the electron-nuclear coalescence cusp@73#.

Multireference approximations to full CI were considere
A formula for the energy contributions of six-excited u
linked clusters was presented. If we wish to estimate ato
full CI energies for larger systems, with uncertainties co
parable to those of basis set truncations, purely variatio
results will have to be supplemented by conventio
variation-perturbation and perturbation calculations.

We presented a small selection of nonrelativistic atom
CI results. Excited states are equally amenable to calcula
Tables of angular energy limitsEl converging towardE`

@12,52#, such as Tables I, III, IV and VI, may be regarded
a paradigm of atomic CI calculations. These calculations w
become routine once they get to be sufficiently cheap. Si
similar studies can also be carried out in a relativistic fram
work @1#, its implications for atomic spectroscopy will sure
be felt.
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