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Atomic configuration interaction and studies of He, Li, Be, and Ne ground states
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The atomic configuration interactiofCl) is reconsidered. We compare the algebraic and geometric ap-
proaches to the construction of the ClI matrix and point out advantages of the latter. One-electron basis sets of
quality comparable to numerical multiconfigurational Hartree-Fock are readily obtained. The generation of
large Cl lists of symmetry eigenfunctions is monitored by a prescription establishiaggari identification
of relevant contributions to the wave function. Systematic and well-defined truncations to multireference Cl's
are examined. A formula for energy contributions of six-excited unlinked clusters is derived and shown to give
reasonable estimates. Ensuing nonrelativistic Cl calculations on He, Li, Be, and Ne ground states yield the
lowest upper bounds in the literature, capturing 99.978, 99.923, 99.919, and 99.59% of the accepted correlation
energies, respectivelyS1050-294P7)04909-3

PACS numbsgs): 31.10+2z, 31.15.Ar, 31.15.Pf, 31.25v

[. INTRODUCTION this paper is to report on new Cl technigues leading to con-
siderably improved accuracy, exemplified by calculations on
The problem of calculating reliable estimates of atomicHe, Li, Be, and Ne ground states.
correlation energies still persists in spite of improaini- Section Il is concerned with the CI expansion and the
tio methods and computer technology, and constitutes a m&onstruction of the CI Hamiltonian matrix. In Sec. I, we
jor barrier to theoretical predictions of spectroscopic accudeal with construction of primitive basis sets of quality com-
racy. This paper deals with the configuration-interactioh ~ Parable to numerical MCHF orbitals. In Sec. IV, we examine
approach to compute the eigenvalues of the nonrelativistifhultireference CI(MR-CI) and derive an estimate for the
Schralinger equation. All findings in this paper are pertinentenergy contribution of six-excited unlinked clusters. Finally,

to relativistic Cl calculationg1] as well. in Sec. V we summarize present achievements.
Although CI has been known for many ye4&y, a sub-
stantial development in computers, software, and computa- Il. THEORY

tional methods was necessary before atomic Cl came of age
[3]. The first mature CI calculations consisted of a thorough There are basically two efficient approaches to the con-
study of first-row-atom ground stat¢4], which essentially struction of theH matrix: the algebraic approach and the
remained the last word in Cl prowess for almost 20 yearsgeometrical one. In Racah algeli&l] one may deal with
Useful theoretical ideas which survived the test of time in-fractional parentage coefficients and the algebraic manipula-
clude the art of designing ClI calculations which are balancedion of tensor operators. Alternatively, one may bypass frac-
in the choice of approximations and basis gé&fs the parti- tional parentage coefficients and work directly on operators
tion of degenerate spaces into a hierarchy of interactingn the quantized space where all vectors satisfy the exclusion
space$6], natural orbital transformationd] to speed up the principle[22,23. Most authorg23,24] use Racah algebra in
convergence of triple- and higher-excited configuration ex-an essential way.
pansiong 8], various estimates of energy contributidrég, In contrast with Racah’s, the geometric approach, based
and the use of some sort of patterns of converg¢hOpfor  on the use of projection operatdi5], does require the ex-
the radial and angular expansiofd,11,13. Davidson’s plicit generation of symmetry eigenfunctions. Introduced in
eigensolve13], which evolved from closely related prede- atomic physics calculations as early as 1924], and further
cessord9], was one of the essential tools that spurred sodeveloped by Ledin [27-29, the geometric approach at-
called large-scale atomic ¢14] in the present decade. tracted attention after the discovel§,30,31 of selection
Meanwhile, the numerical multiconfigurational Hartree- rules that were not foreseen by the algebraic method. These
Fock (MCHF) method made its appearar{dés| and quickly — selection rules allow a splitting of a symmetry-adapted Hil-
became established as the method of choice for atomic strubert space into a hierarchy of interacting subspaces, corre-
tures[16]. The advantages of the numerical MCHF methodsponding to successive orders of perturbation thd86},
over Cl come from the transparency and accuracy withuseful to systematize and simplify approximations to the full
which both occupied and correlation orbitals are obtained byCl.
solving MCHF equations when convergence problems do not The merits of the geometric approach, however, transcend
occur. In ClI, there also exists the problem of obtaining bothhierarchies of interacting spaces, as we shall examine below
accurate occupied orbitals and a compact correlationin connection with efficient wholesale evaluation of Hamil-
effective basis of virtual orbitals without recurring to major tonian matrix elements. A detailed theoretical treatment and

human intervention. computational description of projection operators in atomic
Recently, a new generation of both MCHF and CI accu-electronic structure calculations has been gil@&2l.
rate calculations has been bdriv¥,17—2Q. The purpose of If {Dix,i=1,...n is the set ofn, Slater determinants
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spanning configuratioR, there will beg, linearly indepen- (6) has been discussed for molecular electronic structure cal-
dent Schmidt-orthonormalized configuration-state functionsulations[33]. When use is made of Racah techniques, one

(CSF'9, Fyy, can also arrive to formulas identical with E@) [23,34,33.
g e In either case, the expressions for the formula coefficients of
Fo= O(Mz;K)iZl Dikb?:i; Duc?, g=1,... 9, grqér;G) must be derived symbolically by the computer pro-
(1) There are generally several formulas for each pair of sub-

classes, and each formula requires at lgagtn; double pre-

2_ . . g _
\rlzlche:igc(:![\i/lor; I;) ésraatlgr'%errgﬁofjelgﬁ'g':rqgg'ti% and s:/Lnir)net cision words of program storage. When formulas are rela-
broj P 9 , atiK tively expensive to computd34], a “formula tape”

is the target eigenvalue of the angular momentum operator - ! .
M2 [29]. The atomic Cl expansion is containing all needed formulas is precomputed and held in

auxiliary storage.

9k In the projection operator approach, once lifec?, and
FgkCok: (2 D;x quantities of Eqg(1) are obtainecand held in auxiliary

=1 storage, the evaluation of the set of all formulas for a pair of

and its success relies on keeping the number of configura°'—“bdasses takes only a fraction of the time needed to replace

tionsk, andthe sizeg, of each degenerate space as small agCctualR; andT; values in Eq(6), contrary to common per-

possible for a given accuracy. The corresponding Cl-matrieU@sion. Also, we verified that by using E@), instead of -
eigenvalue equation is Egs. (5), savings by a factor 5—10 are usually attained in

completeH-matrix calculations with fairly large basis sets.
HC=EC, 3 In going from Eqgs.(5) to (4), as in some codes still in use,

. . ) . . the computational time of large-scale ClI increases still by
and, in practice, the maximum allowed CI size is determineq,,, sdditional orders of magnitude.

Ky

=1g

indirectly by the maximum number of nonzerbmatrix el- Summarizing, for large-scale atomic Cl, the projection-
ements that can be held in the auxiliary storage of the comgperator-driven algorithm is so fast that formulas need not be
puter at hand. kept in auxiliary storage once all work on a given pair of

The set of all configurations differing just in the labels of g hcjasses is finished, thus quite increasing the Cl sizes that

the virtual orbital radial functions is called a subcld8$ .54 pe handled relative to implementations where use is
Obviously, theb? andcf coefficients are the same for dif- made of a stored formula tape.

ferent configurations within a given subclass. The basic com-
putational block for the evaluation of tHé-matrix focuses
on all nonzero matrix elements between two subclasses.
A general Hamiltonian matril 5 ) is traditionally given
by Any serious effort to close the basis set gap between Cli
and numerical MCHF methods will have to address the effi-
h cient construction of large energy-optimized bases. In this
Hgkyh':<F9k|H|Fh'>:izl 1-21 (DiH[Dj)cfef’, (4 work we use Slater-type-orbitésTO) baseg36]. Of course,
these primitive and nonorthogonal bases are orthogonalized
however, one can use the hermiticity and idempotency ofo obtain basis orbitals. This orthogonalization may take sev-
O(M?;K) [28] to drastically reduce the ranges in the sum-eral forms,viz, a natural orbital transformation, that may be

Ill. PRIMITIVE ONE-ELECTRON BASES

N N

mations of Eq.(4): determinant for a satisfactory convergence towards the full
ClL.
g n L . . .
_ . \pdah Energy-optimized STO’s are obtained using subroutine
Hgkhi .21 2 (Dik[H[Dj;)bc; autopt[37] by fitting to a parabola three energy points as a

function of a given orbital exponent, increasing a step size

_ % % Do IHID b 5 when energy lowerings are found, and vice versa after a local
= j:l< il H i PG ) minimum is reached. An optimization attempt, for any se-
quence of STO’s within a given irreducible representation
thus bringing enormous savings in computational time. (irrep), will be called an optimization cycle. The set of all
Equations(5) are just an intermediate step in the reduc-cycles(one for each irrepis called a macrocycle, and more
tion of Hy,  to an efficient formula than one macrocycle may be needed to complete an optimi-
ne n zation process. Typically, for large bases, only two or three

_ h h cycles are necessary to achieve energy optimization, con-
Hgkvh'_z Qy(ac)g +Z Ri(ac/bd)T¢™, ©) trasting with previous experience with bases of intermediate
size, where many dozens ofacrocycleamay be necessary.

where{R(ac/bd),t=1,...n} is a list of radial two-electron Since a single optimization attempt for each orbital-exponent
integrals involving four radial functionacbdin a way de- may demand between three and 20 CI calculations, a com-

termined by subindex t, and {T?h,tzl, N ¢ A plete optimization process requires between six and 60 ClI
g=1,...9;h=1,... h}isthe set of formula coefficients runs per basis function.
for one of many possible formula®s(ac) and S¢" are For each harmonik, truncation errorse;° can be evalu-

analogous one-electron quantities. An equation similar to Ecpted via
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5eP=EUSD (improvedk) — E4(SP), 7 In Table | we compare numerical MCHB8,46,41, natu-
ral orbital expansiongl2], and optimized STO results for He
where EYSPX(improvedk) and EY(SP) refer to a singles and ground state obtained with one-electron bases of various
doubles(SD) CI with a very large energy-optimized basis sizes. It is seen, as expected, that the numerical MCHF
and with the actual basis one is settling for, respectivély. method provides the fastest convergence. For small basis
SDCI is a Cl including a single reference configuration andsizes, as ever taught, NO’s come next, and the optimized
all singly and doubly excited configurations therefrpifhe  STO'’s lag behind. Starting with tea functions, however,
SD gualification is to emphasize that there are non-negligibl&TO’s come unexpectedly ahead of accurate NO's. Thus
STO truncation energy errors beyond the SDCI approximaenergy-optimized STO sets of manageable size may compare
tion. The total STO truncation errafE’° up to harmonid  favorably with the same number of accurate NO's.
will be the sum of all estimateasED up tok=1: At present, the patterns of convergence followed by nu-
merical MCHF orbitals and by optimized STO’s are un-
known, in contrast with the energy contributiods;, of
SEPP= 2, s (8)  radial NO's which are known to behave like
—A/(i+1+7)°[11,12. Recent work considered patterns
of convergence for radial STO'$48] and for numerical
MCHF orbitals[49] without much success.
In the last column of Table I, we show angular energy

A SD angular energy limiE° is calculated as the sum of an
upper bounde!"®®) and its correspondingE;™":

ESD_ pu(SD) 4 sgSD. 9) limits E;. For =0 we report the recent accurate value by
! ! ! Goldman[50]. Continuing up tol<11 theE,’'s come from
Naturally, 5E, for full CI will always be larger thansEF®, ~ accurate NO expansiorid2], while for |>11 they are ob-

With higher and higher harmonics, CI calculations con-tained by extrapolation from the previous ones, by use of Eg.
front diminishing returns. Extrapolation of angular energy(10)- Beyondl=0, the MCHF, STO, and NO data represent
limits E|SD is a useful empirical procedure, first studied by best efforts at a given time. Our STO results, obtained with

Schwartz[10] and used successfully in the classic work Of12 radial functions for each irref@xcept for the last three of

Sasaki and Yoshiming4]. It was later refined for H&12] them, where we used eleven, ten, and nine radial functions,
and for Li[38]. Here we .use the functional respectively also portray the farthest one can go with double

precision arithmetic on workstatiori46 figures. After | =4

ESP—ESP = AESP=a,(I+1/2) ~*+ag(l +1/2) ~® the present results are the lowest Cl upper bounds in the
literature. The STO truncation error up te=15 is only
+ag(1+1/2)7°, (100  —3.01 uhartree, and the total truncation error is9.23
_ ) phartree, from which it may be concluded that it is not prac-
which was found to be satisfactory for He and[BB]. tical to seek truncation errors less thanl0O uhartree for
We developed for Be ground state a STO b&3& hav-  highly correlated two-electron states.
ing, in the notation of Eq(9), E{$°”=—14.663 117 83 a.u., Our Li calculations were essentially carried out at the full

SESP=—77(8) whartree, andESP=—14.663195(8) a.u. CI level with orbitals up tol=13. In Table Il we present
(Be). Making use of quadruple precision, theuhartree of  upper bound<}, and estimate€,,, of nonrelativistic ener-
uncertainty could be further reduced by one order of magnigies for the Li ground state obtained by different authors.
tude, at which stage other errors may come into play, such asnly now it has been possible to match the pioneer 60-term
deviations from additivity in angular energy errors. Analo- Hylleraas-type expansion of Larsspiil] by means of a Cl
gously, for Ne ground state we constructed a STO H&&F  calculation. The results of Tong; deson, and Fischd62]
with E{$P)=—128.920 5079 a.udESP=—622(28) uhar-  showed that, in order to obtain a good extrapolated energy, it
tree, andESP= —128.921 130(28) a.(Ne). This SESPturns  is more important to have accurate angular energy limits than
out to be five times smaller than the3435 uhartree that holding the best upper bound. Comparison with the Drake-
may be inferred from the best previous SDCI calculationYan result{44], obtained with a Hylleraas CI wave function
[39]. In trying to reduce this STO truncation error any fur- and considered to be the converged result, shows that our
ther, one faces diminishing returns. STO truncation errolbE, equals—35 uhartree, a sensible
For He and Li, numerical bas¢88,40—-42 are the most point to settle for. The angular energy limit for15 is 9
accurate ones. It is thus of interest to examine analytic basgshartree away fronk,,, and the best one can hope for in a
for two- and three-electron systems in order to assess thall thrust calculation would be an error arourds phartree
extent of this higher accuracy of numerical bases, even if fatup to | =15, thus with the present programs and computers
more accurate calculations using interparticle coordinates aene may diminish the truncation error from35 to —15
available[43,44]. phartree but no morgOur 1991 resul{48] is seen to fall
Angular energy limitE, are well-defined quantities, how- outside its stated margin of error; this can essentially be at-
ever, the number of radial functions needed to capture somigibuted to a faulty assessment of radial patterns of conver-
given fraction ofE, varies with the type of basis set. It is gence of intershell STO truncation energy errors.
well known that forsmall one-electron bases, accurate natu- In Table 1ll we compare our angular energy limits for Li
ral orbitals(NO’s) are superior to energy-optimized STO’s. ground state with recent MCHF calculatidi®]. MCHF, as
In fact, an old rational@45] for using NO’s was precisely to expected, provides slightly more accurate orbitals for the first
reduce basis size. We wish to investigate if there is a certaifew angular energy limits. The improvement of numerical
basis size after which STO’s prevail over NO’s. MCHF over CI orbitals,—2 phartree, is about 5% of our
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TABLE I. Comparison of MCHF, optimized STO’s, and accurate NO'’s for the energy convergence of the
He ground state, and extrapolated angular energy ligjitsenergies in a.(He).

Basis Energy(MCHF)? Energy(STO’9® Energy(NO’s)® E°

1s —2.861 799 95% —2.847 656 250 —2.861 531102

2s —2.877 997 —2.876 887 488 —2.877 925513

3s —2.87887% —2.878 660 614 —2.878 844 046

4s —2.878 996 —2.878942 134 —2.878 980 274

5s —2.879 001 967 —2.879 012 045

6s —2.879 020 057 —2.879 021 844

7s —2.879 025 502

8s —2.879 027 070

9s —2.879 027 816

10s —2.879 028 205 —2.879 028 201

11s —2.879028 428 —2.879028 413

12s —2.879 028 617 —2.879 028 556 —2.879 028 537

13s —2.879 028 627 —2.879028 612

14s —2.879 028 659

15s —2.878 928 690

%S —2.879 028 732 —2.879 028 767
sp —2.900 515 903 —2.900515774 —2.900516 199 —2.900 516 220
spd —2.902 766 775 —2.902 766 126 —2.902 766 777 —2.902 766 822
<3 —2.903 320 252 —2.903 320110 —2.903 320721 —2.903 321 079
<4 —2.903517 316 —2.903517 341 —2.903518 165 —2.903518 598
5 —2.903 603 864 —2.903 604 196 —2.903 600 34 —2.90360571
6 —2.903 648 18 —2.903 643 88 —2.903 649 88
7 —2.903672 69 —2.903 668 05 —2.903 67459
8 —2.903 687 41 —2.903 682 47 —2.903 689 47
9 —2.903 696 75 —2.903 691 23 —2.903 698 95
10 —2.903 702 96 —2.903 697 17 —2.903 705 27
11 —2.903 707 20 —2.90370116 —2.903 709 64
12 —2.90371019 —2.90371279
13 —2.903712 37 —2.90371510
14 —2.903 713 96 —2.903716 83
15 —2.90371515 —2.90371816
20 —2.90372162
100 —2.903 724 33
200 —2.903 724 35
0 —2.903 724 35
Exact —2.903 724 38
8Referencd 38].

bThis work.

‘Referencd12].

dReference[47], E= —2.861 799 956 115. We gef=—2.861799 956 0 for a relativistic Hartree-Fock
wave function with five $ STO’s with orbital exponents 1.3834, 1.8113, 2.7368, 3.8252, and 7.4890.
*Referencd46).

'Referencd50].

9Starting with this entry, extrapolated values using the 12 entries above and(1Bg.with a,
=—0.075 772a5=—0.008 187, andz= —0.061 239; this work.

PReferencd43].

final SE.,. For higher harmonics, CI faithfully continues to We carried out minimizations of pertinent functionals by
deliver results without undue effort, while MCHF data are means of the simplex algorithm embodied in Chandler’s cel-
not available. However, MCHF has also been used up tebrated prograrf63]. Our recomputed angular energy limits
highd values[49]. In conclusion, for the Li ground state, from the MCHF data are shown in the last column of Table
energy-optimized STO's are virtually equivalent to numeri-1ll. We obtain an extrapolated enerdy,= —7.478 060 43,
cal MCHF orbitals. 0.8 wphartree below the one reported in the original paper
When we tried to reproduce extrapolated energies fronf52], and in good agreement with the “exact” resit4].
the MCHF data of Ref[52] we found a slight discrepancy. The angular energy limits reveal the extent of monotonic
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TABLE Il. Upper boundsE}, and estimatek ,, of nonrelativistic energies for the Li ground state obtained
by different authors. The first four entries correspond to Cl calculations; energies (i a.u.

Authors Year [Sh Enr

Larssort 1969 —7.478 025

Jitrik and Bung® 1991 —7.477 9066 —7.478 062 4(7)

Chung 1991 —7.477 9251 —7.478 059 7(9)

Tong, Jmsson, and Fischér 1993 —7.477 7741 —7.478 059 6

Tong, Jmsson, and Fischer 1993 —7.477 9686 —7.478 0609
1995 —7.477 7741 —7.4780604

This worl® 1995 —7.4780254

Chakravortyet al 1993 —7.478 06

Drake and Yad 1995 —7.478060321 —7.478 060 323 10(31)

8Hylleraas-type expansion, R¢b1].

PReference 48].

‘Referencd17].

dReferencd52].

®Referencd52] with a different extrapolation formula.

fRecomputedE,,,, Table IIl.

9An optimized 1212p11d11f10g9h8i7k6l5m4n302qlr STO basis was used.
"Referencd 62].

'Hylleraas-type expansion, R¢#4].

degradation of our upper bound energies with higher harthe NO bases derived from the energy-optimized STO bases
monics. are not truncated, it is not very different to approximate the
full Cl using these NO's, or Brueckner orbitdl57] or even
V. TOWARD FULL CI numerical MCHF orbitals. Natural orbitals become distinctly
convenient, however, when the one-electron basis is trun-
Full ClI for an N-electron system includes the reference
configuration, singly excited subsptutlons, d_ouply excited TABLE IIl. Comparison of Cl and MCHE upper bound for
ones, and all the way up ttl-excited substitutions. For Li ground state. Extrapolated angular energy limEs from

N=2 full Cl is trivial, and for N=3 it is well within the MCHF data with parametera,=—0.107 159,a.= — 0.000 891
reach of current Cl technology. F&t=4, the factorial scal- ang  a.— —0.044244, in ! Eq. (10). " an optimized
ing properties of full Cl with basis sizg9] make it unman-  15512511d11f10g9h8i 7k615m4n302g1r STO basis was used

ageable for large atomic bases, prompting some sort of Sgor the upper bounds in the first column; energies in(hijL.
lection process.

Our aim is to get as close as possible to the full Cl energy | EM(CI)? E'(MCHF)° E,P
to within a computable and small margin of error. To this
end we resort to multireference singles and double@vR®- 0 —7.44866706 —7.448 667 26
SDCI) [54,55. A conventional MR-SDCI is built from a set 1 —7.47383509 —7.47383652 —7.47383710
of N, reference CSF’s and all singly and doubly-excited? —7.47676681 —7.47676866 —7.47676982
configurationsrelative to this reference set. In principle, the 3 —7.47750635 —7.47750812 —7.47751011
CSF's of the reference set may contain excitations of any —747777226 —7.47777408 —7.47777716
order. 5 —7.477 889 50 —7.477 896 02

The reference space for a MR-SDCI may be chosen fron —7.477 948 48 —7.477 956 74
previous ClI calculations truncated according to various cri-7 —7.477 980 83 —7.477 990 89
teria. We use an energy-contribution criterif@. Starting 8 —7.477 999 70 —7.478 01155
with SDCI, we select all CSF'§ g with energy contribu- 9 —7.478 011 13 —7.478 024 78
tions Aegy satisfying|Aeg/=Aep,. A value of Aey,, be- 10 —7.478 018 09 —7.478 033 64
tween 102 and 104 is usually satisfactory. After carrying 11 —7.478 022 22 —7.478 039 79
out the first MR-SDCI, the reference space can be enlargegh —7.478 024 46 —7.478 044 19
by Iet_ting_ in triply and quadruply excited CSF’s with energy 13 —7.478 025 39 —7.478 047 43
contributions above ey, . _ _ 15 —7.478051 72

We will now introduce a selection technique that appears; g —7.478 060 40

to be new. It concerns the use of the propertieawdrage
natural orbital§56]. We use NO’sy; notto reduce the basis
size (as dictated by conventional wisdpmbut rather to  ®This work.

speed up the convergence of triply- and higher-excited corfReferencd52].

figuration expansiong3], and also to reduce the number of °Starting with this entry, extrapolated values using the five entries
Davidson’s iterations in the eigensolver pa8]. Provided above; this work.

o —7.478 060 43




56 ATOMIC CONFIGURATION INTERACTION AND . .. 2619

TABLE IV. Angular energy limits E/ for Be ground TABLE V. Upper bound<E}, and estimate&,, of nonrelativis-
state  using upper bounds E;' found with a tic energies for the Be ground state obtained by different authors;
13s12p11d11f10g9h8i7k6l5m5n403g2r basis and Eq(14). For energies in a.(Be).
1>13, Eq.(10) is used with parameters optimized fee 13. Ener-

gies in a.uBe). Energy contributions from triples and quadruples Authors Year [Sh En
appear undeE™? in phartree.

Bungé& 1976 —14.666 902 —14.667 328(25)
I Cl size = E/ —_EgT Olsen and Sundholim 1989 —14.667 370(30)
Lindroth et al® 1992 —14.667 353(2)
2 36546 —14.66555148 —14.6655621 40764  Chung, zhu, and Waflg 1993 —14.667 051 —14.667 3492
3 78982 —14.66658066 —14.6665951 41299  chakravortyet al® 1993 —14.666 999 —14.666 36
4 122816 —14.666 94528 —14.666 9653 41454 Eischef 1993 —14.667 113 —14.667 315
5 158 144 —14.667 10342 —14.667 1294 4151.6 This work 1995 —14.667 276 —14.667 357(8)
6 182413 —14.667 18090 —14.667 2132 4154.6
7 196 446 —14.667 22221 —14.667 2605 4156.3 ZReferenCE[S]-
8 204430 —14.667 24527 —14.667 2890 4157.1 CRefefenCd59]-
9 208690 —14.667 25826 —14.6673070  4157.6 dRefere”C%O]-
10 211057 —14.66726647 —14.6673189  4157.7 eRefere“CG[w]-
11 212240 —14.66727102 —14.6673268  4157.7  Referencd6a].
12 212649 —14.66727380 —14.6673323 41577  Referencd4s].
13 212710 —14.66727557 —14.667 3364 4157.8 o . . ) .
15 14667 3418 clude energy-significant configurations, likepdf, until
’ reaching a very large number of reference configurations.
20 —14.667 3478 o
50 14667 3520 The extrapolated energies in the fourth column were ob-
100 14667 3593 tained using Eq(14) with 5E;°° taken from SDCI, thus they
' are also upper bounds since hig,’s for the full Cl are more
o —14.667 352(8) ) . ,
negative. The angular energy limis, andE, agree remark-
ably well with the only ones we could find in the literature
cated in calculations beyond a SDCI. [8]. The value ofE2° in Sec. Ill was obtained with reference
Let y(1,1) be the average reduced first-order density maHartree-Fock orbitals. Using approximate NO’s we obtain
trix with eigenvaluegoccupation numbeysy; , EX"=—14.663 2448), in good agreement with the value

reported in Table Xl of Ref[8], ESP= —14.663 241(20).
Thus there is a lowering of 49.@hartree when going from
Y(L,1)=2 nixf (L)xi(1). (1D HF to NO's in the calculation oESP.
The energy contributions of triple and quadruple excita-
For eachg-excited configuratiork we calculate the product tions, given in the last column undgr®, appear to converge
P(q,k) of corresponding occupation numbers, to —4157.8 uhartree, but they still need to be corrected by
STO truncation energy errors. According to RE8], the
q truncation errordE'? in the Be ground stat&'® may be
P(Cl,k)Zi:H1 Ny, (12) approximated bwis22p25EK’ wherec;s2,,2=0.295[58] is
the CI coefficient of the leading correction after the Hartree-
and proceed to delete the whole Configurat(@ﬁ corre- Fock Configuration, an(iBEK is the STO truncation error in

sponding degenerate elemerifs the K-shell correlation energy. AssumingEy =E(Be*") oy
—E(B€")s70, Where the subindex ex means ex{¢g],
P(qg,k)<Py(q,h), (13) and the subindex STO means calculated with present STO
basis, we find 6Ex=—57 uhartree, resulting insE™
whereP,(q,h) is a threshold normally between 1 and 0 =—5.0 uhartree. The nonrelativistic enerds, of the Be

depending also on indelx specifying the type of hole asso- ground state may then be written as

ciated tok. We always usé;(1,h)=P(2,h)=0. A selec-

tion process based on Eq$2)—(13) is used at two levels: in E,=E.+ 6E°=—14.667 3578) a.u(Be). (15
the construction of the configuration list, where it avoids the

generation of computer-expensive subclasses, and in thAternatively, one may write

choice of the CSF’s to be included in a ClI expansion. In

Table IV we present full CI angular energy limig , En=ESP+ET+ 6ET, (16)

E/=E'+ SESD, (14)  where ET%+ §ETC=—4162.8 uhartree, andES° may be
taken from Sec. Il with 8uhartree of uncertainty, or from
for the Be ground state. We us&j(3,h)=P,(4h)=10"2* future more accurate calculations. Actual angular energy lim-
for all holesh. Instead of setting up a MR-SDCI, we started its E;, not reported here, should be slightly below g
from straight full Cl truncated by Eq$12)—(13} since, ina  values.
MR-SDCI, symmetry restrictions insf2s?> Be would pre- In Table V we summarize our Be results and compare
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them with previous work. It is seen that the old 1976 TABLE VI. Angular energy SDTQCI limitsE[SPTO+T, for
E,= —14.667 328(25)[8] agrees with the present one, the Ne ground state using upper bounlly found with a
En= —14.667 3578), towithin stated margins of error. The 12s12p11d10f10g9h8i7k6I5m4n303q3r basis. Energies in
present result also agrees with the Olsen-SundHi&®h re- a-U(Ne)-TQEUEFQY contributions from triples and quadruples appear
sult of E,,,= — 14.667 37(3)[60], but it does not support the Undere’~ in uhartree.

conclusion reached by Martensson-Pendtllal. [61] that
our 1976 result was too high by 4bhartree. The downward
correction we obtain is 28) phartree. 1 115011 —-128.741534 —128.741589 6759

The extrapolated MCHF result of FiscHe9] is too high. 5 177926 —128.874661 —128.874 745(5) 12 942
Possible reasons may be Cl truncation errors, or the use of an 341249 —128.913519 —128.913 651(7) 14 890

unsatisfactory extrapolation formula. Af, more accurate , 319191 —128.927176 —128.927 344(9) 15 231
than that of Eq(15) might be obtained through MCHF via 325198 —128.931664 —128.931874(11) 15 260
Eq. (16) and extrapolation, with Eq10), of MCHF angular 331905 — 128'933 654 _128'933 909(13) 15319
limits E°. The agreement with Chung, Zhu, and W4§] 353 400 7128.934 604 7128'934 904(14) 15315
is remarkable in that these authors obtained the ionizatio 353 757 —128.935 120 —128'935 457(15) 15312
potential of Be(and other Be-like systemso within quoted 354012 — 128l935 413 —128-935 784(16) 15309

experimental errors. There is also good agreement with th(fo 354182 —128.935588 —128.935987(17) 15306

E,r values of Lindrothet al.[60], and of Chakravortet al.
[62]. 11 354284 —128.935690 —128.936116(18) 15302

354371 —128.935757 —128.936201(19) 15298
354455 —128.935802 —128.936257(20) 15294

Cl size E} E'+T, —-E™

For Ne, things become much more complicated. We dg2
have to use a MR-SDCI limited to singles and doubles in thek3

reference space thus arbitrarily eliminating quintuply andl4 —128.936 319
higher-excited configurations, awaiting better methods tc?0 —128.936 414
deal with very large CSF'’s spaces. Hence we are settling fof0 —128.936 444
a singles, doubles, triples, and quadrupleSEDTQC) and —128.936 445

corresponding energids>° <. In the largest MR-ClI, the ref-
erence space consisted of 83 CSF’s, including the HF con- ) o ) .
figuration and singles and doubles with energy contributiondVhereE is the total variational energZ is a Cl coefficient
greater than 50@hartree, in a space of 2703 determinants,@nd Hi is the corresponding diagonal Hamiltonian matrix
yielding a 354 455-term Cl and 33.8 million determinants. elément. Ifghijkl refer to occupied orbitals arabcdefto
The energy effect of these higher-than-quadruple excitaYirtual orbitals, one may write the energy contribution of a
tions was investigated by Bauschlichetral. [63] by means Six-excited determinarDgpfiii" as
of full Cl on the gight valence electrons and with small basis abcedf_ , ~abcdef 2, = yabced
sets not exceedings3p2d or 6s4pld. They found, for the AEgnijki = (Cgpijki ) “(E—Hghiji (20
5-8 excited configurations, energy contributions around . . . . .
0.08% of the computed correlation energy with the samdn an 0_bV|0us notation. The diagonal matrix element will be
basis, and a smaller effect with increasing basis size. Corﬁa}pproxmated by
bining this result with a recent estimate ©10.3905 a.u[62]
for the correlation energy of Ne ground state, we obtain a
value of EG~8) of —312 phartree for energy contributions 4,
beyond quadruple excitations. An alternative estimate of
E®~8 may be found by evaluating Davidson’s correction (Cgﬁﬁﬂf ZW(CSE)Z(Cﬁi?f 2 (22)
[64] for a MR-SDCI wave functio65]

bedef b def
Haniiki ~Do+ Hgnt Hikr (21

from which Eq.(20) becomes
EC-8~EG-6=ETQ1-C3)/C3 17)
. , AEGRSR= (CIPAESS + (CHT A, (23
where(5-8) excitations are assumed to be well given(5y6)

excitations;E'? is given by similarly as in earlier work[8]. Adding over all sets
ghijkl of sextuple-excitations and over all virtual orbitals,
ETQ=ESPTR_ESD, (18)  we obtain

and Cg is the coefficient of the SDCI contribution to the (5-8) _=6_ 2 2
SDTQCI wave function. Using %= — 16 000uhartree and ERT~E NH;M ChoABa+ ChadBrz,  (29)
C2=0.9990, we obtainSE®~®)=—16 uhartree, 20 times ’
smaller than the value derived from full CI calculatid68], ~ where H2 is a two-electron hole (&,1s2s,1s2p,2s?,
thus invalidating Eq(17). 2s2p or 2p? for the Ne ground stajeandH4 is a four-

Let us derive an alternative expression EP~® follow-  electron hole so that the product bf2 andH4 gives an
ing Brown’s estimate[9,66] for the energy contribution allowed six-electron hole. Equatid@4) should yield a rea-
AE, of a configuratiork: sonable estimate d&°.

Triply and quadruply excited configurations of first-row
AE=CHE—Hy/(1-C), (19 atoms may be denoted b/ L5, where indicesn, n, and
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TABLE VII. Upper boundsEy, and estimate€,, of nonrelativistic energies for the Ne ground state
obtained by different authors; energies in @\&). Other important nonvariational results are added at the

bottom.

Authors Year [Sh Enr
Sasaki and Yoshimifie 1974 —128.9168 —128.9368
Rizzo, Clementi, and Seki?a 1991 —128.9271
Chakravortyet al’® 1993 —128.9376
Noro, Ohtsuki, and Sasdki 1994 —128.9292 —128.9362
This work 1995 —128.9358 —128.9376
Lee, Dutta and Das 1971 —128.9362
Jankowski, Rutkowska, and Rutkowski 1982 —128.9306
%Referencd4].
bReferencd39].
‘Referencd62].
dReferencd 20].
€Equation(28).

fMany-body perturbation theory results; RES7].
9Rayleigh-Schrdinger third-order energy; Ref68].

p denote the occupation numbers of holes inkhel 1, and  contributionsE™. E®~® up tol=2 can be taken as 312
L, shells, respectively. We identify four categories of holes: hartree, from the data of Bauschlichetral. [63]. Alterna-
(h1) all L-shell K°LILS, n=0,1, (h2) 2s*-like L-shell tively, using Eq.(24) and up tol =8 we obtain—410 xhar-
holes KOLEL”, p=1,2, (h3) KL-shell holes KZLTLS, tree.E,, for the Ne ground state becomes

m+p=2, and h4) the remainingk*L?, KIL3, andK?L?!

holes.ET? may be approximately expressed as E,=EuSPTO4+ 7, +EGD), (28)

E'9~E(h1)+E(h2)+E(h3)+E(h4). (25 which together with the data of Table VI yields128.9370
a.u., in reasonable agreement with the estimate of Chakra-
vorty et al. [62].
|E(h1)|>|E(h2)|>|E(h3)|>|E(h4)|, (26) In Ta_ble VI we summarize our Ng results and compare
them with previous work. The classic work of Sasaki and
suggesting the use of the following selection criterion forYoshimine[4] used an 87p6d5f4g3h2i orbital basis and a
configurations: Cl matrix of order 1068, and yielded an extrapolated energy
in good agreement with current estimates. For nearly two
Pi«(g,h1)=a(q)P(q,h2)=b(q)P(q,h3)=c(q)P«(aq,h4),  decades it represented the best balanced compromise be-
(27)  tween one-electron basis size and the size of\tkadectron
Cl matrix. The improved results obtained in the last few
years[20,39 reflect advances in computer power, better pro-
grams, and better one-electron bases. The first well-founded
ab initio estimate ofE,, for the Ne ground state was made
long ago by many-body perturbation thed§7]. Another
remarkable old result was a Rayleigh-Salinger third-
order energy{68] which went a long way toward conver-
gence in the radial expansions.

For Ne, it may be verified that

with a(q)>b(g)>c(q). We use b(g)=a(q)? c(q)
=b(q)? and a(q) is fixed to valuesa(3)=0.178 and
a(4)=0.1.

The evaluation of angular energy limits at the SDTQCI
level is approximated in various ways. First, by adjusting
P(g,h) values. Second, we verified the validity of the work-
ing hypothesis of Sasaki and Yoshimif¥g connecting one-
electron basis errors in full SDCI and in full SDTQCI for
=1, and used it to obtain combined STO and CI truncation
energy errord for [>0. Third, we considered the effect of

subclasses witm, in the range 5000—10 000 argy in the After many years of protracted dormancy, atomic CI be-
range 100—-140 fof<3. In Table VI we present results for came almost forgotten and remarkably misunderstood. In
the_Ne ground_state. Configurations with products of naturakec. || we suggest that the geometric approach provides fast
orbital occupation numbers less thBi(3h4)=3x10"*"or  aigorithms for evaluation ofi-matrix elements, as the deri-
Pi(4h4)=3x10"? are not included in the Cl expansions yation of Eq.(6) takes a fraction of the time needed to make

(these values are multiplied by 0.1 fb=3); also, use is yse of it, in frank challenge to the well-established Racah
made of Eq.(27). In the third column we show variational techniques.

V. CONCLUSIONS

SDTQCI upper bound&}*P™®. Approximate angular en- |t is now possible, as shown in Sec. IlI, to construct com-
ergy limits E/>P™? are given in the fourth column, obtained pact STO basesqually good to numerical MCHF orbitals,
by addingT, to the third column results. even for high angular momenta. Thus, one may safely con-

For 1>13, angular energy limits are extrapolated as be<clude that the basis set bottleneck of atomic ClI has been
fore. The last column contains triple and quadruple energypvercome, and that atomic Cl and numerical MCHF calcu-
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lations are now on an equal footing for simple systems withconvergence, at least for standard ClI, thus the new analytic
well-differentiated electronic shells. functions will also have to reflect some other advantages,
A notion widely diffused in scientific circles interested in such as fulfilling the electron-nuclear coalescence ¢@gp
computing vast amounts of atomic data holds that CI makes Multireference approximations to full Cl were considered.
use of fixed orbital§69], or of “mean-field” orbitals[70], A formula for the energy contributions of six-excited un-
neither of which are varied. This view may be traced back tqjnked clusters was presented. If we wish to estimate atomic
a popular and highly useful CI cod@1] that makes use of || C| energies for larger systems, with uncertainties com-
such orbitals, nevertheless, adequate orbitals have been usegtaple to those of basis set truncations, purely variational

:n Cl for a Iofng the[IS]. 'Ié one is interested in mar]:y calcu- reguits will have to be supplemented by conventional
atlor;s,wz., or tlte .euSC' at'?lnlﬁr Intcti?rli\)/retatlon to tﬁ %lven \4ariation-perturbati0n and perturbation calculations.
spectra, our resufts In Secs. 11, 1, an suggests that use ot presented a small selection of nonrelativistic atomic

cCcis\':vgrr: degf:rc%);%ptlTv;fhe?hgaﬁﬁsw:r?ggfl?vlE:(I: IS Oggigblebl:rbl results. Excited states are equally amenable to calculation.
y ' tI'ables of angular energy limitg, converging towarcE.,

without the specter of convergence problems.
Over the years, analytic functions other than STO'’s havélz’sa’ such as Tables I, ll, IV and VI, may be regarded as

been tested, some with substantial suc¢@gs Our He and & paradigm of atomic Cl calculations. These calculations will

Li results prescribe requirements for superior analytic base?€COMe routine once they get to be sufficiently cheap. Since
(i) reducing the number of optimization steps, iidl pro- similar studies can also be carried out in a relativistic frame-
viding better approximations to MCHF results. In any caseWork [1], its implications for atomic spectroscopy will surely

we are at the threshold of diminishing returns for energybe felt.
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