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We consider quantum mechanics on constrained surfaces which have non-Euclidean metrics and variable
Gaussian curvature. The old controversy about the ambiguities involving terms in the Hamiltonian of order\2

multiplying the Gaussian curvature is addressed. We set out to clarify the matter by considering constraints to
be the limits of large restoring forces as the constraint coordinates deviate from their constrained values. We
find additional ambiguous terms of order\2 involving freedom in the constraining potentials, demonstrating
that the classical constrained Hamiltonian or Lagrangian cannot uniquely specify the quantization: the ambi-
guity of directly quantizing a constrained system is inherently unresolvable. However, there is never any
problem with a physical quantum system, which cannot have infinite constraint forces and always fluctuates
around the mean constraint values. The issue is addressed from the perspectives of adiabatic approximations in
quantum mechanics and Feynman path integrals, and semiclassically in terms of adiabatic actions.
@S1050-2947~97!08910-5#

PACS number~s!: 03.65.Sq, 02.40.Ky
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I. INTRODUCTION

The controversy over the proper way to quantize a c
strained dynamical system has had a long and interes
history in 20th century physics. One treatment of the sub
opens by saying that ‘‘if you like excitement, conflict, an
controversy, especially when nothing very serious is at sta
then you will love the history of quantization on curve
spaces’’@1#. The possibility of resolving the ambiguities ex
perimentally for rigid body systems was the subject o
conference discussion in 1957 among DeWitt, Wheeler,
Feynman@1#. The problem was also treated in Dirac’s f
mous text of 1967@2#. Yet many years later we still seem fa
from attaining a consensus regarding quantization on cur
spaces. The ‘‘quasipermanent discussion among the spe
ists’’ @3# has by no means come to an end. In fact, a rec
paper@4# laments that ‘‘in spite of all the successes of qua
tum mechanics and after years of efforts on quantization,
are still not absolutely sure about the correct quantization
as simple a system as the double pendulum.’’ The sub
also received early attention in the works of Cheng@5# and
DeWitt @6#. In this paper we do not attempt to review th
extensive research on the subject of constrained quantiza
and refer the interested reader to the literature@7#. Our ap-
proach to this problem is quite independent of all previo
methods.

The canonical quantization prescription has served
well in defining a straightforward and unambiguous way
quantizing a classical system in flat space. However, it
mediately runs into problems where constrained dynamic
involved. It is easy enough to restrict the potential term
the constraint surface — the difficulty arises in treating
operator ordering ambiguities in quantizing the kinetic te
K52(\2/2m)(1/Ag)(]/]qi)@gi jAg(]/]qj )#. These ambi-
guities, at order\2, are proportional to the local Gaussia
curvature of the constraint surface, which is the only av
561050-2947/97/56~4!/2592~8!/$10.00
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able coordinate-invariant quantity. Thus for constrained s
tems with flat constraints~e.g., the simple pendulum or
particle confined to a one-dimensional curve!, the ambiguity
does not arise, whereas for systems with constant curva
~e.g., motion on a sphere! it leads only to a physically unob
servable shift in the zero-point energy. In the latter case,
semiclassical Van Vleck approximation can be used to
the ‘‘correct’’ energy offset@3#. In three dimensions this re
quires adding anR term to the Laplacian (R being the scalar
curvature!. For a two-dimensional surface of constant neg
tive curvature, the semiclassical approximation becomes
act ~though only at distances large compared to the curva
radius! if the quantity added to the Laplacian isR/4. Even if
one ~somewhat arbitrarily?! requires that the Van Vleck ap
proximation should be as close as possible to being exac
the constant curvature case, it is by no means clear that
prescription is valid in the generic case of varying curvatu
where the ambiguities are most physically relevant.

One might think that Feynman’s path-integral approa
@8# would help to resolve these uncertainties. However,
remarked by Schulman in this context, ‘‘there is no fr
lunch.’’ In the path-integral method, the ambiguity arises
choosing how to incorporate the metric into the kernel and
deciding at what point in the infinitesimal time interval
evaluate functions of the metric@1,4#. Two commonly used
kernels give answers that differ by an effectiveR/6 contri-
bution to the Laplacian~and naturally enough both diffe
from the canonical quantization result!. These issues are dis
cussed at some length in Ali’s recent paper@4#, and here we
will not go into the details.

Given this history, we have decided to attack this o
problem using a somewhat different, and in our view, mo
physically motivated approach. The principle governing o
view is that arriving at a unique quantization is essential o
in real systems. That is, quantization should bephysically
unambiguous. For example, quantization of the usual rigi
2592 © 1997 The American Physical Society
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56 2593QUANTIZING CONSTRAINED SYSTEMS
constrained classical double pendulum is not a phys
problem, because the requirement that the pendulum len
remain exactly constant is not realizable. To make the pr
lem as close as possible to physical, the constraints shou
imposed through a limiting procedure, fluctuations remain
physically allowable along the way. We call this the ‘‘lim
quantization,’’ as opposed to direct quantizations which
not pass through a limiting procedure. This procedure is c
ried out in Sec. II using a Hamiltonian formalism, and la
in Sec. III from a path-integral point of view. The limit quan
tization embodies the idea of classical constraints arising
the limit of ever larger restoring forces normal to the co
straint surface, an idea discussed in Arnol’d, for example@9#
~see also Lanczos@10#!. In this way the constraint coordi
nates appear as part of the full dynamical system in the u
Euclidean metric. As the constraint forces are increased,
constrained degrees of freedom acquire a very high
quency, and their actions remain adiabatically constant as
slow variables move. This, however, does not imply that
fast variables~which we here call ther variables! areener-
getically decoupled from the slow (u2) variables. We dis-
cuss the classical and semiclassical issues of constraine
namics further in Sec. IV, where from still anoth
perspective we will see that the direct quantization is intr
sically ambiguous at order\2: different limiting constraint
potentials give thesameclassical constrained motion butdif-
ferentquantum dynamics at order\2.

The uncertainty principle requires that in any real physi
system there will be quantum fluctuations around the surf
of constraint. By examining the effects of these fluctuatio
in the limit of ever tighter constraints, we find unavoidab
ambiguities in the quantum dynamics along the surface
constraint. Our claim is that these ambiguities are an inhe
part of any reasonable quantization procedure, and need
be more bothersome in principle than the Aharonov-Bo
effect, which shares the property of identical classical
namics giving rise to different quantum dynamics. As t
Aharonov-Bohm effect illustrates, there is no good reas
why a quantum system should be uniquely determined by
classical~or even semiclassical! limit, and the richness of the
new phenomena that can occur in physical quantum syst
can well be viewed as a positive aspect of the quan
theory rather than as a shortcoming.

In any case, we hope our contribution to the literature w
be a valuable one, in spite of this concluding warning
Schulman: ‘‘Additional papers on curved space path integ
tion are legion, and we do not attempt to list them all. So
are correct; some are less correct. Some have original
tures; some are less rich in this praiseworthy property’’@1#.

II. QUANTUM MECHANICS OF CONSTRAINED
SYSTEMS

A physically natural way of defining a constrained d
namical system in classical mechanics is through a limit
procedure where a strong attractive potential forces the
tem at any fixed energy to live closer and closer to the c
straint surface@9#. The effective classical dynamics obtaine
in this limit turns out to depend only on the intrinsic prope
ties of the constraint surface~e.g., the curvature! and not on
the details of the constraining potential chosen on the
al
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bedding space. We will use an analogous procedure in qu
tum mechanics, and consider the quantization of a c
strained classical system as the limit of quantizations
classical systems with large potentials away from the surf
of constraint. This approach is in accord with our intuitio
about physical constraints. It is also appealing because o
a specific squeezing potential is chosen, the resulting qu
tum mechanics is entirely unambiguous, and can be obta
equivalently via a canonical or path-integral method. Am
guities will nonetheless arise in this approach, but are du
the freedom in selecting a constraining potential. The eff
tive quantum dynamics in the squeezing limit will have co
rections at order\2 which depend on the details of the wa
in which this limit is taken. These ambiguities are analogo
to operator-ordering effects in canonical quantization
proaches, and to ambiguities which arise in the choice
kernel ~particularly in the choice of evaluation points fo
functions of the metric! in path-integral methods. Howeve
the physical ambiguities we find are considerably more g
eral in that they need not be functions only of the intrins
properties of the constraint space. Even for a flat constr
space a large set of possible quantizations are available,
having its own physical realization in an embedding spa
but all having the same classical and semiclassical lim
The existence of such quantum ambiguities in constrai
systems all leading to the same classical physics in our v
overshadows any attempt to resolve the operator orde
questions and terms involving the curvature.

We begin with a Lagrangian

L5 1
2 gi j q̇

i q̇ j2V~q!2Ṽl~q! ~1!

on the full coordinate space, with flat metricgi j and potential
V ~we take the mass to be unity throughout!. The additional
potentialṼl enforces the constraint in the limitl→`. Clas-
sically we requireṼl to have the same value everywhere
the constraint surfaceS, for eachl. We now transform to
the Hamiltonian

H5 1
2 gi j pipj1V~q!1Ṽl~q!, ~2!

where pi5]L/]q̇i5gi j q̇
j is the momentum coordinate an

gi j is the inverse ofgi j . Canonical quantization now require
that we replacegi j pipj5pW •pW with the operator2\2¹2,
which in coordinate systemq has the form

2\2¹252\2
1

Ag

]

]qi S gi jAg
]

]qj D , ~3!

whereg is the determinant of the metric~i.e., the square of
the volume element!. Notice that there is no operator orde
ing ambiguity here because the full metricgi j is flat.

Now locally, near some region of the constraint surfaceS
we may separate the coordinatesq into ‘‘slow coordinates’’
u parametrizingS and ‘‘fast coordinates’’r orthogonal to the
surface~see Fig. 1!. We will be looking for an effective
theory of the coordinatesu when the constraining potentia
Ṽl

u(r ) allows only small fluctuations inr ~small compared to
the length scale associated with the physical potentialV, the
curvature scale of the constraint surfaceS, and the scale on
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2594 56L. KAPLAN, N. T. MAITRA, AND E. J. HELLER
which Ṽl
u varies as a function ofu). The quantum wave

function on the full space can be written as

C~q!5C~u,r !5f0~u!CGR
~u!~r !1f1~u!C1

~u!~r !1•••,
~4!

wheref0 , f1 , . . . are arbitrary functions of the slow var
ables.CGR

(u)(r ) is the ground state of the fast variablesr ,
treatingu as a fixed parameter,C1

(u)(r ) is the first excited
state, and so on. More precisely,CGR, C1 , etc. are the
eigenstates of the fast Hamiltonian,

Hr52
\2

2

1

Ag

]

]r i S gi jAg
]

]r j D1Ṽl
u~r !, ~5!

wherei and j are summed over the fast variables only, a
the metric is evaluated at a fixed value ofu. Note thatg here
is the determinant of the full metric on the (r ,u) space.

Now we want to consider the effective HamiltonianHeff
acting on the slow wave functionf0(u) which multiplies the
ground state of ther variables. We will argue toward the en
of this analysis that this effective theory is in fact unitary
the limit l→`, as the transition probabilities connecting t
ground states to the excited states of the fast variables d
pear in the constraint limit~due to adiabaticity!.

We have mentioned previously that in order to obtain
correct classical motion in the constraint limit, we mu
makeṼl

u(r 50) be independent ofu and have the potentia
increase away fromr 50. In order for the quantum mechan
ics to have a sensible semiclassical limit, we must furt
enforce that the energy of the ground stateEGR

(u) , defined by

HrCGR
~u!5EGR

~u!CGR
~u! , ~6!

must beu independent, for anyl, and the energy of the firs
excited state must be well separated from it, with the se
ration growing withl. This can be implemented in a numb
of ways, but two particularly simple scenarios present the
selves. In the first we takeṼl(q)5lv(q), where v is a
smooth function vanishing on the constraint surface and h
ing its minimum there~but with a nonsingular second deriva
tive matrix with respect to the fast variables!. Near the con-
straint surface, the constraining potential will have t
harmonic-oscillator form

Ṽl
u~r !5r iAi j

~u!r j1O~r 3!, ~7!

FIG. 1. Schematic showing the fast motion alongr and slow
motion alongu1 ,u2 coordinates for finite confining forces~finite
l).
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e
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where the matrix functionA(u) is smooth. The ground state
CGR

(u) will to first approximation be harmonic oscillato
ground states with spatial extent of order\1/2/l1/4 and en-
ergyEGR of order\l1/2. As discussed above, the coefficie
of this energy must beu independent, to prevent infinite
effective forces inu from arising in thel→` limit. The
matricesA(u) can easily be adjusted to satisfy this conditio
In the case of more than one constraint variable, this s
allows for much freedom in the functionA(u) and the result-
ing eigenstatesCGR

(u) ~energy can flow from one fast degre
of freedom to another as a function ofu, as long as the tota
energy remains constant!. One may choose to adjust~some
of! the anharmonic parts of the potential as well, but this
not really necessary or natural. The quartic term will lead
order\2 (l independent! corrections to the ground-state e
ergy and thus~if these anharmonic corrections vary withu,
which in general they will! to the effective potential inu.1

We will later see that this effect is of the same order as ot
terms that are encountered in the effective potential.
might also mention at this point that if in finding the groun
state ofr at a givenu we used normal coordinates center
at (u,r 50), gi j 5d i j 1O(r 2) for fixed u, and neglected the
O(r 2) curvature correction, we would also make an error
order \2 in the ground-state energies and therefore in
effective potential foru.

A second scenario involves a hard-wall potential with t
cross section of the allowed region shrinking towardS as
l→`. Thus we may instead take

Ṽl
u~r !50, a~u!~lr !,1 ~8!

`, a~u!~lr !.1 , ~9!

where the functiona(u) defines au-dependent region shrink
ing as 1/l in which the fast eigenstates live. The energy
the ground state is of order\2l2, and can again be adjuste
to be u independent while allowing for substantial freedo
in the shapes of the ground states. In the following we w
focus on the original~smooth potential! scenario, but this
one could be used to obtain similar results.

We now see what happens when we compute the effec
Hamiltonian for the slow variablesHeff(u,]/]u), defined by

^f08uHeffuf0&5^C8uHuC&, ~10!

with

C~u,r !5f0~u!CGR
~u!~r !. ~11!

The potentialV(q) clearly induces an effective potentia
V(u,r 50), up to corrections which disappear in the co
straint limit, sinceV(u,r ) varies slowly inr over the extent
of CGR

(u)(r ). The constraint potentialṼl , combined with the

1For the purpose of dimension counting, every power ofr in an
expression contributes a factor of\1/2/l1/4 to the expectation value
whereas]/]r acting on CGR ~but not the metric! contributes
l1/4/\1/2. Derivatives acting on the ‘‘slow’’ wave functionf0(u)
and the metricg, as well as]/]u acting onCGR all produce factors
of order unity.
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56 2595QUANTIZING CONSTRAINED SYSTEMS
fast part of the kinetic term, gives, by assumption,
u-independent effective potential which we can theref
drop. We are left with the slow (u) part of the fullq-space
Laplacian, as well as mixed terms involving one derivat
each with respect to the slow and fast variables.

In the Born-Oppenheimer spirit, consider first the acti
of the ‘‘slow’’ part of the Laplacian on the full wave func
tion. We are interested in matrix elements of the form

K f08CGRU2
\2

2

1

Ag

]

]u i S gi jAg
]

]u j DUf0CGRL . ~12!

The two derivatives can act on the slow wave functionf0 ,
or in the ground stateCGR, or on the metric and its deter
minant. Consider terms where both derivatives act on
ground state or the metric. After integrating over the f
variables, this leads tôf08u2\2f (u)uf0&, an effective po-
tential scaling as\2.2 ~Note that both the metric and th
ground state are changing over typical scales of order u
in u.! Furthermore, this effective potential isl independent
for largel, sinceCGR maintains its functional form~that of
a Gaussian plus higher-order corrections! and simply shrinks
toward r 50 asl→`.

Now suppose one of the derivatives acts on the metric
on CGR, while the other acts on the slow wave function. W
then obtain

K f08U2\2hi~u!
]

]u i 1H.c.Uc0L , ~13!

wherehi are real functions ofu ~because the ground sta
CGR can be chosen to be real, and the metric is real as w!.
Taking the Hermitian part we again obtain an effective p
tential of order\2. Finally, if both derivatives act on the
slow wave functionf0 , we obtain the usual kinetic term fo
the slow variables,including order\2 terms proportional to
the curvature of the constraining surface, as discussed in
I. This concludes the discussion of the pureu-derivative part
of the kinetic energy, and we move on to the mixed ter
next.

If the ]/]r derivative acts on the metric, we obtain
contribution of order\2 to the effective potential as befor
~all derivatives are of order unity!. If ]/]r acts onCGR while
]/]u acts ong or the wave functionf0 , we obtain

\2K CGRUbu~r !
]

]r
1H.c.UCGRL , ~14!

whereb is a slowly varying real function. So to this order
\ only the commutator ofb with ]/]r survives, and once
again the resulting contribution to the effective potential is
order\2. The remaining term is the one where both deriv
tives act on the ground state; it has the form

2The derivatives acting on the metric only will give the usu
curvature-dependent corrections to the effective potential. Te
coming from derivatives acting on the ground state are of the s
order and will give rise to additional corrections.
e

e
t

ty

r

l
-

ec.

s

f
-

\2K CGRUc~u,r !
]

]u

]

]r UCGRL . ~15!

Since CGR(r ) is even in r , the slowly varying function
c(u,r ) must be expanded to first order inr to obtain a non-
vanishing contribution. We then obtain yet another contrib
tion to the effective potential of order\2 @sincer (]/]r ) act-
ing on CGR(r ) is of order unity#.

Finally, we argue by adiabaticity that there is no mixin
betweenf0(u) and the excited wave functionsf1(u), etc.
This follows because the splitting betweenCGR

(u) and the ex-
cited states ofr scales as\Al in the constraint limit~or as
\2l2 in the case of a hard-wall potential!, whereas the matrix
elements do not grow withl. So assuming a finite amount o
energy in the initialf0(u) wave function, transition prob-
abilities vanish in thel→` limit, and we obtain a
probability-conserving effective quantum mechanics. The
fective Hamiltonian is

Heff52
\2

2

1

Ag

]

]u i S gi jAg
]

]u j D1V~u!1\2Veff~u!.

~16!

This is the key result of this paper.Veff is essentially an
arbitrary smooth function, depending in a complicated w
on both the curvature properties ofS and on the constraining
potential aroundS ~together these determine the ground-st
wave functions!. Ag can be taken to be the square root of t
determinant of either the full metric or of the metric r
stricted to the constraint surface. Any difference betwe
these expressions can be absorbed intoVeff .

III. LAGRANGIAN FORMALISM

A path-integral analysis also shows that quantization
the constrained surface is ambiguous at order\2. We begin
with the propagator on the full coordinate space. Because
space is flat, this is given by the usual Feynm
prescription *D„q(t)…exp„iS(q(t))/\… where S„q(t)…
5*L„q(t),q̇(t),t…dt. The LagrangianL on the full space is
given by Eq.~1! in Sec. II; we follow the notation introduced
there. We extract the effective dynamics for the ‘‘slow
variablesu by performing a trace over the ‘‘fast’’ variablesr
in the adiabatic limit. Specifically, we calculat
^u f ur(t)uuo&, wherer(t)5Trr„W(t)… is the trace over the
fast variables of the density operator on the full space. T
time t is taken to be small on the time scales ofu motion, but
r may undergo many oscillations during this time. Notin
that the evolution of the full density operator is given b
W(t)5e2 iHt /\W(0)eiHt /\, and inserting identities in the
form of complete sets of states, we have

^u f ur~ t !uuo&5E dR dr8dr9du8du9^u fRue2 iHt /\uu8r 8&

3^u8r 8uW~0!uu9r 9&^u9r 9ueiHt /\uuoR&.

~17!

We take the initial density operator to be the ‘‘product’’ sta
uCGR

(u)& ^ uf&, where the initial state of the fast variables is t

l
s
e
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~purely real! ground stateCGR
(u)(r ), with u regarded as a fixed

parameter~see Sec. II!. f(u) is an arbitrary initial wave
function of the slow variablesu. Replacing the two propa
gators by path integrals, we then have

^u f ur~ t !uuo&5E du8du9E
u~0!5u8

u~ t !5u f
Du~t!

3E
ũ ~0!5u9

ũ ~ t !5uoDũ ~t!f~u8!f* ~u9!

3F„u~t!, ũ ~t!…, ~18!

where

F„u~t!, ũ ~t!…5E dR dr8dr9E
r ~0!5r 8

r ~ t !5R
Dr ~t!

3E
r̃ ~0!5r 9

r̃ ~ t !5R
D r̃ ~t!eiS~1!/\2 iS~2!/\

3CGR
~u9!~r 9!CGR

~u8!~r 8!. ~19!

S(1)5S„r (t);u(t)… andS(2)5S„ r̃ (t); ũ (t)… are the actions
along the respective paths. In performing the path integ
over the fast variables,u(t) „ũ (t)… is to be treated as a
external forcing function with the propert
u(0)5u8,u(t)5u f @respectively,ũ (0)5u9, ũ (t)5uo].

We evaluateF using the stationary phase approximati
with respect to\ on the path integrals, the trace, and t
integrals over the intermediate fast variables. In fact the
tionary phase approximation becomes exact in the adiab
limit: we shall now show that the errors due to stationa
phase evaluation are of order\1/2/l1/4, so they vanish as
l→`. Recall that

E g~x!ei f ~x!/\dx'sp( S 2p i\

f 9~xn!
D 1/2

g~xn!ei f ~xn!/\

3F11OS \1/2
f-~xn!

f 9~xn!3/2D G , ~20!

where the sum is over stationary phase pointsxn satisfying
f 8(xn)50. Stationary phase evaluation of path integrals,
though different in the details, scales in the same way.f (x)
corresponds to the actionS. The stationary paths are th
classical paths and we now argue thatScl;O(l1/2) to lead-
ing order inl. The leading behavior of the action in the fa
variables arises from the kinetic term inr and the constrain
potential:Lr;gi j ṙ

i ṙ j /22Ṽl
u(r ), where the sum is over fas

variables only. This Lagrangian corresponds to the f
Hamiltonian of Eq.~2! discussed in Sec. II, which give
harmonic motion forr at least throughout the range of th
fast variable ground state. Because the initial fast state is
ground state, the leading behavior ofeiS/\ gives

E dr8E Dr ~t!eiS~1!/\CGR
~u8!~r 8!;e2 iEGRt/\CGR

~u8!~r !,

~21!
ls

a-
tic

l-

st

is

where we note thatEGR;O(\Al) is required to beu inde-
pendent to avoid infinite torques acting on the slow variab
~Sec. II!. This shows the leading behavior of the action
the ground state is simply to multiply it by an evolvin
phase. The fast variabler (t) does not stray from the domai
of faithful harmonic approximation to the constraint pote
tial. Subleading terms are a factor of 1/Al smaller. Thus the
dominant behavior of the action and its derivatives is sim
that of a harmonic potential of frequencyO(Al). The errors
in the stationary phase evaluation of the path integrals ar
order \1/2/l1/4, vanishing in the adiabatic limit@see Eq.
~20!#. The errors in using stationary phase to compute
trace and integrals over the intermediate variablesr 8 and r 9
scale in the same way. In the harmonic approximation to
action and the ground state it is readily seen that the stat
ary phase points areR5r 85r 950, the constrained value o
the fast variable. Corrections to this approximation due
subleading terms vanish in the adiabatic limit,l→`.

We then have,

F„u~t!, ũ ~t!…5S ]2lnCGR
~u8!

]r 82 D 21/2S ]2lnCGR
~u9!

]r 92 D 21/2

3U ]2Scl
~1!

]R]r 8
U1/2U ]2Scl

~2!

]R]r 9
U1/2

eiScl
~1!/\2 iScl

~2!/\,

~22!

where the derivatives are evaluated atR5r 85r 950.
Scl

(1)~respectively,Scl
(2)) is the action along the classical pa

starting and ending at the constraint valuer 50 subject to the
Lagrangian of Eq.~1! with u(t) @respectively,ũ (t)] treated
as an undetermined forcing function. In the adiabatic lim
we shall now show that the action exponent is just the ac
for the reduced slow variable system on the constraint s
face, i.e., the action we would have written down had
begun in the reduced space. The kinetic term inr together
with the constraint potential give au-independent term in the
exponent as discussed above. This, being a constant en
shift as far asu is concerned, can be neglected. The mix
kinetic term goes to zero: we may expandgi j (r ,u) about
r 50 and take functions ofu out of the time integral as they
are slowly varying functions of time:

E gi j ~r ,u! ṙ i u̇ jdt5gi j ~0,u!u̇ jE
0

t

ṙ idt1
]gi j

]r p
u̇ jE

0

t

ṙ i r pdt

1O~\3/2/l1/4!, ~23!

where the derivatives of the metric are evaluated atr 50.
The first term on the right-hand side is zero, since the in
gral givesr i(t)2r i(0)50 due to the stationary phase co
dition on the end points. Forp5 i , the integral in the second
term is zero for the same reason@the integrand isd(r i2)/dt].
For pÞ i the integral averages to zero, because different
rections of the fast variables generically oscillate at differ
frequencies. The higher-order terms in the expansion va
in the adiabatic limit@they involve at least two powers ofr

but only one power of ṙ , so scale at least a
(\/l1/2)(\1/2l1/4)]. We are thus left with the kinetic term in
the slow variables only, with the metric evaluated at the c
straint value forr .
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56 2597QUANTIZING CONSTRAINED SYSTEMS
InsertingF„u(t), ũ (t)… into Eq. ~18! gives the reduced
density matrix at timet. This factorizes into a part involving
u,u f , andu(t) and a part involvingu8,uo , and ũ (t). This
implies that the reduced density matrix factorize
^u f ur(t)uuo&5^u f uu(t)&^u(t)uuo&, i.e., the finalu state is
pure, and so we may describe it in terms of a wave funct
Adiabaticity has thus uncoupled the fast and slow degree
freedom. We have

f~u f ,t !5E duE Du~t!A„u~t!…eiS/\f~u,0!, ~24!

where

A~u~t!!5S ]2lnCGR
~u!

]r 2 U
r 50

D 21/2U ]2Scl
~1!

]R]r
U

R5r 50
U1/2

.

~25!

S5Scl
(1) is the action function for theu variable on the con-

strained surface:S5*L dt, where the Lagrangian is

L5 1
2 gi j u̇

i u̇ j2V(u), with gi j now the metric on the curved
space defined by the constraint surface, and the sum is
the slow (u) variables only.

We may compare this to the expressions discussed in
where one works in the reduced space from the start. Dif
ent Feynman kernels are postulated to attempt to accoun
the curvature of the constrained surface@1,4,8#. There, for an
infinitesimal timet,

f~u f ,t !5E dV~u!G̃~u,u f !e
iS/\f~u,0!. ~26!

dV(u)5Ag(u)du is the volume element atu. Candidates
for G̃(u,u f) which are often considered in the literature i
clude the identity operator andg(u)21/4D1/2g(u f)

1/4, where
g is the determinant of the metric on the curved space, anD
is the Van Vleck determinant@D5det(2]2S/]u]u f)#. The
different choices give rise to Hamiltonians which differ
order\2 by a certain fraction of\2R. Ali demonstrated this
by choosing locally normal coordinatesj to evaluate the
integrals and considering infinitesimal time, so that the
ponent and prefactor can be expanded inj. The action ex-
ponent is then at lowest order~in j) quadratic, and the re
sulting Gaussian integrals are readily performed. Only
even-order terms in the expansion of the prefactor about
initial value u contribute. Thet→0 limit is taken and an
effective Hamiltonian can be extracted from the result
differential equation. The expansion of the potential exp
nent and the initial wave function give the Hamiltonia
2\2¹2/2m1V, and it is the quadratic term in the expansi
of Ag(j)G̃(j) that gives rise to the\2R discrepancies in the
effective Hamiltonian.~Higher-order terms give correction
at higher order in\.!

The key point is that we may apply the same manipu
tions to our Eq.~24!, whereA„u(t)… plays the role of the
prefactorAg(u)G̃(u). Transforming to locally normal coor
dinates in which there are no linear terms in the action
ponent, and expandingA„u(t)… about u leads to finite\2

corrections in the effective Hamiltonian, as in Ali’s approa
described above. However, it is important to recognize t
:
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r-
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-

e
e

-

-

-

t

our corrections emerge from reducing the full, unambiguo
coordinate space evolution down to the reduced curved sp
by taking the constraint limit, whereas Ali’s corrections ari
from using a modified Feynman kernel for curved space.
observe that our corrections depend not only on the curva
but also on the constraint potential. These conclusions ar
accord with the results of Sec. II, and provide addition
insight into the ambiguity and connection with the literatu

IV. CLASSICAL AND SEMICLASSICAL PERSPECTIVE

Finally we provide a third, classical and semiclassical p
spective on the ambiguities inherent in quantizing co
strained systems. The classical point of view on constra
as limits of strong restoring forces is instructive, and nice
complements the quantum discussion. In classical mech
ics, adiabaticity plays an important role. Adiabaticity of cla
sical actions also played an important role in the old qu
tum theory. Here we will see that the semiclassical appro
confirms the inherent order\2 problem of quantizing a con
strained system. Again, the plan is to start with the system
the full Cartesian space, transform to curvilinear coordina
and the Laplace-Beltrami kinetic energy operator with
ambiguity, and begin imposing stiff force constants abo
fixed values of one or more of the coordinates. The resul
the limit of infinite restoring forces is constrained dynami
on a Riemannian manifold. Again an ambiguity will aris
because we can arrive at identical classical constrained
namics in ways which differ quantum mechanically.

The idea that classical constraints are the limit of mer
stiff degrees of freedom is a natural one, though not of
discussed. Arnol’d includes a brief treatment of this in h
famous book in a chapter devoted to Lagrangian dynam
on manifolds@9#. Arnol’d states that in the limitl→` the
classical dynamics satisfies Lagrange’s equations of mot

d

dtS ]L*
]u̇ i

D 5S ]L*
]u i

D , ~27!

where

L* ~$u%,$u̇%!5Tur i50;ṙ i502Vur i50 , ~28!

whereT is the kinetic energy andV any nonconstraint po-
tential energy of the full system. However, there is an i
portant difference for the present purposes: we need to c
sider very large energies stored in the constrain
coordinates, corresponding to the quantum zero point ene
climbing to arbitrarily high values asl→`. This we can do,
however, using the theorem on the adiabaticity of class
actions under slow variation of a parameter.

The issues which confront the classical approach to c
straints in the high-energy constraint limit are~1! energy
stored in the fast variables generally varies as a function
the slow variables, even though actions are constant,
raising the specter of large energy exchanges with the s
degrees of freedom;~2! the possibility that the slow coordi
nates are chaotic; and~3! the possibility that the constrain
coordinates can exchange energy among themselves, pe
chaotically.
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A. One dimension

In the simple case of one-dimensional motion with
adiabatic change of one or more parameters, the variatio
the action decreases exponentially as the rate of variatio
the parameters decreases@11#. However, as the phase spac
diagram in Fig. 2~a! shows, the energy generally chang
significantly as the parameters change, as measured b
contemporary value of the Hamiltonian. For example, in
case of a one dimensional harmonic oscillator, suppose
slowly adjust the frequencyv(t)5l(t)v0 toward higher
values, beginning with some energyE0 in the oscillator:

H5 1
2 p21 1

2 l~ t !v0
2q2. ~29!

Since the action is constant, the area of the ellipse enclo
by the trajectory is constant, but this means that atq50 the
momentum must increase. However atq50, H5p2/2, so the
energy increases asv(t) increases adiabatically. Specifi
cally, with v}Al, we havep}l1/4 andE}l1/2.

Now suppose we have only one constraint coordinater .
The situation is depicted in Fig. 1. The slowu coordinates
act as adiabatic parameters. Whatever their motion, in
limit of large, fixedl the action of ther motion is preserved
during the course of theu motion. Clearly if we are to avoid
any of the large zero-point energy of ther coordinates find-
ing its way into theu coordinates, we must restrict the co
fining potentialV(r ;u1 ,u2 , . . . ) to vary with u1 ,u2 , . . . in
a way that maintains fixed energy for fixed action. This co
dition does not fix the potential uniquely, but is possible
a wide class of potentials, for example satisfying

El~ I !5l1/2~c1I 1c2I 21••• ![l1/2e~ I !, ~30!

with

e~\/2!5e0 ~31!

independent ofl. The actionI is defined, as usual, as

FIG. 2. ~a! Area-preserving~adiabatic! change of Hamiltonian
parameters generally changes the energy, as indicated by th
crease inupu at q50, where the potentialV50. ~b! Someslow
deformations of the Hamiltonian do leave the energy unchange
of
of

the
e
e

ed

e

-
r

I 5
1

2p R pr~E,l!dr. ~32!

An example showing two potentials~or rather their phase
space contours at identical actions and energies! satisfying
this requirement is shown in Fig. 2~b!. The area enclosed b
the dashed and solid contours is the same and the mome
at q50 ~where we assumeV50 for both potentials! is also
identical, showing the energy is the same for the two pot
tials at that action. Any potential satisfying Eqs.~30! and
~31! at fixed values of theu coordinates is an allowed con
straint potential at that point inu space; the independence
Eqs.~30! and ~31! under changes in theu coordinates must
then be arranged to ensure energy remaining fixed in thr
variable.

The semiclassicalestimate of the energy in ther coordi-
nate is thus independent of theu coordinates, since that en
ergy is just given by the classical energy at actionI 5\/2;
this is what we set constant by definition. However, it is n
the semiclassical energy we want, but rather theexact quan-
tumenergy. Now the key fact is thatthe exact and semiclas
sical energy differ in order\2. This follows from the deri-
vation of the WKB energy equation, which is an expansi
in \. Thus, the freedom to choose among potentials wh
lead to identical classical constrained motion asl→` leads
unavoidably to a quantum ambiguity at order\2, in agree-
ment with the discussion in the previous two sections. Thi
another confirmation of the view forwarded there, and is
main result of this section.

B. Chaos in ˆu‰ variables

The issue of chaos in the$u% variables is easily dispose
of: it makes no difference, since in the limitl→` the fre-
quency of ther variable is far from reach of the slowu
coordinates, which just act as slow parameter changes on
r variable motion. The fact that the changes of theu coordi-
nates are not quasiperiodic in the chaotic case is of no c
sequence to the adiabaticity of ther coordinates.

C. Resonance or chaos in̂r ‰ variables

Interaction between severalr variables can be avoided b
independent control of as manyl parameters as there arer
coordinates. With this control we can force the frequen
ratios v i /v i 11→0 even as eachv i→`. By this ruse we
avoid any low-order resonance leading to energy transfer
tween ther variables. The concern that high-order res
nances must always exist is softened by the fact that eve
the external control parameters (u variables! are effectively
fixed and the high-order resonance is allowed to act,
energy exchange~resonance width! is expected to be expo
nentially small in the winding number~frequency ratio! for
smooth potentials, as it depends on Fourier coefficients
the order of the winding number. In effect, good actions
maintained in ther variables asl→`.

In the opposite extreme of full chaos in ther variables,
we appeal to Liouville’s theorem applied to the invariance
the total phase space volume enclosed by the energy su
in the r motion in the limit that theu variables are slow
enough to be considered to be adiabatically separate exte

in-

.
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56 2599QUANTIZING CONSTRAINED SYSTEMS
parameters. In addition, we need Hertz’s theorem, wh
states that in an ergodic system the energy shell maps
another energy shell in the adiabatic limit of changing p
rameters@12,13#. We may writeE5E$u%(V), whereV is the
phase-space volume. As long as the constraint potentials
tuned to preserve this energy as a function of theu variables,
i.e., E$u%(V)5E$u8%(V) for all $u8% and fixedV, there will
again be no forces on them from the constraints. Hav
arranged the potentials in this way, there remains the q
tion of the semiclassical energy for the chaotic dynam
This can be given by periodic orbit theory@14#. Somewhat
paradoxically, periodic orbit theory has been shown to g
excellent results for low-energy eigenvalues in a numbe
systems, breaking down at higher energies. We need the
est ~zero point! energy, which at least formally has an err
of order \2, so once again we reach the same conclus
about the order\2 ambiguity in the quantization procedure

V. CONCLUSION

We have shown from three different points of view th
the ambiguities which arise in the quantization of a co
strained system are physical in nature, and cannot be
solved by finding the ‘‘right’’ mathematical formalism. Con
sidering the constrained surface as a reduced subspace
larger system, we have found that terms of order\2 inevita-
a-
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to
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bly arise in the effective description. These terms depend
the details of the forcing potential as much as on the intrin
geometry of the constrained surface, but there is no amb
ity in the classical or even semiclassical dynamics. Thus
obtain a large set of equally valid ‘‘quantizations’’ of th
same classical system, each corresponding to a partic
constraining process. In any physical situation, one such c
straining process is the correct one, and the ambiguities
appear. In the absence of detailed knowledge about the
ture of the constraints, additional ‘‘quantization conditions
must be selected before one can speak of quantizing
classical dynamics on a curved space.

Our discussion has been cast in terms of holonomic c
straints~which can be written in terms of the vanishing
one or more functions of the coordinates!, but the idea of
reaching rigid constraints via a limiting process also app
to nonholonomic constraints, which can be couched only
terms of nonintegrable differentials.
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