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We consider quantum mechanics on constrained surfaces which have non-Euclidean metrics and variable
Gaussian curvature. The old controversy about the ambiguities involving terms in the Hamiltonian df?order
multiplying the Gaussian curvature is addressed. We set out to clarify the matter by considering constraints to
be the limits of large restoring forces as the constraint coordinates deviate from their constrained values. We
find additional ambiguous terms of ordkf involving freedom in the constraining potentials, demonstrating
that the classical constrained Hamiltonian or Lagrangian cannot uniquely specify the quantization: the ambi-
guity of directly quantizing a constrained system is inherently unresolvable. However, there is never any
problem with a physical quantum system, which cannot have infinite constraint forces and always fluctuates
around the mean constraint values. The issue is addressed from the perspectives of adiabatic approximations in
guantum mechanics and Feynman path integrals, and semiclassically in terms of adiabatic actions.
[S1050-294{@7)08910-3

PACS numbegps): 03.65.Sq, 02.40.Ky

[. INTRODUCTION able coordinate-invariant quantity. Thus for constrained sys-
tems with flat constraintge.g., the simple pendulum or a

The controversy over the proper way to quantize a conpatrticle confined to a one-dimensional curviae ambiguity
strained dynamical system has had a long and interestindoes not arise, whereas for systems with constant curvature
history in 20th century physics. One treatment of the subjecfe.g., motion on a spheré leads only to a physically unob-
opens by saying that “if you like excitement, conflict, and servable shift in the zero-point energy. In the latter case, the
controversy, especially when nothing very serious is at stakesemiclassical Van Vleck approximation can be used to fix
then you will love the history of quantization on curved the “correct” energy offse{3]. In three dimensions this re-
spaces’[1]. The possibility of resolving the ambiguities ex- quires adding aiR term to the LaplacianR being the scalar
perimentally for rigid body systems was the subject of acurvature. For a two-dimensional surface of constant nega-
conference discussion in 1957 among DeWitt, Wheeler, antive curvature, the semiclassical approximation becomes ex-
Feynman[1]. The problem was also treated in Dirac’s fa- act(though only at distances large compared to the curvature
mous text of 19672]. Yet many years later we still seem far radius if the quantity added to the Laplacian®é4. Even if
from attaining a consensus regarding quantization on curvedne (somewhat arbitrarily?requires that the Van Vleck ap-
spaces. The “quasipermanent discussion among the specigroximation should be as close as possible to being exact for
ists” [3] has by no means come to an end. In fact, a recenthe constant curvature case, it is by no means clear that this
paper{4] laments that “in spite of all the successes of quan-prescription is valid in the generic case of varying curvature,
tum mechanics and after years of efforts on quantization, wevhere the ambiguities are most physically relevant.
are still not absolutely sure about the correct quantization of One might think that Feynman’s path-integral approach
as simple a system as the double pendulum.” The subjed8] would help to resolve these uncertainties. However, as
also received early attention in the works of Ch¢Bgand remarked by Schulman in this context, “there is no free
DeWitt [6]. In this paper we do not attempt to review the lunch.” In the path-integral method, the ambiguity arises in
extensive research on the subject of constrained quantizatioohoosing how to incorporate the metric into the kernel and in
and refer the interested reader to the literafute Our ap-  deciding at what point in the infinitesimal time interval to
proach to this problem is quite independent of all previousevaluate functions of the metrfd,4]. Two commonly used
methods. kernels give answers that differ by an effectiRé6 contri-

The canonical quantization prescription has served usution to the Laplaciarand naturally enough both differ
well in defining a straightforward and unambiguous way offrom the canonical quantization resulThese issues are dis-
quantizing a classical system in flat space. However, it imcussed at some length in Ali’s recent papél, and here we
mediately runs into problems where constrained dynamics igill not go into the details.
involved. It is easy enough to restrict the potential term to  Given this history, we have decided to attack this old
the constraint surface — the difficulty arises in treating theproblem using a somewhat different, and in our view, more
operator ordering ambiguities in quantizing the kinetic termphysically motivated approach. The principle governing our
K= —(%2/2m)(1\9)(3/99)[ g Ja(dldg))]. These ambi- view is that arriving at a unique quantization is essential only
guities, at orderi?, are proportional to the local Gaussian in real systems. That is, quantization should gigysically
curvature of the constraint surface, which is the only avail-unambiguous. For example, quantization of the usual rigidly
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constrained classical double pendulum is not a physicabedding space. We will use an analogous procedure in quan-
problem, because the requirement that the pendulum lengtitsm mechanics, and consider the quantization of a con-
remain exactly constant is not realizable. To make the probstrained classical system as the limit of quantizations of
lem as close as possible to physical, the constraints should lméassical systems with large potentials away from the surface
imposed through a limiting procedure, fluctuations remainingof constraint. This approach is in accord with our intuition
physically allowable along the way. We call this the “limit about physical constraints. It is also appealing because once
guantization,” as opposed to direct quantizations which daa specific squeezing potential is chosen, the resulting quan-
not pass through a limiting procedure. This procedure is cartum mechanics is entirely unambiguous, and can be obtained
ried out in Sec. Il using a Hamiltonian formalism, and laterequivalently via a canonical or path-integral method. Ambi-
in Sec. lll from a path-integral point of view. The limit quan- guities will nonetheless arise in this approach, but are due to
tization embodies the idea of classical constraints arising athe freedom in selecting a constraining potential. The effec-
the limit of ever larger restoring forces normal to the con-tive quantum dynamics in the squeezing limit will have cor-
straint surface, an idea discussed in Arnol'd, for exanile rections at ordefi?> which depend on the details of the way
(see also LanczoglQ]). In this way the constraint coordi- in which this limit is taken. These ambiguities are analogous
nates appear as part of the full dynamical system in the usuéb operator-ordering effects in canonical quantization ap-
Euclidean metric. As the constraint forces are increased, thgroaches, and to ambiguities which arise in the choice of
constrained degrees of freedom acquire a very high frekernel (particularly in the choice of evaluation points for
guency, and their actions remain adiabatically constant as thfeinctions of the metricin path-integral methods. However,
slow variables move. This, however, does not imply that thehe physical ambiguities we find are considerably more gen-
fast variablegwhich we here call the variables areener-  eral in that they need not be functions only of the intrinsic
getically decoupled from the slowf—) variables. We dis- properties of the constraint space. Even for a flat constraint
cuss the classical and semiclassical issues of constrained dspace a large set of possible quantizations are available, each
namics further in Sec. IV, where from still another having its own physical realization in an embedding space,
perspective we will see that the direct quantization is intrin-but all having the same classical and semiclassical limits.
sically ambiguous at ordet?: different limiting constraint The existence of such quantum ambiguities in constrained
potentials give thesameclassical constrained motion bdif-  systems all leading to the same classical physics in our view
ferentquantum dynamics at ordér. overshadows any attempt to resolve the operator ordering
The uncertainty principle requires that in any real physicalquestions and terms involving the curvature.
system there will be quantum fluctuations around the surface We begin with a Lagrangian
of constraint. By examining the effects of these fluctuations o _
in the limit of ever tighter constraints, we find unavoidable L= %gijq'qJ =V(q)—V,(q) (D)
ambiguities in the quantum dynamics along the surface of
constraint. Our claim is that these ambiguities are an inhererin the full coordinate space, with flat metdg and potential
part of any reasonable quantization procedure, and need n¥t (we take the mass to be unity throughotthe additional
be more bothersome in principle than the Aharonov-BohnpotentialV, enforces the constraint in the limit—. Clas-

effect, which shares the property of identical classical dy'sically we requiréV, to have the same value everywhere on

namics giving rise to different quantum dynamics. As theine constraint surfacs, for eachh. We now transform to
Aharonov-Bohm effect illustrates, there is no good reasoRpe Hamiltonian

why a quantum system should be uniquely determined by its
classical(or even semlclassm)alim!I, and t.he richness of the H=1gi Pib; +V(q)+'\7x(q), )
new phenomena that can occur in physical quantum systems

can well be viewed as a positive aspect of the quanturri}v.h(_:‘re pi:ﬁuﬁqi:g”qj is the momentum coordinate and

theory rather than as a shortcoming. . . gl is the inverse 0f;; . Canonical quantization now requires
In any case, we hope our contribution to the literature will i - e
that we replaceg' pjp;=p-p with the operator—#<V<,

be a valuable one, in spite of this concluding warning by ' ! .
Schulman: “Additional papers on curved space path integra??hich in coordinate system has the form
tion are legion, and we do not attempt to list them all. Some

are correct; some are less correct. Some have original fea- —h2y2= _ﬁzi _‘9_< ij _’9_) 3)
i . . . . , - g g IR
tures; some are less rich in this praiseworthy propefti]: \/5 | aq
whereg is the determinant of the metric.e., the square of
Il. QUANTUM MECHANICS OF CONSTRAINED the volume elemeint Notice that there is no operator order-
SYSTEMS ing ambiguity here because the full metgg is flat.

A physically natural way of defining a constrained dy- Now locally, near some r.egion. of the constrain.t surf&ce
namical system in classical mechanics is through a limitingVe May separate the coordinatesnto “slow coordinates”
procedure where a strong attractive potential forces the sy, Parametrizings and “fast coordinates’t orthogonal to the
tem at any fixed energy to live closer and closer to the conSurface(see Fig. 1. We will be looking for an effective
straint surfacg9]. The effective classical dynamics obtained theory of the coordinates when the constraining potential
in this limit turns out to depend only on the intrinsic proper- V(r) allows only small fluctuations in (small compared to
ties of the constraint surfade.g., the curvatujeand not on the length scale associated with the physical potektiahe
the details of the constraining potential chosen on the emeurvature scale of the constraint surféeand the scale on
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where the matrix functiol(?) is smooth. The ground states
v will to first approximation be harmonic oscillator
ground states with spatial extent of ordef¥\'* and en-
ergy Egg of ordera\ Y2 As discussed above, the coefficient
of this energy must be& independent, to prevent infinite
effective forces iné from arising in thex —o limit. The
matricesA(?) can easily be adjusted to satisfy this condition.
In the case of more than one constraint variable, this still
allows for much freedom in the functioh!® and the result-

FIG. 1. Schematic showing the fast motion alongnd slow  ing eigenstate® ¢} (energy can flow from one fast degree
motion alongé;,6, coordinates for finite confining forcedinite of freedom to another as a function éf as long as the total
N). energy remains constanOne may choose to adjug&ome

of) the anharmonic parts of the potential as well, but this is

which \7;3 varies as a function of). The quantum wave not really necessary or natural. The quartic term will lead to

function on the full space can be written as order4? (A independentcorrections to the ground-state en-
ergy and thugif these anharmonic corrections vary with
W(a)=W(0,1)=do( O)WER()+ s (AW (r)+ -, which in general they wi)l to the effective potential irg.*

(4 We will later see that this effect is of the same order as other
terms that are encountered in the effective potential. We
where ¢, ¢4, ... are arbitrary functions of the slow vari- might also mention at this point that if in finding the ground
ables.\lf‘G‘"&(r) is the ground state of the fast variables state ofr at a givend we used normal coordinates centered
treating ¢ as a fixed parametef?{’(r) is the first excited ~ at (6,r=0), gj=&;+O(r?) for fixed 6, and neglected the
state, and so on. More preciself,cr, ¥;, etc. are the O(r?) curvature correction, we would also make an error of
eigenstates of the fast Hamiltonian, order 42 in the ground-state energies and therefore in the
effective potential ford.

221 9 A second scenario involves a hard-wall potential with the
H,=- 77 o ( 1 \/—ar' +Vi(r), (5)  cross section of the allowed region shrinking tow&ds
N—o. Thus we may instead take
wherei andj are summed over the fast variables only, and V=0, a®(r)<1 (8)
the metric is evaluated at a fixed value@fNote thatg here
is the determinant of the full metric on the, @) space. w, af0r)>1, (9)

Now we want to consider the effective Hamiltonibdy
acting on the slow wave functiogiy(6) which multiplies the  where the functiora(?) defines af-dependent region shrink-
ground state of the variables. We will argue toward the end ing as 1k in which the fast eigenstates live. The energy of
of this analysis that this effective theory is in fact unitary in the ground state is of ordérP\?, and can again be adjusted
the limit A — o<, as the transition probabilities connecting theto be ¢ independent while allowing for substantial freedom
ground states to the excited states of the fast variables disapr the shapes of the ground states. In the following we will
pear in the constraint limiidue to adiabaticity focus on the originalsmooth potential scenario, but this
We have mentioned previously that in order to obtain theone could be used to obtain similar results.
correct classical motion in the constraint limit, we must We now see what happens when we compute the effective
makeV{(r=0) be independent of and have the potential Hamiltonian for the slow variableid¢x(8,0/56), defined by
increase away from=_0. In order for the quantum mechan- ,
ics to have a sensible semiclassical limit, we must further (PolHeil po) =(V'[H|W), (10
enforce that the energy of the ground stﬁéﬁ, defined by with
H W Gr=EGRY G, (6) W(6,1)= ol )W EYT). (11)

must bed independent, for ank, and the energy of the first  The potentialV(q) clearly induces an effective potential
excited state must be well SeparatEd from |t, with the SepQV( (9,r=0)7 up to corrections which disappear in the con-
ration growing withk. This can be implemented in a number sraint limit, sinceV(6,r) varies slowly inr over the extent
of ways, but two particularly simple scenarios present themof \If“’)(r). The constraint potentiaf, , combined with the
selves. In the first we tak¥,(q)=\v(q), wherev is a

smooth function vanishing on the constraint surface and hav———-

ing its minimum therdbut with a nonsingular second deriva-
tive matrix with respect to the fast variabledlear the con-
straint surface, the constraining potential will have the
harmonic-oscillator form

1For the purpose of dimension counting, every power dfi an
expression contributes a factor b2\ to the expectation value
whereasd/dr acting on ¥gg (but not the metrig contributes
AY41%Y2, Derivatives acting on the “slow” wave functiogg(6)

— . . and the metrig, as well as?/ 96 acting on¥ gy all produce factors
Vi) =r'A{ri+0(r3), (7)) of order unity.
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fast part of the kinetic term, gives, by assumption, a

#-independent effective potential which we can therefore ﬁ2<‘1’GR
drop. We are left with the slowd) part of the fullg-space

Laplacian, as well as mixed terms involving one derivativegijnce W (r) is even inr, the slowly varying function
each with respect to the slow and fast variables. _c(6,r) must be expanded to first orderirto obtain a non-

In the Born-Oppenheimer spirit, consider first the actionyanishing contribution. We then obtain yet another contribu-
of the “slow” part of the Laplacian on the full wave func- o o the effective potential of ordé? [sincer (d/dr) act-
tion. We are interested in matrix elements of the form ing onWr(r) is of order unity.

Finally, we argue by adiabaticity that there is no mixing
21 9 betweengy(6) and the excited wave functions,(6), etc.
T2 g b $o¥er|- (12 This follows because the splitting betwedfi?) and the ex-

cited states of scales a%i\\ in the constraint limit(or as
The two derivatives can act on the slow wave functify 72\? in the case of a hard-wall potentiaivhereas the matrix
or in the ground statd’ g, or on the metric and its deter- €léments do not grow with. So assuming a finite amount of
minant. Consider terms where both derivatives act on th&n€rgy in the initialo(#) wave function, transition prob-
ground state or the metric. After integrating over the fas@bilities vanish in theh—oco limit, and we obtain a
variables, this leads t0¢6|—ﬁ2f(9)|¢o>1 an effective po- propabﬂny-cpnsgrvmg effective quantum mechanics. The ef-
tential scaling agh2.2 (Note that both the metric and the fective Hamiltonian is
ground state are changing over typical scales of order unity

Jd d

g fgi)

a6

< oV R

: - - e 21 o . 9

in #.) Furthermore, this effective potential \ssindependent Hom e — __( i e | + V() +H2V o 6

for large\, sinceW gg maintains its functional fornithat of 2 g b 9NGg (6) el 6).

a Gaussian plus higher-order correctipasd simply shrinks (16

towardr=0 ask —o. . _ : .
Now suppose one of the derivatives acts on the metric of his is the key result of this pape¥. is essentially an
on ¥ g, while the other acts on the slow wave function. Wearbitrary smooth function, depending in a complicated way

then obtain on both the curvature properties $fand on the constraining
potential around (together these determine the ground-state
_ 9 wave functions /g can be taken to be the square root of the
! 2Rhi . p . .
do| —h°h (0)ﬁ,—+H.c. o), (13)  determinant of either the full metric or of the metric re-

stricted to the constraint surface. Any difference between

i . these expressions can be absorbed Yhie.
whereh' are real functions of (because the ground state P

W sr Ccan be chosen to be real, and the metric is real ag9.well
Taking the Hermitian part we again obtain an effective po-

tential of Orderﬁz. Fina”y, if both derivatives act on the A path_integraj ana|ysis also shows that quantization on
slow wave funCti0r¢0, we obtain the usual kinetic term for the Constrained Surface is ambiguous at Ofd?erWe begin

the slow variablesincluding order#? terms proportional to with the propagator on the full coordinate space. Because the
the curvature of the constraining surface, as discussed in Segpace is flat, this is given by the usual Feynman

. This concludes the discussion of the pukelerivative part  prescription [D(q(7))expiS(q(7))/%) where S(q(7))

of the kinetic energy, and we move on to the mixed terms:fL(q(r),iq(r),r)dr. The Lagrangiai. on the full space is
next. given by Eq.(1) in Sec. II; we follow the notation introduced

I 'tEe_a/ar fdeg"?;;’e aﬁts Of? the metrlc,.V\I/e otl))ta}ln A there. We extract the effective dynamics for the “slow”
contribution of order:” to the effective potential as before |, japagg by performing a trace over the “fast” variables

(all derivatives are of order unitylf d/dr acts on¥ g5 while in the adiabatic limit. Specifically, we calculate

Ill. LAGRANGIAN FORMALISM

adld6 acts ong or the wave functionp,, we obtain (6:1p(1)] 6,), where p(t)=Tr,(W(t)) is the trace over the
5 fast variables of the density operator on the full space. The
7#2( W en bOr) — +H.c|Weag), (14) timet is taken to be small on the time s_calesﬁghquon, but_
ar r may undergo many oscillations during this time. Noting

that the evolution of the full density operator is given by
whereb is a slowly varying real function. So to this order in W(t)=e~"H"w(0)e'"*, and inserting identities in the
# only the commutator ob with d/dr survives, and once form of complete sets of states, we have
again the resulting contribution to the effective potential is of
qrderhz. The remaining term is the one where both deriva- <0f|P(t)|00>:f dR drdr'de’de’( o;Rje | g'r ")
tives act on the ground state; it has the form

< < 0’[‘,|W(0)| 0//rr/>< 0//r11|eth/ﬁ| 00R>

°The derivatives acting on the metric only will give the usual 17)
curvature-dependent corrections to the effective potential. Terms
coming from derivatives acting on the ground state are of the sam¥Ve take the initial density operator to be the “product” state
order and will give rise to additional corrections. W)@ |¢), where the initial state of the fast variables is the
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(purely rea) ground statel )(r), with 6 regarded as a fixed Where we note tha gz~ O(# V) is required to beg inde-
parameter(see Sec. )l ¢(6) is an arbitrary initial wave Pendentto avoid infinite torques acting on the slow variables
function of the slow variable®. Replacing the two propa- (S€c. I). This shows the leading behavior of the action on

ators by path integrals, we then have the ground state is simply to multiply it by an evolving
g yP ¢ phase. The fast variabl€t) does not stray from the domain

a(t)= 6, of faithful harmonic approximation to the constraint poten-
(65 p(1)] 00>=f de’de”f Do(T) tial. Subleading terms are a factor ofyd/ smaller. Thus the
00)=6' dominant behavior of the action and its derivatives is simply
W)= 0~ that of a harmonic potential of frequen€(/\). The errors
X ﬁ DO(7)p(0")Pp*(6") in the stationary phase evaluation of the path integrals are of
8(0)=¢" order 2Y2/\%4 vanishing in the adiabatic limifsee Eq.
= (20)]. The errors in using stationary phase to compute the
X HO(7), 6(7)), (18) trace and integrals over the intermediate variableandr”
scale in the same way. In the harmonic approximation to the
action and the ground state it is readily seen that the station-
® ary phase p_oints anézr’:_r”:O, the constrai_ned_value of
f(@(T),E(T))IJ dR dr’dr”f Dr(7) the fast.varlable. Cor_rect.lons to t_hls approximation due to
r(0)=r’ subleading terms vanish in the adiabatic limit-oo.
We then have,

where

T()=R__~ a5 _ig(2
Xf DI’(T)EIS 1h—iS'“Ih

2 0" —-1/2 2 (0" —-1/2
(0)=r" ~ “Inw I In¥
P f<6<r>.0<r>>=( ) (
XWER (MWER!(r). (19 & ar
_ _ (928(1) 1/2 (928(2) 1/2 - -
SW=5(r(7); 8(7)) andSP=S(r (7);4(7)) are the actions Cl, C'” eistim—isPrm.
along the respective paths. In performing the path integrals IR dRar

over the fast variablesg(7) (6(7)) is to be treated as an (22
external  forcing  function  with  the property

6(0)=0",6(t) = 6 [respectively,6(0)= 6", 6(t)= 6,].
We evaluateZ” using the stationary phase approximation starting and ending at the constraint vatue0 subject to the

with respect to#i on the path integrals, the trace, and the , , , —
integrals over the intermediate fast variables. In fact the sta-@9rangian of Eq(1) with 6(r) [respectively,f(r)] treated

tionary phase approximation becomes exact in the adiabatfe> @1 undetermined forcing function. In the adiabatic limit,
limit: we shall now show that the errors due to stationary'Ve Shall now show that the action exponent is just the action
phase evaluation are of ordé*2\Y4 so they vanish as for the reduced slow variable system on the constraint sur-

\—o. Recall that face, i.(_a., the action we would havc_e w_ritten dqwn had we
begun in the reduced space. The kinetic ternr itogether

where the derivatives are evaluated Rt=r'=r"=0.

Sg,l)(respectively,s(cf)) is the action along the classical path

o | M2 with the constraint potential give &independent term in the
J' g(x)e‘f<x>/hdx~sp2 ( ) g(x,)elf /i exponent as discussed above. This, being a constant energy
f(X,) shift as far asf is concerned, can be neglected. The mixed
" kinetic term goes to zero: we may expagg(r,#) about
| 140l 512 " (Xn) (20) r=0 and take f_unctions_o@ out o_f the time integral as they
£7(x,) 32 ’ are slowly varying functions of time:

where the sum is over stationary phase poigtsatisfying J gij(r,ﬁ)fibjdt=gij(0,0) gJJt'ridH_ %gijtfirpdt
f’(x,)=0. Stationary phase evaluation of path integrals, al- 0 arP Jo
though different in the details, scales in the same Wéy) + ORI\ 14) 23)
corresponds to the actioB. The stationary paths are the '

classical paths and we now argue tBat-O(1'?) to lead-  where the derivatives of the metric are evaluated aD.
ing order in\. The leading behavior of the action in the fast The first term on the right-hand side is zero, since the inte-
variables arises from the kinetic termiinand the constraint gral givesr'(t)—r'(0)=0 due to the stationary phase con-
potential:L,~g;;r'ri/2—V?(r), where the sum is over fast dition on the end points. F@=i, the integral in the second
variables only. This Lagrangian corresponds to the fasterm is zero for the same reasfthe integrand isl(r'?)/dt].
Hamiltonian of Eqg.(2) discussed in Sec. I, which gives For p#i the integral averages to zero, because different di-
harmonic motion for at least throughout the range of the rections of the fast variables generically oscillate at different
fast variable ground state. Because the initial fast state is thisequencies. The higher-order terms in the expansion vanish
ground state, the leading behaviore@¥" gives in the adiabatic limifthey involve at least two powers of
but only one power ofr, so scale at least as
1 1/2y 1/4 H H H ;
) IS iag, (0)) (v 13 a—iEgrtlAings (8) (hINY2) (RY2\ V4], We are thus left with the kinetic term in
J dr J Dr(r)e VR (') —e R Gr (r), the slow variables only, with the metric evaluated at the con-
(21 straint value forr.
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Inserting F(6(7), 6(7)) into Eq. (18) gives the reduced OUr C(_)rrections emerge _from reducing the full, unambiguous
density matrix at time. This factorizes into a part involving Ccoordinate space evolution down to the reduced curved space
0,0;, and6(7) and a part involvingd’, 6,, and (7). This by taking the constraint limit, whereas Ali’s corrections arise
in'1pli'es that the reduced densi’tyo’matrix factorizes: oM using a modified Feynman kernel for curved space. We
(0] p(1)] 65y =( 8, 6())(O(D)|6), i.e., the final@ state is observe that our corrections depend not only on the curvature

[0} 0o/ T

pure, and so we may describe it in terms of a wave functionl.JUI also on the constraint potential. These conclusions are in

Adiabaticity has thus uncoupled the fast and slow degrees
freedom. We have

ccord with the results of Sec. Il, and provide additional
Insight into the ambiguity and connection with the literature.

b(6; 1) = f db’f DO( ) A6 T))eis/ﬁ¢( 0,0, (24 IV. CLASSICAL AND SEMICLASSICAL PERSPECTIVE

Finally we provide a third, classical and semiclassical per-
where spective on the ambiguities inherent in quantizing con-
strained systems. The classical point of view on constraints

a2Inw % ~z PR 12 as limits of strong restoring forces is instructive, and nicely
A(6(7))= o7 JRor complements the quantum discussion. In classical mechan-
r r=0 R=r=0 ics, adiabaticity plays an important role. Adiabaticity of clas-

(29 sical actions also played an important role in the old quan-
S— S&l) is the action function for the variable on the con- tum _theory. Here we will see that the semiclas_si_cal approach
; o . . confirms the inherent ordér® problem of quantizing a con-
strameq _.surface.S—.fL dt, where the. Lagrangian is strained system. Again, the plan is to start with the system in
L=30;;0'0'—V(6), with g;; now the metric on the curved the full Cartesian space, transform to curvilinear coordinates
space defined by the constraint surface, and the sum is ovahd the Laplace-Beltrami kinetic energy operator with no
the slow (p) variables only. ambiguity, and begin imposing stiff force constants about
We may compare this to the expressions discussed in Alffixed values of one or more of the coordinates. The result in
where one works in the reduced space from the start. Differthe limit of infinite restoring forces is constrained dynamics
ent Feynman kernels are postulated to attempt to account f@h a Riemannian manifold. Again an ambiguity will arise
the curvature of the constrained surfatet,8). There, foran  because we can arrive at identical classical constrained dy-
infinitesimal timet, namics in ways which differ quantum mechanically.
The idea that classical constraints are the limit of merely
— = iSlh stiff degrees of freedom is a natural one, though not often
$(0r.1) f dL(8)G(8.6)e™"¢(6.0). (26) discussed. Arnol'd includes a brief treatment of this in his
) ) famous book in a chapter devoted to Lagrangian dynamics
dQ(0)=g(6)dd is the volume element a. Candidates 4, manifolds[9]. Amol'd states that in the limih— o the

for G(6,6r) which are often considered in the literature in- classical dynamics satisfies Lagrange’s equations of motion
clude the identity operator arg{ 6) ~“D?g(6;)Y* where

g is the determinant of the metric on the curved spaceand d/ oL oL
is the Van Vleck determinariD = det(— 9°S/7036;)]. The —( .*) = —= ) (27)
different choices give rise to Hamiltonians which differ at dt| g, d0)

order4? by a certain fraction of:?R. Ali demonstrated this
by choosing locally normal coordinates to evaluate the Where

integrals and considering infinitesimal time, so that the ex-

ponent and prefactor can be expanded .iriThe action ex- L ({65,160 =Tl; —0:i.=0— Vl'. =0, (29
ponent is then at lowest ordéin ¢) quadratic, and the re- S '
sulting Gaussian integrals are readily performed. Only thQN
even-order terms in the expansion of the prefactor about th
initial value @ contribute. Thet—0 limit is taken and an
effective Hamiltonian can be extracted from the resulting
differential equation. The expansion of the potential expo

nenzt a;nd the |n|t|al_ wave f“”C“Or! give t_he Hamlltom_an climbing to arbitrarily high values as— 0. This we can do,
—h°Y IZHHV’ and itis the quadratic term in the expansion however, using the theorem on the adiabaticity of classical
of Vg(§)G(¢) that gives rise to thé?R discrepancies in the actions under slow variation of a parameter.
effective Hamiltonian.(Higher-order terms give corrections The issues which confront the classical approach to con-
at higher order in.) straints in the high-energy constraint limit af®) energy
The key point is that we may apply the same manipulastored in the fast variables generally varies as a function of
tions to our Eq.(24), whereA(6(7)) plays the role of the the slow variables, even though actions are constant, thus
prefactor\/g(6)G(6). Transforming to locally normal coor- raising the specter of large energy exchanges with the slow
dinates in which there are no linear terms in the action exdegrees of freedon(2) the possibility that the slow coordi-
ponent, and expanding(6(7)) about# leads to finite?  nates are chaotic; an@) the possibility that the constraint
corrections in the effective Hamiltonian, as in Ali's approachcoordinates can exchange energy among themselves, perhaps
described above. However, it is important to recognize thachaotically.

hereT is the kinetic energy an¥ any nonconstraint po-
ntial energy of the full system. However, there is an im-
portant difference for the present purposes: we need to con-
sider very large energies stored in the constrained
‘coordinates, corresponding to the quantum zero point energy
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_ 1
I_Z 3€ p.(E,N)dr. (32

An example showing two potential®r rather their phase-
space contours at identical actions and eneygasisfying
this requirement is shown in Fig(l®. The area enclosed by
the dashed and solid contours is the same and the momentum
atg=0 (where we assum&=0 for both potentialsis also
identical, showing the energy is the same for the two poten-
tials at that action. Any potential satisfying Eq80) and
(31) at fixed values of the coordinates is an allowed con-
straint potential at that point ifl space; the independence of
Egs.(30) and(31) under changes in the coordinates must

9 then be arranged to ensure energy remaining fixed irr the
variable.

The semiclassicakstimate of the energy in threcoordi-
nate is thus independent of tliecoordinates, since that en-
ergy is just given by the classical energy at actienf/2;

FIG. 2. (a) Area-preservingadiabatig change of Hamiltonian ~ this is what we set constant by definition. However, it is not
parameters generally changes the energy, as indicated by the ithe semiclassical energy we want, but ratherakact quan-
crease in|p| at g=0, where the potential/=0. (b) Someslow  tumenergy. Now the key fact is th#the exact and semiclas-
deformations of the Hamiltonian do leave the energy unchanged. sical energy differ in orde?. This follows from the deri-

vation of the WKB energy equation, which is an expansion
A. One dimension in 7. Thus, the freedom to choose among potentials which
In the simple case of one-dimensional motion with anléad to identical classical constrained motiom\as « leads

adiabatic change of one or more parameters, the variation ¢fnavoidably to a quantum ambiguity at ordef, in agree-
the action decreases exponentially as the rate of variation ¢Rent with the discussion in the previous two sections. This is
the parameters decreaieg_]_ However, as the phase space- anqther Confirma-tion Of- the view forwarded there, and is the
diagram in Fig. 2a) shows, the energy generally changesMain result of this section.

significantly as the parameters change, as measured by the

contemporary value of the Hamiltonian. For example, in the B. Chaos in{#6} variables

case of a one dimensional harmonic oscillator, suppose we
slowly adjust the frequencyo(t)=A(t)w, toward higher
values, beginning with some ener@y in the oscillator:

My T
NZga

The issue of chaos in the} variables is easily disposed

of: it makes no difference, since in the limit—« the fre-

quency of ther variable is far from reach of the slow

H=1p2+ %)\(t)w(z)qz. (29) coorqllnates, whlch just act as slow parameter changes-on the
r variable motion. The fact that the changes of theoordi-

Since the action is constant, the area of the ellipse enclose#ftes are not quasiperiodic in the chaotic case is of no con-
by the trajectory is constant, but this means thaja0 the ~ Sequence to the adiabaticity of thecoordinates.

momentum must increase. Howevenat 0, H=p?/2, so the

energy increases as(t) increases adiabatically. Specifi- C. Resonance or chaos ifr} variables

cally, with o X, we havepx\** andE=\ "2 _ Interaction between sevenalvariables can be avoided by
Now suppose we have only one constraint coordimate jndependent control of as mayparameters as there are
The situation is depicted in Fig. 1. The slafvcoordinates  coordinates. With this control we can force the frequency
act as adiabatic parameters. Whatever their motion, in thggtigs wilwj+,—0 even as eacl,—x. By this ruse we
limit of large, fixed\ the action of the motion is preserved 5y0id any low-order resonance leading to energy transfer be-
during the course of th@ motion. Clearly if we are to avoid tyeen ther variables. The concern that high-order reso-
any of the large zero-point energy of thecoordinates find-  nances must always exist is softened by the fact that even if
ing its way into the¢ coordinates, we must restrict the con- the external control parameterd {ariables are effectively
fining potentialV(r; 6,6, ...) tovary with 61,65, ... in fixed and the high-order resonance is allowed to act, the
a way that maintains fixed energy for fixed action. This Con'energy exchangéesonance W|dﬂ]|5 expected to be expo-
dition does not fix the potential uniquely, but is possible fornentially small in the winding numbefrequency ratip for
a wide class of potentials, for example satisfying smooth potentials, as it depends on Fourier coefficients of
the order of the winding number. In effect, good actions are

Ex(D=A eyl eol 24 - - ) =\ Ee(1), 30 maintained in the variables as\ — .
with In the opposite extreme of full chaos in thevariables,
we appeal to Liouville’s theorem applied to the invariance of
e(hl2)=¢, (31) the total phase space volume enclosed by the energy surface

in the r motion in the limit that thed variables are slow
independent of.. The actionl is defined, as usual, as enough to be considered to be adiabatically separate external
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parameters. In addition, we need Hertz’'s theorem, whiclbly arise in the effective description. These terms depend on
states that in an ergodic system the energy shell maps ontbe details of the forcing potential as much as on the intrinsic
another energy shell in the adiabatic limit of changing pa-geometry of the constrained surface, but there is no ambigu-
rameterg12,13. We may writetE=E,()), whereVis the ity in the classical or even semiclassical dynamics. Thus we
phase-space volume. As long as the constraint potentials agbtain a large set of equally valid “quantizations” of the
tuned to preserve this energy as a function ofdhariables, same classical system, each corresponding to a particular
i.e., Eqp(V)=Ey;(V) for all {6’} and fixedV, there will  constraining process. In any physical situation, one such con-
again be no forces on them from the constraints. Havingstraining process is the correct one, and the ambiguities dis-
arranged the potentials in this way, there remains the quesyppear. In the absence of detailed knowledge about the na-
tion of the semiclassical energy for the chaotic dynamicsture of the constraints, additional “‘quantization conditions”
This can be given by periodic orbit theofg4]. Somewhat must be selected before one can speak of quantizing any
paradoxically, periodic orbit theory has been shown to giveclassical dynamics on a curved space.
excellent results for low-energy eigenvalues in a number of Our discussion has been cast in terms of holonomic con-
systems, breaking down at higher energies. We need the lovgtraints(which can be written in terms of the vanishing of
est(zero poin} energy, which at least formally has an error one or more functions of the coordinatebut the idea of
of order #2, so once again we reach the same conclusiomeaching rigid constraints via a limiting process also applies
about the ordefi? ambiguity in the quantization procedure. to nonholonomic constraints, which can be couched only in
terms of nonintegrable differentials.

V. CONCLUSION
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