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Maxwell field operators, the energy density, and the Poynting vector calculated
using the minimal-coupling framework of molecular quantum electrodynamics
in the Heisenberg picture

A. Salant
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
(Received 5 May 1997

The time-dependent total electric- and magnetic-field operators in the neighborhood of a molecule are
calculated in the minimal-coupling formalism of Coulomb gauge quantum electrodynamics. The spatial varia-
tions of the vector potential are taken into account, enabling the fields correct to second order in the electronic
charge to include magnetic-dipole- and electric-quadrupole-dependent terms in addition to contributions arising
from the electric-dipole interaction term. The minimal-coupling Maxwell fields are compared and contrasted
with their analogs previously derived in the multipolar framework. The electric- and magnetic-radiation-field
operators derived in the minimal-coupling formalism are then used to calculate the expectation values of the
Thomson energy density and the Poynting vector, and the results obtained are shown to be identical to those
of the multipolar theory[S1050-294{@7)08310-9

PACS numbegs): 12.20—m, 33.90+h

[. INTRODUCTION verse electric displacement and magnetic fields are expanded
in series of powers of the molecular source multipole mo-
Two forms of the Hamiltonian function commonly used ments and the expectation value of a physical quantity ex-
in the quantum-mechanical description of the interaction ofpressed in terms of time-dependent operators is then evalu-
electromagnetic radiation with atoms and molecules are thated.
minimal-coupling and multipolar Hamiltoniaf$—16]. Vari- In this paper the Maxwell fields in the vicinity of a mol-
ous studies have been concerned with the equivalence of tleeule are derived starting from the minimal-coupling Hamil-
two Hamiltonians in radiation-molecule interactidi’s8,11—  tonian. In this formalism the momentum conjugate to the
16]. Although the application of the multipolar version of the vector potential is proportional to the transverse component

theory to problems occurring in the areas of chemical physof the electric fielde(r), in contrast to the multipolar case
ics and quantum optics is widespread, the minimal-couplingvhere the conjugate momentum is proportional to the trans-
Hamiltonian still retains its importance fundamentally, origi- \,orge component of the displacement field, widr)
nating from the classical Lagrangian function for the inter- _

: ; . T . =g4€(r)+p(r), wherep(r) is the electric polarization field.
action ofa chargeq particle W'.th a fad'?‘“Or.‘ field. Despl_te th%nstead of evaluating the displacement field in the proximity
minimal- and multipolar-coupling Hamiltonians being differ-

ent, identical matrix elements are obtained for processeOf a source as in the multipolar framewor_k, n the m|n|mal—_
Whére conservation of energy holds. This is a direct conseéOUpIIng approach the transverse electric-field operator IS
quence of the equivalent nature of the o Hamiltonians: i qalcu_lated. For neutral atoms anq molecules the total electrlc
the quantum theory one route by which the multipo’la:held is e_qual to the transverse displacement fleld_ outside the

source since the longitudinal component of the displacement

Hamiltonian may be generated is by the application of Field is zero. Also, since the transverse electric polarization

canonical transformation to the minimal-coupling Hamil- . ) SL (7Y gL (F _ .
tonian. Equal matrix elements are therefore obtained “on thdield is nonlocal,eoe”(r)#d-(r) outside the source. This

energy shell,” and this has been demonstrated explicitly fohas the important consequence teafr) is unretarded, in
processes such as one- and two-photon absorpti8ri7]  contrast to the source-dependent total electric feRyr),
and Rayleigh and Raman scattering of lih8]. which is fully retarded. A retarded result f@'°{(r) is ob-

For the treatment of radiation-molecule and intermolecu+tained after cancellation of the nonretarded contributions
lar interactions in the time-dependent multipolar formalismarising from the transverse polarization field with those from

[11], the Heisenberg equation of motion for a time- e yransverse electric field. Although(r) is the same as
dependent dynamical variable is calculated followed by thes

) . . 2'4(r), the time evolution of the displacement field as calcu-
Maxwell field operators in the neighborhood of a molecule ) ) o AN o
[19-21. For a neutral system the first Maxwell equation lated using theﬁmuﬁltlpolar Hamiltonian givegr,t) which is
states that the divergence of the electric displacement fieldifferent from e®{(r,t) obtained with the minimal-coupling
d(r) vanishes; hencd(r) is entirely transverse. The trans- Hamiltonian. Noting also that the dynamical equations of
motion for the system do not affect the magnetic fie(d),
the magnetic-field operators in both approaches are different
*Corresponding address: 9 Pakenham Street, London wci1gince the Heisenberg operator equations of motion are differ-
OLG, United Kingdom. ent in both formalisms. Hench(r) is also determined in
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minimal-coupling. potential to first order are accounted for by including the first
This treatment extends previous wdrd®], in which the  derivative ofa(q). The second quantized minimal-coupling

equivalence of the first-order total electric field with the cor- Hamiltonian can then be written as

responding electric displacement field was demonstrated in "

the electric-dipole approximation by evaluating the first- and e h

second-order higher multipole total electric and magnetic Hmin:; bgbnEnj}E aTaﬁ“’J’ﬁ kE (m)

fields. The derivation given takes into account the leading i m’,}r\w

correction term arising from the inclusion of the first deriva-

T mn, : mn
tive of the vector potential. This is equivalent to the inclusion X brbniejal py™+ iki(pjaK) ™

of the_ electrlc-qpadrupole and magnetic-dipole 'coupll'ng +e_jaT[p}"”—ikk(quk)m”]}

terms in the multipolar framework. Sum rules and identities

that enable minimal-coupling matrix elements to be written e? h V20 12

explicitly in terms of molecular multipole moments will be + >m = 2e4Ck'V 260KV
m,n,k’ N’

used and will facilitate comparison with Maxwell fields pre-
viously calculated in the multipolar framework. The first-
order radiation field operators are found to be identical in X bl bo[efefa’a”(1+ik,ay "+ ikyae™
both formalisms, in contrast to the second-order minimal-
coupling Maxwell fields, which differ from their multipolar

k”,)\”

+efefa’a” (1 +ikeqy "~ ikiap'")

analogs. The electric-dipole-dependent minimal-coupling LeTe"a' ta” S T SR TI 20 1111 ey ey S SN

) : eeia’ 'a"(1—-ik +ik +ee’a''a
Maxwell field operators will then be used to evaluate the 17 ( Kk i) T ey,
Thomson energy density and the Poynting vector of the ra- X (1—ikpgy"—ikgae™], (2.2

diation field correct to second order in the moments. The
expectation value of these quadratic operators will be showwhere Einstein’s summation convention for repeated Carte-
to be identical to those previously obtained using the multi-sian tensor indices is adopted and use has been made of the

polar Maxwell fields[22]. mode expansion of the vector potential
The Heisenberg equations of motion for the electron and 1o
photon field operators are developed in the next section, fol- I =N/ By (N o+ ik
lowed by the calculation of the total-electric- and magnetic- a(r,t)—% (Zsockv> {eMRa ke
field operators in Secs. lll and 1V, respectively. The electric ' -
and magnetic energy density is calculated in Sec. V and the +eM(k)atM (K t)e k. 2.3
Poynting vector in Sec. VI. The work is summarized in Sec.
VII.

In expressiong2.2) and(2.3), a anda' respectively repre-
sent time-dependent annihilation and creation operators of
the second quantized formalism for a photon of wave vector
The starting point in the derivation of the Maxwell fields k and index of polarization; e (k) is the electric polar-
in the vicinity of a molecule is the minimal-coupling Hamil- jzation vector for radiation of modek(\) and frequencyw
tonian =c|k|. bl andb,, are the analogous time-dependent fermion
. creation and destruction operators for the molecular $tete
p 1 S0, > -5 - € L L. of energyE,. The time dependence of the boson and fer-
Hmin:ﬁJrVJr 2 SOJ {e"2(r) +c?b*(N}dr + mP aA)  mion o;?gra?ors in Eq2.2) ispimplicit, as is the mode depen-
dence of the photon creation and annihilation operators and
electric polarization vectors.
The time development of the operatarsndb,, are found
from the Heisenberg equations of motion

Il. OPERATOR EQUATIONS OF MOTION

2

® a4 2.1
+ma(q), 2.1

a sum of familiar molecular, radiation field, and interaction

terms, with the electron sum implicit. The first term repre- i7a=[a,Hmin] -
sents the total energy of a particle of chagemassm, e 12 o
position vectorq, momentump, and intramolecular poten- —hoat % (Zsockv> bhbneilpf™"
tial energyV; e-(r) andb(r) are, respectively, the trans- ’
verse component of the electric field and the magnetic field —ik(pja) ™
for electromagnetic radiation of yeg:tor potentgd(q) . o2 A 1/2
In a previous study19] the variation of the vector poten- + = (—,)
tial over the extent of the molecules was ignorai]) was M & mn | 280CKV
replaced bya(R), R being the molecular center and usually w2 . _
taken to be the origin. This is equivalent to the electric- X(Zsockv) brbnejale/a’ (1+ikgqy'"—ikiay ")

dipole approximation in the multipolar formalism. For the
inclusion of magnetic-dipole and electric-quadrupole mo- +efa’T(1-ikyap "~ ikeagg"] (2.9
ments in the evaluation of the electromagnetic radiation

fields it is essential that the spatial variations of the vectoand
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f

1/2
—ZSOCKV) bm{ejal p™+ iki(p;a) "M+ e’ p] M —ikk(pja) "™} (2.5

. N e
iby=[bn, Hin] - =hwonby+ — > (
k,\

m

In expressior(2.5) the term of ordee? has been ignored since this will not be required in the derivation of the fields for terms
guadratic in the moments. The coupled equations of motion are solved by successive iteration, generating solutions in series
of powers of the electronic charge. By employing the interaction representation through the substit(ijena(t)exp

(—iwt) andb, (1) = B,(t)exp(—iwyt) and integrating Eqc2.4), it is found that

>

iAm o

1/2

) 2 t ,
ej[p}“”—ikk(lojqk)m”]fodt’e'“’mn“’)t Bt Ba(t)

a()=a(0)+ 264CckV

e2 i 1/2 % 1/2
. 1t g1 ’ 1 iy al(@mpto—o’)t’
+ iAm Efy)\zfymyn (ZSOCk’V) (ZSOCkV) eJ fodt Bm(t )Bn(t )[ej @ (t )e

X(l_l_lkl/(qunn_lkqumn) +e_j/a,/1‘(t/)ei(wmn+w+w/)t'

X (1=ikga "= ikiea], (2.6)

while the electron-field operator linear in the electric charge from(Ed) is

1/2

Bm(O)(e;a(O)[pj”m+ikk(quk)”’“]<

e—i(wmn+w)t_ 1

e h _
(1) - o T nm__; . nm
Br (D=7 &~ (280ckv +eja’(0)[p; " —iky(pia ™™

Wt ©
m
e7i<wmn7w)t—l
i) ”
[OF )]
To evaluate the first-order Maxwell fields, it is sufficient to fiat) to first order. From EQq(2.6)
e h 1/2 . ei(wmn+ w)t _ 1
(D(t) = i Tp™—j g ) =
A= S (ZSOckV) Br(0) B0y p™iki(p;ci) ]( Trwey ) 2.9

To determine the second-order Maxwell field operataf)(t) is required to ordee? and is obtained by iterating the term
linear in the electric charge in EQR.6) to first order and the contribution quadraticario zeroth order, which after using Eq.
(2.7) and its Hermitian conjugate and performing the time integral becomes

1/2 i 1/2 ‘
(2sock’v) An(0)A5(0)

e \? h
@ (ty=| —
@0 (iﬁm) R%,(Zsockv

m,n,p

X#a’ a’(O){ [P P+ ikm(PiGm) ™R} = ikip™(pjai) "P]

X +p""pP—iki(pjai) ™"p P+ ik P (P1Gm) "]

ei(wmp+w—w/)t_1 ) ( ei(wnp+w)t_1
(wmp+ o—o')(On—o')
|:( ei(wmp+w—w/)t_l

(Ompto—o')(wppt o’

(wnp+w)(wmn_w,)

( ei(wmn+ W)t _ 1
(omnt w)(wpn+ ')

|

+e—(a’*(0)[ [P}~ i (P1Gm) ™0}~ ikiP™(P; i) 7]

ei(wmp+w+w')t_ 1

( ei(wnp+w)t_l

mn.np_; ) mnaNp__ iy 7 mn np
X (wmp+w+w,)(wmn+w,) (wnp_l—w)(wmn_‘_w,) +[pj P Ikk(quk) P Ikmpj (pIQm) ]
ei(wmp+w+w’)t_l ei(wmn+w)t_l
_ : (W s mp i’ 4Mp
X (wmp+w+w,)(wpn_w,) ((wmn_l—w)(wpn_w,) +ﬁm5}| € «a (0)(1 Ikak +|kqu )

( ei(wmp+(u7w')’[_

(Ompto—w")

1 s i(wmp+w+w')’[_1
+efa’T(0)(L—ikyay P—ikeay'® o Tatan )] (2.9
mp
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with a®1(t) given by the Hermitian conjugate of expression where H.c. denotes the Hermitian conjugate. Performing the
(2.9. polarization sums, converting the wave-vector sum to an in-
tegral, carrying out the angular averadds], and finally
Il. TOTAL ELECTRIC-FIELD OPERATOR evaluating thek integral forr <ct results in
Before going on to derive the magnetic field, the total > 1
i : SRGUES ﬂln<0>ﬁn<0>{u;"”<—vzéu +V,V))

electric field in the neighborhood of a molecule is obtained. ™
Its transverse component is proportional to the canonical

X . . . . —ikpmCt
field momentum in the minimal-coupling approach and is e Mo Kl 1 B
given by the mode expansion X—— (e Y cM (IKknmeijic Vi)
. hck |12 o g'knm(r=cv
eﬁ(r,t)=|§ (280\/) [eia(t)e et Xf‘Q}En(—VZ@H‘ViVJ)Vk
— I —ikpmct
—eal(tye ko, (3.1) & r (eiknmr_l)}, (3.6

which is evaluated as a power series in the electric charge as . ) )
while for r>ct the field is zero. It should be noted that the

eil(F,t)=eﬁ(°>(F,t)+eﬁ(l)(F,t)+eii<2)(F,t)+~-- electric-dipole- and electric-quadrupole-dependent contribu-
(3.2  tions to the first-order transverse electric field contain nonre-
tarded terms, arising from the pole occurringkatO when
by using the operator equatiof®.8) and(2.9). The zeroth-  evaluating thek integral. In contrast, the magnetic-dipole-
order transverse electric field independent of all sources igependent term is fully retarded since physically a magnetic

simply the free field operator. dipole has no static electric field.
To determine the total electric field to this order, the lon-
A. First-order contribution gitudinal electric field is required. The latter is given by

The first-order electric field is obtained by substituting the soe‘i‘(th) =-— p‘i‘(ﬁt)
first-order operator equatiof2.8) a(*)(t) into the mode ex-

pansion(3.1). The molecular multipole moment matrix ele- =p(r,t)
ments to this order of approximation may be extracted with
the use of the identity23] :% (Mjmn_ QE?(”VK)Bfn(t)Bn(t)5ﬁ(l7)e_i“’”mt-
e _ [ . '
—aei[piilkj(piqj')]mn:g e Emmu""+ikbm™ (3.7

1 Noting that forr #0 the transverse delta dyadic
_'__% eikjEaniTn, (33) - 1 .
5ij(l’)=—m(5ij—3rirj), (38)

- - = .
where Eq,=En—E, and u, m, and Q are the electric- s ¢510ws that the first-order longitudinal electric field is
dipole, magnetic-dipole, and electric-quadrupole moments,

respectively. Inserting relatiof3.3) into Eq.(2.8) then yields 1 i
23 2 Br0)Br(0)e” (1"~ QY )

1 1/2 i
aV(t)=— ( 1(0)B8n(0)| + &Emuu™ o a
=7 2 |55 cky] An(0Bn(0)| 7 &Emmsi (85—, 3.9
= 1 ][ eltemntelt—q To obtain thetotal electric field correct to this order of ap-
—ikbimH = eikjEmiQj) Tonto proximation, Eq.(3.9) is added to Eq(3.6), resulting in
(3.9 R 1
€= rae 2 Brl0)Ba(0)| u" (= V254 VV))

Substituting Eq(3.4) into Eq.(3.1), the first-order transverse
electric field is
s M (K meijc Vi)

. i F
eﬁ(l)(r,t)= m Z (Brfn(o)lgn(o)eielk'r iKnm(r—ct)
k
" —Qﬂln(—V25ij+ViVj)Vk}
i

_ o 1_
X % ej Emn,U«]mn— Ikbjmjmn—l— % ej kkEanﬂl(n :Saldii(l)(lf’t)' (31@

glomit—giot It is seen that the longitudinal electric field exactly cancels

X the instantaneous type termsah)(r t), Eq.(3.6) with the

+H.c.i, (3.5

omnt o
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retarded total electric field equal &g * times the transverse sition multipole moment matrix elements using the identity
displacement field operator of the multipolar formalism (3.3) and two further identitie$18] (3.11) and(3.12),

[20,21]. This completes the derivation of the first-order total

electric field in the proximity of a molecule in the minimal- _ he? k_z (@mnt ™ P— 0t M) &

) > > mn. n m
coupling framework. The transverse componeng@f) was m ! P ' P
obtained directly from the mode expansion for the momen- (3.11

tum canonically conjugate to the vector potential, while the . , .
longitudinal part was found from the electric polarization '€ Kk mp_'¢ K> (Ko ™MQNP— K, QMNP
field ekl =7 ek, (Knpti Qjc — KmnQjic 14i™)

B. Second-order contribution += b 2 (" P—mMuP). - (3.12

To determine the second-order electric field(?)(t),
given by Eq.(2.9), is used. The minimal-coupling matrix These are then substituted into the mode expan@dh) to
elements occurring in expressi@h9) are converted to tran- give

; 1 i 1/2
0= P (ZSOV)<2800k’V) €1’ (0)8n(0)55(0)
r’)\r
m,n,p

ee”z r‘(
1

2
ejkkEmnEnp:U’l QJ p+|

X

- 2 .
| | e
/LI Mr wmnwnpej |kkgj{(%) EmnEanmnMFp_ % €kEn pMt n/u'] P— m 5kI5mnEnp1U'J }

i
f

+i

KD, E e ™"m"™

]( ei(wmp*w’)t_e*iwt eiwnpt_efiwt )
]

(wmp+w_w/)(a’mn_w/) (wnp+w)(wmn_w/)

Sy i
MJ /-LI wmnwnpej |kk€{<ﬁ) EmnEnp/-LJ le 8IktEmn/"] m?p_ om 5kl5 Emnluq }

2

) , ) ) .
2 el(wmpfw )t_eflwt elwmnt_eflwt
€j KeEmnEn pQJT(n:U'Inp—'— !

|

R
—H?l ﬁ

kbE mmn P - —— -
np ] (ompto—o)(wppt ') (Onnto)(opt+o’)

+

2
en __ _
( im € 5jl kr,nqmp_’_ 5mpej(wmnﬂjmn/-”|np_ wnp:”’lmnﬂ?p)

ei(wmpfa)')t_ e*iwt

+H.c. (3.13

+k[ice—jkk(kanPnQ?kp_kanjr?(nMInp)"_bj(:U’mnmnp mmn np)])( Wppt0— o’
mp

Concentrating for the moment on the contribution quadratic in the electric-dipole moments, carrying out the polarization sum
and angular average produces

i A 1/2 3
L(2) )= . T 2 4
e il )= 3o R,EA,(Z%CK,V) BLO) B0~ V25, +7.Y)) 5 — ela’(0) |

— o0

dk :
_ (e|kr_e—|kr)
k

m,n,p

ei(kmpfk’)ct_ efikct eiknpct_ efikct
x| piug "m“k”p(<kmp+k—k'><kmn—k')‘<knp+k)<kmn—k'>)

@l (kmp=k’)ct_ g—iket elkmntt_ g—ikct
O km”knp( Kot K=K ) (Kont K) (Kot K) (Kor K
( mp™T )( pnt ) (KmnTK)( pnt )

ei(kmp—k’)ct_ e—ikct)
kmp+ k—k’

+5mp(kmnlujmn1u2p I(np,“k an)

(3.19

X

Integrating subject to<<ct and settingn=p results in
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i ck |12 L[ "™ o]
L(2) Py t _v2s. RV j j ik(r—ct)
& P upir =g % (280\/) exa(0) B1(0) B(0)(— V25 +V,V)) [(Enm—thr E i)
mn
'U“;nn'U“Em km” ikct ikmnct iKmn( t) 'U“kmn'u“?m km” ikct ikmnct iKmn( t)
_mn —ikct__ Ai C —i r—c _mh e 4—ike —i ct__ Al r—c
Enm—hw( k )[e ermre ]+Enm+hw( Lo e et
+H.c., (3.19

which, like e/ M)(r,t), also contains nonretarded terms. To obtain the retarded, second-order electric-dipole-dependent con-
tribution to the total electric field, the corresponding longitudinal electric field must be added t@.Ef. The latter is

obtained from the first term of E¢3.7) and by retaining th@™" terms of Eq.(2.7) and its Hermitian conjugate, giving

PP (it ,t)=m2p P35 (r)e epn'] BN (1) Bp(0) + Bm(0) BHH(1)]

e % 1/2 - ei(wmp+ w)t _ e i wpnt
— _ L\ pt T mn|
iZm IEE,}\ (ZSOCkV) 5l](r)ﬂm(o)ﬁp(o)( ea'(0)p ( i(wmnt+ o) )
m,n,p
el (@mp=@)t_ g—iopt el (Omp= @)t g=iopnt
mn np mn np
+e,a(0)p| ( i(wmn—w) )}:u’] +1U“J e|a(0)p| ( i(wpn+w) )
. ei(‘”mpJ””)t—ei‘”nmt)H
+ea’(0 “p( . 31
@ OR| (316
Using relation(3.3), the diagonal term of Eq3.16 is
i hck |12
1(2) e il t
O =70 2 ZSOV) exx(0) B1(0) Bin(0)
m,n
1] w™ue™ [k . . up"uK (K ‘ .
—V25. vy — | SR Inm e —iket  qikpaety o0 KT M0 —iket . q—ikppct
X ( V5|J~|—V,V])r E. 7ol K (e e )+Enm+hw K (e e )| +H.c.
3.19
Adding Eg.(3.17 to Eq.(3.195 produces the total second-order electric-dipole-dependent electric field
i 1/2 1
tot(2) )= T —V25s. I v
e (uuir 1) 47780%(280\,) exa(0)B1(0) Br(0)(— V25, +V,V))
m.n
T T T 1y " Kmn s Kam
ik(r—ct) M Qikpm(r—ct) M Qikmp(r—ct)
“NEoho  Etho)t +Enm—ﬁw< k )e +Enm+ﬁw( k )e +H.c.
(3.18

which is fully retarded and is applicable forct. It is instructive to demonstrate that®(r t) vanishes for >ct, thus

showing the causal nature eP@(r t). Recalling thae"(?)(r ,t) has nonretarded contributions, by returning to 8414 and
evaluating the integral for the electric-dipole-dependent part subjacttt, these are found to be after simplifying

i h 1/2
Troofi & (Zeockv> exx(0) By(0) Bm(0)

m,n
1 u )™ py "
X(=V28;+VV)) F( . _‘k kmn(e—'kct—e'knmct)+’—+kkmn(e'kmnct—e-'kct) +H.c. (3.19
mn mn

Adding Eg.(3.19 to the electric-dipole-dependent transverse polarization (&It results in
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e (uu;r,) =6 P (uu;r,t) +egtpt P(up;r,H)=0, (3.20

so that the total electric field obtained is strictly causal, vanishing<ar/c.

The total second-order fields bilinear in the electric- and magnetic-dipole moments and bilinear in the electric dipole and
quadrupole moments can be obtained in a manner similar to that used to obtain the quadratic electric-dipole-dependent
contribution. Returning to expressid8.13, performing the appropriate polarization sums and angular averages, evaluating
the k integrals subject to<ct, and adding the relevant terms in the second-order electric polarizatior(3ieft],

prA(r,t)= Ew;“p QRPV ) 85 (1)e epni B (1) B,(0) + Bm(0) B (1)1, (3.20

whose diagonal terms after substituting E(s7) and(3.3) are

R i hc |12
UL =pY (m) (0) B(0) Br(0)
A

m,n

mn _nm
eKnmik Mj —€xKnm

1
X (=V25;+V,V)) - (

e—ikct_eiknmct
Enn—fiow

1
Xﬂk QﬂmVI'Hekk kankIn = c kbkmlTnM]nm + ekkmnMJmnMEm_ ekkanﬂmVIﬂEm

—iket_ elkmnct
+iekk kmn,uJ kbkan nm}(m)}, (3.22
mn

result in

i Ak | 12 1 anmnm mmnMnm '
_tOt(Z) g — T R v - .\ _ J k k J |k(r—ct)
& (pmir,t) dreC % (ZSQV) bka(O)ﬁm(O)Bm(O)( v 5”+VIV]) r Enm_hw+ Enmtho €
m,n
mn,..nm mn_nm : 1/2
_ M my iknm(r—ct) _ my il ikmn(r—ct) : i T
Enm—fo e Exmtho e +47780 Y 2eqcV €(0) B(0) Bm( 0)
m,n
mn,..nm mn nm mn,..nm
x(ikes, V) <] [ LM ) ey _ T (Ko e
ey Enm—hw Enm+hw Enm—fio | k
mmnlurlzm Kmn|
_ R M Qikpa(r—ct)
“E The ( . )e +H.c., (3.23
1 ok \ 12 1 an nm anlunm _
01(2) v t _v2s. RV i Kl kI i ik(r—ct)
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As for the electric-dipole case, the instantaneous-type contributions occurrieg(ft), when added to the transverse
polarization field, result in the total electric field in the neighborhood of the source vanishing-fof, as demanded by
causality. It should be noted that the total electric-field quadratic in the magnetic-dipole and electric-quadrupole moments and
bilinear in these two moments can be obtained by including higher-order terms in the spatial variation of the vector potential.
Comparing the second-order total electric field with the corresponding second-order electric displacement field in the vicinity
of a moleculd 19,21], the two are seen to differ, although their form is similar, in contrast to the first-order displacement and
total electric fields, which are identical. The total electric-field second order in the moments, like the analogous electric
displacement field operatpt9,21], acts in both the fermion and boson spaces, changing the state of electronic excitation and
the number of photons.

IV. MAGNETIC-FIELD OPERATOR

The magnetic-field operator correct to second order in the source moments is now calculated in the minimal-coupling
framework using the equations of motion for the photon and electron operators developed in Sec. Il. The mode expansion for
the magnetic field is given by

Lk 1/2_) . . - L
( ) [b(}‘)(k)a’(t)e'k'ri"”t—b()‘)(k)aT(t)ef'k'H'wt], (4‘1)

where the magnetic polarization vectof*) (k) is defined by

BV(K) = kx 6M(K). 4.2)

The free field operator independent of all sources is identical in both the minimal- and multipolar-coupling frameworks,
obtained by insertinge(t) = «(0) into Eq.(4.2).

A. First-order contribution

The magnetic field linear in the sources is obtained by substituting the first-order equation of motign)foEq. (3.4),
into the mode expansiof@.1), giving

i fi ~ i _ 1 giomit— g—iot
W7y — i N i - - -
m,n
4.3
Evaluating in the usual manner results in
1 T mn,: 1 mn 2 mn - eiknm(r7m)
bD(F t)=1 4mooC % Bm(0)Bn(0)| i (IKnmeijic Vi) + ¢ (= V=6 + ViV + Qjyc (iKnme i ViVi) |————, r<ct
| 1 il
0, r>ct.
(4.9

Comparing Eq(4.4) with the analogous result obtained within the multipolar framewafk21], the two first-order magnetic
fields are found to be identical. This is despite the fact that the Heisenberg equations of motion for the fermion and boson
operators obtained from the minimal- and multipolar-coupling Hamiltonians are different in both approaches.

B. Second-order contribution

The second-order contribution to the magnetic field is obtained by substituting the second-order ap@iajogiven by
expression(2.9), after conversion to multipole moments using the identitg8), (3.11), and(3.12), into the mode expansion
(4.1). Thus
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Evaluating in the usual manner and extracting the individual contributions quadratic in the moments results in the second-order
magnetic fields
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The second-order magnetic fields derived in the minimal-of the vacuum field with the second-order field, only that part
coupling formalism also differ from their analogs calculatedof the quadratic field that is diagonal in the electron space is
in the multipolar approach19,21. The electric-dipole- required since the free field operates entirely in the photon
dependent minimal-coupling Maxwell fields are now em-space and cannot change the state of the molecule. By taking
ployed in the calculation of the energy density in a radiationthe diagonal matrix element for a stdf®, the second-order
field and the rate of flow of electromagnetic energy from aelectric-dipole-dependent total electric figl8.18 operates
molecule in an excited electronic state. The expectation valsolely in the boson space

ues for these processes will be shown to be equivalent to
those obtained previousli22] using the multipolar formal-

tot(2 e
ism radiation field operators. (plel™* (uuir,0lp)
i 1/2 _
V. CALCULATION OF THE ELECTROMAGNETIC =2 ) (2 v [exa(0)e™ Ay
TEQ K\ €0
ENERGY DENSITY '
The expectation value of the electric energy density for —ea’(0)e" Ay], (5.4
the radiation field in the state where no photons are present
and with the molecule in the statp) is with
1 Al atot(1) Stot(1) | A(0) otot(2) | Atot(2) A(0)] - ,upn,uﬂp kﬁ
280(0;ple” Vg™ + eV e™ Y + 6% eV p; 0), A= e KRy (k) = | 2| Fij(kppr) €l om0t
(5.2) ' Epphoe ! e
pR P [ Kon
retaining terms second order in the moments only. This is +; E,tfho K*Fij(kr)— K
now evaluated for an electric-dipole source. The first term of :
Eq. (5.1), the contribution from the product of the first-order .
total electric field of an electric-dipole source, is exactly the X Fij(kpnf)e_'(k"“_k)d} (5.9
same as the corresponding term in the multipolar calculation
[22], namely,

Using the mode expansion for the zeroth-order electric field

1 and Eq.(5.4), the last two terms of Eq5.1) are

3277 g0 2 Iu’pn npk6 fl](kpnr) ik(kpnr)a (5-2)
= > [{0:pleP@|piK \) (K iple|pi0)
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+(0;ple{” p;k,\)(K.\ s plef®?[p; 0)]
1 fick
2w

- 8me 2V
(5.3 0 kA

eikr

1 . S
Fij(kr)zﬁ(_vzéij—kvivj) T:fij(kr)elkr, [ekAkIel Ik-r_l_eieik-ke_kAki].

(5.6
sinceegq times the total first-order electric field was shown in
Sec. Il A to be equal to the first-order transverse displaceAfter performing the polarization sum and angular integral,
ment field. For the contribution arising from the interferencethe first term of Eq(5.6), using Eq.(5.5 becomes

fhc o —
6431 fo dk IC[Fi(kr) —Fi(kr) A

4

. k . .
[ksfik(kr)fij (kr)eZIkr_ (%) fik(kr)fij (knpr)elk(r+ct)elknp(r—ct)

1 1 (= dk K
_ pn, np _—
327, 2w o PL K+ Kpn

4
— . _ 1 k K
+ %)fik(kr)fi,—(knpr)e'k“°t>e'knp<’°‘> + 337 2 WP J Kk, [kf.dkf)fu(kf)ez'k’

4 k4 - i
_(%)fik(kr)fi( Kpnr ) €/K(T+eglkpnlr—ct) 4 ) fi(kr) fij(k pnr)elk(rm)elkpn(rm)}’ &7



56 MAXWELL FIELD OPERATORS, THE ENERGY DENSITY. .. 2589

where P denotes the principal value. Evaluating the integral @) . i Ak |12
for downward transitions fronp, with k,,>0, produces (pbi? (mu;r,t)|p)= dmey & (2800\/)
1 — X [ega(0)e !By

— >y PPk fi (Kol ) i (Kol _ o
64meq 7 ) PRt TR AT RPN —ea’(0)e''By], (5.19

1 = du ube2ur
pnppl where
* 327, ; Ky Hx fo u2+k,2m
Dt s o
kanfij(lur)fik(lur)v (58) Bkizg m[ks(}”(kr)—(?)
where the second term is expressed in terms of the imaginary _
wave vectork=iu. Fork,,<0, theu-integral term remains X Gij (Knpr ) €' Kpnthoct
unchanged while the pole contribution changes sign,
pn _np k4
M
LS et o3 G e[
= GanZeg 2 MG ik(Kon T (Kpr ). (5.9 " S

X Gij (kpnr)efi(kpnfk)ct

. (5.1

The second term of Ed5.6) is simply the complex conju-
gate of the first, so that the total electric-dipole-dependent

electric energy density, after adding the term from the progUSing the mode expansion for the zeroth-order magnetic
uct of the first-order field¢5.2) is field and Eq.(5.14), the contribution to the magnetic energy

density arising from the interference of the vacuum and qua-
dratic fields is

1
6
16722, En: /U“]pnluﬂpkpnfik(kpnr)fij(kpnr)+m

1 . .
Ep>Ey 5 #0c?2 [(0:p|b{?[p;k )k, x;p|b{”[p;0)
= du ube 2u" o
X2 “Jpn“ﬂpfo iz, Kenfu(unfadiur), +(0;pIb{”[p;K. A ) (K. \;plb{?[p;0) ]
pn
all E, _C Z h_k B b_fni-r‘er “;_r._B—
(5.10 " 8rmeq = |2v [exByibie i€ e Byl
in agreement with that obtained using the electric displace- (5.16

ment field[22].

The magnetic energy density of an electric-dipole sourc
using the minimal-coupling magnetic field is given by the
expectation value

éEvaIuating in a manner identical to that in the electric case
and adding the contribution from the product of the first-
order fields(5.12) results in the magnetic energy density

1 1
6 —
$e0c%(0:plb{Vb{Y +bPb{” +b{Ob{*|p;0). (51D g2, 2 " PkEi (Kot ) ik Kpnt ) 167%,
Ep>En
The contribution from the product of the first-order electric- = du LBe2ur
dipole-dependent magnetic field is easily seen to be X MJP”MQPI T KnpQij (iur)gic(iur),
aIInE 0 pn
1 _
ey 2 M Ko (Konl ) Gk o), (5:12 (5.17

in agreement with the expression obtained using the multi-

as the minimal-coupling magnetic field linear in the sourced?olar magnetic field22]. Despite the fact that the second-

(4.4) was shown to be identical to its multipolar counterpart,order radiation field operators are different in both the
with minimal-coupling and multipolar formalisms, equal expecta-

tion values for the electromagnetic energy density are ob-
i ikr tained in both schemes. A similar demonstration for the
Gij(kr)= 2 eijVi —=gij(kr)e”“. (5.13  Poynting vector is given in the next section.
r

VI. CALCULATION OF THE POYNTING VECTOR
For the evaluation of the remaining two terms of expression _ .
(5.11) the diagonal matrix element over the molecular space The quantum-mechanical Hermitian operator for the
is determined for the magnetic-field quadratic in the electricPoynting vectorS(r,t), expressing the rate of flow of elec-
dipole moments. From Ed4.6), tromagnetic energy from an excited molecule}dg]
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F)=21e02s [P (u)bP(u)+ el b(® and magnetic fields and the respective second order fields
S D=280C el €7 (Wb (1) + &7 ()i (5.4 and(5.14), the second and third terms of E6.1) be-
+e%b P (up)l+c.c., (6.)  come

concentrating only on terms second order in the electric-f 2 ol atot(2)] - C - (0 n-
dipole moments with c.c. the complex conjugate. The first 2 o€ 8”"2 [€O:pley™Ip:k.M)(kA: plbi”|p:0)
term, arising from the product of the fields linear in the
sources, is identical to that obtained from the corresponding
calculation carried out in the multipolar formalig@2], giv-

ing

+(0;plef”|p;K, M) (K.\; p|bi?|p;0) ] +c.c.
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+c.c. (6.3

+ Gum(Konf ) Fi (K . 2
G Kpnl )1 (Kpnf )] 62 The first term of Eq.(6.3), after performing the sum over

polarization and the angular average and using the definition
Using the mode expansions for the zeroth-order total electri¢5.5), is

fic?
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(6.4
|
Thek integration involved in the Poynting vector calculation
can be evaluated exactly for the time-independent part by 75—z og ik 2 TR pn[fjl(k nl) Okl Kpnl)
extending the limits to € o,); this results in the pole con- Ep>En
tributions _
+gkm(kpnr)fjl(kpnr)]- (6-6)

-y o ”kE wb” mpkgngkm(kpnr)f_“(kpnr), Kpn<<O which is identical to the expectation value obtained with the
(6.54 use of the multipolar Maxwell fieldg22].

VIl. SUMMARY

64m2e, ukE 1P i KpnGkm(Kond ) fii(Kpor), Kpn>0. The electric and magnetic fields in the proximity of a
(6.5b) molecule have been derived in the minimal-coupling frame-
work of nonrelativistic quantum electrodynamics. Beginning
with the minimal-coupling radiation-molecule Hamiltonian,
The remaining terms of E¢6.3) may be evaluated similarly the Heisenberg equations of motion for the photon and elec-
and added to the contribution from the product of the first-tron operators were expanded in series of powers of the elec-
order fields to give the electric-dipole-dependent Poyntingronic charge. The spatial variations of the vector potential
vector were partially accounted for by including the first derivative
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of a(r). By employing sum rules and identities, minimal- Solely in the electron space, leading to changes of molecular
coup”ng matrix elements were converted to relations exp"(:State, and Correspond to the classical radiation field emitted
itly involving molecular multipole moments, enabling the Py an excited multipole source undergoing real transitions.
Maxwell field operators correct to second order to includeUnlike the first-order minimal-coupling Maxwell fields, the
magnetic-dipole- and electric-quadrupole- as well as electricsecond-order operators, which act in the combined photon-
dipole-dependent terms. Since the dynamical equations dflectron space, when compared to their multipolar counter-
motion in minimal-coupling are different from those occur- parts are not equivalent, although similarities do exist, dif-
ring in the multipolar formalism, in the former approach the fering by the factor Ky,,/k)”, y=0,1,2. Despite differences
transverse electric-field operator, which is the canonical mobetween the second-order multipolar- and minimal-coupling
mentum in minimal coupling, was determined as opposed teadiation field operators, when the latter are applied to the
the displacement vector field operator. The transverse ele€alculation of a physical process or quantity for which en-
tric field in both first and second order was found to containergy is conserved, as in the calculation of the Thomson en-
nonretarded contributions. After adding the longitudinal partergy density and the Poynting vector, the resulting expecta-
of the electric field, which was evaluated from the electriction value is identical to that obtained within the multipolar
polarization field, to the transverse component, the total eledormalism.
tric field was shown to be fully retarded. The magnetic-field

operator was also calculated in the minimal-coupling ap-

proach.

The first-order total electric-field operator aagl times It is a pleasure to thank Dr. T. Thirunamachandran for
the transverse displacement field linear in the moments wemmany helpful discussions during the course of this work and
found to be identical, as were the first-order minimal- andfor carefully reading the manuscript. The SERC is gratefully
multipolar-coupling magnetic fields. These operators actcknowledged for providing financial support.
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