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Maxwell field operators, the energy density, and the Poynting vector calculated
using the minimal-coupling framework of molecular quantum electrodynamics

in the Heisenberg picture

A. Salam*
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom

~Received 5 May 1997!

The time-dependent total electric- and magnetic-field operators in the neighborhood of a molecule are
calculated in the minimal-coupling formalism of Coulomb gauge quantum electrodynamics. The spatial varia-
tions of the vector potential are taken into account, enabling the fields correct to second order in the electronic
charge to include magnetic-dipole- and electric-quadrupole-dependent terms in addition to contributions arising
from the electric-dipole interaction term. The minimal-coupling Maxwell fields are compared and contrasted
with their analogs previously derived in the multipolar framework. The electric- and magnetic-radiation-field
operators derived in the minimal-coupling formalism are then used to calculate the expectation values of the
Thomson energy density and the Poynting vector, and the results obtained are shown to be identical to those
of the multipolar theory.@S1050-2947~97!08310-8#

PACS number~s!: 12.20.2m, 33.90.1h
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I. INTRODUCTION

Two forms of the Hamiltonian function commonly use
in the quantum-mechanical description of the interaction
electromagnetic radiation with atoms and molecules are
minimal-coupling and multipolar Hamiltonians@1–16#. Vari-
ous studies have been concerned with the equivalence o
two Hamiltonians in radiation-molecule interactions@7,8,11–
16#. Although the application of the multipolar version of th
theory to problems occurring in the areas of chemical ph
ics and quantum optics is widespread, the minimal-coup
Hamiltonian still retains its importance fundamentally, orig
nating from the classical Lagrangian function for the int
action of a charged particle with a radiation field. Despite
minimal- and multipolar-coupling Hamiltonians being diffe
ent, identical matrix elements are obtained for proces
where conservation of energy holds. This is a direct con
quence of the equivalent nature of the two Hamiltonians
the quantum theory one route by which the multipo
Hamiltonian may be generated is by the application o
canonical transformation to the minimal-coupling Ham
tonian. Equal matrix elements are therefore obtained ‘‘on
energy shell,’’ and this has been demonstrated explicitly
processes such as one- and two-photon absorption@13,17#
and Rayleigh and Raman scattering of light@18#.

For the treatment of radiation-molecule and intermole
lar interactions in the time-dependent multipolar formalis
@11#, the Heisenberg equation of motion for a tim
dependent dynamical variable is calculated followed by
Maxwell field operators in the neighborhood of a molecu
@19–21#. For a neutral system the first Maxwell equatio
states that the divergence of the electric displacement
dW (rW) vanishes; hencedW (rW) is entirely transverse. The trans

*Corresponding address: 9 Pakenham Street, London WC
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verse electric displacement and magnetic fields are expan
in series of powers of the molecular source multipole m
ments and the expectation value of a physical quantity
pressed in terms of time-dependent operators is then ev
ated.

In this paper the Maxwell fields in the vicinity of a mo
ecule are derived starting from the minimal-coupling Ham
tonian. In this formalism the momentum conjugate to t
vector potential is proportional to the transverse compon

of the electric fieldeW (rW), in contrast to the multipolar cas
where the conjugate momentum is proportional to the tra

verse component of the displacement field, withdW (rW)

5«0eW (rW)1pW (rW), wherepW (rW) is the electric polarization field
Instead of evaluating the displacement field in the proxim
of a source as in the multipolar framework, in the minima
coupling approach the transverse electric-field operato
calculated. For neutral atoms and molecules the total elec
field is equal to the transverse displacement field outside
source since the longitudinal component of the displacem
field is zero. Also, since the transverse electric polarizat
field is nonlocal,«0eW'(rW)ÞdW'(rW) outside the source. This
has the important consequence thateW'(rW) is unretarded, in
contrast to the source-dependent total electric fieldeW tot(rW),
which is fully retarded. A retarded result foreW tot(rW) is ob-
tained after cancellation of the nonretarded contributio
arising from the transverse polarization field with those fro
the transverse electric field. AlthoughdW (rW) is the same as
eW tot(rW), the time evolution of the displacement field as calc
lated using the multipolar Hamiltonian givesdW (rW,t) which is
different from eW tot(rW,t) obtained with the minimal-coupling
Hamiltonian. Noting also that the dynamical equations
motion for the system do not affect the magnetic fieldbW (rW),
the magnetic-field operators in both approaches are diffe
since the Heisenberg operator equations of motion are dif
ent in both formalisms. HencebW (rW) is also determined in
X
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2580 56A. SALAM
minimal-coupling.
This treatment extends previous work@19#, in which the

equivalence of the first-order total electric field with the co
responding electric displacement field was demonstrate
the electric-dipole approximation by evaluating the first- a
second-order higher multipole total electric and magne
fields. The derivation given takes into account the lead
correction term arising from the inclusion of the first deriv
tive of the vector potential. This is equivalent to the inclusi
of the electric-quadrupole and magnetic-dipole coupl
terms in the multipolar framework. Sum rules and identit
that enable minimal-coupling matrix elements to be writt
explicitly in terms of molecular multipole moments will b
used and will facilitate comparison with Maxwell fields pr
viously calculated in the multipolar framework. The firs
order radiation field operators are found to be identical
both formalisms, in contrast to the second-order minim
coupling Maxwell fields, which differ from their multipola
analogs. The electric-dipole-dependent minimal-coupl
Maxwell field operators will then be used to evaluate t
Thomson energy density and the Poynting vector of the
diation field correct to second order in the moments. T
expectation value of these quadratic operators will be sho
to be identical to those previously obtained using the mu
polar Maxwell fields@22#.

The Heisenberg equations of motion for the electron a
photon field operators are developed in the next section,
lowed by the calculation of the total-electric- and magne
field operators in Secs. III and IV, respectively. The elect
and magnetic energy density is calculated in Sec. V and
Poynting vector in Sec. VI. The work is summarized in S
VII.

II. OPERATOR EQUATIONS OF MOTION

The starting point in the derivation of the Maxwell field
in the vicinity of a molecule is the minimal-coupling Hami
tonian

Hmin5
pW 2

2m
1V1

1

2
«0E $eW'2~rW !1c2bW 2~rW !%d3rW1

e

m
pW •aW ~qW !

1
e2

2m
aW 2~qW !, ~2.1!

a sum of familiar molecular, radiation field, and interacti
terms, with the electron sum implicit. The first term repr
sents the total energy of a particle of chargee, massm,
position vectorqW , momentumpW , and intramolecular poten
tial energyV; eW'(rW) and bW (rW) are, respectively, the trans
verse component of the electric field and the magnetic fi
for electromagnetic radiation of vector potentialaW (qW ).

In a previous study@19# the variation of the vector poten
tial over the extent of the molecules was ignored;aW (qW ) was
replaced byaW (RW ), RW being the molecular center and usua
taken to be the origin. This is equivalent to the electr
dipole approximation in the multipolar formalism. For th
inclusion of magnetic-dipole and electric-quadrupole m
ments in the evaluation of the electromagnetic radiat
fields it is essential that the spatial variations of the vec
-
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potential to first order are accounted for by including the fi
derivative ofaW (qW ). The second quantized minimal-couplin
Hamiltonian can then be written as

Hmin5(
n

bn
†bnEn1(

kW ,l
a†a\v1

e

m (
kW ,l
m,n

S \

2«0ckVD 1/2

3bm
† bn$eja@pj

mn1 ikk~pjqk!
mn#

1ēja
†@pj

mn2 ikk~pjqk!
mn#%

1
e2

2m (
m,n,kW8,l8

k9,l9

S \

2«0ck8VD 1/2S \

2«0ck9VD 1/2

3bm
† bn@ej8ej9a8a9~11 ikk8qk

mn1 ikk9qk
mn!

1ej8ēj9a8a9†~11 ikk8qk
mn2 ikk9qk

mn!

1ēj8ej9a8†a9~12 ikk8qk
mn1 ikk9qk

mn!1ēj8ēj9a8†a9†

3~12 ikk8qk
mn2 ikk9qk

mn!#, ~2.2!

where Einstein’s summation convention for repeated Ca
sian tensor indices is adopted and use has been made o
mode expansion of the vector potential

aW ~rW,t !5(
kW ,l

S \

2«0ckVD 1/2

$eW ~l!~kW !a~l!~kW ,t !eikW•rW

1ēW ~l!~kW !a†~l!~kW ,t !e2 ikW•rW%. ~2.3!

In expressions~2.2! and ~2.3!, a and a† respectively repre-
sent time-dependent annihilation and creation operator
the second quantized formalism for a photon of wave vec
kW and index of polarizationl; eW (l)(kW ) is the electric polar-
ization vector for radiation of mode (kW ,l) and frequencyv
5cuku. bn

† andbn are the analogous time-dependent fermi
creation and destruction operators for the molecular stateun&
of energyEn . The time dependence of the boson and f
mion operators in Eq.~2.2! is implicit, as is the mode depen
dence of the photon creation and annihilation operators
electric polarization vectors.

The time development of the operatorsa andbn are found
from the Heisenberg equations of motion

i\ȧ5@a,Hmin#2

5\va1
e

m (
m,n

S \

2«0ckVD 1/2

bm
† bnēj@pj

mn

2 ikk~pjqk!
mn#

1
e2

m (
kW8,l8,m,n

S \

2«0ck8VD 1/2

3S \

2«0ckVD 1/2

bm
† bnējq@ej8a8~11 ikk8qk

mn2 ikkqk
mn!

1ēj8a8†~12 ikk8qk
mn2 ikkqk

mn!# ~2.4!

and
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i\ḃn5@bn ,Hmin#25\vnbn1
e

m (
kW ,l
m

S \

2«0ckVD 1/2

bm$eja@pj
nm1 ikk~pjqk!

nm#1ēja
†@pj

nm2 ikk~pjqk!
nm#%. ~2.5!

In expression~2.5! the term of ordere2 has been ignored since this will not be required in the derivation of the fields for t
quadratic in the moments. The coupled equations of motion are solved by successive iteration, generating solutions
of powers of the electronic charge. By employing the interaction representation through the substitutionsa(t)5a(t)exp
(2ivt) andbn(t)5bn(t)exp(2ivnt) and integrating Eq.~2.4!, it is found that

a~ t !5a~0!1
e

i\m (
m,n

S \

2«0ckVD 1/2

ēj@pj
mn2 ikk~pjqk!

mn#E
0

t

dt8ei ~vmn1v!t8bm
† ~ t8!bn~ t8!

1
e2

i\m (
kW8,l8,m,n

S \

2«0ck8VD 1/2S \

2«0ckVD 1/2

ējE
0

t

dt8bm
† ~ t8!bn~ t8!@ej8a8~ t8!ei ~vmn1v2v8!t8

3~11 ikk8qk
mn2 ikkqk

mn!1ēj8a8†~ t8!ei ~vmn1v1v8!t8

3~12 ikk8qk
mn2 ikkqk

mn#, ~2.6!

while the electron-field operator linear in the electric charge from Eq.~2.5! is

bn
~1!~ t !5

e

\m (
kW ,l
m

S \

2«0ckVD 1/2

bm~0!H eja~0!@pj
nm1 ikk~pjqk!

nm#S e2 i ~vmn1v!t21

vmn1v D 1ēja
†~0!@pj

nm2 ikk~pjqk!
nm#

3S e2 i ~vmn2v!t21

vmn2v D J . ~2.7!

To evaluate the first-order Maxwell fields, it is sufficient to finda(t) to first order. From Eq.~2.6!

a~1!~ t !5
e

i\m (
m,n

S \

2«0ckVD 1/2

bm
† ~0!bn~0!ēj@pj

mn2 ikk~pjqk!
mn#S ei ~vmn1v!t21

i ~vmn1v! D . ~2.8!

To determine the second-order Maxwell field operators,a (2)(t) is required to ordere2 and is obtained by iterating the term
linear in the electric charge in Eq.~2.6! to first order and the contribution quadratic ine to zeroth order, which after using Eq
~2.7! and its Hermitian conjugate and performing the time integral becomes

a~2!~ t !5S e

i\mD 2

(
kW8,l8
m,n,p

S \

2«0ckVD 1/2S \

2«0ck8VD 1/2

bm
† ~0!bp~0!

3ējXel8a8~0!H @pl
mnpj

np1 ikm8 ~plqm!mnpj
np2 ikkpl

mn~pjqk!
np#

3F S ei ~vmp1v2v8!t21

~vmp1v2v8!~vmn2v8!
D 2S ei ~vnp1v!t21

~vnp1v!~vmn2v8! D G1@pj
mnpl

np2 ikk~pjqk!
mnpl

np1 ikm8 pj
mn~plqm!np#

3F S ei ~vmp1v2v8!t21

~vmp1v2v8!~vpn1v8
D 2S ei ~vmn1v!t21

~vmn1v!~vpn1v8! D G J
1ēl8a8†~0!H @pl

mnpj
np2 ikm8 ~plqm!mnpj

np2 ikkpl
mn~pjqk!

np#

3F S ei ~vmp1v1v8!t21

~vmp1v1v8!~vmn1v8!
D 2S ei ~vnp1v!t21

~vnp1v!~vmn1v8! D G1@pj
mnpl

np2 ikk~pjqk!
mnpl

np2 ikm8 pj
mn~plqm!np#

3F S ei ~vmp1v1v8!t21

~vmp1v1v8!~vpn2v8!
D 2S ei ~vmn1v!t21

~vmn1v!~vpn2v8! D G J 1\md j l Fel8a8~0!~12 ikkqk
mp1 ikk8qk

mp!

3S ei ~vmp1v2v8!t21

~vmp1v2v8!
D 1ēl8a8†~0!~12 ikkqk

mp2 ikk8qk
mp!S ei ~vmp1v1v8!t21

~vmp1v1v8!
D GC , ~2.9!
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2582 56A. SALAM
with a (2)†(t) given by the Hermitian conjugate of expressi
~2.9!.

III. TOTAL ELECTRIC-FIELD OPERATOR

Before going on to derive the magnetic field, the to
electric field in the neighborhood of a molecule is obtain
Its transverse component is proportional to the canon
field momentum in the minimal-coupling approach and
given by the mode expansion

ei
'~rW,t !5 i(

kW ,l
S \ck

2«0VD 1/2

@eia~ t !eikW•rW2 ivt

2ēia
†~ t !e2 ikW•rW1 ivt#, ~3.1!

which is evaluated as a power series in the electric charg

ei
'~rW,t !5ei

'~0!~rW,t !1ei
'~1!~rW,t !1ei

'~2!~rW,t !1•••
~3.2!

by using the operator equations~2.8! and ~2.9!. The zeroth-
order transverse electric field independent of all source
simply the free field operator.

A. First-order contribution

The first-order electric field is obtained by substituting t
first-order operator equation~2.8! a (1)(t) into the mode ex-
pansion~3.1!. The molecular multipole moment matrix ele
ments to this order of approximation may be extracted w
the use of the identity@23#

2
e

m
ei@pi7 ik j~piqj !#

mn5
i

\
eiEmnm i

mn7 ikbimi
mn

6
1

\
eikjEmnQi j

mn , ~3.3!

where Emn5Em2En and mW , mW , and QWW are the electric-
dipole, magnetic-dipole, and electric-quadrupole mome
respectively. Inserting relation~3.3! into Eq.~2.8! then yields

a~1!~ t !5
1

\ (
m,n

S \

2«0ckVD 1/2

bm
† ~0!bn~0!F i

\
ēiEmnm i

mn

2 ikb̄imi
mn1

1

\
ēikjEmnQi j

mnG S ei ~vmn1v!t21

vmn1v D .

~3.4!

Substituting Eq.~3.4! into Eq.~3.1!, the first-order transvers
electric field is

ei
'~1!~rW,t !5

i

2«0V (
kW ,l
m,n

H bm
† ~0!bn~0!eie

ikW•rW

3F i

\
ējEmnm j

mn2 ikb̄jmj
mn1

1

\
ējkkEmnQjk

mnG
3S eivmnt2e2 ivt

vmn1v D1H.c.J , ~3.5!
l
.
al

as

is

h

s,

where H.c. denotes the Hermitian conjugate. Performing
polarization sums, converting the wave-vector sum to an
tegral, carrying out the angular averages@13#, and finally
evaluating thek integral for r ,ct results in

ei
'~1!~rW,t !5

1

4p«0
(
m,n

bm
† ~0!bn~0!H m j

mn~2¹2d i j 1¹ i¹ j !

3
e2 iknmct

r
~eiknmr21!2

1

c
mj

mn~ iknm« i jk¹k!

3
eiknm~r 2ct!

r
2Qjk

mn~2¹2d i j 1¹ i¹ j !¹k

3
e2 iknmct

r
~eiknmr21!J , ~3.6!

while for r .ct the field is zero. It should be noted that th
electric-dipole- and electric-quadrupole-dependent contri
tions to the first-order transverse electric field contain non
tarded terms, arising from the pole occurring atk50 when
evaluating thek integral. In contrast, the magnetic-dipole
dependent term is fully retarded since physically a magn
dipole has no static electric field.

To determine the total electric field to this order, the lo
gitudinal electric field is required. The latter is given by

«0ei
i
~rW,t !52pi

i
~rW,t !

5pi
'~rW,t !

5(
m,n

~m j
mn2Qjk

mn¹k!bm
† ~ t !bn~ t !d i j

'~rW !e2 ivnmt.

~3.7!

Noting that forrÞ0 the transverse delta dyadic

d i j
'~rW !52

1

4pr 3 ~d i j 23r̂ i r̂ j !, ~3.8!

it follows that the first-order longitudinal electric field is

2
1

4pr 3 (
m,n

bm
† ~0!bn~0!e2 ivnmt~m j

mn2Qjk
mn¹k!

3~d i j 23r̂ i r̂ j !. ~3.9!

To obtain thetotal electric field correct to this order of ap
proximation, Eq.~3.9! is added to Eq.~3.6!, resulting in

ei
tot~1!~rW,t !5

1

4p«0
(
m,n

bm
† ~0!bn~0!Fm j

mn~2¹2d i j 1¹ i¹ j !

2
1

c
mj

mn~ iknm« i jk¹k!

2Qjk
mn~2¹2d i j 1¹ i¹ j !¹kG eiknm~r 2ct!

r

5«0
21di

'~1!~rW,t !. ~3.10!

It is seen that the longitudinal electric field exactly canc
the instantaneous type terms ineW'(1)(rW,t), Eq. ~3.6! with the
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retarded total electric field equal to«0
21 times the transverse

displacement field operator of the multipolar formalis
@20,21#. This completes the derivation of the first-order to
electric field in the proximity of a molecule in the minima
coupling framework. The transverse component ofeW (rW) was
obtained directly from the mode expansion for the mom
tum canonically conjugate to the vector potential, while t
longitudinal part was found from the electric polarizatio
field.

B. Second-order contribution

To determine the second-order electric field,a (2)(t),
given by Eq. ~2.9!, is used. The minimal-coupling matri
elements occurring in expression~2.9! are converted to tran
l

-
e

sition multipole moment matrix elements using the ident
~3.3! and two further identities@18# ~3.11! and ~3.12!,

2
\e2

m
d jk5(

p,n
~vmnm j

mnmk
np2vnpmk

mnm j
np!dmp

~3.11!

ie2

m
eik̂kqk

mp5
ic

\
ej k̂k(

n
~knpm i

mnQjk
np2kmnQjk

mnm i
np!

1
1

\
bj(

n
~m i

mnmj
np2mj

mnm i
np!. ~3.12!

These are then substituted into the mode expansion~3.1! to
give
ion sum
ei
'~2!~rW,t !5

i

\ (
kW8,l8,kW ,l

m,n,p

S 1

2«0VD S \

2«0ck8VD 1/2

e18a8~0!bm
† ~0!bp~0!

3Feie
ikW•rWXH m l

mnm j
npvmnvnpēj2 ikk8ējF S i

\ D 2

EmnEnpQkl
mnm j

np2
i

\
« lktEnpmt

mnm j
np2

e

2m
dkldmnEnpm j

npG
1 i S i

\ D 2

ējkkEmnEnpm l
mnQjk

np1 i S i

\ D kb̄jEmnm l
mnmj

npJ S ei ~vmp2v8!t2e2 ivt

~vmp1v2v8!~vmn2v8!
2

eivnpt2e2 ivt

~vnp1v!~vmn2v8!
D

1H m j
mnm l

npvmnvnpēj2 ikk8ējF S i

\ D 2

EmnEnpm j
mnQkl

np2
i

\
« lktEmnm j

mnmt
np2

e

2m
dkldpnEmnm j

mnG
1 i S i

\ D 2

ējkkEmnEnpQjk
mnm l

np1 i S i

\ D kb̄jEnpmj
mnm l

npJ S ei ~vmp2v8!t2e2 ivt

~vmp1v2v8!~vpn1v8!
2

eivmnt2e2 ivt

~vmn1v!~vpn1v8!
D C

1F S e2\

im
ējd j l km8 qm

mp1dmpēj~vmnm j
mnm l

np2vnpm l
mnm j

np!

1k@ icēj k̂k~knpm l
mnQjk

np2kmnQjk
mnm l

np!1b̄ j~m l
mnmj

np2mj
mnm l

np!# D S ei ~vmp2v8!t2e2 ivt

vmp1v2v8
D G G1H.c. ~3.13!

Concentrating for the moment on the contribution quadratic in the electric-dipole moments, carrying out the polarizat
and angular average produces

ei
'~2!~mm;rW,t !5

i

4p«0\ (
kW8,l8
m,n,p

S \

2«0ck8VD 1/2

bm
† ~0!bn~0!~2¹2d i j 1¹ i¹ j !

1

2p ir
ek8a8~0!E

2`

` dk

k
~eikr2e2 ikr !

3Fmk
mnm j

npkmnknpS ei ~kmp2k8!ct2e2 ikct

~kmp1k2k8!~kmn2k8!
2

eiknpct2e2 ikct

~knp1k!~kmn2k8!
D

1m j
mnmk

npkmnknpS ei ~kmp2k8!ct2e2 ikct

~kmp1k2k8!~kpn1k8!
2

eikmnct2e2 ikct

~kmn1k!~kpn1k8!
D 1dmp~kmnm j

mnmk
np2knpmk

mnm j
np!

3S ei ~kmp2k8!ct2e2 ikct

kmp1k2k8
D G . ~3.14!

Integrating subject tor ,ct and settingm5p results in
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ei
'~2!~mm;rW,t !5

i

4p«0
(
kW ,l
m,n

S \ck

2«0VD 1/2

eka~0!bm
† ~0!bm~0!~2¹2d i j 1¹ i¹ j !

1

r F S m j
mnmk

nm

Enm2\v
1

mk
mnm j

nm

Enm1\v Deik~r 2ct!

1
m j

mnmk
nm

Enm2\v S kmn

k D @e2 ikct2eikmnct1e2 ikmn~r 2ct!#1
mk

mnm j
nm

Enm1\v S kmn

k D @2e2 ikct1e2 ikmnct2eikmn~r 2ct!#G
1H.c., ~3.15!

which, like ei
'(1)(rW,t), also contains nonretarded terms. To obtain the retarded, second-order electric-dipole-depend

tribution to the total electric field, the corresponding longitudinal electric field must be added to Eq.~3.15!. The latter is
obtained from the first term of Eq.~3.7! and by retaining thepW mn terms of Eq.~2.7! and its Hermitian conjugate, giving

pi
'~2!~mm;rW,t !5(

m,p
m j

mpd i j
'~rW !e2 ivpmt@bm

†~1!~ t !bp~0!1bm~0!bp
†~1!~ t !#

52
e

i\m (
kW ,l

m,n,p

S \

2«0ckVD 1/2

d i j
'~rW !bm

† ~0!bp~0!H F ēla
†~0!pl

mnS ei ~vmp1v!t2e2 ivpnt

i ~vmn1v! D
1ela~0!pl

mnS ei ~vmp2v!t2e2 ivpnt

i ~vmn2v! D Gm j
np1m j

mnFela~0!pl
npS ei ~vmp2v!t2e2 ivnmt

i ~vpn1v! D
1ēla

†~0!pl
npS ei ~vmp1v!t2e2 ivnmt

i ~vpn2v! D G J . ~3.16!

Using relation~3.3!, the diagonal term of Eq.~3.16! is

pi
'~2!~mm;rW,t !5

i

4p (
kW ,l
m,n

S \ck

2«0VD 1/2H eka~0!bm
† ~0!bm~0!

3~2¹2d i j 1¹ i¹ j !
1

r F m j
mnmk

nm

Enm2\v S knm

k D ~e2 ikct2eikmnct!1
mk

mnm j
nmk

Enm1\v S kmn

k D ~e2 ikct2e2 ikmnct!G J 1H.c.

~3.17!

Adding Eq.~3.17! to Eq. ~3.15! produces the total second-order electric-dipole-dependent electric field

ei
tot~2!~mm;rW,t !5

i

4p«0
(
kW ,l
m,n

S \ck

2«0VD 1/2

eka~0!bm
† ~0!bm~0!~2¹2d i j 1¹ i¹ j !

1

r

3F S m j
mnmk

nm

Enm2\v
1

mk
mnm j

nm

Enm1\v Deik~r 2ct!1
m j

mnmk
nm

Enm2\v S kmn

k Deiknm~r 2ct!1
mk

mnm j
nm

Enm1\v S knm

k Deikmn~r 2ct!G1H.c.,

~3.18!

which is fully retarded and is applicable forr ,ct. It is instructive to demonstrate thateW tot(2)(rW,t) vanishes forr .ct, thus
showing the causal nature ofeW tot(2)(rW,t). Recalling thateW'(2)(rW,t) has nonretarded contributions, by returning to Eq.~3.14! and
evaluating the integral for the electric-dipole-dependent part subject tor .ct, these are found to be after simplifying

i

4p«0\ (
kW ,l
m,n

S \

2«0ckVD 1/2

eka~0!bm
† ~0!bm~0!

3~2¹2d i j 1¹ i¹ j !
1

r S mk
mnm j

nm

kmn2k
kmn~e2 ikct2eiknmct!1

m j
mnmk

nm

kmn1k
kmn~eikmnct2e2 ikct! D 1H.c. ~3.19!

Adding Eq.~3.19! to the electric-dipole-dependent transverse polarization field~3.17! results in
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ei
tot~2!~mm;rW,t !5ei

'~2!~mm;rW,t !1«0
21pi

'~2!~mm;rW,t !50, ~3.20!

so that the total electric field obtained is strictly causal, vanishing fort,r /c.
The total second-order fields bilinear in the electric- and magnetic-dipole moments and bilinear in the electric dip

quadrupole moments can be obtained in a manner similar to that used to obtain the quadratic electric-dipole-d
contribution. Returning to expression~3.13!, performing the appropriate polarization sums and angular averages, evalu
the k integrals subject tor ,ct, and adding the relevant terms in the second-order electric polarization field~3.21!,

pi
'~2!~rW,t !5(

m,p
~m j

mp2Qjk
mp¹k!d i j

'~rW !e2 ivpmt@bm
†~1!~ t !bp~0!1bm~0!bp

†~1!~ t !#, ~3.21!

whose diagonal terms after substituting Eqs.~2.7! and ~3.3! are

pi
'~2!~rW,t !5

i

4p (
kW ,l
m,n

S \c

2«0kVD 1/2

a~0!bm
† ~0!bm~0!

3~2¹2d i j 1¹ i¹ j !
1

r H Fekknmmk
mnm j

nm2ekknm

3mk
mnQjl

nm¹ l1 iekklknmQkl
mnm j

nm2
1

c
kbkmk

mnm j
nmG S e2 ikct2eiknmct

Emn2\v D1Fekkmnm j
mnmk

nm2ekkmnQjl
mn¹ lmk

nm

1 iekklkmnm j
mnQkl

nm2
1

c
kbkm j

mnmk
nmG S e2 ikct2eikmnct

Emn1\v D J , ~3.22!

result in

ei
tot~2!~mm;rW,t !5

i

4p«0c (
kW ,l
m,n

S \ck

2«0VD 1/2

bka~0!bm
† ~0!bm~0!~2¹2d i j 1¹ i¹ j !

1

r F S m j
mnmk

nm

Enm2\v
1

mk
mnm j

nm

Enm1\v Deik~r 2ct!

2
m j

mnmk
nm

Enm2\v
eiknm~r 2ct!2

mk
mnm j

nm

Enm1\v
eikmn~r 2ct!G1

i

4p«0
(
kW ,l
m,n

S \k

2«0cVD 1/2

eka~0!bm
† ~0!bm~0!

3~ ik« i j l ¹ l !
1

r F S mk
mnmj

nm

Enm2\v
1

mj
mnmk

nm

Enm1\v Deik~r 2ct!2
mk

mnmj
nm

Enm2\v S knm

k Deiknm~r 2ct!

2
mj

mnmk
nm

Enm1\v S kmn

k Deikmn~r 2ct!G1H.c., ~3.23!

ei
tot~2!~mQ;rW,t !52

1

4p«0
(
kW ,l
m,n

S \ck

2«0VD 1/2

ekkla~0!bm
† ~0!bm~0!~2¹2d i j 1¹ i¹ j !

1

r F S m j
mnQkl

nm

Enm2\v
1

Qkl
mnm j

nm

Enm1\v Deik~r 2ct!

2
m j

mnQkl
nm

Enm2\v S knm

k Deiknm~r 2ct!2
Qkl

mnm j
nm

Enm1\v S kmn

k Deikmn~r 2ct!G2
i

4p«0
(
kW ,l
m,n

S \ck

2«0VD 1/2

ela~0!bm
† ~0!bm~0!

3~2¹2d i j 1¹ i¹ j !¹k

1

r F S m l
mnQjk

nm

Enm2\v
1

Qjk
mnm l

nm

Enm1\v Deik~r 2ct!2
m l

mnQjk
nm

Enm2\v S knm

k Deiknm~r 2ct!

2
Qjk

mnm l
nm

Enm1\v S kmn

k Deikmn~r 2ct!G1H.c. ~3.24!
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As for the electric-dipole case, the instantaneous-type contributions occurring ineW'(rW,t), when added to the transvers
polarization field, result in the total electric field in the neighborhood of the source vanishing forr .ct, as demanded by
causality. It should be noted that the total electric-field quadratic in the magnetic-dipole and electric-quadrupole mom
bilinear in these two moments can be obtained by including higher-order terms in the spatial variation of the vector p
Comparing the second-order total electric field with the corresponding second-order electric displacement field in the
of a molecule@19,21#, the two are seen to differ, although their form is similar, in contrast to the first-order displaceme
total electric fields, which are identical. The total electric-field second order in the moments, like the analogous
displacement field operator@19,21#, acts in both the fermion and boson spaces, changing the state of electronic excitati
the number of photons.

IV. MAGNETIC-FIELD OPERATOR

The magnetic-field operator correct to second order in the source moments is now calculated in the minimal-c
framework using the equations of motion for the photon and electron operators developed in Sec. II. The mode expa
the magnetic field is given by

bW ~rW,t !5 i(
kW ,l

S \k

2«0cVD 1/2

@bW ~l!~kW !a~ t !eikW•rW2 ivt2b̄W ~l!~kW !a†~ t !e2 ikW•rW1 ivt#, ~4.1!

where the magnetic polarization vectorbW (l)(kW ) is defined by

bW ~l!~kW !5 k̂W3eW ~l!~kW !. ~4.2!

The free field operator independent of all sources is identical in both the minimal- and multipolar-coupling frame
obtained by insertinga(t)5a(0) into Eq.~4.1!.

A. First-order contribution

The magnetic field linear in the sources is obtained by substituting the first-order equation of motion fora(t), Eq. ~3.4!,
into the mode expansion~4.1!, giving

bi
~1!~rW,t !5

i

\ (
kW ,l
m,n

S \

2«0cVD H bm
† ~0!bn~0!bie

ikW•rWF i

\
ējEmnm j

mn2 ikb̄jmj
mn1

1

\
ējkkEmnQjk

mnG S eivmnt2e2 ivt

vmn1v D1H.c.J .

~4.3!

Evaluating in the usual manner results in

bi
~1!~rW,t !5H 1

4p«0c (
m,n

bm
† ~0!bn~0!Fm j

mn~ iknm« i jk¹k!1
1

c
mj

mn~2¹2d i j 1¹ i¹ j !1Qjk
mn~ iknm« i j l ¹ l¹k!Geiknm~r 2ct!

r
, r ,ct

0, r .ct.
~4.4!

Comparing Eq.~4.4! with the analogous result obtained within the multipolar framework@20,21#, the two first-order magnetic
fields are found to be identical. This is despite the fact that the Heisenberg equations of motion for the fermion an
operators obtained from the minimal- and multipolar-coupling Hamiltonians are different in both approaches.

B. Second-order contribution

The second-order contribution to the magnetic field is obtained by substituting the second-order operatora (2)(t) given by
expression~2.9!, after conversion to multipole moments using the identities~3.3!, ~3.11!, and~3.12!, into the mode expansion
~4.1!. Thus
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bi
~2!~rW,t !5

i

\c (
kW8,l8,kW ,l

m,n,p

S 1

2«0VD S \

2«0ck8VD 1/2

e18a8~0!bm
† ~0!bp~0!Fbie

ikW•rWXH m l
mnm j

npvmnvnpēj2 ikk8ējF S i

\ D 2

EmnEnpQkl
mnm j

np

2
i

\
« lktEnpmt

mnm j
np2

e

2m
dkldmnEnpm j

npG1 i S i

\ D 2

ējkkEmnEnpm l
mnQjk

np1 i S i

\ D kb̄jEmnm l
mnmj

npJ
3S ei ~vmp2v8!t2e2 ivt

~vmp1v2v8!~vmn2v8!
2

eivnpt2e2 ivt

~vnp1v!~vmn2v8!
D 1H m j

mnm l
npvmnvnpēj2 ikk8ējF S i

\ D 2

EmnEnpm j
mnQkl

np

2
i

\
« lktEmnm j

mnmt
np2

e

2m
dkldpnEmnm j

mnG1 i S i

\ D 2

ējkkEmnEnpQjk
mnm l

np1 i S i

\ D kb̄jEnpmj
mnm l

npJ
3S ei ~vmp2v8!t2e2 ivt

~vmp1v2v8!~vpn1v8!
2

eivmnt2e2 ivt

~vmn1v!~vpn1v8!
D C1F S e2\

im
ējd j l km8 qm

mp1dmpēj~vmnm j
mnm l

np2vnpm l
mnm j

np!

1 icēj k̂k~knpm l
mnQjk

np2kmnQjk
mnm l

np!1kb̄j~m l
mnmj

np2mj
mnm l

np! D S ei ~vmp2v8!t2e2 ivt

vmp1v2v8
D G G1H.c. ~4.5!

Evaluating in the usual manner and extracting the individual contributions quadratic in the moments results in the seco
magnetic fields

bi
~2!~mm;rW,t !5

i

4p«0
(
kW ,l
m,n

S \k

2«0cVD 1/2

eka~0!bm
† ~0!bm~0!~ ik« i j l ¹ l !

1

r F S m j
mnmk

nm

Enm2\v
1

mk
mnm j

nm

Enm1\v Deik~r 2ct!

2
m j

mnmk
nm

Enm2\v S kmn

k D 2

eiknm~r 2ct!2
mk

mnm j
nm

Enm1\v S kmn

k D 2

eikmn~r 2ct!G1H.c., ~4.6!

bi
~2!~mm;rW,t !5

i

4p«0c (
kW ,l
m,n

S \k

2«0cVD 1/2

bka~0!bm
† ~0!bm~0!~ ik« i j l ¹1!

1

r F S m j
mnmk

nm

Enm2\v
1

mk
mnm j

nm

Enm1\v Deik~r 2ct!

2
m j

mnmk
nm

Enm2\v S knm

k Deiknm~r 2ct!2
mk

mnm j
nm

Enm1\v S kmn

k Deikmn~r 2ct!G1
i

4p«0c (
kW ,l
m,n

S \k

2«0cVD 1/2

eka~0!bm
† ~0!bm~0!

3~2¹2d i j 1¹ i¹ j !
1

r F S mk
mnmj

nm

Enm2\v
1

mj
mnmk

nm

Enm1\v Deik~r 2ct!2
mk

mnmj
nm

Enm2\v S kmn

k Deiknm~r 2ct!

2
mj

mnmk
nm

Enm1\v S knm

k Deikmn~r 2ct!G1H.c., ~4.7!

bi
~2!~mQ;rW,t !52

1

4p«0
(
kW ,l
m,n

S \k

2«0cVD 1/2

elkka~0!bm
† ~0!bm~0!~ ik« i j t ¹ t!

1

r F S m j
mnQkl

nm

Enm2\v
1

Qkl
mnm j

nm

Enm1\v Deik~r 2ct!

2
m j

mnQkl
nm

Enm2\v S kmn

k D 2

eiknm~r 2ct!2
Qkl

mnm j
nm

Enm1\v S kmn

k D 2

eikmn~r 2ct!G
1

1

4p«0
(
kW ,l
m,n

S \k

2«0cVD 1/2

ela~0!bm
† ~0!bm~0!~k« i js¹s¹k!

1

r F S m l
mnQjk

nm

Enm2\v
1

Qjk
mnm l

nm

Enm1\v Deik~r 2ct!

2
m l

mnQjk
nm

Enm2\v S kmn

k D 2

eiknm~r 2ct!2
Qjk

mnm l
nm

Enm1\v S kmn

k D 2

eikmn~r 2ct!G1H.c. ~4.8!
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The second-order magnetic fields derived in the minim
coupling formalism also differ from their analogs calculat
in the multipolar approach@19,21#. The electric-dipole-
dependent minimal-coupling Maxwell fields are now e
ployed in the calculation of the energy density in a radiat
field and the rate of flow of electromagnetic energy from
molecule in an excited electronic state. The expectation
ues for these processes will be shown to be equivalen
those obtained previously@22# using the multipolar formal-
ism radiation field operators.

V. CALCULATION OF THE ELECTROMAGNETIC
ENERGY DENSITY

The expectation value of the electric energy density
the radiation field in the state where no photons are pre
and with the molecule in the stateup& is

1
2 «0^0;puei

tot~1!ei
tot~1!1ei

~0!ei
tot~2!1ei

tot~2!ei
~0!up;0&,

~5.1!

retaining terms second order in the moments only. This
now evaluated for an electric-dipole source. The first term
Eq. ~5.1!, the contribution from the product of the first-ord
total electric field of an electric-dipole source, is exactly t
same as the corresponding term in the multipolar calcula
@22#, namely,

1

32p2«0
(

n
m j

pnmk
npkpn

6 f̄ i j ~kpnr ! f ik~kpnr !, ~5.2!

where

Fi j ~kr !5
1

k3 ~2¹2d i j 1¹ i¹ j !
eikr

r
5 f i j ~kr !eikr ,

~5.3!

since«0 times the total first-order electric field was shown
Sec. III A to be equal to the first-order transverse displa
ment field. For the contribution arising from the interferen
l-

-
n

l-
to

r
nt

is
f

n

-

of the vacuum field with the second-order field, only that p
of the quadratic field that is diagonal in the electron spac
required since the free field operates entirely in the pho
space and cannot change the state of the molecule. By ta
the diagonal matrix element for a stateup&, the second-order
electric-dipole-dependent total electric field~3.18! operates
solely in the boson space

^puei
tot~2!~mm;rW,t !up&

5
i

4p«0
(
kW ,l

S \ck

2«0VD 1/2

@eka~0!e2 ivtAki

2ēka
†~0!eivtĀki#, ~5.4!

with

Aki5(
n

m j
pnmk

np

Enp2\v Fk3Fi j ~kr !2S knp
4

k DFi j ~knpr !ei ~kpn1k!ctG
1(

n

mk
pnm j

np

Enp1\v Fk3Fi j ~kr !2S kpn
4

k D
3Fi j ~kpnr !e2 i ~kpn2k!ctG . ~5.5!

Using the mode expansion for the zeroth-order electric fi
and Eq.~5.4!, the last two terms of Eq.~5.1! are

«0

2 (
kW ,l

@^0;puei
tot~2!up;kW ,l&^kW ,l;puei

~0!up;0&

1^0;puei
~0!up;kW ,l&^kW ,l;puei

tot~2!up;0&#

5
1

8p«0
(
kW ,l

S \ck

2V D @ekAkiēie
2 ikW•rW1eie

ikW•kWēkĀki#.

~5.6!

After performing the polarization sum and angular integr
the first term of Eq.~5.6!, using Eq.~5.5! becomes
\c

64p3«0i E0

`

dk k3@Fik~kr !2F̄ ik~kr !#Aki

52
1

32p2«0
(

n
m j

pnmk
np 1

2p i
PE

0

` dk k3

k1kpn
Fk3f ik~kr ! f i j ~kr !e2ikr2S knp

4

k D f ik~kr ! f i j ~knpr !eik~r 1ct!eiknp~r 2ct!

1S knp
4

k D f̄ ik~kr ! f i j ~knpr !e2 ik~r 2ct!eiknp~r 2ct!G1
1

32p2«0
(

n
m j

pnmk
np 1

2p i
PE

0

` dk k3

k2kpn
Fk3f ik~kr ! f i j ~kr !e2ikr

2S kpn
4

k D f ik~kr ! f i j ~kpnr !eik~r 1ct!eikpn~r 2ct!1S kpn
4

k D f̄ ik~kr ! f i j ~kpnr !e2 ik~r 2ct!eikpn~r 2ct!G , ~5.7!
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where P denotes the principal value. Evaluating the inte
for downward transitions fromp, with kpn.0, produces

1

64p2«0
(

n
m j

pnmk
npkpn

6 f̄ ik~kpnr ! f i j ~kpnr !

1
1

32p3«0
(

n
m j

pnmk
npE

0

` du u6e22ur

u21kpn
2

3kpnf i j ~ iur ! f ik~ iur !, ~5.8!

where the second term is expressed in terms of the imagi
wave vectork5 iu. For kpn,0, theu-integral term remains
unchanged while the pole contribution changes sign,

2
1

64p2«0
(

n
m j

pnmk
npkpn

6 f ik~kpnr ! f̄ i j ~kpnr !. ~5.9!

The second term of Eq.~5.6! is simply the complex conju-
gate of the first, so that the total electric-dipole-depend
electric energy density, after adding the term from the pr
uct of the first-order fields~5.2! is

1

16p2«0
(

n
Ep.En

m j
pnmk

npkpn
6 f̄ ik~kpnr ! f i j ~kpnr !1

1

16p3«0

3 (
n

all En

m j
pnmk

npE
0

` du u6e22ur

u21kpn
2 kpnf i j ~ iur ! f ik~ iur !,

~5.10!

in agreement with that obtained using the electric displa
ment field@22#.

The magnetic energy density of an electric-dipole sou
using the minimal-coupling magnetic field is given by t
expectation value

1
2 «0c2^0;pubi

~1!bi
~1!1bi

~2!bi
~0!1bi

~0!bi
~2!up;0&. ~5.11!

The contribution from the product of the first-order electr
dipole-dependent magnetic field is easily seen to be

1

32p2«0
(

n
m j

pnmk
npkpn

6 ḡi j ~kpnr !gik~kpnr !, ~5.12!

as the minimal-coupling magnetic field linear in the sourc
~4.4! was shown to be identical to its multipolar counterpa
with

Gi j ~kr !5
i

k2 « i jk¹k

eikr

r
5gi j ~kr !eikr . ~5.13!

For the evaluation of the remaining two terms of express
~5.11! the diagonal matrix element over the molecular sp
is determined for the magnetic-field quadratic in the elect
dipole moments. From Eq.~4.6!,
al

ry

nt
-

-

e

s
,

n
e
-

^pubi
~2!~mm;rW,t !up&5

i

4p«0
(
kW ,l

S \k

2«0cVD 1/2

3@eka~0!e2 ivtBki

2ēka
†~0!eivtB̄ki#, ~5.14!

where

Bki5(
n

m j
pnmk

np

Enp2\v Fk3Gi j ~kr !2S knp
4

k D
3Gi j ~knpr !ei ~kpn1k!ctG
1(

n

mk
pnm j

np

Enp1\v Fk3Gi j ~kr !2S kpn
4

k D
3Gi j ~kpnr !e2 i ~kpn2k!ctG . ~5.15!

Using the mode expansion for the zeroth-order magn
field and Eq.~5.14!, the contribution to the magnetic energ
density arising from the interference of the vacuum and q
dratic fields is

1

2
«0c2(

kW ,l
@^0;pubi

~2!up;kW ,l&^kW ,l;pubi
~0!up;0&

1^0;pubi
~0!up;kW ,l&^kW ,l;pubi

~2!up;0&#

5
c

8p«0
(
kW ,l

S \k

2VD @ekBkib̄ie
2 ikW•rW1bie

ikW•rWēkB̄ki#.

~5.16!

Evaluating in a manner identical to that in the electric ca
and adding the contribution from the product of the fir
order fields~5.12! results in the magnetic energy density

1

16p2«0
(

n
Ep.En

m j
pnmk

npkpn
6 ḡi j ~kpnr !gik~kpnr !1

1

16p3«0

3 (
n

all En

m j
pnmk

npE
0

` du u6e22ur

u21kpn
2 knpgi j ~ iur !gik~ iur !,

~5.17!

in agreement with the expression obtained using the mu
polar magnetic field@22#. Despite the fact that the second
order radiation field operators are different in both t
minimal-coupling and multipolar formalisms, equal expec
tion values for the electromagnetic energy density are
tained in both schemes. A similar demonstration for t
Poynting vector is given in the next section.

VI. CALCULATION OF THE POYNTING VECTOR

The quantum-mechanical Hermitian operator for t
Poynting vectorSW (rW,t), expressing the rate of flow of elec
tromagnetic energy from an excited molecule, is@22#
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Si~rW,t !. 1
2 «0c2« i jk@ej

tot~1!~m!bk
~1!~m!1ej

tot~2!~mm!bk
~0!

1ej
~0!bk

~2!~mm!#1c.c., ~6.1!

concentrating only on terms second order in the elect
dipole moments with c.c. the complex conjugate. The fi
term, arising from the product of the fields linear in th
sources, is identical to that obtained from the correspond
calculation carried out in the multipolar formalism@22#, giv-
ing

c

32p2«0
« i jk(

n
m l

pnmm
npkpn

6 @ f̄ j l ~kpnr !gkm~kpnr !

1ḡkm~kpnr ! f j l ~kpnr !#. ~6.2!

Using the mode expansions for the zeroth-order total elec
n
b

-

st
in
-
t

g

ic

and magnetic fields and the respective second order fi
~5.4! and ~5.14!, the second and third terms of Eq~6.1! be-
come

1

2
«0c2« i jk(

kW ,l
@^0;puej

tot~2!up;kW ,l&^kW ,l;pubk
~0!up;0&

1^0;puej
~0!up;kW ,l&^kW ,l;pubk

~2!up;0&#1c.c.

5
c2

8p«0
« i jk(

kW ,l
S \k

2VD @emAm jb̄ke
2 ikW•rW1eje

ikW•rW ēmB̄mk#

1c.c. ~6.3!

The first term of Eq.~6.3!, after performing the sum ove
polarization and the angular average and using the defini
~5.5!, is
2
\c2

32p2«0
« i jk

1

2p i E0

`

dk k3@Gkm~kr !1Ḡkm~kr !#Am j

5
c

32p2«0
« i jk(

n
m l

pnmm
np 1

2p i
PE

0

` dk k3

k1kpn
Fk3gkm~kr ! f j l ~kr !e2ikr2S knp

4

k Dgkm~kr ! f j l ~knpr !eik~r 1ct!eiknp~r 2ct!

2S knp
4

k D ḡkm~kr ! f j l ~knpr !e2 ik~r 2ct!eiknp~r 2ct!G2
c

32p2«0
« i jk(

n
m l

pnmm
np 1

2p i
PE

0

` dk k3

k2kpn

3Fk3gkm~kr ! f j l ~kr !e2ikr2S kpn
4

k Dgkm~kr ! f j l ~kpnr !eik~r 1ct!eikpn~r 2ct!2S kpn
4

k D ḡkm~kr ! f j l ~kpnr !e2 ik~r 2ct!eikpn~r 2ct!G .
~6.4!
he

a
e-

ng
n,
lec-
lec-
tial
ve
Thek integration involved in the Poynting vector calculatio
can be evaluated exactly for the time-independent part
extending the limits to (2`,`); this results in the pole con
tributions

2
c

64p2«0
« i jk(

n
m l

pnmm
npkpn

6 gkm~kpnr ! f̄ j l ~kpnr !, kpn,0

~6.5a!

c

64p2«0
« i jk(

n
m l

pnmm
npkpn

6 ḡkm~kpnr ! f j l ~kpnr !, kpn.0.

~6.5b!

The remaining terms of Eq.~6.3! may be evaluated similarly
and added to the contribution from the product of the fir
order fields to give the electric-dipole-dependent Poynt
vector
y

-
g

c

16p2«0
« i jk (

n
Ep.En

m l
pnmm

npkpn
6 @ f̄ j l ~kpnr !gkm~kpnr !

1ḡkm~kpnr ! f j l ~kpnr !#, ~6.6!

which is identical to the expectation value obtained with t
use of the multipolar Maxwell fields@22#.

VII. SUMMARY

The electric and magnetic fields in the proximity of
molecule have been derived in the minimal-coupling fram
work of nonrelativistic quantum electrodynamics. Beginni
with the minimal-coupling radiation-molecule Hamiltonia
the Heisenberg equations of motion for the photon and e
tron operators were expanded in series of powers of the e
tronic charge. The spatial variations of the vector poten
were partially accounted for by including the first derivati
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of aW (rW). By employing sum rules and identities, minima
coupling matrix elements were converted to relations exp
itly involving molecular multipole moments, enabling th
Maxwell field operators correct to second order to inclu
magnetic-dipole- and electric-quadrupole- as well as elec
dipole-dependent terms. Since the dynamical equation
motion in minimal-coupling are different from those occu
ring in the multipolar formalism, in the former approach t
transverse electric-field operator, which is the canonical m
mentum in minimal coupling, was determined as oppose
the displacement vector field operator. The transverse e
tric field in both first and second order was found to cont
nonretarded contributions. After adding the longitudinal p
of the electric field, which was evaluated from the elect
polarization field, to the transverse component, the total e
tric field was shown to be fully retarded. The magnetic-fie
operator was also calculated in the minimal-coupling
proach.

The first-order total electric-field operator and«0
21 times

the transverse displacement field linear in the moments w
found to be identical, as were the first-order minimal- a
multipolar-coupling magnetic fields. These operators
Se

R

R

on

s

-

e
c-
of

-
to
c-

n
t

c-

-

re
d
t

solely in the electron space, leading to changes of molec
state, and correspond to the classical radiation field emi
by an excited multipole source undergoing real transitio
Unlike the first-order minimal-coupling Maxwell fields, th
second-order operators, which act in the combined pho
electron space, when compared to their multipolar coun
parts are not equivalent, although similarities do exist, d
fering by the factor (kmn /k)y, y50,1,2. Despite differences
between the second-order multipolar- and minimal-coupl
radiation field operators, when the latter are applied to
calculation of a physical process or quantity for which e
ergy is conserved, as in the calculation of the Thomson
ergy density and the Poynting vector, the resulting expe
tion value is identical to that obtained within the multipol
formalism.
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