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Quantization of the motion of a particle on an n-dimensional sphere

Petre Dit¸ă*
Institute of Atomic Physics, P.O. Box MG6, Bucharest, Romania

~Received 18 April 1997!

We develop here a simple formalism that converts second-class constraints into first-class ones for a particle
moving on ann-dimensional sphere. The Poisson algebra generated by the Hamiltonian and the constraints
closes and by quantization transforms into a Lie algebra. The observable of the theory is given by the Casimir
operator of this algebra and coincides with the square of the angular momentum.@S1050-2947~97!04710-0#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

The quantization of classical Hamiltonians, when the
nonical coordinates are not completely independent, i
long-standing problem in quantum mechanics. The c
straints, i.e., a set of functions

w i~q,p!50, i 51,2, . . . ,p, ~1.1!

restrict the motion of the classical system to a manifold e
bedded in the initial Euclidean phase space. This has
consequence that the canonical quantization rules

@qi ,pj #5 i\d i j

are no longer sufficient for the quantum description of
physical system.

When the manifold is a proper subspace of a Euclid
space Podolski@1# gave a solution by postulating that th
Euclidean Laplacian should be replaced by the Lapla
Beltrami operator acting on this manifold. Applied to th
motion of a point particle on ann-dimensional sphereSn of
radius R, this gives for the Laplace-Beltrami operator th
resultL2/2R2, whereL is the angular momentum of the pa
ticle.

The eigenvalues of the Casimir operatorL2 are
l ( l 1n21), l 50,1, . . . , and inderiving this result one make
use of the Lie algebra of the angular momentum, forgett
completely about the canonical variables initially entering
the problem, avoiding in this way any trouble that cou
appear. Doubts concerning the correctness of this spec
have arisen in people who derive the Schro¨dinger equation
by Feynman’s path-integral method; see, for example,@2–4#.
They found an extra energy term proportional to the R
mann scalar curvature of the manifold, but they do not ag
upon the value of the proportionality factor. Another type
doubt has arisen recently@5#, namely, that the Dirac’s quan
tization method@6# has to be rejected because, at least
this problem, the resulting energy spectrum is physically
correct. The last statement@5# comes from a misunderstand
ing of the subtlety of the problem: The constraints, like E
~1!, reduce the dimension of the original phase space.
mechanism found by Dirac was the introduction of a diffe
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ent symplectic structure to handle the second-class c
straints. The first-class constraints are used to drop s
pairs of dynamical variables (qi ,pi) from the naive Hamil-
tonian, whose effect is that the nonphysical degrees of fr
dom are eliminated. See Ref.@7# for a treatment of the rigid
rotator in the Dirac-bracket quantization formalism.

The purpose of this paper is to look at the Dirac form
ism from a slightly modified point of view and to show th
the present proposal leads to correct results. In fact, we
pose an alternative method for converting the second-c
constraints into first-class constraints.

The Dirac quantized theory@6# is patterned after the cor
responding classical theory: The observables represen
constraintsmusthave zero expectation values. This requir
ment is inconsistent with the fact that there are dynam
variables whose Poisson brackets with the constraints fa
vanish. To solve the problem Dirac constructed a differ
type of bracket, the Dirac bracket, which vanishes whene
one of the two factors is a second-class constraint.

We develop here a formalism that converts the seco
class constraints into first-class ones and leads directly
group properties of the Poisson brackets. By quantization
Poisson algebra goes into a Lie algebra. Theobservablesof
the theory will be theCasimir operatorsof this algebra and
the operators generated by the constraints will commute w
the observables in the whole Hilbert space. With this int
pretation Dirac’s theory of constrained systems gives cor
results and in the particular case of a point particle onSn it
confirms the Podolski result.

Our idea is to separate all the constants terms that m
appear on the left-hand side of Eq.~1.1! and push them to the
right-hand side. Thus we prefer to write Eq.~1.1! in the form

w i~q,p!5ai , i 51,2, . . . ,p, ~1.18!

whereai are some complex constants.
One reason is that the Poisson bracket structure does

discriminate betweenw and w1C, with C a constant. The
main reason is that it now becomes possible to write
Poisson algebra in a closed form such as

$w i~q,p!,w j~q,p!%5Ci j
k wk~q,p!,

$H~q,p!,w i~q,p!%5Ci
jw j~q,p!, ~1.2!
2574 © 1997 The American Physical Society
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56 2575QUANTIZATION OF THE MOTION OF A PARTICLE ON . . .
where H(q,p) is the Hamiltonian,w i(q,p) are the con-
straints appearing in Eq.~1.18!, andCi j

k andCi
j areconstant

structure coefficients.
Almost all that is found here is in Dirac’s book@6#, the

only difference being the redefinition of the dynamical va
ablesw i . But this different form has the advantage of tran
forming at least some second-class constraints into first-c
constraints, as we will show in Sec. II. In our opinion th
Poisson algebra~1.2! generated by the Hamiltonian and th
constraintsis the best of the Dirac method.

The Poisson algebra, by the quantization procedure, tr
forms into a Lie algebra. The true observables of the phys
systems are given by the Casimir operators of the co
sponding Lie algebras. In other words, none of the ini
operators transforms into a veritable observable. The obs
ables are given at least by quadratic functions of the
operators: Hamiltonian plus constraints together.

The quantum description of the physical model is giv
by a representation of this algebra onto a Hilbert space
this way it becomes possible to avoid the canonical v
ables, which appear also in the Dirac formalism and som
times cause problems since their Dirac brackets are no
ways canonical; for a discussion in this sense see
treatment of the three-dimensional rotator in Ref.@7#.

Another consequence of the above idea is a solution of
embarrassing situation of forcing the operators generate
the constraints to vanish on the whole Hilbert space, a
Dirac dixit. Because now the constraints are no longer
servables, the above problem disappears. What we can s
that there exists a representation of the Lie algebra into
operator algebra acting on the Hilbert space of the associ
physical system such that the operatorsw î generated by the
constraints should have the numbersai in their spectra.

Of course there are cases when the above procedure
not work. An example of such a constraint is

x15(
i

ciqi5a,

which is linear in coordinates. Its Poisson bracket with
quadratic free Hamiltonian gives the secondary constrain

x25$x1 ,H%5(
i

cipi ,

which is linear in momenta. The Poisson bracket of th
two constraints is a constant(ci

2 ; hence the linear con
straints in coordinates and/or momenta generate another
of algebra. In these cases relations~1.2! are supplemented
with at least a few relations of the form

$x i ,x j%5ai j

whereai j are constants. These cases have to be treated b
Dirac formalism. With this mild interpretation of Dira
theory, the difficulties are overcome and the present theo
ready for applications.

In Sec. II we treat the point particle on ann-dimensional
sphere showing that the ‘‘Hamiltonian’’ of the problem is th
square of the angular momentum and is obtained as the
simir operator of the Lie algebra obtained by quantization
-
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the Poisson algebra generated by the Hamiltonian and
straints. In Sec. III we consider a related problem:
(n11)-dimensional harmonic oscillator constrained to mo
on a hypersurface. The paper concludes in Sec. IV.

II. POINT PARTICLE ON AN SN SPHERE

We shall consider a point particle moving on a
n-dimensional sphereSn whose equation is

r 25~q,q!5 (
i 51

n11

qi
2,

where (q,q) denotes the Euclidean scalar product
(n11)-dimensional space, i.e., we view the particle movi
into a subspace of (n11)-dimensional Euclidean space
Phase-space degrees of freedom (qi ,pi) take values over the
entire real axis and possess a canonical Poisson bra
structure.

The primary constraint is usually written as

w5r 22R250

and the Hamiltonian has the form

H5
1

2
~p,p!5

p2

2
.

We defineU5r 2 as a dynamical variable and by takin
the Poisson brackets we get

$U,H%52( qipi52~q,p!52V,

$V,H%5p252H, ~2.1!

$U,V%52U.

If we usew as a dynamical variable instead ofU, as it is
usually done@5,7#, we find

$w,H%52V,

$V,H%52H,

$w,V%52r 252~w1R2!.

The last relation is usually written as$w,V%52r 252R2,
which has the consequence that after quantization one
the commutation relation@w,V#52i\R2. Here we use the
same notation for operators on Hilbert space and for dyna
cal variables on phase space. The last relation is in con
with the conditionsw5V50 imposed on operators acting o
Hilbert space. How we will solve this conflict will be see
later.

The relation$w,V%52(w1R2) suggested to us the intro
duction ofU as a dynamical variable because

$w,V%5$w1R2,V%52~w1R2!.

Taking U5w1R25r 2 as a dynamical variable has the a
vantage of closing the algebra as relations~2.1! show and,
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2576 56PETRE DIŢĂ
more important, by this procedure bothU and V become
first-class constraints. In the following we shall take\51.

By the correspondence principle we obtain from E
~2.1! the commutation relations

@U,H#52iV,

@V,H#52iH , ~2.2!

@U,V#52iU .

In order to solve the problem we state our first postulate:
the relevant physics concerning the problem is containe
the Lie algebra~2.2!. This algebra reminds us of the know
Lie algebra of the SU~2! group, so we can proceed as in th
case. The single observable is the Casimir operator, whic
easily seen to be

C5V22UH2HU. ~2.3!

Indeed, by a trivial calculation we obtain that

@C,H#5@C,U#5@C,V#50.

C is the true observable of the theory and it commutes w
the operators generated by the classical constraints and
classical Hamiltonian.

Like in the SU~2! case, we can look for a common bas
of eigenvectors forC and one of the operatorsH, U, or V.
We chooseV as the ‘‘third’’ component because it is single
out by the algebra~2.2!, as we shall see later.

From Eq.~2.1!, V5(q,p) is the scalar product ofq andp
giving the projection of the momentum along the radius. T
classical requirementV50 means that the motion of th
point particle has to be such that there should be no en
or momentum flow across the sphere surface.

If we change from Euclidean to spherical coordinatesV
has the form

V5
1

i
r

]

]r
,

where ]/]r is the normal derivative or the gradient at th
point of the sphere determined by its spherical coordinat

Usually one imposesV50 as an operator equation on th
Hilbert space. In our approachV is not an observable, so th
equationV50 is senseless. Our point of view is express
by the second postulate: In the Hilbert space associated
our physical problem there exists one vector that is ann
lated byV. Thus the common eigenvector ofC andV has to
satisfy the equation

r
]C~r ,V!

]r U
r 5R

50, ~2.4!

where byV we denote the angular variables. Equation~2.4!
tell us that the eigenvectorC may depend on the radial var
able r , but its dependence is such thatC is stationary at
r 5R. If we require that Eq.~2.4! should be valid for an
arbitrary value ofR, we get thatC does not depend onr .

By using the commutation relations~2.2! we find that
.
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C5V212iV22UH.

On the other hand, in spherical coordinates,H has the form

2H52S ]2

]r 2 1
n

r

]

]r
1

1

r 2 L2D ,

whereL2 is the Laplace-Beltrami operator on the unit sphe
Sn and coincides with the Casimir operator of the orthogo
group SO(n11) @8#.

Putting together the previous information, we find thatC
has the form

C5L21~n11!r
]

]r
. ~2.5!

Taking into account Eq.~2.4! we find that

CC5S L21~n11!r
]

]r D Cur 5R5L2C5 l ~ l 1n21!C.

AlthoughC is not a Hermitian operator, becauseV is not, the
action of bothC andV on the eigenvectorC reduces to the
action of the Hermitian operatorL2. In this way the eigen-
value problem is quantum mechanically well posed and
spectrum isl ( l 1n21), l 50,1, . . .@8#.

Thus the Dirac formalism in the present interpretati
tells us that the observable of a particle moving on
n-dimensional sphere is its angular momentum, a result
was expected. This result can be tested directly at the cla
cal and consequently at the quantum level.

For simplicity we taken52 and in this case the compo
nents of the angular momentum are

L15q2p32q3p2 , L25q3p12q1p3 , L35q1p22q2p1 .

Let us introduce its projection on an arbitrary ray

S5q1L11q2L21q3L35 lR,

wherel is a constant, the length of the projection, and co
siderS as a new constraint.

Taking into account the Poisson bracket relations

$Li ,pj%5e i jkpk , $Li ,qj%5e i jkqk ,

$Li ,L j%5e i jkLk , $xi ,pj%5d i j , i , j ,k51,2,3,

we find that

$S,H%5$S,U%5$S,V%50,

a relation that shows thatS is a conserved quantity at th
classical level since it commutes with the Hamiltonian a
both constraints. At the quantum level this relation sho
thatS5 f (C), i.e., it is a function of the Casimir operator o
the Lie algebra. We think that the above correct quantizat
of this simplest non-Euclidean system will have a fundam
tal theoretical interest, showing us the route to follow
much more complicated cases.

Now we show thatV is the analog ofL3 of the SU~2!
group. We make the notation
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H152
V

2i
, E152

U

2i
, E25

H

2i

and the commutation relations~2.2! take the form

@H1 ,E1#5E1 ,

@H1 ,E2#52E2 , ~2.6!

@E1 ,E2#5H1 ,

i.e., the well-known Cartan-Chevalley form of the mo
simple Lie algebra. From Eq.~2.6! we see thatE6 is the
analog ofL6 andH1 is the analog ofL3 , whereL6 andL3
are the usual generators of the SU~2! group.

III. CONSTRAINED HARMONIC OSCILLATOR

In the following we give an argument in favor of ou
interpretation. For this we will consider another simple s
tem: namely, the quantization of thel -dimensional oscilla-
tor whose Hamiltonian is

H05
1

2 (
i 51

l

~pi
21qi

2!.

We suppose that its movement is confined to the hyper
face given by the constraint

V05(
i 51

l

qipi5a, ~3.1!

wherea is a constant.
If we proceed as above, we find the Poisson algebra

$H0 ,V0%5(
i 51

l

~qi
22pi

2!52U0 ,

$U0 ,V0%52H0 ,

$U0 ,H0%52V0 .

After quantization we find the Casimir operator, which co
mutes withH0 , U0 , andV0 ,

C05H0
22V0

22U0
2.

We denote byLi j 5qipj2qj pi ~i , j , i , j 51,2, . . . ,l ! the
components of the angular momentum and by using
above expressions forH0 , U0 , andV0 we find that

C05(
i , j

L i j
2 5L2,

i.e., the true Hamiltonian of the problem is again the squ
of the angular momentum. In fact, this problem is a reform
lation of the previous one. IndeedH0 , U0 , andV0 are re-
lated toH, U, andV by the relations
t

-

r-

-

e

e
-

H05
1

2
U1H,

U05
1

2
U2H,

V05V.

Our procedure can be applied whenever the Poisson a
bra closes after a finite number of secondary constraints. T
may not be the usual situation as a ‘‘small perturbation’’
the previous problem shows. We deform the constraint~3.1!
to

V15 (
i 51

i 5l

ciqipi5a,

whereci are constants. Then one easily finds that the Pois
algebra never closes. If we define the sequence of Ham
nians

Hn5
1

2 (
i 51

i 5l

ci
2n~qi

21pi
2!, n50,1, . . . ,

and constraints

Vn5(
i

ci
2n21qipi50, n52,3, . . .

Un5
1

2 (
i

ci
2n21~qi

22pi
2!50, n51,2, . . . ,

after quantization we find an infinite-dimensional algebra.
commutation relations are

@Um ,Hn#52iVm1n , m51,2, . . . , n50,1, . . .

@Hm ,Vn#52iUm1n , m50,1, . . . , n51,2, . . .

@Um ,Vn#52iHm1n21 , m,n51,2, . . . ~3.2!

@Hm ,Hn#50, @Um ,Un#50, @Vm ,Vn#50,

where in the last three equations the indices ofHm take the
values m50,1,2,. . . , the range of the others being
m51,2, . . . , according with the notation of the first thre
equations.

A similar algebra is obtained by deforming the sphe
(q,q)5R2 into an ellipsoid by the changeqi→qi /ai . This
shows that the problem of quantization with constraints
not a simple one, its natural place being the representa
theory of infinite-dimensional algebras.

IV. CONCLUSION

The main difficulty appearing in the quantization of co
strained systems is caused by the second-class constr
To overcome it Dirac invented a symplectic structure, t
Dirac bracket. However, its use is not straightforward and
have to be careful when using it. This was a sufficient rea
to looking for alternative methods of quantization.
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2578 56PETRE DIŢĂ
The best known method is one of Abelian conversion t
transforms a second-class constrained system into an Ab
gauge theory@9,10#. The idea is to extend the original pha
space by introducing new canonical coordinates and to c
vert the original Hamiltonian into a new one obtained
solving some equations. Upon quantization all nonphys
degrees of freedom are removed by the restriction of
Hilbert space to a physical subspace formed by gau
invariant states.

In this paper we observed that there are some cases w
the conversion of second-class constraints into first-c
ones is very simple, namely, we have seen that the obs
was caused by the presence of constant terms within
functions defining the constraints. Because the Pois
bracket of a dynamical variable with a constant vanishes,
opens the possibility to rewrite the original Poisson brack
in another form by a simple redefinition of some of the d
namical variables. In this way it becomes possible to w
the Poisson brackets in the form of Poisson algebra~1.2!,
which, after quantization, transforms into a Lie algeb
Once this algebra is obtained we can use the known powe
machinery of the representation theory to find theobserv-
ablesof the physical theory formalized by this algebra and
obtain the spectra of the physically relevant operators.

In this respect we consider that our proposal will have
.
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large applicability to the problem treated here. In genera
will be successful in those cases where it will be possible
convert the second-class constraints into first-class one
our method and possibly others.

The lesson to be learned is that for constrained syst
none of the initial dynamical variables transforms into
observable. The observables are given by Casimir opera
of Lie algebras, i.e., at least by quadratic functions of d
namical variables. As a consequence, we are no longer
strained to impose operators equations on the Hilbert sp
like in our casew5V50, because the constraints do n
become observables of the quantum theory.

It will be an interesting exercise to find a physically in
teresting constrained system for which the Cartan subalg
of the corresponding Lie algebra is two dimensional beca
in this case it will be possible to obtain two observables
the system. An interesting example would be the study of
free particle motion on a pseudosphere. Preliminary res
show that the free Hamiltonian and the constraint genera
six-dimensional Lie algebra that is isomorphic to theD2 al-
gebra. Work in this direction is in progress. The construct
of an operator representation of the infinite-dimensional
gebra~3.2! on Hilbert space that will solve, for example, th
quantization of the point particle motion on an ellipsoid is
big challenge.
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