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Quantization of the motion of a particle on ann-dimensional sphere
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We develop here a simple formalism that converts second-class constraints into first-class ones for a particle
moving on ann-dimensional sphere. The Poisson algebra generated by the Hamiltonian and the constraints
closes and by quantization transforms into a Lie algebra. The observable of the theory is given by the Casimir
operator of this algebra and coincides with the square of the angular momd&L050-294{®7)04710-0

PACS numbd(s): 03.65.Bz

[. INTRODUCTION ent symplectic structure to handle the second-class con-
straints. The first-class constraints are used to drop some
The quantization of classical Hamiltonians, when the cafairs of dynamical variablesy(,p;) from the naive Hamil-
nonical coordinates are not completely independent, is #onian, whose effect is that the nonphysical degrees of free-
long-standing problem in quantum mechanics. The condom are eliminated. See R¢¥] for a treatment of the rigid

straints, i.e., a set of functions rotator in the Dirac-bracket quantization formalism.
The purpose of this paper is to look at the Dirac formal-
¢i(q,p)=0, i=1,2,...p, (1.1 ism from a slightly modified point of view and to show that

the present proposal leads to correct results. In fact, we pro-
restrict the motion of the classical system to a manifold empose an alternative method for converting the second-class
bedded in the initial Euclidean phase space. This has as @nstraints into first-class constraints.

consequence that the canonical quantization rules The Dirac quantized theofy6] is patterned after the cor-
responding classical theory: The observables representing
[di,p;j]=i% 8 constraintamusthave zero expectation values. This require-

ment is inconsistent with the fact that there are dynamical

are no longer sufficient for the quantum description of thevariables whose Poisson brackets with the constraints fail to
physical system. vanish. To solve the problem Dirac constructed a different

When the manifold is a proper subspace of a Euclideatype of bracket, the Dirac bracket, which vanishes whenever
space Podolskj1l] gave a solution by postulating that the one of the two factors is a second-class constraint.
Euclidean Laplacian should be replaced by the Laplace- We develop here a formalism that converts the second-
Beltrami operator acting on this manifold. Applied to the class constraints into first-class ones and leads directly to
motion of a point particle on an-dimensional spher€" of  group properties of the Poisson brackets. By quantization the
radius R, this gives for the Laplace-Beltrami operator the Poisson algebra goes into a Lie algebra. Dheervableof
resultL?/2R?, whereL is the angular momentum of the par- the theory will be theCasimir operatorsof this algebra and

ticle. the operators generated by the constraints will commute with
The eigenvalues of the Casimir operatdr®> are the observables in the whole Hilbert space. With this inter-
I(I+n—1),1=0,1,..., and irderiving this result one makes pretation Dirac’s theory of constrained systems gives correct

use of the Lie algebra of the angular momentum, forgettingesults and in the particular case of a point particleSBrit
completely about the canonical variables initially entering inconfirms the Podolski result.

the problem, avoiding in this way any trouble that could Our idea is to separate all the constants terms that may
appear. Doubts concerning the correctness of this spectruappear on the left-hand side of H@.1) and push them to the
have arisen in people who derive the Safinger equation right-hand side. Thus we prefer to write E@.1) in the form

by Feynman'’s path-integral method; see, for exan@ed].

They found an extra energy term proportional to the Rie- eiq.p)=a,, i=1,2,...p, (1.1)
mann scalar curvature of the manifold, but they do not agree

upon the value of the proportionality factor. Another type of

doubt has arisen recent[§], namely, that the Dirac’s quan- Wherea; are some complex constants.

tization method 6] has to be rejected because, at least for Or'le.reason is that the Poisson pracket structure does not
this problem, the resulting energy spectrum is physically in-discriminate betweer and ¢ +C, with C a constant. The
correct. The last statemef] comes from a misunderstand- Main reason is that it now becomes possible to write the
ing of the subtlety of the problem: The constraints, like Eq.P0isson algebra in a closed form such as

(1), reduce the dimension of the original phase space. The

mechanism found by Dirac was the introduction of a differ- {qpi(q,p),(}DJ.(q,p)}:(;ikj en(a,p),

*Electronic address: dita@theorl.ifa.ro {H(Qap)aﬁoi(q’p)}:Cij‘Pj(Qap)a (1.2
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where H(q,p) is the Hamiltonian,¢;(q,p) are the con- the Poisson algebra generated by the Hamiltonian and con-
straints appearing in Eq1.1), andC}j- andC! areconstant  straints. In Sec. Ill we consider a related problem: an
structure coefficients. (n+1)-dimensional harmonic oscillator constrained to move

Almost all that is found here is in Dirac’s bod], the  on a hypersurface. The paper concludes in Sec. IV.
only difference being the redefinition of the dynamical vari-

ablese; . But this different form has the advantage of trans- Il. POINT PARTICLE ON AN SN SPHERE
forming at least some second-class constraints into first-class _ ) i i
constraints, as we will show in Sec. II. In our opinion the W€ shall con3|der: a point particle moving on an
Poisson algebrél.?) generated by the Hamiltonian and the N-dimensional spher€” whose equation is
constraintss the best of the Dirac method N1

The Poisson algebra, by the quantization procedure, trans- r2=(q,q)= E 9
forms into a Lie algebra. The true observables of the physical =

systems are given by the Casimir operators of the corre-

sponding Lie algebras. In other words, none of the initialwhere @,q) denotes the Euclidean scalar product in

operators transforms into a veritable observable. The obseryh+ 1)-dimensional space, i.e., we view the particle moving

ables are given at least by quadratic functions of the oldnto a subspace ofn(+1)-dimensional Euclidean space.

operators: Hamiltonian plus constraints together. Phase-space degrees of freedam ;) take values over the
The quantum description of the physical model is givenentire real axis and possess a canonical Poisson bracket

by a representation of this algebra onto a Hilbert space. Istructure.

this way it becomes possible to avoid the canonical vari- The primary constraint is usually written as

ables, which appear also in the Dirac formalism and some-

times cause problems since their Dirac brackets are not al- e=r’-R?=0

ways canonical; for a discussion in this sense see the _

treatment of the three-dimensional rotator in Réi. and the Hamiltonian has the form
Another consequence of the above idea is a solution of the 1 2

embarrassing situation of forcing the operators generated by H= E(p,p)z %

the constraints to vanish on the whole Hilbert space, as a
Dirac dixit. Because now the constraints are no longer ob- , ) , ) ,
servables, the above problem disappears. What we can say js V& defineU=r< as a dynamical variable and by taking
that there exists a representation of the Lie algebra into aH'€ Poisson brackets we get
operator algebra acting on the Hilbert space of the associated
physical system such that the operat@ysgenerated by the {U,H}zzE qipi=2(q,p)=2V,
constraints should have the numbardn their spectra.

Of course there are cases when the above procedure does

—Nn2—
not work. An example of such a constraint is {V,H}=p"=2H, (2.3)

{U,V}=2U.
xl=2 Cigi=a, ) . . L
! If we use ¢ as a dynamical variable instead Of, as it is

usually dong5,7], we find
which is linear in coordinates. Its Poisson bracket with a y 457

quadratic free Hamiltonian gives the secondary constraint {o.,H}=2V,

x2={x1.H=2> cipi, {V,H}=2H,

{o.V}=2r?=2(¢+R?).
which is linear in momenta. The Poisson bracket of these

two constraints is a constartc?; hence the linear con- The last relation is usually written asp,V}=2r?=2R?,
straints in coordinates and/or momenta generate another typehich has the consequence that after quantization one gets
of algebra. In these cases relatiofis?) are supplemented the commutation relatiofip,V]=2i%R?. Here we use the

with at least a few relations of the form same notation for operators on Hilbert space and for dynami-
cal variables on phase space. The last relation is in conflict
{xioxit=aj with the conditionsp=V=0 imposed on operators acting on

Hilbert space. How we will solve this conflict will be seen
wherea;; are constants. These cases have to be treated by thger.

Dirac formalism. With this mild interpretation of Dirac The relation{¢,V}=2(¢+ R?) suggested to us the intro-
theory, the difficulties are overcome and the present theory iguction ofU as a dynamical variable because
ready for applications.

In Sec. Il we treat the point particle on andimensional {o,V}={p+R%V}=2(¢+R?).
sphere showing that the “Hamiltonian” of the problem is the
square of the angular momentum and is obtained as the C&aking U= ¢+ R?=r? as a dynamical variable has the ad-
simir operator of the Lie algebra obtained by quantization ofvantage of closing the algebra as relatid@sl) show and,
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more important, by this procedure both and V become C=V2+2iV—2UH.
first-class constraints. In the following we shall take 1.

By the correspondence principle we obtain from Eqs.On the other hand, in spherical coordinatdshas the form
(2.1) the commutation relations

# nao 1
[U,H]=2iV, 2H==-mt ottt/
[V,H]=2iH, (2.2 whereL? is the Laplace-Beltrami operator on the unit sphere
S" and coincides with the Casimir operator of the orthogonal

[U,V]=2iU. group SOA+1) [8].
Putting together the previous information, we find tat
In order to solve the problem we state our first postulate: Allhas the form
the relevant physics concerning the problem is contained in

the Lie algebra2.2). This algebra reminds us of the known s d

Lie algebra of the S(2) group, so we can proceed as in that C=L+(n+1)r or’ (2.9
case. The single observable is the Casimir operator, which is

easily seen to be Taking into account E¢(2.4) we find that

C=V2—UH-HU. 2.3
(2.3 cw—

J
L%+ (n+ 1)r5) V|, _g=L2¥=1(l+n—-1)V.
Indeed, by a trivial calculation we obtain that
AlthoughC is not a Hermitian operator, becauges not, the
[C.H]=[C,U]=[C,V]=0. action of bothC andV on the eigenvectoW reduces to the

) ) _action of the Hermitian operatd_rz. In this way the eigen-
C is the true observable of the theory.and it commutes with,a1ue problem is quantum mechanically well posed and the
the operators generated by the classical constraints and t@ﬁectrum ig(1+n-1), 1=0,1,...[8].

classlcql Hamiltonian. , Thus the Dirac formalism in the present interpretation

Like in the SU2) case, we can look for a common basis g5 ys that the observable of a particle moving on an
of eigenvectors foC and one of the operatot$, U, orV. 1 gimensional sphere is its angular momentum, a result that
We choose/ as the “third” component because it is singled 45 expected. This result can be tested directly at the classi-
out by the algebra2.2), as we shall see later. cal and consequently at the quantum level.

~From Eq.(2.1), V=(q,p) is the scalar product af andp For simplicity we taken=2 and in this case the compo-
giving the projection of the momentum along the radius. The,gnis of the angular momentum are

classical requirementY=0 means that the motion of the
point particle has to be such that there should be no energy  =q,p;—qsp,, L,=0sp1—01P3, Lz=01P>—0op;.
or momentum flow across the sphere surface.
If we change from Euclidean to spherical coordinates Let us introduce its projection on an arbitrary ray
has the form
S=q;L1+0sLo+0sL3=IR,

V= i’ a’ wherel is a constant, the length of the projection, and con-
siderS as a new constraint.
where d/dr is the normal derivative or the gradient at the Taking into account the Poisson bracket relations
point of the sphere determined by its spherical coordinates.
Usually one impose¥ =0 as an operator equation on the {LioPj}= 6P {Li2 0= €ijke
Hilbert space. In our approadhis not an observable, so the

equationV=0 is senseless. Our point of view is expressed iLiLjp=eple,  Xiopp=3dj, 1,j,k=123,
by the second postulate: In the Hilbert space associated Witvr\}e find that

our physical problem there exists one vector that is annihi-
lated byV. Thus the common eigenvector 6fandV has to (S,HI={S,U}={S,V}=0
satisfy the equation ' ) : ,

a relation that shows th& is a conserved quantity at the
r M =0, (2.4) classical level since it commutes with the Hamiltonian and
ar =R both constraints. At the quantum level this relation shows
thatS=f(C), i.e., it is a function of the Casimir operator of
where byQ) we denote the angular variables. Equati@r})  the Lie algebra. We think that the above correct quantization
tell us that the eigenvecto¥ may depend on the radial vari- of this simplest non-Euclidean system will have a fundamen-
able r, but its dependence is such th#t is stationary at tal theoretical interest, showing us the route to follow in
r=R. If we require that Eq(2.4) should be valid for an much more complicated cases.
arbitrary value ofR, we get that¥ does not depend on Now we show thatv is the analog ofL; of the SU2)
By using the commutation relatiori2.2) we find that group. We make the notation
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Hy= -~ _J g R H 1U+H
S TR S TR T] 02 ’
and the commutation relatior{2.2) take the form 1
Ug=zU-H,
[Hl’E+]:E+!
VOZV.
[H,E_]=—E_, (2.6

Our procedure can be applied whenever the Poisson alge-
[E. ,E_]=H,, bra closes after a finite number of secondary constraints. This
may not be the usual situation as a “small perturbation” of

i.e., the well-known Cartan-Chevalley form of the mostthe previous problem shows. We deform the constreiriy

simple Lie algebra. From Ed2.6) we see thaE.. is the to
analog ofL.. andH; is the analog of 5, whereL .. andL; i=/
are the usual generators of the @Ugroup. V= .2 cqpi=a,

lll. CONSTRAINED HARMONIC OSCILLATOR wherec; are constants. Then one easily finds that the Poisson

In the following we give an argument in favor of our algebra never closes. If we define the sequence of Hamilto-
interpretation. For this we will consider another simple sys-nians
tem: namely, the quantization of thé-dimensional oscilla-

i=/
tor whose Hamiltonian is 1!
Ho=5 > c(g?+p?), n=01,...,
y I
17
Ho=5 21 (p?+a). and constraints
We suppose that its movement is confined to the hypersur- Vo= 2 02” 'qpi=0, n=23,...
face given by the constraint !
4 1 2n0-1 2
= —pi)= =1.2,...
=3, ap-a (3.1) Un=5 2 © pP=0, n=12,...,

after quantization we find an infinite-dimensional algebra. Its

wherea is a constant. _ _ commutation relations are
If we proceed as above, we find the Poisson algebra

[Un, Ho]=2iVen, m=1,2,..., n=0,1,...
{Ho,Vo} =2, (a7~ pf)=2U,, [Hun Vol =2ilUmsn, mM=01,..., n=12,...
[Un:Va]=2iHpin-1, mMN=12,... (3.2
{Uo,Vo}=2H,,
[Hman]zor [Um,un]=0, [Vmavn]zoi
{Uo,Hol=2Vq. . . .
where in the last three equations the indicesf take the
After quantization we find the Casimir operator, which com-values m=0,1,2...., the range of the others being
mutes withH,, Uy, andVo, m=1,2,. accordmg with the notation of the first three
equatlons
C0=H§—V§—U§. A similar algebra is obtained by deforming the sphere
(9,9)=R? into an ellipsoid by the changg—q;/a;. This
We denote byL, =qpi—qp; (i<j, i,j=1,2,...¢) the shows that the problem of quantization with constraints is
|] ] J ] 1 ]l ] yey n o

got a simple one, its natural place being the representation

components of the angular momentum and by using th e X
p g y g theory of infinite-dimensional algebras.

above expressions fdtly, Uy, andV, we find that

IV. CONCLUSION
Co=2, Li=L7, — - o
i< The main difficulty appearing in the quantization of con-
strained systems is caused by the second-class constraints.
i.e., the true Hamiltonian of the problem is again the squardo overcome it Dirac invented a symplectic structure, the
of the angular momentum. In fact, this problem is a reformu-Dirac bracket. However, its use is not straightforward and we
lation of the previous one. Indedd,, Uy, andV, are re-  have to be careful when using it. This was a sufficient reason
lated toH, U, andV by the relations to looking for alternative methods of quantization.
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The best known method is one of Abelian conversion thatarge applicability to the problem treated here. In general, it
transforms a second-class constrained system into an Abeliarill be successful in those cases where it will be possible to
gauge theory9,10]. The idea is to extend the original phase convert the second-class constraints into first-class ones by
space by introducing new canonical coordinates and to corsur method and possibly others.
vert the original Hamiltonian into a new one obtained by The lesson to be learned is that for constrained systems
solving some equations. Upon quantization all nonphysicahone of the initial dynamical variables transforms into an
degrees of freedom are removed by the restriction of th@bservable. The observables are given by Casimir operators
Hilbert space to a physical subspace formed by gaugesf Lie algebras, i.e., at least by quadratic functions of dy-
invariant states. namical variables. As a consequence, we are no longer con-

In this paper we observed that there are some cases whstrained to impose operators equations on the Hilbert space,
the conversion of second-class constraints into first-claskke in our casee=V=0, because the constraints do not
ones is very simple, namely, we have seen that the obstackeecome observables of the quantum theory.
was caused by the presence of constant terms within the It will be an interesting exercise to find a physically in-
functions defining the constraints. Because the Poissoteresting constrained system for which the Cartan subalgebra
bracket of a dynamical variable with a constant vanishes, thisf the corresponding Lie algebra is two dimensional because
opens the possibility to rewrite the original Poisson bracketsn this case it will be possible to obtain two observables of
in another form by a simple redefinition of some of the dy-the system. An interesting example would be the study of the
namical variables. In this way it becomes possible to writefree particle motion on a pseudosphere. Preliminary results
the Poisson brackets in the form of Poisson algdlird), show that the free Hamiltonian and the constraint generate a
which, after quantization, transforms into a Lie algebra.six-dimensional Lie algebra that is isomorphic to e al-
Once this algebra is obtained we can use the known powerfidebra. Work in this direction is in progress. The construction
machinery of the representation theory to find titeserv-  of an operator representation of the infinite-dimensional al-
ablesof the physical theory formalized by this algebra and togebra(3.2) on Hilbert space that will solve, for example, the
obtain the spectra of the physically relevant operators. quantization of the point particle motion on an ellipsoid is a

In this respect we consider that our proposal will have abig challenge.
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