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Approximate quantum error correction can lead to better codes
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We present relaxed criteria for quantum error correction that are useful when the specific dominant quantum
noise process is known. As an example, we provide a four-bit code that corrects for a single amplitude
damping error. This code violates the usual Hamming bound calculated for a Pauli description of the error
process and has no simple explanation in terms of the usual Pauli badisdB&es[S1050-294{@7)04410-1

PACS numbd(s): 03.65—w, 89.70+c, 89.80+h, 02.70—c

I. INTRODUCTION

A1=g/[o'x+i0'y]. 2
Quantum error correction is the reversal of part of the

adverse changes due to an undesired and unavoidable quan-

tum process. Code criteria for perfect error correction haverhese describe the changes due to the loss of zero or one
been developefil—4] and all presently known codes satisfy excitation to the environment. To first order in the scattering
these criteria exactly. Furthermore, most of these codes beyobapility y, n+1 possible effects may happen to an
long to a general GB) classification[5]. In these schemes, _qubit code using thé\,,A, error basis, so it follows that
quantum bit (qubit) errors are described using a Pauli n=3 is required. In contrast, in the Pauli basis, atyor o,

(1,X,Y,Z) error basis and coding is performed to allow cor- error must be corrected by the code, so that-d possible

rection of arbitrary unknown errors. effects must be dealt with. It follows that at least5 is
However, in the usual case in the laboratory, one works

with a specific apparatus with a particular dominant quantun#eqUIred fpr a nondegenerate Pauli ba_5|s c_ode, In contrast to
noise process. The current @ quantum codes do not take the four-bit code that we demonstrate in this paper.
advantage of this specific knowledge and may thus be sub- Th_g lessons are that) t_).etter cod_es may be found_for
optimal in terms of transmission rate and code complexity SPECific error processes afid) approximate error correction
Unfortunately, there is no general method to construct quansimplifies code construction and admits more codes. Ap-
tum codes in a non-Pauli basis and few such codes areroximate error correction is a property with no analog in
to satisfy and without the Pauli basis no way is known toSlight nonorthogonalities possible only between quantum
apply classical coding techniques for quantum error correcStates. We describe our approach to this problem by first
tion. exhibiting our four-bit example code in detail. We then gen-

In th|s paper we deve'op an a|ternative approach to quarﬁralize OL-"'- I’eSU|tS to prOVide relaX_ed error COI’I’ection Criteria
tum error correction based on approximate satisfaction of thénd specific procedures for decoding and recovery. We con-
existing quantum error correction criteria. These approxi-clude by discussing possible extensions to our work.
mate criteria are simpler and less restrictive and in certain
cases, such as for amplitude damping, codes can be found
relatively more easily. The approximate criteria also admit
more codes; therefore, codes requiring shorter block lengths Consider the single-qubit quantum noise process defined
may also be possible. by

For example, using this approach we have discovered a
four-bit code that corrects for single-qulaimplitude damp-
ing [10,1]] errors. Such a shoriondegenerateode is im- _ +
possible using the Pauli basis. The reason is that the effects &p) szO,l AP @
[12,13 to be corrected in a nondegenerate code have to map
the codeword space to orthogonal spaces if the syndrome is
to be detected unambiguously. Hence the minimum allow-
able size for the encoding space is the product of the dimen-
sion of the codeword space and the number of effects to be
corrected. The single-qubit amplitude damping effect opera-
tors expressed in the Pauli basis are known asamplitude dampingThe probability of losing a

photonvy is assumed to be small. To correct errors induced

1 by this process, we encode one qubit using four, with the
Ao=5[(1+ V1= +(1=V1=y)ol, (o logical states

Il. FOUR-BIT AMPLITUDE DAMPING CODE
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FIG. 1. Circuit for encoding a qubit. The third mode contains
the input qubit. The rotation gate in the first qubit performs

exp(-ima,/4). FIG. 2. (a) Circuit for error syndrome detection. The measure-

ment result is used to sele@, out of three actions. If the result

(M,,M,) is 00, 10, or 01, circuitgb), (c), and (d) are applied,
5) respectively, to recover the state. The ange8’ are given by

tan 6=(1—)? and cost’ =1—v. The rotation gate and controlled-
rotation gate specified by the angle perform the functions
exp(aoy) andAl(exp(aoy)) respectively in the notation ¢fL4].

1
00)= ‘72[|0000+|1111>]

1
|1,)=—[|0012 +|1100]. () » o
V2 The usual criteria used to study quantum co@esiewed in
: F i\ toan
A circuit for encoding the logical state is shown in Fig. 1. Sec. ll) require that( O [ALAL|0L) = (1| AAKI 1), but

The possible outcomes after amplitude damping may be
written as (OL|ASoocPo0od 0y =1—2y+3¥°+0(¥%), (10

[Your =S| dK) =D ALl thin), (7) (1| AfooPoood 1) = 1— 2+ 72, (11
K K

So the code we have constructed does not satisfy the usual
wherek are strings of 0's and 1's serving as indices for eachriteria. We will demonstrate that the code satisfies relaxed
error, and we use the notatidto..=AoA1Ag . [) IS CON-  approximate error correction conditions later on and revisit

venient shorthan@l11] for a mixed state(tensor sum of un-  the recovery procedure afterward. First, we exhibit how it
normalized pure statgsin the following, the squares of the \orks.

norm of |) states will give their probabilities for occurring in
a mixture. For the input qubit state A. Decoding and recovery circuit
|iny=2al0 )+ b1, ), 8 Let us denote each of the four qubits hy,),...,[n,).
Error correction is performed by distinguishing the five pos-
all possible final states occurring with probabilit@¢y) or  sible outcomes of Eq9) and then applying the appropriate

above are correction procedure. The first stepsigndrome calculation
5 which may be done using the circuit shown in Figa)2

| boosd =2 |0000)+(1—)%111D) There are three possible measurement results from the two
000 V2 meters: M,,M,)=(0,0), (1,0, and (0,1). Conditioned on

(M,,M,), recovery processad/, implemented by the other
three circuits of Fig. 2 can be applied to the outputns)
' ©) from the syndrome calculation circuit.
If (M,,M,)=(0,0), then|n;nz) is

+b{(1— y)[[0012)+]1100)]
V2

| 1000 = u[a(l ¥)[0111) +b|0100], . |00)+(1-y)?|11) +b{(1—7)(|01>+|10>)
v2 v2 '
y(1 —7 12
=\/—F 1-1v)|101 b|100
| $o100 (2= b+ b[2000], To regenerate the original qubit, the circuit of FigbRis
u_s;ed: A controlled-NOT is applied usifgs) as the control,
o010 =\ 2 Fa(L- )]1108-+ bjo0oy), Mg
10)+(1-y)%1 (1-y)(|1)+]0))
T al0) % +b|1)| 7 ‘Q> D
| oo =\ [a(1~7)|1110 +b|0010].

(13
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In;) can now be used as a control to rothtg) to be parallel ~ plete theory giving necessary and sufficient conditions to do
to |0). We obtain as the final output approximate error correction is possible, but have not ob-

tained such a theory. Nevertheless, we hope that the simple

(1-y)*+1 sufficient conditions presented here will inspire other re-
[ning)=|a\/——F——1[0)+b(1- 7)|1>}|0> (14 searchers to develop a general theory of approximate error
correction.
=[(1-)(al0)+b[1))+0(»?)[0)]|0), Quantum error correction is performed by encoding logi-
1 cal basis states in a subspdtef the total Hilbert spacé{

so that some effects &f can be reversed of Let the noise
with the corrected and decoded qubit leftjin) as desired. process be described in soroperator sum representation
If (M;,M4)=(1,0), the inferred state before syndrome £(p)=3,_A.pAl, whereK is the index set of4, the set
measurement igh1500 OF Po100. IN €ither caselning) isina  of all effectsA,, appearing in the sum. We denote Hy,C A
product state and the third qubit has the distorted state  the reversible subset ahand letC,o={n|A, € A} be the
index set of A,. In other words, the process’(p)
Ing)= (A—7)y [a(1—7)|1)+b|0)]. (16) :E”E’Cre_A”p_A; is revers?ple orC. A, includes all the ef-
2 fects satisfying the conditiofiL—4]

To undo the distortion, we apply thenunitarytransforma- PAMAPc=0gnPc VMineKe, (20)

tion in Fig. 2c). The combined operation dns)(n;| due to "

the NOT gate, the controlled-rotation gate, and the measurevhere P, is the projector onta? and g, are entries of a

ment of the ancilla bit can be expressed in the operator surpositive matrix. When Eq(20) is true for some subset of

representation\/(p)=N0pN$+ NleI, where effects A, that form an operator-sum representation for the
operationg, there exists some operator-sum representation of

No=[0)(1[+(1-»[1)0[, Ni=y¥(2- 7)|1><0|-(17) € such thate’ (p) ==, AnpAl and

. _ TR po— =
TheN, andN; operators correspond to measuring the ancilla PcAnARPCc=PndmnPc Ymne Ky, (21)
to be in thel0) and|1) states, respectively. If the ancilla state

is |0), we obtain the state where p,, are non-negativec-numbers. Equatior(21) [or

equivalently Eq.(20)] must be satisfied for some subset of
(1—y)3y effectsA, [ A,] that form an operator-sum representation for
|oud =\ ——5— [al0)+b[1)] (18 the operatiort. We emphasize that th&, operators in Eq.
(20) and theA, operators in Eq(21) are not necessarily the
in the third mode becausd, preferentially damps out the same and similar distinction holds for the reversible subsets.
b|0) component in Eq(16). We get an error message if the For simplicity of notation, we will drop the tilde even when
ancilla is in the|l) state. Finally, if M,,M,)=(0,1) the we refer to the operators and reversible subset in(ED.
same procedure can be applied as in thg, (M,)=(1,0) Equation(21) is equivalent to the usugexacy orthogo-
case, withn, andn,; swapped. nality and nondeformationconditions for anondegenerate
The fidelity, defined as the worgover all input states code with logical stategc;) and these conditions can be
possible overlap between the original qubit and the recovstated concisely as, for allj,
ered qubit is +
<Ci|AmAn|Cj>:5ij5mnpn Vmne K, (22)
(1-9)3%y

(1 N2
F=(1—y)°+4 5

}=1—572+O(73). (19  wherep, are the non-negative-numbers in Eq(20) and
they represent therror detection probabilityof the effects

Note that the final state Eq15) is slightly distorted. This An- i o

occurs because the recovery operation is not exact, due to the When Eq.(21) is satisfied, the effectd,, have polar de-
failure to satisfy the code criteria exactly. Furthermore, the®©mpositions
circuits in Figs. 2Zc) and 2d) have a finite probability for

failure. However, these are second-order problems and do

not detract from the desired fidelity order.

APc=VpUPc VneKe, (23

where theU’s are unitary. Note thaPcU!U Pc= 6nmPc
is required for syndrome detection to be unambiguous. This

Ill. APPROXIMATE SUFFICIENT CONDITIONS is simple to see by writing the recovery operatiBnas
We now explain why our code works despite its violation
of the usual error correction criteria. The reason is simple: R(p)= E RKPREJF PepPe, (24)
Small deviations from the criteria are allowed as long as they keKre

do not detract from the desired fidelity order. This section . i
presents a simple generalization of the usual error correctiof1€réRk=PcUy is the appropriate reversal process for each
criteria that makes this idea mathematically concrete. Thes@ffect A (ke Kye) and Pe=1-2,  UPcUy. When
approximate error correction criteriare sufficientto do an ~ we apply R on &(| in){#in|), Where|s;,) is a pure input
approximate error correction. We expect that a more comstate, the first term in Eq24) is proportional to| i, ){ in|
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and represents the recovered st&€p) is trace preserving satisfied, as long as Eq8) is true, we can still define the

as a result of orthogonality of differett, P . approximaterecovery operation

It is convenient to defin@de‘=2ne,<repn to be the total
detection probability for the reversible subset. It is immedi- R(p)= 2 RkPRE"" PepPe, (32
ate that to achieve a desired fideliy we have to include in keKre

Ao a sufficient number of highly probable effects so that _ t ) )

Pdet= . ThusA, is also a high probability subset. with Ry,= PCUK as thegpproxmaterecovery operation fo.r
Now we generalize Eq€21)—(23) based on the following Ak and Pg defined as in the case of exact error correction.

assumption: The error is parametrized by a certain number §for @ pure input state¢in)(in|, applying R(p) on

small quantities with physical origins such as the strengti£{|#in)(#in|) and ignoring the last term that is positive defi-

and duration of the coupling between the system and th8ite produces an output with fidelity

environment. For simplicity, we consider only one-parameter o

processes and let bepthe );,mall parameter. >Ilior efampée, F = min tul]din){sin REin){#in])]

in eC
can be the single-qubit error probability. Suppose the aim is )
to find a code for a know# with fidelity . ; )
= min E |<‘/’in|UkAn|‘r//in>| ' (33)
F=1-0(e™h). (25) inyeC kinekre

In the relaxed criteria, it is still necessary tHft®=F, that ~Omitting all terms for whichk#n and applying Eq(31)
is, A, has to include all effectd,, with maximum detection 9Ives

probability  ma;, ,cc tr(|in)(¥in AYAL) ~O(€9),  s<t.

However, it isnot necessary to recover the exact input state; = min E [ inl VP n+ 70| in) = E Prl\n,
only a good overlap between the input and output states is |¢inyeC NEKre nekre
needed. In terms of the condition on the codeword space, it (34
suffices for the effects to bapproximatelyunitary and mu-
tually orthogonal. These observations can be expressed
relaxedsufficientconditions for error correction. Suppose

where in the last step we have used E80). Hence the
ﬁaelity is at IeastEnE,Crepn)\nzl—O(et“) and the desired

fidelity order is achieved as claimed.

Aan:Un‘/pcAnTAan (26) An explicit procedure for performing this recovery is as
follows. First, a measurement of the projectoR®,
is a polar decomposition foh,,. We definec-numbersp, =U,PcU| is performed. Conditional on the resiitof the

and\, so thatp, andp,\,, are the largest and the smallest measurement, the unitary operatdy is applied to complete
eigenvalues oPCAgAnPC, considered as an operator 6n  the recovery.

The relaxed conditions for error correction are that Note that when the exact criteria hold, it is not necessary
for the setA to form an operator sum representation for the
Pr(l=Np)<O(e"l) Vnek,, (27 error process; they may instead give a generalized descrip-
tion of the quantum process such as
PcUTULPc=6mnPc. (28
_ +
Note that when\,=1, Egs. (26)—(28) reduce to the g(p)_m%)c AmpAnXmn: (39

exact criteria. In the approximate casePY®!
=Znek,, tr(| in ) il ATA,) is not a constant but depends where ypn is a matrix ofc—numpers[lS]. In this case, ap-
on the input statéy,). SinceA,, includes enough effects so Proximate criteria can be obtained straightforwardly along
that PY¢t=1—0(e'* 1), when Eq.(27) is satisfied, we also the lines we have described for the operator sum representa-
have  =,.c py=1-0(e*?) and  S,_c po\, ton(wherexnyis diagonal. The main issue is to ensure that

re re interference terms coming from off-diagonal termsxp,

_ t+1
Zjilveorg(e)w );ove thats . is a lower bound on the &€ sufficiently small. We will not describe this calculation
o .p_ T‘E’Crep” n here. Instead, we return to our four-bit code and analyze it
fidelity. Defining theresidue operator using the relaxed criteria.
7y = \PcAAPc— Vpoh,P (29
n cAnAnFe™ VPntaFc, IV. FOUR-BIT CODE REVISITED
we find, for the operator norm of,, In terms of the approximate quantum error correction cri-
teria Eqs(27) and(28), we may understand why our four-bit
0=|myl=<pn=VPnkn (30 amplitude damping quantum code works as follows. Let the
q orthonormal basis for the Hilbert space be ordered as

an

|0000),|0011),/1100,|1111,/0111),|0100), ... .
AnPc=Un(Vpphpl + ) Pc. (3D (36

The sufficiency of our conditions to obtain the desiredThe projection operatof0,){0,|+|1.)(1,| onto the two-
fidelity may be proved as follows. Though E@®3) is not  dimensional codeword spaceis
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The eigenvalues oPCAIOO(,AloooDC are y(1—v) and y(1
—v)3. The difference is (3°—7°)(1—vy). We have the
, (37)  decomposition

[(1=7) -
A100Pc= %Umoc[(l_)’)hLWTlooo]Pc'

where we include only the first few nonzero rows and col- (43
umns in the above matrix. We are interested in the restriction _

O O B
o  +— O
o  + O
O O B

of the effect operator8, to C; therefore, we will exhibit only 100 0 0 0
the rows and columns in the matrices that have nontrivial 0 1 0 0 O O
contributions toA, P . The first effect operataino loss of a 00000 1
guantum to the environmenis -
09710 00 01 0
10 0 0 000100
0 1-y O
0 01 00O
Agoos™ - -
0000~ | 0 1—y 0 (39 ] _
1 1
0 O 0 (1-y)2 —~ 0 0 —-=00
v2 v2
The eigenvalues oPcAlyAoolc are (1-y)? and 4[1 1 1
+(1—y)*]. Interested readers can check for themselves that o — - 0 00
_ v2 v2
AgoodPc=Uoood (1= )1+ (¥?+0(¥*) 17000 P 1 1
(39 xlo =— — o0 o0 o0f,
v2 V2
(the order ofy in gy is factored out ofmgyye) with the
choice 6o o L oo
. - V2 V2
o au
——] 0 0 =—sinl p— —
cos(a 4) sm(a 4) 0O O 0 0
0O O 0 0
0 1 0 -
Yoooo™ 0 0 1 0 (40 "0 0 0 0 O O
. m m 1
sm(&——) 0 0 cos(a——) 00— 000
I 4 4/ V2
- 1
1000 Tioo=|0 O — 0 0 0. (44)
_ 0 00O V2
000" 9 0 0 o ) 0
0 0 0 1 0 0O
L 0 0 0 1

where tand=(1—1v)? and again we have truncated the matri-
cesU oo @nd 7gogp t the first few rows and columns con- Other one-loss cases are similar. For differenthe U, P
tributing nontrivially to the restriction t@. The exact quan- matrices have nonzero entries in different rows and are or-
tum error correction criteria are not satisfied, asthogonal to each other. Hence all the approximate code cri-
PcAl oo oood ¢ has different eigenvalues. However, the dif- teria are satisfied. Using these explicit matrices, we obtain
ference is 0of0(y?) and thus the relaxed condition E@7)
is satisfied. T 1

For the second effedloss of one quantum from the, R(5(|¢/in><l//in|))*k§% PUIAdin){#inl AUPe
mode, we have

. =(1=3Y?)|thin){thin| +- - .

000 0 0 O (45)
0 00 0 00 The fidelity is thus at least 4392 and is of the desired
12 0 0O 0 0 0 order.
Asooi= (1= 1"y 000 O 0 ol (42) The recovery procedure suggested in E&p) contrasts
with the decoding and recovery circuits in Sec. Il A. Itis an
0001y 00 interesting exercise to check that the composition of the op-
0 0 1 0 0O O erations in Figs. @ and 2b), followed by re-encoding the



2572 LEUNG, NIELSEN, CHUANG, AND YAMAMOTO

recovered qubit has the same effect®as applyingUlpp,  |0,)=|00000)+]11000—|10012)—[01112+|11010
for recovery. For the case in which an emission occurs in the
first qubit, the composition of operations in Figga2and
2(c), followed by re-encoding the recovered qubit, has the
same effect orC as preferentially damp out thi@s)=|0)
component followed by appIyin(qJIOOO for recovery. Note
that it costs 32 in the fidelity for removing the distortion.

+]/00110+|0110+(10101),
|1,)=]1111%—|00013)+|01100 — |10000 —|00103)
+]11010 +]10010 — |01010 (50)

work for amplitude damping errofsis described in Eq4)]:
Although the codes do not satisfy the exact nondeformation
criterion, Eq.(48) for the error representation of Eq4) and
Our approximate criteria may also be used to simplify(2), they do satisfy thapproximateones leading to Eq49).
code construction using a non-Pauli error description basis.
For example, consider the bosonic quantum codes for ampli-
tude damping[10] (these are codes which utilize bosonic  \We have shown by an example that choosing an appro-
states |0),...,|n) instead of qubits For logical states priate error basis can potentially reduce the number of qubits
[cq),|cs),... of theform and other requirements in coding schemes. We also sug-
gested a method to enable code construction without the
ey = \/Z|nlln12"'nlm>+ \/E|n21n22n2m>+--- Pauli basis to be done more easily. We believe that much
more can be done along these two directions. The relaxed
+ \//L_N||nN|lnN|2' " nN|m>v sufficient criteria for error correction are far from being nec-
essary. Our results show that it is worthwhile to look for
the original nondeformation conditions for correcting up topetter approximate conditions or conditions that are both
one photon loss require the following to be constant for allhecessary and sufficient. Approximate error correction is par-
logical states: ticularly interesting because it is a property with no analog in
classical digital error correction, as it makes use of slight
nonorthogonalities possible only between quantum states. It
also extends the current scope of quantum error correction,
which is closely related to classical digital error correction. It
would be especially useful to develop a general framework
for constructing codes based on approximate conditions,
similar to the group-theoretic framework now used to con-
struct codes that satisfy the exact conditions.

V. APPLICATIONS TO OTHER CODES

VI. CONCLUSION

(46)

N

<c||A$Ao|c|>=§l (1—y)RSu,, (47)

Ny

(48

In the aboveRS=E}“=lnij is the total number of excitation
in theith quasiclassical stat@®C9 in |c,). It is difficult to
find a solution for Eq(48) whenR S is not constant for al.
That is the reason why previous wof&,9] suggests using
only QCSs with the same number of excitations.

With the relaxed criteria, it suffices for the following to be
constant for all logical states:
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