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Approximate quantum error correction can lead to better codes
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We present relaxed criteria for quantum error correction that are useful when the specific dominant quantum
noise process is known. As an example, we provide a four-bit code that corrects for a single amplitude
damping error. This code violates the usual Hamming bound calculated for a Pauli description of the error
process and has no simple explanation in terms of the usual Pauli basis GF~4! codes.@S1050-2947~97!04410-7#

PACS number~s!: 03.65.2w, 89.70.1c, 89.80.1h, 02.70.2c
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I. INTRODUCTION

Quantum error correction is the reversal of part of t
adverse changes due to an undesired and unavoidable q
tum process. Code criteria for perfect error correction h
been developed@1–4# and all presently known codes satis
these criteria exactly. Furthermore, most of these codes
long to a general GF~4! classification@5#. In these schemes
quantum bit ~qubit! errors are described using a Pa
(I ,X,Y,Z) error basis and coding is performed to allow co
rection of arbitrary unknown errors.

However, in the usual case in the laboratory, one wo
with a specific apparatus with a particular dominant quant
noise process. The current GF~4! quantum codes do not tak
advantage of this specific knowledge and may thus be s
optimal in terms of transmission rate and code complex
Unfortunately, there is no general method to construct qu
tum codes in a non-Pauli basis and few such codes
known @6–10#. The code criteria are generally very difficu
to satisfy and without the Pauli basis no way is known
apply classical coding techniques for quantum error corr
tion.

In this paper we develop an alternative approach to qu
tum error correction based on approximate satisfaction of
existing quantum error correction criteria. These appro
mate criteria are simpler and less restrictive and in cer
cases, such as for amplitude damping, codes can be fo
relatively more easily. The approximate criteria also ad
more codes; therefore, codes requiring shorter block len
may also be possible.

For example, using this approach we have discovere
four-bit code that corrects for single-qubitamplitude damp-
ing @10,11# errors. Such a shortnondegeneratecode is im-
possible using the Pauli basis. The reason is that the eff
@12,13# to be corrected in a nondegenerate code have to
the codeword space to orthogonal spaces if the syndrom
to be detected unambiguously. Hence the minimum allo
able size for the encoding space is the product of the dim
sion of the codeword space and the number of effects to
corrected. The single-qubit amplitude damping effect ope
tors expressed in the Pauli basis are
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@sx1 isy#. ~2!

These describe the changes due to the loss of zero or
excitation to the environment. To first order in the scatter
probability g, n11 possible effects may happen to a
n-qubit code using theA0 ,A1 error basis, so it follows tha
n>3 is required. In contrast, in the Pauli basis, anysx or sy
error must be corrected by the code, so that 2n11 possible
effects must be dealt with. It follows that at leastn>5 is
required for a nondegenerate Pauli basis code, in contra
the four-bit code that we demonstrate in this paper.

The lessons are that~i! better codes may be found fo
specific error processes and~ii ! approximate error correction
simplifies code construction and admits more codes. A
proximate error correction is a property with no analog
classical digital error correction because it makes use
slight nonorthogonalities possible only between quant
states. We describe our approach to this problem by
exhibiting our four-bit example code in detail. We then ge
eralize our results to provide relaxed error correction crite
and specific procedures for decoding and recovery. We c
clude by discussing possible extensions to our work.

II. FOUR-BIT AMPLITUDE DAMPING CODE

Consider the single-qubit quantum noise process defi
by

E~r!5 (
k50,1

AkrAk
† , ~3!

A05F1 0

0 A12g
G , A15F0 Ag

0 0
G , ~4!

known asamplitude damping. The probability of losing a
photong is assumed to be small. To correct errors induc
by this process, we encode one qubit using four, with
logical states
2567 © 1997 The American Physical Society
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u0L&5
1

&
@ u0000&1u1111&] ~5!

u1L&5
1

&
@ u0011&1u1100&]. ~6!

A circuit for encoding the logical state is shown in Fig. 1
The possible outcomes after amplitude damping may

written as

@cout&5 %

k̃

uf k̃&[ %

k̃

Ak̃uc in&, ~7!

wherek̃ are strings of 0’s and 1’s serving as indices for ea
error, and we use the notationA010•••5A0A1A0•••. @& is con-
venient shorthand@11# for a mixed state~tensor sum of un-
normalized pure states!. In the following, the squares of th
norm of u& states will give their probabilities for occurring i
a mixture. For the input qubit state

uc in&5au0L&1bu1L&, ~8!

all possible final states occurring with probabilitiesO(g) or
above are

uf0000&5aF u0000&1~12g!2u1111&
& G

1bF ~12g!@ u0011&1u1100&#

&
G , ~9!

uf1000&5Ag~12g!

2
@a~12g!u0111&1bu0100&],

uf0100&5Ag~12g!

2
@a~12g!u1011&1bu1000&],

uf0010&5Ag~12g!

2
@a~12g!u1101&1bu0001&],

uf0001&5Ag~12g!

2
@a~12g!u1110&1bu0010&].

FIG. 1. Circuit for encoding a qubit. The third mode contai
the input qubit. The rotation gate in the first qubit perform
exp(2ipsy/4).
e

h

The usual criteria used to study quantum codes~reviewed in
Sec. III! require that̂ 0LuA

k̃

†
Ak̃u0L&5^1LuA

k̃

†
Ak̃u1L&, but

^0LuA0000
† A0000u0L&5122g13g21O~g3!, ~10!

^1LuA0000
† A0000u1L&5122g1g2. ~11!

So the code we have constructed does not satisfy the u
criteria. We will demonstrate that the code satisfies rela
approximate error correction conditions later on and rev
the recovery procedure afterward. First, we exhibit how
works.

A. Decoding and recovery circuit

Let us denote each of the four qubits byun1&,...,un4&.
Error correction is performed by distinguishing the five po
sible outcomes of Eq.~9! and then applying the appropriat
correction procedure. The first step issyndrome calculation,
which may be done using the circuit shown in Fig. 2~a!.
There are three possible measurement results from the
meters: (M2 ,M4)5(0,0), ~1,0!, and ~0,1!. Conditioned on
(M2 ,M4), recovery processesWk implemented by the othe
three circuits of Fig. 2 can be applied to the outputun1n3&
from the syndrome calculation circuit.

If ( M2 ,M4)5(0,0), thenun1n3& is

aF u00&1~12g!2u11&

&
G1bF ~12g!~ u01&1u10&!

&
G .

~12!

To regenerate the original qubit, the circuit of Fig. 2~b! is
used: A controlled-NOT is applied usingun3& as the control,
giving

au0&F u0&1~12g!2u1&

&
G1bu1&F ~12g!~ u1&1u0&!

&
G .

~13!

FIG. 2. ~a! Circuit for error syndrome detection. The measur
ment result is used to selectWk out of three actions. If the resul
(M2 ,M4) is 00, 10, or 01, circuits~b!, ~c!, and ~d! are applied,
respectively, to recover the state. The anglesu,u8 are given by
tanu5(12g)2 and cosu8512g. The rotation gate and controlled
rotation gate specified by the angleũ perform the functions
exp(iũsy) andL1„exp(iũsy)…, respectively in the notation of@14#.
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un1& can now be used as a control to rotateun3& to be parallel
to u0&. We obtain as the final output

un1n3&5FaA~12g!411

2
u0&1b~12g!u1&G u0& ~14!

5@~12g!~au0&1bu1&)1O~g2!u0&] u0&,
~15!

with the corrected and decoded qubit left inun1& as desired.
If ( M2 ,M4)5(1,0), the inferred state before syndrom

measurement isf1000 or f0100. In either case,un1n3& is in a
product state and the third qubit has the distorted state

un3&5A~12g!g

2
@a~12g!u1&1bu0&]. ~16!

To undo the distortion, we apply thenonunitarytransforma-
tion in Fig. 2~c!. The combined operation onun3&^n3u due to
the NOT gate, the controlled-rotation gate, and the meas
ment of the ancilla bit can be expressed in the operator
representationN(r)5N0rN0

†1N1rN1
† , where

N05u0&^1u1~12g!u1&^0u, N15Ag~22g!u1&^0u.
~17!

TheN0 andN1 operators correspond to measuring the anc
to be in theu0& andu1& states, respectively. If the ancilla sta
is u0&, we obtain the state

ucout&5A~12g!3g

2
@au0&1bu1&] ~18!

in the third mode becauseN0 preferentially damps out the
bu0& component in Eq.~16!. We get an error message if th
ancilla is in the u1& state. Finally, if (M2 ,M4)5(0,1) the
same procedure can be applied as in the (M2 ,M4)5(1,0)
case, withn1 andn3 swapped.

The fidelity, defined as the worst~over all input states!
possible overlap between the original qubit and the rec
ered qubit is

F5~12g!214F ~12g!3g

2 G5125g21O~g3!. ~19!

Note that the final state Eq.~15! is slightly distorted. This
occurs because the recovery operation is not exact, due t
failure to satisfy the code criteria exactly. Furthermore,
circuits in Figs. 2~c! and 2~d! have a finite probability for
failure. However, these are second-order problems and
not detract from the desired fidelity order.

III. APPROXIMATE SUFFICIENT CONDITIONS

We now explain why our code works despite its violati
of the usual error correction criteria. The reason is simp
Small deviations from the criteria are allowed as long as t
do not detract from the desired fidelity order. This sect
presents a simple generalization of the usual error correc
criteria that makes this idea mathematically concrete. Th
approximate error correction criteriaaresufficientto do an
approximate error correction. We expect that a more co
e-
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plete theory giving necessary and sufficient conditions to
approximate error correction is possible, but have not
tained such a theory. Nevertheless, we hope that the sim
sufficient conditions presented here will inspire other
searchers to develop a general theory of approximate e
correction.

Quantum error correction is performed by encoding lo
cal basis states in a subspaceC of the total Hilbert spaceH
so that some effects ofE can be reversed onC. Let the noise
process be described in someoperator sum representation
E(r)5(nPKAnrAn

† , whereK is the index set ofA, the set
of all effectsAn appearing in the sum. We denote byAre,A
the reversible subset onC and letKre5$nuAnPAre% be the
index set of Are . In other words, the processE8(r)
5(nPKre

AnrAn
† is reversible onC. Are includes all the ef-

fects satisfying the condition@1–4#

PCAm
† AnPC5gmnPC ;m,nPKre , ~20!

where PC is the projector ontoC and gmn are entries of a
positive matrix. When Eq.~20! is true for some subset o
effectsAn that form an operator-sum representation for t
operationE, there exists some operator-sum representatio
E such thatE8(r)5(nPK̃re

ÃnrÃn
† and

PCÃm
† ÃnPC5pndmnPC ;m,nPK̃re , ~21!

where pn are non-negativec-numbers. Equation~21! @or
equivalently Eq.~20!# must be satisfied for some subset
effectsÃn @An# that form an operator-sum representation
the operationE. We emphasize that theAn operators in Eq.
~20! and theÃn operators in Eq.~21! are not necessarily the
same and similar distinction holds for the reversible subs
For simplicity of notation, we will drop the tilde even whe
we refer to the operators and reversible subset in Eq.~21!.

Equation~21! is equivalent to the usual~exact! orthogo-
nality and nondeformationconditions for anondegenerate
code with logical statesuci& and these conditions can b
stated concisely as, for alli , j ,

^ci uAm
† Anucj&5d i j dmnpn ;m,nPKre , ~22!

where pn are the non-negativec-numbers in Eq.~20! and
they represent theerror detection probabilityof the effects
An .

When Eq.~21! is satisfied, the effectsAn have polar de-
compositions

AnPC5ApnUnPC ;nPKre , ~23!

where theUn’s are unitary. Note thatPCUn
†UmPC5dnmPC

is required for syndrome detection to be unambiguous. T
is simple to see by writing the recovery operationR as

R~r!5 (
kPKre

RkrRk
†1PErPE , ~24!

whereRk5PCUk
† is the appropriate reversal process for ea

effect Ak (kPKre) and PE[I 2(kPKre
UkPCUk

† . When

we applyR on E(uc in&^c inu), where uc in& is a pure input
state, the first term in Eq.~24! is proportional touc in&^c inu
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and represents the recovered state.R~r! is trace preserving
as a result of orthogonality of differentUkPC .

It is convenient to definePdet5(nPKre
pn to be the total

detection probability for the reversible subset. It is imme
ate that to achieve a desired fidelityF, we have to include in
Are a sufficient number of highly probable effects so th
Pdet>F. ThusAre is also a high probability subset.

Now we generalize Eqs.~21!–~23! based on the following
assumption: The error is parametrized by a certain numbe
small quantities with physical origins such as the stren
and duration of the coupling between the system and
environment. For simplicity, we consider only one-parame
processes and lete be the small parameter. For examplee
can be the single-qubit error probability. Suppose the aim
to find a code for a knownE with fidelity

F >12O~e t11!. ~25!

In the relaxed criteria, it is still necessary thatPdet>F, that
is,Are has to include all effectsAn with maximum detection
probability maxucin&PC tr(uc in&^c inuAn

†An)'O(es), s<t.
However, it isnot necessary to recover the exact input sta
only a good overlap between the input and output state
needed. In terms of the condition on the codeword spac
suffices for the effects to beapproximatelyunitary and mu-
tually orthogonal. These observations can be expresse
relaxedsufficientconditions for error correction. Suppose

AnPC5UnAPCAn
†AnPC ~26!

is a polar decomposition forAn . We definec-numberspn
andln so thatpn and pnln are the largest and the smalle
eigenvalues ofPCAn

†AnPC , considered as an operator onC.
The relaxed conditions for error correction are that

pn~12ln!<O~e t11! ;nPKre , ~27!

PCUm
† UnPC5dmnPC . ~28!

Note that when ln51, Eqs. ~26!–~28! reduce to the
exact criteria. In the approximate case,Pdet

5(nPKre
tr(uc in&^c inuAn

†An) is not a constant but depend

on the input stateuc in&. SinceAre includes enough effects s
that Pdet>12O(e t11), when Eq.~27! is satisfied, we also
have (nPKre

pn>12O(e t11) and (nPKre
pnln

>12O(e t11).
We now prove that(nPKre

pnln is a lower bound on the
fidelity. Defining theresidue operator

pn5APCAn
†AnPC2ApnlnPC , ~29!

we find, for the operator norm ofpn ,

0<upnu<Apn2Apnln ~30!

and

AnPC5Un~ApnlnI 1pn!PC . ~31!

The sufficiency of our conditions to obtain the desir
fidelity may be proved as follows. Though Eq.~23! is not
-

t

of
h
e
r
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;
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satisfied, as long as Eq.~28! is true, we can still define the
approximaterecovery operation

R~r!5 (
kPKre

RkrRk
†1PErPE , ~32!

with Rk5PCUk
† as theapproximaterecovery operation for

Ak and PE defined as in the case of exact error correctio
For a pure input stateuc in&^c inu, applying R~r! on
E(uc in&^c inu) and ignoring the last term that is positive de
nite produces an output with fidelity

F [ min
uc in&PC

tr@ uc in&^c inuR„E~ uc in&^c inu!…#

> min
uc in&PC

(
k,nPKre

z^c inuUk
†Anuc in& z2. ~33!

Omitting all terms for whichkÞn and applying Eq.~31!
gives

F > min
uc in&PC

(
nPKre

z^c inuApnln1pnuc in& z2> (
nPKre

pnln ,

~34!

where in the last step we have used Eq.~30!. Hence the
fidelity is at least(nPKre

pnln>12O(e t11) and the desired
fidelity order is achieved as claimed.

An explicit procedure for performing this recovery is a
follows. First, a measurement of the projectorsPk

[UkPCUk
† is performed. Conditional on the resultk of the

measurement, the unitary operatorUk is applied to complete
the recovery.

Note that when the exact criteria hold, it is not necess
for the setA to form an operator sum representation for t
error process; they may instead give a generalized des
tion of the quantum process such as

E~r!5 (
mnPK

AmrAn
†xmn , ~35!

wherexmn is a matrix ofc-numbers@15#. In this case, ap-
proximate criteria can be obtained straightforwardly alo
the lines we have described for the operator sum represe
tion ~wherexmn is diagonal!. The main issue is to ensure th
interference terms coming from off-diagonal terms inxmn
are sufficiently small. We will not describe this calculatio
here. Instead, we return to our four-bit code and analyz
using the relaxed criteria.

IV. FOUR-BIT CODE REVISITED

In terms of the approximate quantum error correction c
teria Eqs.~27! and~28!, we may understand why our four-b
amplitude damping quantum code works as follows. Let
orthonormal basis for the Hilbert space be ordered as

u0000&,u0011&,u1100&,u1111&,u0111&,u0100&, . . . .
~36!

The projection operatoru0L&^0Lu1u1L&^1Lu onto the two-
dimensional codeword spaceC is
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PC5
1

2 F 1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

G , ~37!

where we include only the first few nonzero rows and c
umns in the above matrix. We are interested in the restric
of the effect operatorsAk to C; therefore, we will exhibit only
the rows and columns in the matrices that have nontri
contributions toAkPC . The first effect operator~no loss of a
quantum to the environment! is

A00005F 1 0 0 0

0 12g 0 0

0 0 12g 0

0 0 0 ~12g!2

G . ~38!

The eigenvalues ofPCA0000
† A0000PC are (12g)2 and 1

2 @1
1(12g)4#. Interested readers can check for themselves

A0000PC5U0000$~12g!I 1~g21O~g4!#p̃0000%PC
~39!

~the order ofg in p0000 is factored out ofp̃0000) with the
choice

U000053
cosS u2

p

4 D 0 0 2sinS u2
p

4 D
0 1 0 0

0 0 1 0

sinS u2
p

4 D 0 0 cosS u2
p

4 D 4 , ~40!

p̃00005F 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

G , ~41!

where tanu5(12g)2 and again we have truncated the mat
cesU0000 and p̃0000 to the first few rows and columns con
tributing nontrivially to the restriction toC. The exact quan-
tum error correction criteria are not satisfied,
PCA0000

† A0000PC has different eigenvalues. However, the d
ference is ofO(g2) and thus the relaxed condition Eq.~27!
is satisfied.

For the second effect~loss of one quantum from then1
mode!, we have

A10005~12g!1/2Ag3
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 12g 0 0

0 0 1 0 0 0

4 . ~42!
-
n

l

at

The eigenvalues ofPCA1000
† A1000PC are g(12g) and g(1

2g)3. The difference is (2g22g3)(12g). We have the
decomposition

A1000PC5A~12g!g

2
U1000@~12g!I 1gp̃1000#PC ,

~43!

U100053
1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

4
33

1

&
0 0 2

1

&
0 0

0
1

&
2

1

&
0 0 0

0
1

&

1

&
0 0 0

1

&
0 0

1

&
0 0

0 0 0 0 1 0

0 0 0 0 0 1

4 ,

p̃100053
0 0 0 0 0 0

0 0
1

&
0 0 0

0 0
1

&
0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

4 . ~44!

Other one-loss cases are similar. For differentk, the UkPC
matrices have nonzero entries in different rows and are
thogonal to each other. Hence all the approximate code
teria are satisfied. Using these explicit matrices, we obta

R„E~ uc in&^c inu!…' (
kPKre

PCUk
†Akuc in&^c inuAk

†UkPC

5~123g2!uc in&^c inu1••• .
~45!

The fidelity is thus at least 123g2 and is of the desired
order.

The recovery procedure suggested in Eq.~45! contrasts
with the decoding and recovery circuits in Sec. II A. It is a
interesting exercise to check that the composition of the
erations in Figs. 2~a! and 2~b!, followed by re-encoding the
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recovered qubit has the same effect onC as applyingU0000
†

for recovery. For the case in which an emission occurs in
first qubit, the composition of operations in Figs. 2~a! and
2~c!, followed by re-encoding the recovered qubit, has
same effect onC as preferentially damp out theun3&5u0&
component followed by applyingU1000

† for recovery. Note
that it costs 2g2 in the fidelity for removing the distortion.

V. APPLICATIONS TO OTHER CODES

Our approximate criteria may also be used to simp
code construction using a non-Pauli error description ba
For example, consider the bosonic quantum codes for am
tude damping@10# ~these are codes which utilize boson
states u0&,...,un& instead of qubits!. For logical states
uc1&,uc2&,... of theform

ucl&5Am1un11n12•••n1m&1Am2un21n22n2m&1•••

1AmNl
unNl1

nNl2
•••nNlm

&, ~46!

the original nondeformation conditions for correcting up
one photon loss require the following to be constant for
logical states:

^cl uA0
†A0ucl&5(

i 51

Nl

~12g!RSim i , ~47!

^cl uA0•••1•••0
† A0•••1•••0ucl&5(

i 51

Nl

~12g!RSi21gm ini j .

~48!

In the above,RSi5( j 51
m ni j is the total number of excitation

in the i th quasiclassical state~QCS! in ucl&. It is difficult to
find a solution for Eq.~48! whenRSi is not constant for alli .
That is the reason why previous work@6,9# suggests using
only QCSs with the same number of excitations.

With the relaxed criteria, it suffices for the following to b
constant for all logical states:

(
i 51

Nl

gm ini j ; j . ~49!

That is, instead of requiring the individual number of ex
tations in each QCS to be balanced, it is sufficient to bala
the averagenumber of excitations over the QCS in ea
codeword. This provides an alternative explanation of w
the known five-bit perfect quantum codes@3,16#
.

a

A

e

e

is.
li-

ll

e

y

u0L&5u00000&1u11000&2u10011&2u01111&1u11010&

1u00110&1u01101&1u10101&,

u1L&5u11111&2u00011&1u01100&2u10000&2u00101&

1u11010&1u10010&2u01010& ~50!

work for amplitude damping errors@as described in Eq.~4!#:
Although the codes do not satisfy the exact nondeforma
criterion, Eq.~48! for the error representation of Eqs.~1! and
~2!, they do satisfy theapproximateones leading to Eq.~49!.

VI. CONCLUSION

We have shown by an example that choosing an app
priate error basis can potentially reduce the number of qu
and other requirements in coding schemes. We also s
gested a method to enable code construction without
Pauli basis to be done more easily. We believe that m
more can be done along these two directions. The rela
sufficient criteria for error correction are far from being ne
essary. Our results show that it is worthwhile to look f
better approximate conditions or conditions that are b
necessary and sufficient. Approximate error correction is p
ticularly interesting because it is a property with no analog
classical digital error correction, as it makes use of slig
nonorthogonalities possible only between quantum state
also extends the current scope of quantum error correct
which is closely related to classical digital error correction
would be especially useful to develop a general framew
for constructing codes based on approximate conditio
similar to the group-theoretic framework now used to co
struct codes that satisfy the exact conditions.
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