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Dynamics of dissipative two-level systems in the stochastic approximation
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The dynamics of the spin-boson Hamiltonian is considered in the stochastic approximation. The Hamiltonian
describes a two-level system coupled to an environment, and is widely used in physics, chemistry, and the
theory of quantum measurement. We demonstrate that the method of stochastic approximation, a general
method for consideration of dynamics of an arbitrary system interacting with environment, is powerful enough
to reproduce qualitatively the striking results by Leggetal.[Rev. Mod. Phys59, 1 (1987)] found earlier for
this model system. The results include an exact expression of the dynamics in terms of the spectral density, and
show the appearance of two interesting regimes for the system, i.e., pure oscillating and pure damping ones.
Correlators describing the environment are also compyi&tD50-294®7)09409-2

PACS numbd(s): 03.65—w

[. INTRODUCTION We denotew(k) the one-particle energy of the environ-
ment, and assume(k)=0. The functiong(k) is a form
The so-called spin-boson Hamiltonian is widely used infactor describing the interaction of the system with the envi-
physics and chemistry. In its simplest version it describes #onment, and\ is the coupling constant. It is well known
dynamical model of a two-level system coupled to an envithat, in times of ordet/\?, the interaction produces effects
ronment. One of the basic ideas is that the environment inef ordert. Thus\ provides a natural time scale for the ob-
duces dissipative effects, but, as we shall see, the picture g&ervable effects of the interaction system environment.
much richer. Examples include the motion of defects in some Referencd1] showed a very rich behavior of the dynam-
crystalline solids, the motion of the magnetic flux trapped inics of Hamiltonian(1.1) ranging from undamped oscillations,
a rf superconducting quantum interference device ring, som&® exponential relaxation, to power-law types of behavior
chemical reactions, some approaches to the theory of quaand to total localization. Legge¢t al.[1] found the remark-
tum measurement, and many other approaches quoted in thble result that the main qualitative features of the system
survey papefl] which inspired the present work. The “spin- dynamics can be described in terms of the temperdtige
boson” Hamiltonian considered in the present paper is thehe initial state of the environmenand of the behavior, for

same as considered in RéL], i.e., low frequenciesw, of the spectral function
H)\:—%AUX'F%SO'Z‘FJ dk w(k)aT(k)a(k) J(w)=fdk|g(k)|25[w(k)—w] (12)
+No [A(g*)+AT(g)], 1.9

The goal of this paper is to investigate the dynamics of the
where o, and o, are Pauli matrixes, and and A are real Hamiltonian(1.1) in the so-calledstochastic approximation
parameters interpreted, respectively, as the energy differendéne overall qualitative picture emerging from this approach
of the states localized in the two wells in absence of thds similar to the one described in Rét], and in some cases
tunneling and as the matrix element for tunneling betweerthe quantitative agreement is also gdefl Sec. I\).
the wells. We seA >0 and denote

[I. STOCHASTIC APPROXIMATION
t(a)= | at —
A (g)—f al(kjg(kydk, A(g*)—J’ a(k)g* (k)dk, The basic idea of the stochastic approximation is the fol-

lowing. If one has a Hamiltonian of the form
wherea(k), anda'(k) are bosonic annihilation and creation

operators, H,=Hg+\V, (2.1

T — L
[adk),a’(k")]=a(k=k"), then, by definition, the stochastic limit of the evolution op-

which describe the environment. erator
UM (t)=eMoeHa 22
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U(t)= lim UW(%). (2.3 Aa(t)=f a(k)e teaWg* (k)dk, (2.7a
A—oc
Notice that, on the right-hand side of E@.3), there is not where the functionss,(k) have the form
UM but its rescaled versio™(t/\?). Thus the limiting w, K=ok -o,, a=123. 2.79
evolution operatolJ(t), Eq.(2.3), describes the behavior of

the model in the time scale described in the introduction. Theédere w(k) is as in Eq.(1.1), and w, are characteristic fre-
stochastic approximation is a natural generalization of thejuencies given formulé3.123.

Friedrichs—van Hove limit which uses the same time rescal- From Eq.(2.7) it is clear that to have a nontrivial limit for
ing but allows one to compute only vacuum expectation valu®™(t/x2), the limit

ues of the form(UEXMUf,Y?) for particular classes of ob-
servablesA. This leads tdrreversible evolutionand to the
correspondingmaster equationConversely, the stochastic
approximation leads toeversible, unitary evolutiorand to

the correspondinguantum stochastic differential equation should exist. It can be prove@f. Ref.[4]) that limit (2.8)

from which the master equation is deduced by a now Stanexists for “good” functionSwa(k) and g(k) in the sense
dard procedure which consists of integrating away the envithat

ronment degrees of freedom.
The stochastic approximation to the original dynamics 1 t, 1 t,
. . . . . H €1 €n _ €1 €n
(2.2) consists in the computation of limi2.3) in the sense of lim YA N2 N Al 02 —<ba1(t1)"'ban(tn)>,

A—0
(2.9

li ! A
m - A,
A—0 A

t
F) =b,() 28

matrix elements over some statgg (called “collective
states”) which themselves depend on the paramaten a

singular way. The fact that one cannot expect lifaif3) to where the indiceg; label the creatorse(=0) and the anni-

exist for arbitrary states, but only for a carefully chosen Clasﬁilators =1); the brackets in Eq2.9) denote mean values

O;?tﬁgsé E’;?ST?]l;eae?%CF:p Igtggtgruna'wa:c[gen c;?irs][caélgape(;fo ver the Fock vacuum or a temperature state, and, for @ach
v Velsl. v inatl IS class b,(t) is the Fock Boson quantum field described by Egs.

states was obtained in R¢8]. : :
The stochastic approximation could also be considered Ezr;‘m and (2.19 below. In the literature 5correlated(in

new kind of semiclassical approximation in the sense that i €) guantum fields are often callgliantum noisesin the
. . ; . resent paper only quantum white noises shall appear, but it
studies thdluctuationsaround the classical solution and not bap ya pp

L . . ) is important to keep in mind that many other possibilities can
the approximation of it. This interpretation however shall not_ . ; :
be discussed heref. Ref. [4]). arise from different physical models.

One of the important features of the stochastic method is From Eq.(2.6), in the limit A —0 one has,

its universality The restriction to Pauli matrixes in E(L.1) du(t)
is unnecessary: the theory is applicable whenever the evolu-  —— = —i> [DIob,(t)+D,®bl(tH)JU(t).
tion operatotUM(t), Eq. (2.2, satisfies the equation @ 2.10
du™t .
dt( ) VUM, (2.4 The limit (2.3) means that
t
. . H N ) — ’
whereV(t) = e'"Move ™o has the form AI'TO<\P“ Y ()\2)\?”> (pu®y), (217
where the collective vectord, are defined b
V()=3 [DIoA,()+D,0ALN], (25 : g
¢ 1 t 1 t
v, == A" (—12 =l (—Z)W, (2.12
and D, are operators describing the system. The rescaled AN A EniA

evolution operatot) M(t/\?), associated with Eq2.5), sat-

isfies the equation and converge to the correspondingparticle vectors in the

noise space, given by

t —npt ...pt (0)
dU v) . p=bl, (ty)--b] (1)l (2.13
DL@XAQ(F +D

a2

m @ PO and ¢ are the vacuum vectors in the corresponding
Fock spaces. liv, # wg for a# g [as is the case for Hamil-
® E Al —tz”U(M(t/?\z) (2.6) tonian(1.1)] thenb, ,b! satisfy the commutation relations
) PN ' '
[b,(t),b], (1) ]= 8 dad(t—t), (2.14

In the spin-boson Hamiltoniafl.1), D, are Pauli matrixes
[cf. formulas(3.10b, (3.12h, and(3.8)], and wherelJ,, is the spectral functiofl.2),
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t+dt

(2.15 b, (ndr

as,0)- |

Thus, as announced in Sec. |, in the stochastic limit the specire called stochastic differentials and satisfy the Ito table
tral function emerges naturally as the covariance of the quan-

tum noise. Some care is needed in the interpretation of EqdB,dB{=2vdt, dtdB/=dB,dB,=dB[dB{=dB/dB=0.
(2.10 because, as is clear from E(®.14), b,(t) are not (219
bonafideoperators but only operator-valued distributions. In

3,=27 [ dMgtFolw, (0]

order to give a meaning to ER.10 (more precisely, to its
matrix elements in then-particle or coherent vectorswe
rewrite Eq.(2.10 in normal form by bringingo,(t) to the
right of U(t). This gives rise to a commutator which can be
explicitly computed. The result is

du(t)

dt

—i>, [DIU(t)b,(1)+D,bl(t)U(t)

—iy,DID, U], (2.16

wherey, are complex numbers given explicitly by

0 )
)/QZI de dk é7«M|g(k)|. (2.17

The connection between the constapisin the last term in
Eq. (2.16 (the Ito correction term and the spectral function
(2.15 is obtained by exchanging thter and thedk integral
in Eq. (2.17 and using the known formula

o 1
f etedt=mwd(w)—iP —,
—w ®

The proof of the Ito tablg2.19, as well as its rigorous
meaning, was first established in RE5]. This was subse-
quently applied to several models in quantum optics in Refs.
[3] and [4]. Using it, the unitarity of the solution of Eq.
(2.18 is easily established.

The advantage of Eq2.16 over the original ondEq.
(2.4)] is that it is in some sense completely integrable, and
one can easily read the physics from it. For example for the
vacuum expectation value one has the equation

du)
dt

Eal ¥.D1D (U(1)),

which gives the damped oscillatory regirtee y,, are com-
plex numbey

(Ut)y=e, T=2 y,DID,.

In the following we shall apply this method to the Hamil-
tonian(1.1) and, in Sec. IV we shall compare our result with
those of Refs[1, 6].

Ill. STOCHASTIC APPROXIMATION
FOR THE “SPIN-BOSON” SYSTEM

where P denotes the principal part integral. This shows that

the spectral functions are the real parts of the constants
emerging in the Ito correction ternThis connection is the
prototype of thalispersion relationsvidely used in quantum
physics since its origins. Since, are complex, Eq(2.16
looks like an equation driven by a non-self-adjoint Hamil-

In order to apply the stochastic approximation to Hamil-
tonian (1.1), we write Eq.(1.1) in the form of Eq.(2.1),
where

tonian. However, this is only an apparent phenomenon due to

the normal order. The true Hamiltoni&®.10, although sin-
gular, is formally self-adjoint, and this gives an intuitive ex-
planation of the unitarity of the solution of E¢2.16) or,
equivalently, of Eq(2.10.

Relations(2.14—(2.17 define the stochastic approxima-
tion to the system2.4). The termstochasticis justified by
the fact that the distribution equatidi2.16), which has a
weak meaning in tha-particle vectors, can be interpreted as
a quantum stochastic differential equati@nd, in fact, it is
in this form that this equation was first deriv¢d]). The
operatord ,(t), bz(t) are called gyuantum white noiseand
the additional term in E¢(2.16), arising in Eq.(2.16 from
normal order, is called thdrift or the Ito correction term
More precisely, in quantum probability one usually writes
Eqg. (2.16 in the form

du(t)=—i, [DIdB,(t)+D,dB(t)

—iy,DID dt]U(t), (2.18

where

HOZH5+HR. (31)
The system Hamiltoniahl g is
He=—31Ao,+3¢e0, 3.2
and the reservoir HamiltoniaHy, is
HR=f dk e(k)a’(k)a(k). (3.3

The evolution operatod M(t) satisfies Eq(2.4), where
V() =a,()[A(e g ) +AT(elg)] (3.4
and
o (1) = etHsg g itHs

(3.5

To bring Eq.(3.4) into the form of Eq.(2.5), let us compute
Eq. (3.5. The eigenvalues of the Hamiltoni48.2) are
Hgles)=N.|es), (3.6

where

Il
I+
N

(3.7
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and y3 as well asy; do contribute to Eq(2.17). We denote
(3.8 b,(t) by b(t). Thus the operators(t), b'(t) satisfy

1 1
'e+>:m(M:)

[b(t),b"(t")]=ya(t—t'), (3.19
and
. o\ 2712 with y given by Eq.(3.16 below andv (in y) given by Eq.
MzZKi R 1 (3.9 (3.9. The limiting evolution equation can then be written
duU(t) + T . t
Notice, for future use, that T:Db (HU)—-D'U(t)b(t)—(y+ioc)D'DU(1)
1-p? —ipU(t 3.1
(ecloder)=1r 7. (eslole)=(e-|afe.)=1m U, @13
" where
Therefore
y=v ?mwI(vA),
t ——fl_Mz‘ DD1“+—71_M2+ DD+ v le4D -
Uz()—lﬂL 15 2 ve o=v 2[1(—vA)—1(vA)]
+v le DT, (3103 Sl A 10, (316
1+/_L2, :I.-I—/.LZ+ ' ’
where
1_,“2 2
D:|e+)<e,|. (SlOb ¢:V72|(_VA)+ I 2) |(O),
M=
The interaction Hamiltoniaf3.4) can now be written in the
form of Eq.(2.5): and we denote
3
V(t)= >, (DL@A(e*“‘“ag*)JrH.c.), (3.11 J(w)=f dkg(k)|?8 w(k) — o],
a=1
where the three spectral frequencies correspond, respec- |(w):pfw M (3.17
tively, to the down, zero, and up transitions of the two-level 0o © -
system, i.e.,

where P means the principal part of the integral.
w1(K)=w(k)—vA, wik)=w(k), wiz(k)=w(k)+vA, In the notations of quantum stochastic equati¢®45
(3.129  reads

) 1-p? 1-p2 dU(t)=[DdB! - D'dB,— (y+i0)D'D—ie]U(t).
D1=v7D D=y, 7 DT 4,7 D, S 318
- +
D,=»"1D". (3.12H Notice that all parameterg, o, and¢ in the evolution equa-

tion (3.15 are expressed in terms of the spectral density

The corresponding limiting evolution equation therefore has)(®), Eg. (3.17, and parametera and ¢ of the original
the form of Eq.(2.16). It is important to note however that Hamiltonian(1.1).
the constant$2.15 for =2, 3 vanish, i.e.,
IV. ANALYSIS OF THE STOCHASTIC APPROXIMATION.
J2=J3=0. 3.13 ZERO TEMPERATURE

We shall see that the purely oscillatory regime, first discov- Let us discuss now in more detail the implications of the
ered by Leggetet al. [1], corresponds to the case wha&n  results of the previous sections for the “spin-boson” Hamil-
also vanishes. In this sense it can be interpreted as an offenian. All the information about the model is encoded into
resonance regime. In this regime a straffgem the point of  the constants, o, and¢, and these constants are expressed
view of stochastic theojynew phenomenon take place: in in terms of the spectral densif{w), Eq.(3.17), depending
the t/\? limit the environment disappearse., the limit on  on the parameters of the HamiltoniénandA) and the tem-
the right-hand side of Eq2.8) is zero, corresponding to a perature(not yet introduced up to nowThus the method of
guantum white noise of zero variancélowever, a remnant stochastic approximation confirms the conclusion of Leggett
of the interaction remains because, after the limit, the systerat al. [1] that the long-time behavior of the model is ex-
evolves with a new Hamiltonian, equal to the old one plus gressed in terms of the spectral denslfw).
shift term depending on the interaction and on the initial Now let us discuss the dynamics of the system in the
state of the field. This is a kind @Zheshire cat effect stochastic approximation. We are interested in a pure damp-
Equation (3.13 implies that the operatord, and b;  ing or pure oscillating behavior.
should be absent in Eq2.16. However, the constantg, For the vacuum expectation value, we have
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(U(t)y=e e+e ¢l(e "t 1)D'TD (4.2 y=mJ(A)=0. (4.1
and, taking the trace over the spin variables, one obtainslotice that, because of E¢3.17) this condition defines an
(since TD'D=1) off-resonance conditiorif Eq. (4.11) satisfied, then

<trU(t)>:e—[y+i(o+<p)]t. (42) P(t):DTei(U—A)t+ De_i(U_A)t, (412

Sincey, o, andg are realcf. Eqs.(3.19—(3.17], one has a \yhere
purely oscillating behavior, Eq4.2), if and only if there is

no damping, i.e., dxJ(x) dxJ(x)
o-A= J a2 P f x4
y=0. 4.3 X

This case of pure oscillations is very interesting. If there is a
damping, then after a rather short tirRét) becomes a small
quantity which is difficult to observe. The case of permanent

However, one cannot have a vanishing of oscillations, be
cause the quantity

s 1—u?\? oscillations looks more promising for observations. This re-
ote=v I(—-vA)+ 17 .12 1(0)>0 (44  gime is of primary interest in the context of the so-called
macroscopic quantum coherence phenomdn
is strictly positive for positivel(w) [because,, A>0, cf. Eq. The purely oscillatory regime was discovered in Réf,
(3.9] andl(w) is given by Eq.(3.17). but the region of parameters there is different from ours. To
The stochastic approximation to the vacuum expectatioget pure oscillations we need the only off-resonance condi-
value of the Heisenberg evolution of, is given by tion (4.11), i.e., in terms of the spectral density, what we
need is
P()=(U* (D)o ()U(1)). (4.5
From Eq. (3.15, one obtains the Langevin equation for J(A)IJ dklg(k)|?8[ (k) —A]=0.

P(t), whose solution is
The difference from Ref.1] can be attributed to the different

— =1t Tal(o—vA)t —i(o—vA)t .
P()=v"e 7(D'e +De ) boundary conditions on correlators.

1-p2 1 p2 1— 2 Let us present our results on the computation of the cor-
+D'D t_ AR — relator
1+us 1+M7, 1+up
(4.6) C(t)=z({Uf o,Ur ) = 2{P(1),P(0)}.
Let us discuss separately the simplest casé®. We have
A. Casee=0, zero temperature io+i 1_M2— 1‘/&
. ’ p C(t):%e_(7+|U+IVA)t V_2+V_1D +
In this case, one has I+ps 14p%
2 2
—a MO Tai(c—At —i(o—A)t 1—p2 -
P(t)=e (DT V4 De 78, (4] tH.et — |, {(D+DN+ 5 DD'
1+ puc 1+ps
wherey, o, andl (w) are now ) ) )
1-—w o (1=py 1—pt
do'J(w") + ; D'D||+e”? ;_—2
y=mJ(A), o=I(—A)—1(A), I(w)sz —_—. 1+us Itpty 1t+u”
w w 1 ’
H H H -1 t t M
Two interesting regimes can now appear. X| v H(D+D")+2D'D 1722 (4.13
(i) No oscillations In this case, s
o—A=0. (4.8  The trace ofC(t) is
Equation(4.9) is equivalent to the integral equation trC(t)=2v"2e” " cog o+ vA)t
2 2 2
f dxJ(x) Pf dx J(x) A 4.9 +2e~ 2 1-ph 1-pZ)(1-pd
X+A x—A 7 (4.9 1+,ui 1+,u2, 1+,ui '
If Eqg. (4.9 is satisfied, then we have pure damping: The qualitative behavior oE(t) is like that for P(t).
—aMpt
P(t)=e "(D'+D). (4.10 B. Nonzero temperature
We will discuss solutions of Eq4.9) later. For a nonzero temperature we get a stochastic evolution

(ii) Pure oscillations This regime is defined by the con- equation of the same form as above KE8.15, only with
dition new constantg, ¢ and ¢. More precisely,
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y=v ?m[I . (vA)+I_(vA)], whose imaginary part defines an energy shift in the system

Hamiltonian. When the environment free energy depends

2 2\2

1-u? 1-pu? only on the modulus of momentufw(k)=w(|k|) in Eq.

BT R [1+(0)+1-(0)] (1.1)] the real and imaginary parts of this function are related

* - by a Hilbert transform, thus making a bridge with the stan-

+u I (—vA) =1 (vA)+1_(—vA)—1_(vA)], darddispersion relationgcf. Sec. 1).
In the stochastic approach not only the Heisenberg equa-
where the spectral densities are tion of the system observables is controlled, but also the
_ environment evolution. It is shown that the environment con-
J(w) J(w)e Pe

verges to quantum noiséa master field, in particle physi-
cist terminology. This gives a theoreticdi.e., based on a

) ) ) ) microscopic Hamiltonian descriptipfioundation to the use
HereJ() is the spectral densit§8.17), andgis the inverse  qf classical of quantum noises widely used in several con-

Jilo)=1—gpar I-(0)=7 7

temperature. _ temporary approaches to quantum measurement tf&gfly
The functionsl .. (w) are defined by We can compute the limit matrix elements of Heisenberg
do'J. (') evolution for _arbitraryn—par'gicle or coherent vectors. Th_e
|i(w):pf - vacuum matrix elements give rise to the master equation.
T The control of the other matrix elements is a new feature of

One has the same as for the zero-temperature ex ressiotrbse stochastic approach.
P P The purely oscillatory regime, discovered by Leggett

(4.1 and(4.13 for P(t) andC(t), but now with new con- et al.[1], is related here to &€heshire cat effedh which the

stantsy and o depending on temperature: environment variables vanish in the limit but, the interaction
BrA leaves a track in the system behavior in the form of an op-
y= v‘sz(vA)cothT. erator shift in the system Hamiltonigof. Sec. ).
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