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Dynamics of dissipative two-level systems in the stochastic approximation

L. Accardi,1,* S. V. Kozyrev,2,† and I. V. Volovich3,‡

1Centro Vito Volterra, Universita` di Roma, Tor Vergata, 00133 Rome, Italy
2Institute of Chemical Physics, Kossygina Street 4, 117334 Moscow, Russia

3Steklov Mathematical Institute of Russian Academy of Sciences, Gubkin Street 8, 117966 Moscow, Russia
~Received 4 March 1997!

The dynamics of the spin-boson Hamiltonian is considered in the stochastic approximation. The Hamiltonian
describes a two-level system coupled to an environment, and is widely used in physics, chemistry, and the
theory of quantum measurement. We demonstrate that the method of stochastic approximation, a general
method for consideration of dynamics of an arbitrary system interacting with environment, is powerful enough
to reproduce qualitatively the striking results by Leggettet al. @Rev. Mod. Phys.59, 1 ~1987!# found earlier for
this model system. The results include an exact expression of the dynamics in terms of the spectral density, and
show the appearance of two interesting regimes for the system, i.e., pure oscillating and pure damping ones.
Correlators describing the environment are also computed.@S1050-2947~97!09409-2#

PACS number~s!: 03.65.2w
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I. INTRODUCTION

The so-called spin-boson Hamiltonian is widely used
physics and chemistry. In its simplest version it describe
dynamical model of a two-level system coupled to an en
ronment. One of the basic ideas is that the environment
duces dissipative effects, but, as we shall see, the pictu
much richer. Examples include the motion of defects in so
crystalline solids, the motion of the magnetic flux trapped
a rf superconducting quantum interference device ring, so
chemical reactions, some approaches to the theory of q
tum measurement, and many other approaches quoted i
survey paper@1# which inspired the present work. The ‘‘spin
boson’’ Hamiltonian considered in the present paper is
same as considered in Ref.@1#, i.e.,

Hl52 1
2 Dsx1 1

2 «sz1E dk v~k!a†~k!a~k!

1lsz@A~g* !1A†~g!#, ~1.1!

wheresx and sz are Pauli matrixes, and« and D are real
parameters interpreted, respectively, as the energy differ
of the states localized in the two wells in absence of
tunneling and as the matrix element for tunneling betwe
the wells. We setD.0 and denote

A†~g!5E a†~k!g~k!dk, A~g* !5E a~k!g* ~k!dk,

wherea(k), anda†(k) are bosonic annihilation and creatio
operators,

@a~k!,a†~k8!#5d~k2k8!,

which describe the environment.

*Electronic address: accardi@volterra.mat.utovrm.it
†Electronic address: kozyrev@genesis.mian.su
‡Electronic address: volovich@genesis.mi.ras.ru
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We denotev(k) the one-particle energy of the environ
ment, and assumev(k)>0. The functiong(k) is a form
factor describing the interaction of the system with the en
ronment, andl is the coupling constant. It is well known
that, in times of ordert/l2, the interaction produces effect
of order t. Thusl provides a natural time scale for the o
servable effects of the interaction system environment.

Reference@1# showed a very rich behavior of the dynam
ics of Hamiltonian~1.1! ranging from undamped oscillations
to exponential relaxation, to power-law types of behav
and to total localization. Leggettet al. @1# found the remark-
able result that the main qualitative features of the sys
dynamics can be described in terms of the temperature~i.e.,
the initial state of the environment! and of the behavior, for
low frequenciesv, of the spectral function

J~v!:5E dkug~k!u2d@v~k!2v#. ~1.2!

The goal of this paper is to investigate the dynamics of
Hamiltonian~1.1! in the so-calledstochastic approximation.
The overall qualitative picture emerging from this approa
is similar to the one described in Ref.@1#, and in some case
the quantitative agreement is also good~cf. Sec. IV!.

II. STOCHASTIC APPROXIMATION

The basic idea of the stochastic approximation is the
lowing. If one has a Hamiltonian of the form

Hl5H01lV, ~2.1!

then, by definition, the stochastic limit of the evolution o
erator

U ~l!~ t !5eitH 0e2 i tH l ~2.2!

is the following limit @when it exists in the sense specified b
Eqs.~2.11! and ~2.12! below#:
2557 © 1997 The American Physical Society
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U~ t !5 lim
l→`

U ~l!S t

l2D . ~2.3!

Notice that, on the right-hand side of Eq.~2.3!, there is not
Ut

(l) but its rescaled versionU (l)(t/l2). Thus the limiting
evolution operatorU(t), Eq. ~2.3!, describes the behavior o
the model in the time scale described in the introduction. T
stochastic approximation is a natural generalization of
Friedrichs–van Hove limit which uses the same time res
ing but allows one to compute only vacuum expectation v
ues of the form̂ Ut/l2

(l) LUt/l2
(l)* & for particular classes of ob

servablesL. This leads toirreversible evolutionand to the
correspondingmaster equation. Conversely, the stochasti
approximation leads toreversible, unitary evolutionand to
the correspondingquantum stochastic differential equatio
from which the master equation is deduced by a now s
dard procedure which consists of integrating away the e
ronment degrees of freedom.

The stochastic approximation to the original dynam
~2.2! consists in the computation of limit~2.3! in the sense of
matrix elements over some statescl ~called ‘‘collective
states’’! which themselves depend on the parameterl in a
singular way. The fact that one cannot expect limit~2.3! to
exist for arbitrary states, but only for a carefully chosen cl
of states, was already pointed out in the classical pape
van Hove@2#. The effective determination of this class
states was obtained in Ref.@3#.

The stochastic approximation could also be considere
new kind of semiclassical approximation in the sense tha
studies thefluctuationsaround the classical solution and n
the approximation of it. This interpretation however shall n
be discussed here~cf. Ref. @4#!.

One of the important features of the stochastic metho
its universality. The restriction to Pauli matrixes in Eq.~1.1!
is unnecessary: the theory is applicable whenever the ev
tion operatorU (l)(t), Eq. ~2.2!, satisfies the equation

dU~l!~ t !

dt
52 ilV~ t !U ~l!~ t !, ~2.4!

whereV(t)5eitH 0Ve2 i tH 0 has the form

V~ t !5(
a

@Da
†

^ Aa~ t !1Da ^ Aa
†~ t !#, ~2.5!

and Da are operators describing the system. The resca
evolution operatorU (l)(t/l2), associated with Eq.~2.5!, sat-
isfies the equation

dU~l!S t

l2D
dt

52 i(
a

FDa
†

^
1

l
AaS t

l2D1Da

^
1

l
Aa

† S t

l2D GU ~l!~ t/l2!. ~2.6!

In the spin-boson Hamiltonian~1.1!, Da are Pauli matrixes
@cf. formulas~3.10b!, ~3.12b!, and~3.8!#, and
e
e
l-
l-
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i-
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s
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d

Aa~ t !5E a~k!e2 i tva~k!g* ~k!dk, ~2.7a!

where the functionsva(k) have the form

va~k!5v~k!2va , a51,2,3. ~2.7b!

Here v(k) is as in Eq.~1.1!, andva are characteristic fre-
quencies given formula~3.12a!.

From Eq.~2.7! it is clear that to have a nontrivial limit for
U (l)(t/l2), the limit

lim
l→0

1

l
AaS t

l2D5ba~ t ! ~2.8!

should exist. It can be proved~cf. Ref. @4#! that limit ~2.8!
exists for ‘‘good’’ functionsva(k) and g(k) in the sense
that

lim
l→0

K 1

l
Aa1

«1 S t1

l2D •••
1

l
Aan

«n S tn

l2D L 5^ba1

«1~ t1!•••ban

«n~ tn!&,

~2.9!

where the indices« i label the creators («50) and the anni-
hilators («51); the brackets in Eq.~2.9! denote mean value
over the Fock vacuum or a temperature state, and, for eaca,
ba(t) is the Fock Boson quantum field described by E
~2.14! and ~2.15! below. In the literature,d-correlated~in
time! quantum fields are often calledquantum noises. In the
present paper only quantum white noises shall appear, b
is important to keep in mind that many other possibilities c
arise from different physical models.

From Eq.~2.6!, in the limit l→0 one has,

dU~ t !

dt
52 i(

a
@Da

†
^ ba~ t !1Da ^ ba

†~ t !#U~ t !.

~2.10!

The limit ~2.3! means that

lim
l→0

K Cl ,U ~l!S t

l2DCl8 L 5^c,U~ t !c8&, ~2.11!

where the collective vectorsCl are defined by

Cl5
1

l
Aa1

† S t1

l2D •••
1

l
Aan

† S tn

l2DC~0!, ~2.12!

and converge to the correspondingn-particle vectors in the
noise space, given by

c5ba1

† ~ t1!•••ban

† ~ tn!c~0!. ~2.13!

C (0) and c (0) are the vacuum vectors in the correspondi
Fock spaces. IfvaÞvb for aÞb @as is the case for Hamil
tonian ~1.1!# thenba ,ba

† satisfy the commutation relations

@ba~ t !,ba8
†

~ t8!#5daa8Jad~ t2t8!, ~2.14!

whereJa is the spectral function~1.2!,
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Ja52pE dkug~k!u2d@va~k!#. ~2.15!

Thus, as announced in Sec. I, in the stochastic limit the sp
tral function emerges naturally as the covariance of the qu
tum noise. Some care is needed in the interpretation of
~2.10! because, as is clear from Eq.~2.14!, ba(t) are not
bonafideoperators but only operator-valued distributions.
order to give a meaning to Eq.~2.10! ~more precisely, to its
matrix elements in then-particle or coherent vectors!, we
rewrite Eq.~2.10! in normal form by bringingba(t) to the
right of U(t). This gives rise to a commutator which can
explicitly computed. The result is

dU~ t !

dt
52 i(

a
@Da

†U~ t !ba~ t !1Daba
†~ t !U~ t !

2 igaDa
†DaU~ t !#, ~2.16!

wherega are complex numbers given explicitly by

ga5E
2`

0

dtE dk ei tva~k!ug~k!u2. ~2.17!

The connection between the constantsga in the last term in
Eq. ~2.16! ~the Ito correction term!, and the spectral function
~2.15! is obtained by exchanging thedt and thedk integral
in Eq. ~2.17! and using the known formula

E
2`

0

eitvdt5pd~v!2 iP
1

v
,

where P denotes the principal part integral. This shows
the spectral functions are the real parts of the constantsga ,
emerging in the Ito correction term. This connection is the
prototype of thedispersion relationswidely used in quantum
physics since its origins. Sincega are complex, Eq.~2.16!
looks like an equation driven by a non-self-adjoint Ham
tonian. However, this is only an apparent phenomenon du
the normal order. The true Hamiltonian~2.10!, although sin-
gular, is formally self-adjoint, and this gives an intuitive e
planation of the unitarity of the solution of Eq.~2.16! or,
equivalently, of Eq.~2.10!.

Relations~2.14!–~2.17! define the stochastic approxima
tion to the system~2.4!. The termstochasticis justified by
the fact that the distribution equation~2.16!, which has a
weak meaning in then-particle vectors, can be interpreted
a quantum stochastic differential equation~and, in fact, it is
in this form that this equation was first derived@3#!. The
operatorsba(t), ba

†(t) are called aquantum white noise, and
the additional term in Eq.~2.16!, arising in Eq.~2.16! from
normal order, is called thedrift or the Ito correction term.
More precisely, in quantum probability one usually writ
Eq. ~2.16! in the form

dU~ t !52 i(
a

@Da
†dBa~ t !1DadBa

†~ t !

2 igaDa
†Dadt#U~ t !, ~2.18!

where
c-
n-
q.

at

to

dBa~ t !5E
t

t1dt

ba~t!dt

are called stochastic differentials and satisfy the Ito table

dBtdBt
†52gdt, dtdBt

†5dBtdBt5dBt
†dBt

†5dBt
†dBt50.

~2.19!

The proof of the Ito table~2.19!, as well as its rigorous
meaning, was first established in Ref.@5#. This was subse-
quently applied to several models in quantum optics in Re
@3# and @4#. Using it, the unitarity of the solution of Eq
~2.18! is easily established.

The advantage of Eq.~2.16! over the original one@Eq.
~2.4!# is that it is in some sense completely integrable, a
one can easily read the physics from it. For example for
vacuum expectation value one has the equation

d^U~ t !&
dt

52(
a

gaDa
†Da^U~ t !&,

which gives the damped oscillatory regime~thega are com-
plex number!

^U~ t !&5e2Gt, G5(
a

gaDa
†Da.

In the following we shall apply this method to the Ham
tonian~1.1! and, in Sec. IV we shall compare our result wi
those of Refs.@1, 6#.

III. STOCHASTIC APPROXIMATION
FOR THE ‘‘SPIN-BOSON’’ SYSTEM

In order to apply the stochastic approximation to Ham
tonian ~1.1!, we write Eq. ~1.1! in the form of Eq. ~2.1!,
where

H05HS1HR. ~3.1!

The system HamiltonianHS is

HS52 1
2 Dsx1 1

2 «sz ~3.2!

and the reservoir HamiltonianHR is

HR5E dk v~k!a†~k!a~k!. ~3.3!

The evolution operatorU (l)(t) satisfies Eq.~2.4!, where

V~ t !5sz~ t !@A~e2 i tvg* !1A†~eivg!# ~3.4!

and

sz~ t !5eitH Ssze
2 i tH S. ~3.5!

To bring Eq.~3.4! into the form of Eq.~2.5!, let us compute
Eq. ~3.5!. The eigenvalues of the Hamiltonian~3.2! are

HSue6&5l6ue6&, ~3.6!

where

l656 1
2 Dn ~3.7!
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ue6&5
1

A11m7
2 S 1

m7
D ~3.8!

and

m65
«

D
6n, n5F11S «

D D 2G1/2

. ~3.9!

Notice, for future use, that

^e6uszue6&5
12m7

2

11m7
2 , ^e1uszue2&5^e2uszue1&51/n.

Therefore

sz~ t !5
12m2

2

11m2
2 DD†1

12m1
2

11m1
2 D†D1n21eitnDD

1n21e2 i tnDD†, ~3.10a!

where

D5ue1&^e2u. ~3.10b!

The interaction Hamiltonian~3.4! can now be written in the
form of Eq. ~2.5!:

V~ t !5 (
a51

3

~Da
†

^ A~e2 i tvag* !1H.c.!, ~3.11!

where the three spectral frequencies correspond, res
tively, to the down, zero, and up transitions of the two-lev
system, i.e.,

v1~k!5v~k!2nD, v2~k!5v~k!, v3~k!5v~k!1nD,
~3.12a!

D15n21D†, D25
12m2

2

11m2
2 DD†1

12m1
2

11m1
2 D†D,

D35n21D†. ~3.12b!

The corresponding limiting evolution equation therefore h
the form of Eq.~2.16!. It is important to note however tha
the constants~2.15! for a52, 3 vanish, i.e.,

J25J350. ~3.13!

We shall see that the purely oscillatory regime, first disc
ered by Leggettet al. @1#, corresponds to the case whenJ1
also vanishes. In this sense it can be interpreted as an
resonance regime. In this regime a strange~from the point of
view of stochastic theory! new phenomenon take place:
the t/l2 limit the environment disappears~i.e., the limit on
the right-hand side of Eq.~2.8! is zero, corresponding to
quantum white noise of zero variance!. However, a remnan
of the interaction remains because, after the limit, the sys
evolves with a new Hamiltonian, equal to the old one plu
shift term depending on the interaction and on the ini
state of the field. This is a kind ofCheshire cat effect.

Equation ~3.13! implies that the operatorsb2 and b3
should be absent in Eq.~2.16!. However, the constantsg2
ec-
l

s

-

ff-

m
a
l

andg3 as well asg1 do contribute to Eq.~2.17!. We denote
b1(t) by b(t). Thus the operatorsb(t), b†(t) satisfy

@b~ t !,b†~ t8!#5gd~ t2t8!, ~3.14!

with g given by Eq.~3.16! below andn ~in g! given by Eq.
~3.9!. The limiting evolution equation can then be written

dU~ t !

dt
5Db†~ t !U~ t !2D†U~ t !b~ t !2~g1 is!D†DU~ t !

2 iwU~ t !, ~3.15!

where

g5n22pJ~nD!,

s5n22@ I ~2nD!2I ~nD!#

1F S 12m2
2

11m2
2 D 2

2S 12m1
2

11m1
2 D 2G I ~0!, ~3.16!

w5n22I ~2nD!1S 12m2
2

11m2
2 D 2

I ~0!,

and we denote

J~v!5E dkug~k!u2d@v~k!2v#,

I ~v!5PE
0

` dv8J~v8!

v82v
, ~3.17!

where P means the principal part of the integral.
In the notations of quantum stochastic equations~3.15!

reads

dU~ t !5@DdBt
†2D†dBt2~g1 is!D†D2 iw#U~ t !.

~3.18!

Notice that all parametersg, s, andw in the evolution equa-
tion ~3.15! are expressed in terms of the spectral dens
J(v), Eq. ~3.17!, and parametersD and « of the original
Hamiltonian~1.1!.

IV. ANALYSIS OF THE STOCHASTIC APPROXIMATION.
ZERO TEMPERATURE

Let us discuss now in more detail the implications of t
results of the previous sections for the ‘‘spin-boson’’ Ham
tonian. All the information about the model is encoded in
the constantsg, s, andw, and these constants are express
in terms of the spectral densityJ(v), Eq. ~3.17!, depending
on the parameters of the Hamiltonian~« andD! and the tem-
perature~not yet introduced up to now!. Thus the method of
stochastic approximation confirms the conclusion of Legg
et al. @1# that the long-time behavior of the model is e
pressed in terms of the spectral densityJ(v).

Now let us discuss the dynamics of the system in
stochastic approximation. We are interested in a pure da
ing or pure oscillating behavior.

For the vacuum expectation value, we have
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^U~ t !&5e2 iwt1e2 iwt~e2~g1 is!t21!D†D ~4.1!

and, taking the trace over the spin variables, one obt
~since TrD†D51!

^trU~ t !&5e2@g1 i ~s1w!#t. ~4.2!

Sinceg, s, andw are real@cf. Eqs.~3.15!–~3.17!#, one has a
purely oscillating behavior, Eq.~4.2!, if and only if there is
no damping, i.e.,

g50. ~4.3!

However, one cannot have a vanishing of oscillations,
cause the quantity

s1w5n22I ~2nD!1S 12m2

11m2D 2

I ~0!.0 ~4.4!

is strictly positive for positiveJ(v) @becausen, D.0, cf. Eq.
~3.9!# and I (v) is given by Eq.~3.17!.

The stochastic approximation to the vacuum expecta
value of the Heisenberg evolution ofsz is given by

P~ t !5^U* ~ t !sz~ t !U~ t !&. ~4.5!

From Eq. ~3.15!, one obtains the Langevin equation f
P(t), whose solution is

P~ t !5n21e2gt~D†ei ~s2nD!t1De2 i ~s2nD!t!

1D†DS 12m1
2

11m1
2 2

12m2
2

11m2
2 D e22gt1

12m2
2

11m2
2 .

~4.6!

Let us discuss separately the simplest case«50.

A. Case«50, zero temperature

In this case, one has

P~ t !5e2gt~D†ei ~s2D!t1De2 i ~s2D!t!, ~4.7!

whereg, s, andI (v) are now

g5pJ~D!, s5I ~2D!2I ~D!, I ~v!5PE dv8J~v8!

v82v
.

Two interesting regimes can now appear.
(i) No oscillations. In this case,

s2D50. ~4.8!

Equation~4.8! is equivalent to the integral equation

E dxJ~x!

x1D
2PE dx J~x!

x2D
5D. ~4.9!

If Eq. ~4.9! is satisfied, then we have pure damping:

P~ t !5e2gt~D†1D !. ~4.10!

We will discuss solutions of Eq.~4.9! later.
(ii) Pure oscillations. This regime is defined by the con

dition
s

-

n

g5pJ~D!50. ~4.11!

Notice that, because of Eq.~3.17! this condition defines an
off-resonance condition. If Eq. ~4.11! satisfied, then

P~ t !5D†ei ~s2D!t1De2 i ~s2D!t, ~4.12!

where

s2D5E dxJ~x!

x1D
2PE dxJ~x!

x2D
2D.

This case of pure oscillations is very interesting. If there i
damping, then after a rather short timeP(t) becomes a smal
quantity which is difficult to observe. The case of perman
oscillations looks more promising for observations. This
gime is of primary interest in the context of the so-call
macroscopic quantum coherence phenomenon@7#.

The purely oscillatory regime was discovered in Ref.@1#,
but the region of parameters there is different from ours.
get pure oscillations we need the only off-resonance con
tion ~4.11!, i.e., in terms of the spectral density, what w
need is

J~D!5E dkug~k!u2d@v~k!2D#50.

The difference from Ref.@1# can be attributed to the differen
boundary conditions on correlators.

Let us present our results on the computation of the c
relator

C~ t !5 1
2 ^$Ut* szUt ,sz%&5 1

2 $P~ t !,P~0!%.

We have

C~ t !5 1
2 e2~g1 is1 inD!tFn221n21DS 12m2

2

11m2
2 1

12m1
2

11m1
2 D

1H.c.1
12m2

2

11m2
2 S n21~D1D†!1

12m2
2

11m2
2 DD†

1
12m1

2

11m1
2 D†D D G1e22gS 12m1

2

11m1
2 2

12m2
2

11m2
2 D

3S n21~D1D†!12D†D
12m1

2

11m1
2 D . ~4.13!

The trace ofC(t) is

trC~ t !52n22e2gt cos~s1nD!t

12e22gtS 12m1
2

11m1
2 2

12m2
2

11m2
2 D S 12m1

2

11m1
2 D .

The qualitative behavior ofC(t) is like that forP(t).

B. Nonzero temperature

For a nonzero temperature we get a stochastic evolu
equation of the same form as above Eq.~3.15!, only with
new constantsg, s andw. More precisely,
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g5n22p@J1~nD!1J2~nD!#,

s5F S 12m1
2

11m1
2 D 2

2S 12m2
2

11m2
2 D 2G @ I 1~0!1I 2~0!#

1n22@ I 1~2nD!2I 1~nD!1I 2~2nD!2I 2~nD!#,

where the spectral densities are

J1~v!5
J~v!

12e2bv , J2~v!5
J~v!e2bv

12e2bv .

HereJ(v) is the spectral density~3.17!, andb is the inverse
temperature.

The functionsI 6(v) are defined by

I 6~v!5PE dv8J6~v8!

v82v
.

One has the same as for the zero-temperature expres
~4.12! and~4.13! for P(t) andC(t), but now with new con-
stantsg ands depending on temperature:

g5n22pJ~nD!coth
bnD

2
.

V. CONCLUSION

To conclude, the following main result are obtained: T
theoretical role of the spectral function is explained throu
its emergence from a canonical limit procedure. Moreov
this function is shown to be real part of a complex functi
er

s.
ons

h
r,

whose imaginary part defines an energy shift in the sys
Hamiltonian. When the environment free energy depe
only on the modulus of momentum@v(k)5v(uku) in Eq.
~1.1!# the real and imaginary parts of this function are rela
by a Hilbert transform, thus making a bridge with the sta
darddispersion relations~cf. Sec. II!.

In the stochastic approach not only the Heisenberg eq
tion of the system observables is controlled, but also
environment evolution. It is shown that the environment co
verges to aquantum noise~a master field, in particle physi
cist terminology!. This gives a theoretical~i.e., based on a
microscopic Hamiltonian description! foundation to the use
of classical of quantum noises widely used in several c
temporary approaches to quantum measurement theory@1,7#.
We can compute the limit matrix elements of Heisenbe
evolution for arbitraryn-particle or coherent vectors. Th
vacuum matrix elements give rise to the master equat
The control of the other matrix elements is a new feature
the stochastic approach.

The purely oscillatory regime, discovered by Legg
et al. @1#, is related here to aCheshire cat effectin which the
environment variables vanish in the limit but, the interacti
leaves a track in the system behavior in the form of an
erator shift in the system Hamiltonian~cf. Sec. IV!.
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