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Information entropy and squeezing of quantum fluctuations
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Quantum-mechanical entropies of position and momentum operators in a given state are shown to be
reasonable and sensitive measures for squeezing of quantum fluctuations. It is shown to be true not only for
states having Gaussian wave functions but also for more general, both pure and mixed, quantum states. A
simple proof that the squeezing exhibited by the variance is always accompanied by a corresponding entropy
reduction below the entropy vacuum level is given. These results show that the information entropy is not only
a theoretically satisfactory concept but can also be useful as a tool for more practical quantum-optics applica-
tions. @S1050-2947~97!02609-7#

PACS number~s!: 03.65.Bz, 42.50.Dv, 42.50.Lc, 03.65.Ca
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In quantum mechanics two noncommuting observab
cannot be simultaneously measured with arbitrary precis
This fact, often called the Heisenberguncertainty principle,
is a fundamental restriction that is related neither to imp
fections of the existing real-life measuring devices nor to
experimental errors of observation@1#. It is rather the intrin-
sic property of the quantum state itself. Paradoxica
enough, the uncertainty principle provides the only way
avoid many interpretational problems. It can also be use
make qualitative predictions in atomic physics, e.g., the s
of the ground-state energy of an atom and the spread o
ground-state wave function@2#. The uncertainty principle
specified for given pairs of observables finds its mathem
cal manifestation as theuncertainty relations. The first rig-
orous derivation of the uncertainty relation from th
quantum-mechanical formalism applied for the basic n
commuting observables, i.e., for the position and momen
(@ x̂,p̂#5 i ;\51), is due to Kennard@3# ~see also the work o
Robertson@4#!. This derivation, repeated in most textboo
on quantum mechanics ever since, leads to the celebr
inequality

D x̂D p̂>
1

2
. ~1!

In fact, it can be considered as a simple consequence o
properties of the Fourier transform that connects the w
functions of the system in the position and momentum r
resentation.

In the above expression the fundamental quantum un
tainty inherently tied to the pair of noncommuting obse
ables is measured by the variance of the corresponding
mitian operators. For example, forx̂5 x̂†,

~D x̂!25Š~ x̂2^x̂&!2
‹, ~2!

where^ & denotes the averaging with respect to a given st
It should be noted, however, that the variance is not the o
561050-2947/97/56~4!/2545~4!/$10.00
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measure of quantum uncertainty that can be used to exp
the uncertainty principle. Being just the second central m
ment of the probability distribution, it gives only a roug
characterization of the probability distribution that is not
the Gaussian shape. It is, of course, possible to introd
higher moments@5#, but all of them considered separate
still contain only a restricted amount of information abo
the spreading of the values around the mean value. It is n
commonly recognized that in many cases the variances~or
standard deviations! are not appropriate measures of t
quantum uncertainty. There exist many physically interest
situations where using variances leads to inadequate des
tions. A much more satisfactory measure of quantum unc
tainty is given by the information entropy of the given pro
ability distribution. The advantages of the entropic approa
have been thoroughly scrutinized@6#.

In quantum mechanics the probability distribution of p
sition ~for a pure state! is given by the squared modulus o
the wave functionP(x)5uc(x)u2. The probability distribu-
tion of momentum is given by a similar expressio
P(p)5uc̃(p)u2, where the wave function in the momentu
representationc̃(p) is known to be the Fourier transform o
the wave functionc(x). Following Shannon’s ideas, we ca
define the entropies of positionSx52*P(x)lnP(x)dx and
momentumSp52*P(p)lnP(p)dp, respectively. There ex
ists a very deep and interesting inequality satisfied by
sum of the above-mentioned position and momentum en
pies

Sx1Sp52E uc~x!u2lnuc~x!u2dx2E uc̃~p!u2lnuc̃~p!u2dp

>11 lnp. ~3!

A conjecture that the wave function and its Fourier transfo
should satisfy this relation was made almost 40 years ago
Everett in his work devoted to many-worlds interpretation
quantum mechanics@7# and independently by Hirschman@8#
2545 © 1997 The American Physical Society



e

ed

u
as

t
ce

c
u
w
its
o
he

ne
o
e

nd

rs
re
n
s

th

an
nn
-

at
tio
u
e

lig

o
e
l

oo
fa
w

the
a-

gle
sure
st I
the
n-

as
case.
of
g

e-

R is

he
d-

ts

-
rre-
for

mo-

:

-
lear
the

end
y of
n is

to
tes.
al

ider
e
n be

2546 56ARKADIUSZ ORL/ OWSKI
for some mathematical reasons. The proof, however, is v
difficult and was presented for the first time by Beckner@9#
and by Białynicki-Birula and Mycielski@10#. This inequality
is often called the entropic uncertainty relation~EUR!. There
also exist various generalizations~e.g., to phase-space bas
EURs @11#!. It is interesting to note that Eq.~3! is more
general than the standard formulation of the Heisenberg
certainty principle by Kennard. In fact, the latter can be e
ily derivedfrom the EUR~but not vice versa!. All the above
discussion provides goodtheoretical~and aesthetic! reasons
to prefer entropy rather than variance as a measure of
quantum uncertainty. The point, however, is that varian
~being to some extent measurable quantities! are used to de-
fine some very important purely quantum-mechanical effe
such as squeezing of quantum fluctuations and s
Poissonian statistics. Thus there is a problem connected
the physical applicability of the information entropy and
usefulness in solving practical problems. One of the m
important problems is, of course, the ability to predict t
above-mentioned quantum-noise reduction.

To see this point more clearly, let me consider the o
dimensional harmonic oscillator modeling a single mode
the quantized electromagnetic field. It is still possible to ke
my previous notation and use the terms ‘‘position’’ a
‘‘momentum,’’ simply remembering that now thex̂ and p̂
operators should be interpreted as the quadrature operato
the radiation field. There is a class of states, called cohe
states, leading to the equality in the uncertainty relatio
They are considered to be as close as possible to the clas
states. For these states quantum uncertaintiesD x̂ andD p̂ are
equal to each other and equal to the uncertainties of
vacuum state~the ground state! of the harmonic oscillator
D x̂5D p̂51/A2. A state is called squeezed state if the qu
tum noise of one of the quadrature components of the a
hilation operator@ â5( x̂1 i p̂)/A2# is less than the noise cor
responding to the vacuum state

D x̂,
1

A2

or

D p̂,
1

A2
. ~4!

If, in addition, we still have equality in the relation~1!, such
states are called the minimum uncertainty squeezed st
Of course, because of the Heisenberg uncertainty rela
~1!, it is impossible to have both quadratures squeezed sim
taneously. Squeezing of quantum fluctuations as well as g
eration, detection, and properties of squeezed states of
still draws an increasing amount of attention@12#. It is stimu-
lated by many nontrivial applications in the detection
gravitational radiation~where the signal is comparable to th
quantum noise@13#! and in the modern low-noise optica
communication systems@14#. Therefore, if we want to intro-
duce the information entropy not only as a mathematical t
that allows more convenient interpretations but as a satis
tory equivalent of variances as measures of uncertainty,
ry
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should be able to prove that the entropy can be useful in
description of squeezing. It is the main objective of this p
per to show not only that EUR isstrongerthan the standard
uncertainty relation but also that the entropy of the sin
observable can be an as equally good and sensitive mea
of squeezing of quantum fluctuations as the variance. Fir
will show that itmustbe the case for the states possessing
Gaussian probability distributions. Then I will give a no
trivial example showing that the usefulness of the entropy
a measure of squeezing is not restricted to the Gaussian
At the end I will provethat the squeezing exhibited by one
the variances isalways accompanied by the correspondin
entropy reduction below the vacuum level.

Let me start from a simple generalization of the abov
presented EUR. In the above form~3! it can be used only for
systems in pure states. If the density matrixr̂ denotes an
arbitrary state, not necessarily pure, the more general EU
satisfied:

2E ^xur̂ux& ln^xur̂ux&dx2E ^pur̂up& ln^pur̂up&dp

>11 lnp. ~5!

The most general Gaussian probability distribution for t
position, being the marginal distribution of the correspon
ing Wigner function, can be written as@15#

^xur̂ux&5
1

A2p~t2m2m* !
expS 2

~x2x0!2

2~t2m2m* !
D .

~6!

Parametersm, n, andt are functions of the second momen
of the creation and annihilation~or position and momentum!
operators. For example, squeezing in thex̂ quadrature is pos-
sible only if (D x̂)25t2m2m* ,1/2. Depending on the val
ues of these parameters, we recognize the distribution co
sponding to some well-known states. For example,
m50,t5 1

2, we have coherent states; fort224umu25 1
4, we

have minimum uncertainty squeezed states; form5x050,
we have a thermal state. The entropies of position and
mentum corresponding to the coherent states~and to the
vacuum state! are equal to each other

Sx5Sp5 1
2 (11 lnp)'1.072 36. Now let me consider the po

sition entropy of the above general Gaussian state. It is c
that because the Gaussian state is fully determined by
mean value and the variance, the entropy also will dep
only on these parameters. Indeed, the information entrop
position for the above most general Gaussian distributio
given by

Sx5
1

2
~11 lnp!1

1

2
ln@2~t2m2m* !#. ~7!

Thus it is clear that the behavior of entropy is equivalent
the behavior of variance in the case of Gaussian sta
Therefore, there is no entropic squeezing for the therm
states.

What about more general quantum states? First cons
the photon-number~Fock! states that exhibit no quadratur
squeezing. That there is also no entropic squeezing ca
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seen from a very simple argument. The Wigner function o
Fock’s states is symmetrical with respect to both variable
and the marginal distributions have the same form. As
consequence, the corresponding entropies are equal to e
other. Therefore, because of the EUR, both must be grea
than the vacuum level. This argument is valid for any sta
that has the symmetrical Wigner function: there is no en
tropic squeezing in such a case.

The usefulness of the entropy as a measure of squeez
is not restricted to any special class of states. To see this
us consider a simple nontrivial example of the arbitrary two
element superposition of the vacuum and the one-phot
state

uc&5au0&1bu1&. ~8!

I assume for simplicity thata andb are real; thus the nor-
malization condition is simplya21b251. It is known that
this state exhibits squeezing of thex̂ quadrature for some
values ofb ~because of the normalization, the variance ofx̂
can be considered as a function ofb only! @16#. The quadra-
ture x̂ is squeezed forb,1/A2 and the maximum quantum
noise reduction@(D x̂)253/8# is obtained forb51/2. The
behavior of (D x̂)2 as a function ofb is presented in Fig. 1

FIG. 1. Variance (D x̂)2 ~top! and entropySx ~bottom! of the

quadraturex̂ as functions of the parameterb.
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~top!. In the same figure~bottom! we see the behavior of th
entropy Sx . Although these two parameters follow eac
other quite closely, we can see that the entropy is more s
sitive. Forb50.75, the variance is already greater than1

2, but
entropy still exhibits a small amount of squeezin
Sx'0.989 164. This greater sensitivity of entropy can a
be seen in the case of the Schro¨dinger cat state, i.e., for the
superposition of two coherent states~often called the even
coherent state!. Very similar results can also be obtained f
other nontrivial superpositions, including various finite s
perpositions of photon-number states@17# as well as investi-
gating some dynamical processes@18#.

Now let me prove generally that if the variance is le
than the vacuum level the corresponding entropy is also
than the entropy vacuum level for anarbitrary ~pure or
mixed! quantum stater̂. Normalizable quantum states with
finite variance (D x̂)2 are considered. The latter assumpti
implies that for such a state also the first moment^x& is
finite. The above conditions can formally be written as t
following constraints:*P(x)dx51 and*(x2^x&)2P(x)dx

5(D x̂)2, where P(x):5^xur̂ux&. Now the task is to find
such a stater̂max @or, more precisely, its probability distribu
tion Pmax(x)# that the corresponding entropySx takes on the
maximum value possible under these constraints. This p
lem is equivalent to finding the extremum of the function

2E P~x!lnP~x!dx1lS E P~x!dx21D
1gS E ~x2^x&!2P~x!dx2~D x̂!2D , ~9!

wherel and g are Lagrange multipliers to be determine
Calculating the variation of this functional with respect
P(x) and equating the result to zero we obtain equation

2 lnP~x!211l1g~x2^x&!250, ~10!

which must be satisfied by distributions that provide the
tremum of the functional~9!. In this case the extremum i
clearly a maximum. The distributionP(x) solving this equa-
tion is obviously a Gaussian depending on~still unknown!
parametersl andg. Using now the conditions of normaliza
tion and fixed ~finite! variance to eliminate the Lagrang
multipliers, we immediately see that among all states w
variance (D x̂)2, the maximum entropy is attained for th
state having the Gaussian probability distribution

^xur̂ux&max5
1

D x̂A2p
expS 2

~x2^x&!2

2~D x̂!2 D . ~11!

Straightforward computation shows that the correspond
~maximum! entropySmax is equal to1

2 ln@2pe(Dx̂)2#. Because
it is the maximum entropy possible under the conside
conditions~normalization and a given variance!, the entropy
Sx of any other state satisfying the same conditions m
obey the inequality
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2548 56ARKADIUSZ ORL/ OWSKI
Sx<Smax5
1

2
ln@2pe~D x̂!2#5

1

2
~11 lnp!1

1

2
ln@2~D x̂!2#.

~12!

The term1
2 (11 lnp) is the vacuum level for entropy. Thus,

there is a quadrature squeezing@meaning (D x̂)2, 1
2# then the

term 1
2 ln@2(Dx̂)2# becomes negative and the entropySx is also

reduced below its vacuum-level value. The same reaso
can be performed for the momentump. Note that the trick
used here is exactly the same as that used for deriving
standard uncertainty relation from the EUR@10#.

In conclusion, I have proved that the information entrop
being a superior measure of the quantum uncertainty f
in
ng

he

,
m

the formal point of view, is also a remarkably good practic
measure of squeezing of quantum fluctuations. For all qu
tum states that exhibit quantum noise reduction below
vacuum level according to the variance, the correspond
information entropy is also less than the value of entro
corresponding to the vacuum level. It is possible, howev
that for some nonclassical states the entropy is still less t
the vacuum level, whereas the variance exhibits no m
squeezing. The reason is that entropy is sensitive not onl
squeezing but also to other nonclassical properties of a g
state.
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