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Information entropy and squeezing of quantum fluctuations
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Quantum-mechanical entropies of position and momentum operators in a given state are shown to be
reasonable and sensitive measures for squeezing of quantum fluctuations. It is shown to be true not only for
states having Gaussian wave functions but also for more general, both pure and mixed, quantum states. A
simple proof that the squeezing exhibited by the variance is always accompanied by a corresponding entropy
reduction below the entropy vacuum level is given. These results show that the information entropy is not only
a theoretically satisfactory concept but can also be useful as a tool for more practical quantum-optics applica-
tions.[S1050-2947@7)02609-7

PACS numbg(s): 03.65.Bz, 42.50.Dv, 42.50.Lc, 03.65.Ca

In quantum mechanics two noncommuting observablesneasure of quantum uncertainty that can be used to express
cannot be simultaneously measured with arbitrary precisiorthe uncertainty principle. Being just the second central mo-
This fact, often called the Heisenbeugcertainty principle  ment of the probability distribution, it gives only a rough
is a fundamental restriction that is related neither to impercharacterization of the probability distribution that is not of
fections of the existing real-life measuring devices nor to thehe Gaussian shape. It is, of course, possible to introduce
experimental errors of observatiph]. It is rather the intrin-  higher momentg5], but all of them considered separately
sic property of the quantum state itself. Paradoxicallystill contain only a restricted amount of information about
enough, the uncertainty principle provides the only way tothe spreading of the values around the mean value. It is now
avoid many interpretational problems. It can also be used toommonly recognized that in many cases the variarioes
make qualitative predictions in atomic physics, e.g., the sizestandard deviationsare not appropriate measures of the
of the ground-state energy of an atom and the spread of thguantum uncertainty. There exist many physically interesting
ground-state wave functiof2]. The uncertainty principle situations where using variances leads to inadequate descrip-
specified for given pairs of observables finds its mathematitions. A much more satisfactory measure of quantum uncer-
cal manifestation as thencertainty relationsThe first rig-  tainty is given by the information entropy of the given prob-
orous derivation of the uncertainty relation from the ability distribution. The advantages of the entropic approach
guantum-mechanical formalism applied for the basic nonhave been thoroughly scrutiniz¢6].
commuting observables, i.e., for the position and momentum In quantum mechanics the probability distribution of po-

([x,p]=i;7=1), is due to KennarfB] (see also the work of sition (for a pure stateis given by the squared modulus of
Robertsor[4]). This derivation, repeated in most textbooks the wave functiorP(x) =|¢(x)|?. The probability distribu-

on quantum mechanics ever since, leads to the celebraté@n of momentum is given by a similar expression
inequality P(p)=|¥(p)|?, where the wave function in the momentum

representations(p) is known to be the Fourier transform of
AXAP= E (1) the wave function/(x). Following Shannon’s ideas, we can
2 define the entropies of positio8,= — [P(x)InP(x)dx and
. . ) momentumS,=— [ P(p)InP(p)dp, respectively. There ex-
In fact, it can be considered as a simple consequence of thets a very deep and interesting inequality satisfied by the

properties of the Fourier transform that connects the wavgum of the above-mentioned position and momentum entro-
functions of the system in the position and momentum reppies

resentation.
In the above expression the fundamental quantum uncer- _ _
tainty inherently tied to the pair of noncommuting observ- S;+S,=— Iw(x)lzlnlw(x)lzdx—f | (p)|?In|(p)|2dp
ables is measured by the variance of the corresponding Her-
mitian operators. For example, far=x", =1+In7. ()]

(AX)2=((x—(X))?), (2)  Aconjecture that the wave function and its Fourier transform
should satisfy this relation was made almost 40 years ago by
where( ) denotes the averaging with respect to a given stateEverett in his work devoted to many-worlds interpretation of
It should be noted, however, that the variance is not the onlguantum mechanid¥] and independently by Hirschma@]
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for some mathematical reasons. The proof, however, is verghould be able to prove that the entropy can be useful in the
difficult and was presented for the first time by Beckf@r  description of squeezing. It is the main objective of this pa-
and by Biatynicki-Birula and Mycielski10]. This inequality ~ per to show not only that EUR istrongerthan the standard

is often called the entropic uncertainty relati@lJR). There  uncertainty relation but also that the entropy of the single
also exist various generalizatiofe.g., to phase-space based observable can be an as equally good and sensitive measure
EURs[11]). It is interesting to note that EJ3) is more  of squeezing of quantum fluctuations as the variance. First |
general than the standard formulation of the Heisenberg urwill show that itmustbe the case for the states possessing the
certainty principle by Kennard. In fact, the latter can be easGaussian probability distributions. Then | will give a non-

ily derivedfrom the EUR(but not vice verspa All the above trivial example showing that the usefulness of the entropy as
discussion provides godtieoretical(and aesthetjcreasons a measure of squeezing is not restricted to the Gaussian case.
to prefer entropy rather than variance as a measure of th&t the end | will provethat the squeezing exhibited by one of
guantum uncertainty. The point, however, is that varianceshe variances iglwaysaccompanied by the corresponding
(being to some extent measurable quantiteee used to de- entropy reduction below the vacuum level.

fine some very important purely quantum-mechanical effects Let me start from a simple generalization of the above-
such as squeezing of quantum fluctuations and subpresented EUR. In the above fori3) it can be used only for

Poissonian statistics. Thus there is a problem connected witfystems in pure states. If the density mafsixdenotes an

the physical applicability of the information entropy and its arhitrary state, not necessarily pure, the more general EUR is
usefulness in solving practical problems. One of the moskatisfied:

important problems is, of course, the ability to predict the

above-mentioned quantum-noise reduction. A - - -

To see this point more clearly, let me consider the one- _f <X|P|X>|”<X|P|X>dx_f (plplp)In(plplp)dp
dimensional harmonic oscillator modeling a single mode of
the quantized electromagnetic field. It is still possible to keep =1+Inm. )

my previous notation and use the terms “position” and _ e
y P P The most general Gaussian probability distribution for the

“momentum,” S'mp'Y remembering that now the and p pgsition, being the marginal distribution of the correspond-
operators should be interpreted as the quadrature operators; Wigner function, can be written 445]

the radiation field. There is a class of states, called coherent

states, leading to the equality in the uncertainty relations. 1 (X—Xo)2
They are considered to be as close as possible to the classical (x|p|x)= exp( — 0

~ A _ _ * _ _ *
states. For these states quantum uncertaidtieandAp are V27(7— = p™) 2(T—p—p*) 5
equal to each other and equal to the uncertainties of the ©®

vacuum statgthe ground stajeof the harmonic oscillator  parameterg:, », andr are functions of the second moments
Ax=Ap=1/\2. A state is called squeezed state if the quan-of the creation and annihilatiofor position and momentum
tum noise of onerf tAhe qﬁuadrature components of the annbperators. For example, squeezing in xhguadrature is pos-
hilation qperato{a:(x+ip)/\/§] is less than the noise cor- gy only if (AX)2= 7— u— p* <1/2. Depending on the val-
responding to the vacuum state ues of these parameters, we recognize the distribution corre-
sponding to some well-known states. For example, for
A< — u=0,7=3, we have coherent states; fof — 4| u|?=13, we
J2 have minimum uncertainty squeezed states; dotxy=0,
we have a thermal state. The entropies of position and mo-
mentum corresponding to the coherent stai@msd to the

or vacuum state are equal to each other:
S=S,= 3(14In7)~1.072 36. Now let me consider the po-

Af)<i. (4) sition entropy of the above general Gaussian state. It is clear

\/E that because the Gaussian state is fully determined by the

mean value and the variance, the entropy also will depend
If, in addition, we still have equality in the relatigqd), such  only on these parameters. Indeed, the information entropy of
states are called the minimum uncertainty squeezed statgsosition for the above most general Gaussian distribution is
Of course, because of the Heisenberg uncertainty relatiogiven by
(1), itis impossible to have both quadratures squeezed simul-
taneously. Squeezing of quantum fluctuations as well as gen- 1
eration, detection, and properties of squeezed states of light S><:§(l+|n77)+ §|n[2(7_”_'“*)]' @
still draws an increasing amount of attent{dr2]. It is stimu-
lated by many nontrivial applications in the detection of Thus it is clear that the behavior of entropy is equivalent to
gravitational radiatiorfwhere the signal is comparable to the the behavior of variance in the case of Gaussian states.
guantum noisg13]) and in the modern low-noise optical Therefore, there is no entropic squeezing for the thermal
communication systenid4]. Therefore, if we want to intro- states.
duce the information entropy not only as a mathematical tool What about more general quantum states? First consider
that allows more convenient interpretations but as a satisfadche photon-numbe¢Fock states that exhibit no quadrature
tory equivalent of variances as measures of uncertainty, wequeezing. That there is also no entropic squeezing can be
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(top). In the same figurgbottom we see the behavior of the
entropy S,. Although these two parameters follow each
other quite closely, we can see that the entropy is more sen-
sitive. For8=0.75, the variance is already greater t§abut
entropy still exhibits a small amount of squeezing:
S,~0.989 164. This greater sensitivity of entropy can also
be seen in the case of the Sctlirger cat state, i.e., for the
superposition of two coherent statésften called the even
coherent stade Very similar results can also be obtained for
other nontrivial superpositions, including various finite su-
perpositions of photon-number stafds] as well as investi-
gating some dynamical procesg4s].

Now let me prove generally that if the variance is less
00 01 02 03 04 O 06 0T 08 09 19 than the vacuum level the corresponding entropy is also less
than the entropy vacuum level for arbitrary (pure or

mixed quantum stat@. Normalizable quantum states with a
finite variance (&?()2 are considered. The latter assumption

—
(=3

Variance of x
e o = = o=
[~3 [« 3 [~} (&) [

I
'S

o
o

1.35 implies that for such a state also the first moméxy is
13 finite. The above conditions can formally be written as the
Lo following constraints:;[P(x)dx=1 and [(x—{x))?P(x)dx
L =(Ax)2, where P(x):=(x|p|x). Now the task is to find
38‘ ' sych a statémax [or, more precisgly, its probability distribu-
g 118 tion P.(X)] that the corresponding entrof$y takes on the
E 11 maximum value possible under these constraints. This prob-
& Los lem is equivalent to finding the extremum of the functional
1.0
0.95 —J P(x)InP(x)dx+ X\ f P(x)dx—1
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FIG. 1. Variance 4x)” (top) and entropyS, (bottom of the \yhere\ and y are Lagrange multipliers to be determined.
quadraturex as functions of the parametg Calculating the variation of this functional with respect to

) . ) P(x) and equating the result to zero we obtain equation
seen from a very simple argument. The Wigner function of

Fock’s states is symmetrical with respect to both variables )
and the marginal distributions have the same form. As a —INP(x) =1+ N+ y(x—(x))==0, (10
consequence, the corresponding entropies are equal to each

other. Therefore, because of the EUR, both must be great@jhich must be satisfied by distributions that provide the ex-
than the vacuum level. This argument is valid for any stat@remum of the functional9). In this case the extremum is
that has the symmetrical Wigner function: there is no entjearly a maximum. The distributioR(x) solving this equa-
tropic squeezing in such a case. _tion is obviously a Gaussian depending @till unknown
The usefulness of the entropy as a measure of squeeziframeters. andy. Using now the conditions of normaliza-
is not restricted to any special class of states. To see this lglyn and fixed (finite) variance to eliminate the Lagrange
us consider a simple nontrivial example of the arbitrary two-mytipliers, we immediately see that among all states with
element superposition of the vacuum and the One'phOtOUariance AX)?, the maximum entropy is attained for the

state state having the Gaussian probability distribution
|)=|0)+B|1). ) ,
implici : (x|plx) =—exp< - M) (12)
| assume for simplicity thatr and 8 are real; thus the nor- max Ak 20002 )

malization condition is simplyr?+ g2=1. It is known that
this state exhibits squeezing of tixequadrature for some
values ofg (because of the normalization, the variancecof
can be considered as a function@®bnly) [16]. The quadra- . ) : :

- df 12 ’EZ hy)[ ] a it is the maximum entropy possible under the considered
turex is squeezed fop< and the maximum quantum ., itions(normalization and a given variancéhe entropy

noise reductioAr[(A)A()2=3/8] is obtained for3=1/2. The g of any other state satisfying the same conditions must
behavior of Ax)? as a function ofg is presented in Fig. 1 obey the inequality

Straightforward computation shows that the corresponding
(maximum) entropyS.is equal to:In[2e(AX)?]. Because
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1 - 1 1 R
S= Smaxzzln[Zwe(Ax)Z]zi(lJr In7r)+ EIn[Z(Ax)Z].
12
The term3 (1+In) is the vacuum level for entropy. Thus, if

there is a quadrature squeez{mgeaning AX)2< 1] then the
term %In[Z(Ai)z] becomes negative and the entrdyis also
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the formal point of view, is also a remarkably good practical

measure of squeezing of quantum fluctuations. For all quan-
tum states that exhibit quantum noise reduction below the
vacuum level according to the variance, the corresponding
information entropy is also less than the value of entropy
corresponding to the vacuum level. It is possible, however,
that for some nonclassical states the entropy is still less than
the vacuum level, whereas the variance exhibits no more

reduced below its vacuum-level value. The same reasoningdueezing. The reason is that entropy is sensitive not only to

can be performed for the momentum Note that the trick

squeezing but also to other nonclassical properties of a given

used here is exactly the same as that used for deriving theate.

standard uncertainty relation from the EJR0].

In conclusion, | have proved that the information entropy,
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