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Effective two-level model for a three-level atom in theJ configuration
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It is shown that the system of a three-level atom coupled to two modes of quantized cavity fields in theJ
configuration with arbitrary detunings can be exactly reduced to a two-level system with an effective coupling
which depends nonlinearly on the intensity of the two cavity fields.@S1050-2947~97!01209-2#

PACS number~s!: 42.50.Hz, 42.50.Ar
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Single-mode and multimode multiphoton~or mul-
tiphonon! processes involving one atom or ion with a fe
energy levels have recently been of increasing interest in
fields of cavity quantum electrodynamics@1–8# and laser
trapping and cooling@9–13#. The investigation of these pro
cesses is of theoretical value in its own right and may h
some potential applications in these two fields in the n
future. On the other hand, this increasing interest is pa
due to the fact that such nonlinear processes have experi
tally been realized in the field of ion trapping@13#. In dealing
with multiphoton~or multiphonon! transitions, one can con
sider a two-level atomic system in the single-mode c
@1,2,4,11# and a three-level atomic system in the two-mo
case@1,3–8,12#. In the latter case, one usually reduces it
an effective two-level problem on the assumption of lar
detuning~s! by the approximation of either the adiabat
elimination@5,12# or evaluating a unitary transformation pe
turbatively@6#. The effective two-level Hamiltonian thus ob
tained has the form of the usual Jaynes-Cummings mode
with the single-mode field operators replaced by products
a field operator of one mode and a field operator of the o
with the effective coupling parameterl}g1g2 /D, where
gj , D denote the coupling parameters and detuning, res
tively @5–7#. Such a result obviously cannot be extrapola
to the situations of largegj /D j , and is singular for the zero
detuning case. As a matter of fact, the result may need m
fication in the situation when the field~s! is strong even if the
ratios gj /D j are small @7#. One purpose of transformin
three-level systems to two-level systems is to simplify
subsequent calculations of the dynamical and statistical p
erties of the atom and fields. What is more, such a trans
mation will be used to design two-level systems with mo
fied desirable coupling parameter@7# and decay rate@12#. In
view of the facts that the detunings are experimentally
justable parameters that can be tuned to any values, tha
coupling parameters can also easily be adjusted in the
of laser cooling of single trapped atoms or ions@10#, and that
nonlinear interactions are important when the field modes
relatively strong, it is thus desirable to obtain effective tw
level models which describe the situations where coup
constants have arbitrary relations to the detunings.

In this paper we will show that the system of a three-le
atom interacting with two quantized modes in theJ configu-
ration with arbitrary detunings can, just as one of us did
the L configuration@7#, be exactly reduced to an effectiv
two-level model with an effective Raman coupling, whic
561050-2947/97/56~3!/2443~4!/$10.00
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depends nonlinearly on the intensity of the two quantiz
field modes. An exact transformed Hamiltonian will be o
tained in which one of the three levels is decoupled and
effective coupling does not show any singularity for any
tios of coupling parameters to detunings including the ze
detuning case.

We consider a three-level system of energiesE1 , E2 , and
E3 in the J configuration interacting with two quantize
cavity modes 1 and 2 as shown in Fig. 1@4,9#. The Hamil-
tonian of the system is written as@4#

H5(
i 51

3

Eis i i 1\v1b1
†b11\v2b2

†b21\g1~b1s311b1
†s13!

1\g2~b2s231b2
†s32!, ~1!

where symbolsbj ( j 51,2) represent the field operators
modes 1 and 2,s i i 5u i &^ i u are the level occupation number
ands i j 5u i &^ j u ( iÞ j ) are the transition operators from leve
j to i . Levels 3 and 1~2! are coupled by a dipole-couplin
constantg1(g2). There is no direct coupling between leve
1 and 2. The quantitiesD1 andD2 in Fig. 1 denote detunings
given by D j5(E32Ej )/\2v j , j 51,2. Note that we have
changed some notation with respect to the previous lite
ture, and in particular have interchanged the numbering
levels 2 and 3. One of the purposes for such change is
we want to make full use of the corresponding derivations
the L configuration in Ref.@7# and facilitate the comparison
of the results in these two configurations.

We introduce the unitary transformation

FIG. 1. Three-level atom in theJ configuration.
2443 © 1997 The American Physical Society
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X85exp~S!X exp~2S!, ~2!

whereX8 denotes the transformed atomic and photon v
ables, and

S5a~b1s312b1
†s13!1b~b2s232b2

†s32!, ~3!

wherea and b are transformation parameters. By the sa
routine as what we did previously@7#, we obtain the exac
transformed Hamiltonian

H85E01\v1N11\v2N21 1
2 \hs33

1\l~b1b2s211b1
†b2

†s12!1 1
2 \v~s222s11!, ~4!

where

N15b1
†b1112s11, N25b2

†b21s22, ~5!

h5D12D21
3 sin2j

j S g1

a
ā22

g2

b
b̄2D

2
3~D1ā22D2b̄2!

2j2 ~12cos2j!, ~6a!

E05
1

2
~E11E22\v12\v2!1

\

6
~D12D22h!, ~6b!

l5
ab~12cosj!

j4 @~D2ā22D1b̄2!1~D2b̄22D1ā2!cosj#

1
absinj

j3 F S g1

a
1

g2

b D ~ b̄22ā2!

12S g1

a
ā22

g2

b
b̄2D cosjG , ~6c!

v5D11D22
~12cosj!

j4 @2~D11D2!ā2b̄2

1~D1ā21D2b̄2!j21~ ā22b̄2!

3~D1ā22D2b̄2!cosj#

1
2 sinj

j3 F2ā2b̄2S g1

a
1

g2

b D1~ ā22b̄2!

3S g1

a
ā22

g2

b
b̄2D cosjG , ~6d!

whereā5aAN1, b̄5bAN2, andj5Aā21b2.
The transformation parametersa andb are determined by

the two equations
i-

e

2~D11D2!
ab̄2

j3 sinj1
ab̄2

j2 S g1

a
1

g2

b D cosj

2
a~D1ā22D2b̄2!

2j3 sin2j

1S g1

a
ā22

g2

b
b̄2D a

j2 cos2j50, ~7a!

2~D11D2!
bā2

j3 sinj1
bā2

j2 S g1

a
1

g2

b D cosj

1
b~D1ā22D2b̄2!

2j3 sin2j

2S g1

a
ā22

g2

b
b2D b

j2 cos2j50, ~7b!

which generally need to be solved by numerical computat
to obtain the two parametersa and b. However, these two
parameters can be obtained analytically in the particula
interesting case considered previously@4#, that is, as the de-
tunings satisfy the relationD152D2[D which implies an
exact two-photon resonant conditionE22E15\(v11v2).
Equation~7! is satisfied in this case if we choose

a5
g1

2Aḡ1
21ḡ2

2
arctanS 2Aḡ1

21ḡ2
2

D
D , ~8a!

b52
g2

2Aḡ1
21ḡ2

2
arctanS 2Aḡ1

21ḡ2
2

D
D , ~8b!

whereḡ j5gjANj , andNj , j 51,2, are given by Eq.~5!. We
then find, after some manipulations, that the complicated
pressions for the parameters in Eq.~6! are greatly simplified
and have the forms

h52D13t, t5SAS D

2 D 2

1ḡ1
21ḡ2

22
uDu
2 D sgnD,

~9a!

E05
1

2
~E11E22\v12\v22\t!, ~9b!

v5
ḡ1

22ḡ2
2

ḡ1
21ḡ2

2 t, l52
g1g2

ḡ1
21ḡ2

2 t, ~9c!

where ‘‘sgn’’ represents the signum function. Substituti
Eq. ~9! into Eq. ~4!, we explicitly arrive at the exact trans
formed Hamiltonian in which level 3 decouples from th
other two levels. Equation~4!, together with its parameter
determined by Eqs.~6! and~7! @or by Eq.~9! in the particular
caseD152D2[D#, is the central result of this paper.

Let us now discuss this result. First, thel andv terms in
the transformed Hamiltonian@Eq. ~4!# obviously only pro-
duce transitions between levels 1 and 2, while the ot
terms do not cause any transitions among the three lev
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This means that level 3 can be exactly decoupled and d
not contribute to the population dynamics. Consequently,
can sets3350 in the transformed Hamiltonian to obtain a
effective two-level model with levels 1 and 2 subject to
effective intensity-dependent coupling, i.e., the parametel
depends on photon numbers of the two modes. We h
therefore shown that the system of a three-level at
coupled to two modes of quantized cavity fields in theJ
configuration with arbitrary detuningsD j and coupling pa-
rametersgj can be exactly reduced to a two-level syste
with an effective intensity-dependent couplingl. Secondly,
the intensity-dependent coupling occurs naturally here w
previous studies usually introduce it phenomenologica
Thirdly, the effective couplingl is valid and nonsingular for
any ratios of coupling parametersgj to detuningsD j . It is
easily seen from Eq.~9! that the effective couplingl'
2g1g2 /D when D2@ḡ1

22ḡ2
2, and asD2!(ḡ1

21ḡ2
2), it be-

comesl'2g1g2 /Aḡ1
21ḡ2

2 which remains finite asD→0.
Fourthly, the absolute value of the effective couplingl is
easily seen from Eq.~9! to be a monotonically decreasin
function of the detuningD, which means that the smaller th
detuning, the stronger the effective coupling between lev
1 and 2. This is a reasonable result that can be anticip
physically since the smaller the detuning, the stronger
direct couplings between levels 1 and 3 and between leve
and 3, and also the effective coupling between levels 1 an
This result suggests that zero detuning or small detun
would be more desirable by taking into account the fact t
stronger coupling is better for realizing all kinds of noncla
sical phenomena such as collapse and revivals, squeeze
trapped states experimentally@10#. It is emphasized that ou
results here are still valid in these small detuning cases w
those of the adiabatic elimination cease to be so. Finally,
point out that since we have obtained the exact transform
Hamiltonian where one of the three levels decouples fr
the other two levels, we can easily derive its exact eigen
ues and eigenvectors, and the corresponding dynamics
the unified and standarized formulas we developed@8~b!#,
and we can also derive the statistical properties of the a
and the fields.

It is interesting to compare Eqs.~4! and~9! describing the
J-type system in the exact two-photon resonant case w
those describing theL-type system in the exact two-photo
resonant case. The transformed Hamiltonian for theL-type
system in the exact two-photon resonant case is@the exact
two-photon resonant condition for theL-type system reads
@7# D15D2[D, i.e., E22E15\(v12v2); note that we
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have here chosen level 3 in between levels 1 and 2 w
level 3 is chosen as the highest level in Ref.@7# for the
L-type system#

H85E01\v1N11\v2N21 1
2 \hs331\l~b1b2

†s21

1b1
†b2s12!1 1

2 \v~s222s11!, ~10!

where the expressions of parametersE0 , h, l, andv can still
be determined by Eq.~9! here except thatNj , j 51,2 are
different@7# @there are minor errors in Eq.~31! of Ref. @7# for
the expressions of the parametersE0 , h, l, and v as the
detuningD is negative#. Comparing Eq.~4! with Eq. ~10!, we
see that by intentionally choosing different level numberin
and different Nj , the transformed Hamiltonians for th
J-type andL-type systems, respectively, turn out to ha
nearly the same form except for different effective intera
tion terms.

In summary, we have investigated the system of a thr
level atom interacting with two quantized cavity modes~the
two modes can have either different or identical frequenc!
in J configuration, we have obtained the exact transform
Hamiltonian and shown that one of the three levels~level 3!
can be made to decouple from the other two levels, a
hence, can be eliminated from the exact transformed Ha
tonian to obtain an effective two-level Hamiltonian with
nonsingular intensity-dependent coupling between level
and 2. The effective two-level Hamiltonian is, within th
framework of the original Hamiltonian, valid for any magn
tudes of the ratios of the coupling constants to detuni
including the zero-detuning case. These results can be
lized to investigate the dynamics and statistics of atomic
field quantities, and the effects of the naturally occurri
intensity-dependent coupling on them particularly in the si
ations of strong couplings~large g!, small detunings, and
intense fields, where the adiabatic elimination ceases to
valid. In addition, the results and the approach used here
also be utilized to design two-level systems with desira
effective coupling and effective decay rate for ion or ato
sideband cooling@12# particularly in the above-mentione
situations.
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National Education Committee, and the National Laborat
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